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ABSTRACT 

This paper is focused on upgrading a unified parametric model, available in the literature, that can perform both the 

analysis and the design of Power-Split Continuously Variable Transmissions (PS-CVTs), which are particularly 

promising to deploy in the hybrid electric powertrain. In particular, a new procedure for the identification of the basic 

functional parameters underlying the model is presented. This new method does not rely on a case-specific formulation, 

thus befits any power-split transmission, regardless of the number of planetary and ordinary gear sets and their 

constructive arrangement. Moreover, it handles the clutches operations that perform the shift between different 

constructive layouts, therefore it is suitable even for multimode PS-CVTs.  

As a case study, we applied it to the complex multimode PS-CVT of the Cadillac CT6 and carried out a comprehensive 

analysis of its kinematics, mechanical power losses and power flows. 

 

KEYWORDS: power-split CVT, multimode transmission, analysis, planetary gearing, Hybrid Electric Vehicle, 

Cadillac CT6. 

1. INTRODUCTION 

Significant efforts have been made in recent years to reduce emissions coming from the automotive field. To comply 

with the emission limit values imposed by national and international law, more and more car manufacturers have been 

expanding their product range by introducing powertrain electrification. In this perspective, Hybrid Electric Vehicles 

(HEVs) are emerging as the eco-sustainable solution bound to become the most widespread in the very short term [1], 

[2], [3]. 

The power-split powertrain is the most promising hybrid technology because it decouples the Internal Combustion 

Engine (ICE) speed from the wheels one (like in series hybrid) and it enables the ICE to feed both the electric unit and 

the wheels (like in parallel hybrid), even simultaneously [4]-[8]. The power flows, generated by the propulsors and 

transmitted to the wheels or the battery pack, are handled by the Power-Split Unit (PSU), consisting of Planetary Gear 

sets (PGs) and fixed-ratio Ordinary Gear trains (OGs). The electric unit relies on two electric machines, which can act as 

motors for supporting the ICE in vehicle propulsion or as generators for recharging the batteries. Their combined use at 

variable speed is equivalent to a Continuously Variable Unit (CVU) since it performs kinematically the same role of a 

mechanical or hydraulic speed variator in Power-Split Continuously Variable Transmissions (PS-CVTs). 

The simpler PSU arrangement includes only one PG and it is known as Shunt PS-CVTs (input-split or output-split) 

while a more complex mechanical layout with two or more PGs leads to Compound PS-CVTs. Furthermore, the 

embedding of a clutches system results in multimode transmissions, which can generate several internal power flows that 

better meet the requirements of different driving operations. This enables the minimization of the power size of the electric 

unit, at the expense of constructive simplicity [9], [10], [11]. 

To date, several authors have proposed a wide variety of methods for studying PS-CVTs [12]-[35], even though very 

few of them are effective at both analyzing and designing any PSU, constructive complexity notwithstanding. Numerous 

papers are very well detailed (for example [24]-[28]) and able to describe some of the key features of specific case studies, 

but they are lacking in generality. In this scenario, an interesting unified approach was presented for the first time in [36], 

based on a few functional parameters having a direct physical meaning. Among the main novelties presented, there was 

the introduction of a powerful design tool, called design-chart, which allows the designer to visually assess all the eligible 

constructive solutions for PGs and consciously select the best PS-CVT layout. However, the same functional parameters 

are important for analysis purposes too, since they enable the direct calculation of speed, torque, and power flow of any 

shaft of the transmission. Therefore, the same authors in [37] addressed a procedure for identifying these functional 

parameters starting from the constructive layout of any power-split transmission with one or two PGs. Lastly, [38] 

expanded the features of the model with a straightforward calculation of the mechanical power losses occurring in the 

PSU and of the real power flows. 

In this paper, we present an alternative and more direct approach to calculate the functional parameters from the 

constructive ones. Unlike the previous formulation [37], it works regardless of the number of PGs and the operating 
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modes and it does not require any preliminary analysis about the functional scheme under examination, nor a 

standardization procedure for the Willis’ ratios. 

The paper is organized as follows. The fundamental equations underpinning the parametric model [36] are reported 

in section 2. This section also briefly summarizes the swift method addressed in [38] for the calculation of the PSU power 

losses. Section 3 shows that, with minor changes, the addressed model is suitable also for analyzing the transmission in 

full electric operation. Section 4 presents the novel method to calculate the new functional parameters. Lastly, the 

effectiveness of the new procedure and the functionality of the whole model are tested in section 5 by conducting a 

comprehensive analysis of the complex three-PG multimode PS-CVT of the Cadillac CT6. 

Nomenclature  

Acronyms:  

CVU Continuously Variable Unit 

FEV Full Electric Vehicle operation 

HEV Hybrid Electric Vehicle 

ICE Internal Combustion Engine 

OG Ordinary Gear set 

PG Planetary Gear set 

PS-CVT Power-Split Continuously Variable Transmission 

PSU Power-Split Unit 

TPM Three-Port Mechanism 

  

Subscripts:  

C, R, S Carrier, Ring gear and Sun gear of a PG 

in, out, i, o, n main ports of the PSU 

x, y, z branches of a TPM 

X, Y, Z shafts of a PG 

  

Symbols:  

Overlined powers or torques refer to real working condition 

[𝐊] matrix of constructive constraints 

{𝛚} vector of rotational speeds 

𝑘𝑥 fixed-ratio gear on the x-th branch of a TPM 

𝑁𝐶  number of constructive constraints 

𝑁𝑇𝑃𝑀 number of Three-Port Mechanisms 

𝑃𝑗 power flowing through the j-th branch 

𝑝𝑗 power flowing through the j-th branch as a fraction of the input power 

𝑝′𝑗  power flowing through the j-th branch as a fraction of the output power 

𝑃𝑗|𝑖 power flowing through the j-th branch of the i-th TPM 

𝑃̅𝐿  mechanical power losses 

𝑝̅𝐿  mechanical power losses as a fraction of the input power 

𝑝̅′𝐿  mechanical power losses as a fraction of the output power 

𝑇𝑗 torque applied to the j-th shaft 

𝜂 overall apparent efficiency 

𝜂0 basic efficiency of a PG 

𝜂𝑌 𝑋⁄
𝑍  fixed-Z apparent efficiency of a PG 

𝜂𝑋 𝑥⁄  apparent efficiency of the x-th OG 

𝛩 torque applied to the out shaft as a fraction of the input torque (overall torque ratio) 

𝜃𝑗 torque applied to the j-th shaft as a fraction of the input torque 



𝜏 overall speed ratio 

𝜏𝑗 speed ratio of the j-th shaft 

𝜏#𝑗 overall speed ratio for which the j-th shaft is motionless (nodal ratio) 

𝜏𝑗#𝑘 speed ratio of the j-th shaft when the k-th shaft is motionless (corresponding speed ratio) 

𝜏∗ overall speed ratio for which a PG is synchronous 

𝜙𝑥 𝑦⁄
𝑧  generalized characteristic function of a TPM 

Ψ Willis’ ratio of a PG 

𝜓𝑌 𝑋⁄
𝑍  fixed-Z speed ratio of a PG 

𝜔𝑗 rotational speed of the j-th shaft 

 

2. THEORETICAL BACKGROUND 

This section summarizes the essentials of the parametric model for PS-CVTs (Fig. 1) presented in [36] by changing 

both the independent variables and the functional parameters, to align it with the treatment addressed in [38]. Indeed, [36] 

used a normalized speed ratio as a variable and CVU speed ratio and ratio spreads as functional parameters, which are 

well suited for a passive mechanical CVU with one Degree Of Freedom (DOF). On the other hand, [38] did not normalize 

the speed ratio and introduced new basic parameters that better befits the electric CVU behavior with two DOFs. 

Any PSU is a combination of planetary gear sets, whose branches rotate at linearly dependent speeds, ordinary gear 

sets, whose shafts have proportional speeds, and isokinetic joints, consisting of two or more shafts rotating at the same 

speed. Consequently, for some PSU shafts their rotational speed is proportional to the input speed (𝜔𝑖𝑛), for others to the 

output speed (𝜔𝑜𝑢𝑡), for still others it is a linear combination of both. In general, the rotational speed of any j-th PSU 

shaft can be normalized to the input speed and written as: 

 𝜏𝑗 =
𝜔𝑗

𝜔𝑖𝑛
= 𝐴𝑗 + 𝐵𝑗 𝜏 (1) 

where 𝜏 is the overall speed ratio, defined as the speed ratio between PSU output and input shafts (𝜏 = 𝜔𝑜𝑢𝑡 𝜔𝑖𝑛⁄ ), and 

𝐴𝑗 or 𝐵𝑗  can be zero. The overall transmission ratio 𝜏 achieved when a generic k-th shaft is motionless is called nodal 

ratio: 

 𝜏#𝑘 =
𝜔𝑜𝑢𝑡
𝜔𝑖𝑛

|
𝜔𝑘=0

 (2) 

On the other hand, the value of the remaining speed ratios 𝜏𝑗 achieved in correspondence of a nodal ratio 𝜏#𝑘 is called 

corresponding speed ratio (𝑗 ≠ 𝑘): 

 𝜏𝑗#𝑘 =
𝜔𝑗

𝜔𝑖𝑛
|
𝜔𝑘=0

 (3) 
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Fig. 1. Schematic layout of a PS-CVT. 



2.1 CVU kinetostatics 

The nodal ratios referred to the i and o shafts, connected to the CVU (i.e. the electric unit in HEVs), are also called 

mechanical points. Mechanical points and CVU corresponding speed ratios are sufficient to comprehensively address the 

ideal kinetostatics of the electric unit, whichever the PSU layout is. The following equations can be easily derived from 

Fig. 2: 

 𝜏𝑜 =
𝜔𝑜
𝜔𝑖𝑛

= 𝜏𝑜#𝑖
𝜏 − 𝜏#𝑜
𝜏#𝑖 − 𝜏#𝑜

                                       𝜏𝑖 =
𝜔𝑖
𝜔𝑖𝑛

= 𝜏𝑖#𝑜
𝜏 − 𝜏#𝑖
𝜏#𝑜 − 𝜏#𝑖

 (4) 

On the other hand, assuming the conventional sign of the power flowing through the PSU main shafts showed in Fig. 

1 the ideal power balance of the PSU can be written as a function of the speed and torque ratios: 
 1 + 𝛩 𝜏 + 𝜃𝑜 𝜏𝑜 + 𝜃𝑖  𝜏𝑖 = 0 (5) 

where: 

 𝛩 =
𝑇𝑜𝑢𝑡
𝑇𝑖𝑛

                𝜃𝑜 =
𝑇𝑜
𝑇𝑖𝑛
                𝜃𝑖 =

𝑇𝑖
𝑇𝑖𝑛

 (6) 

Since the PGs and OGs torques are speed-independent, we obtain the ideal normalized CVU torques 𝜃𝑜 and 𝜃𝑖 as functions 

of the basic functional parameters by rewriting Eq. (5) in correspondence of the mechanical points. 

 𝜃𝑜 = −
1 + 𝛩 𝜏#𝑖
𝜏𝑜#𝑖

                                          𝜃𝑖 = −
1 + 𝛩 𝜏#𝑜
𝜏𝑖#𝑜

 (7) 

The power that ideally flows in the CVU shafts can be quickly calculated as a fraction of the input power from the 

combination of Eqs. (4) and (7): 

 𝑝𝑜 = 𝜏𝑜 ∙ 𝜃𝑜 =
(𝜏 − 𝜏#𝑜)(1 + 𝛩 𝜏#𝑖)

𝜏#𝑜 − 𝜏#𝑖
                           𝑝𝑖 = 𝜏𝑖 ∙ 𝜃𝑖 =

(𝜏 − 𝜏#𝑖)(1 + 𝛩 𝜏#𝑜)

𝜏#𝑖 − 𝜏#𝑜
 (8) 

By introducing the so-called overall apparent efficiency 𝜂 [38], expressed as the opposite of the output power 

normalized to the input one, Eqs. (8) can be expressed as functions of 𝜂: 

 𝜂 = −𝑝𝑜𝑢𝑡 = −
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

= −
𝜔𝑜𝑢𝑡
𝜔𝑖𝑛

∙
𝑇𝑜𝑢𝑡
𝑇𝑖𝑛

= −𝜏 𝛩 (9) 

 𝑝𝑜 =
(𝜏 − 𝜏#𝑜)(𝜏 − 𝜂 𝜏#𝑖)

𝜏(𝜏#𝑜 − 𝜏#𝑖)
                           𝑝𝑖 =

(𝜏 − 𝜏#𝑖)(𝜏 − 𝜂 𝜏#𝑜)

𝜏(𝜏#𝑖 − 𝜏#𝑜)
 (10) 

𝜂 is apparent because is not due to power losses but to the active CVU that can assist the ICE or charge the battery. Indeed, 

an equation similar to Eqs. (10) was obtained also in [20] for a merely mechanical PS-CVT with ideal PSU but passive 

CVU, by the principle of virtual work, and using ratio spreads as functional parameters. 

Eqs. (8) and (10) show that power flows of the electric unit are fully defined by the mechanical points. Thus, selecting 

mechanical points means establishing the power flowing into the electric machines as a function of the overall 

transmission ratio 𝜏 and the normalized output power (i.e. 𝜂) or, alternatively, as function of 𝜏 and the overall torque ratio 

𝛩. Once fixed the mechanical points, the definition of the CVU corresponding speed ratios rules the CVU torque ratios. 

This enables the designer to prioritize the characterization of the electric motors during the design and only then to select 

the constructive PSU layout since each constructive layout is characterized by univocal functional parameters, but 

different constructive layouts can be arranged by the same functional parameters. 

2.2 PSU characterization 

Nodal ratios allow both analyzing and designing any PSU. 

𝜏

𝜏𝑖
𝜏𝑜

𝜏𝑖#𝑜
𝜏𝑜#𝑖

𝜏#𝑖 𝜏#𝑜
Fig. 2. Example of CVU speed ratios and meaning of mechanical points and CVU corresponding speed ratios. 



Any PSU can be modeled as a combination of Three-Port Mechanisms (TPMs). A generic TPM, enclosed in the 

dashed-line rectangle of Fig. 3, consists of one planetary gear set (represented by a rounded-corner square) and up to three 

fixed-ratio gears (rhombi). The constructive parameter that defines a planetary gear train is the Willis’ ratio Ψ, while the 

ordinary gear sets are characterized by the related speed ratio k. The power is assumed positive if entering the TPM. 

Furthermore, Fig. 3 clarifies the nomenclature used for TPMs: the shafts directly linked with the PG are generically 

indicated by X, Y and Z in capital letters; the shafts connected to the outside of the TPM are indicated by x, y, and z in 

lowercase letters. In other words, using X, Y and Z is a general way to refer to the PG Ring gear (R), Sun gear (S) or 

Carrier (C), while x, y and z are related to the PSU main ports (in, out, o, i, …) linked to the TPM. 

The number of TPMs (NTPM) involved in the PSU equals the number of the shafts whose rotational speed is 

proportional neither to 𝜔𝑖𝑛 nor to 𝜔𝑜𝑢𝑡, but which is a linear combination of both. In other words, each two-way PG 

whose shafts rotate at non-proportional speeds ensures the existence of a proper nodal ratio (i.e. a finite and non-zero 

nodal ratio), which can be freely selected during the design. Conversely, the nodal ratios referred to the shafts rotating at 

speeds proportional to 𝜔𝑖𝑛 or 𝜔𝑜𝑢𝑡 equal infinity or zero, respectively. Since the PSU has only four externally accessible 

ports (Fig. 1), a shunt PS-CVT having one TPM has only one proper nodal ratio. Indeed, in input-split CVTs one 

mechanical point is zero, because a fixed-ratio connection is realized between the output shaft and one of the CVU shafts. 

On the contrary, in output-split transmissions, where the input shaft is directly connected to o or i shaft, one mechanical 

point tends to infinity. 

Moreover, the two mechanical points define the CVU power flows, as addressed in section 2.1. Therefore, any further 

TPM over two affects neither the CVU ideal power flows nor kinematics. Nonetheless, it can be useful to use more than 

two TPMs to arrange multimode transmission (as in the PS-CVT analyzed in section 5). Using three or more TPMs 

implies the presence of further main ports, called neutral nodes (n), which are isokinetic joints into which two or more 

branches linked neither with the CVU nor with the input/output of the driveline are merged. The number of the neutral 

nodes equals the number of each additional TPM over two. 

Nodal ratios also govern a set of characteristic functions, defined as the speed ratio between two generic TPM branches 

when the third one is motionless, to the same speed ratio when the third shaft is moving: 

 𝜙𝑥 𝑦⁄
𝑧 =

𝜏𝑥 𝜏𝑦⁄ |
𝜏𝑧=0

𝜏𝑥 𝜏𝑦⁄
=
𝜏#𝑧 − 𝜏#𝑥
𝜏#𝑧 − 𝜏#𝑦

∙
𝜏 − 𝜏#𝑦

𝜏 − 𝜏#𝑥
 (11) 

Characteristic functions are a crucial tool for this model because they play an important role in both the design and analysis 

stage. 

2.2.1 Characteristic functions and PSU functional design 

To minimize the meshing losses of a PG, it should operate as close as possible to its synchronous point within the 

desired range of operation. For this purpose, the characteristic functions permit the designer to assure this condition, by 

relating the desired overall transmission ratio for which the PG of a TPM works synchronous (𝜏∗) with the PG constructive 

arrangement. Indeed, it is: 

 𝜙𝑥 𝑦⁄
𝑧 (𝜏∗) =

𝜏𝑥 𝜏𝑦⁄ |
𝜏𝑧=0

𝜏𝑥 𝜏𝑦⁄ |
𝜏∗

= 𝜓𝑋 𝑌⁄
𝑍  

      

(12) 

where 𝜓𝑋 𝑌⁄
𝑍  is the ratio between 𝜔𝑋 and 𝜔𝑌 of the PG achieved when 𝜔𝑍 = 0. Since 𝜓𝑅 𝑆⁄

𝐶  equals the Willis’ ratio Ψ by 

definition, then, once selected the nodal ratios, the characteristic functions match the synchronous condition 𝜏∗ of a PG 

to its respective Willis’ ratio and a feasible connection between its shafts Carrier, Ring, Sun, and the PSU ports (in, out, 

i, o, n1, …), without directly involving the OGs. 

In a preliminary design stage, the property (12) enables the exploitation of the design-chart [36], which allows a quick 

comparison between the main features of different feasible solutions. The design-chart is a graphical representation of all 

the PSU characteristic functions that take on values comprised within the desired range of Willis’ ratio (preferably from 

y

x

z

X

Z
Ψkz

kx

ky
Y

Pz

Py

Px

Fig. 3. Generic layout of a Three-Port Mechanism. A rounded-corner square indicates the planetary gear set, 

rhombi indicate the ordinary gear sets. The external TPM branches are labeled with lowercase letters, the internal 

TPM branches are labelled with capital letters.   



−2 3⁄  to −1 3⁄  [38]). Choosing one, two, or N curves of the design-chart means to determinate a feasible layout with one, 

two, or N TPMs (and thus N proper nodal ratios). Selecting a point from a specific curve means to determine both the PG 

Willis’ ratio and the position of the carrier (linked to the main port z), the ring gear (linked to x) and the sun gear (linked 

to y), as well as the synchronous point 𝜏∗ of a PG. 

Generally speaking, the number of characteristic functions grows factorially with the number of TPMs (and therefore 

of neutral nodes). Indeed, each TPM can be linked to three main ports out of the available (NTPM+2). Furthermore, for 

each triad of main ports attached to the TPM, there are 3P3=6 possible ways to arrange the position of carrier, ring and 

sun gear. The number of all characteristic functions as a function of NTPM is: 

 (
NTPM + 2

3
) · P33 = NTPM·(NTPM + 1)·(NTPM + 2) (13) 

[36] listed explicitly all the 24 characteristic functions for the design of PS-CVTs with up to two active planetary gear 

trains. However, [38] suggested the more general Eq. (12), which makes the computational process independent from the 

PSU layout and automatable by a simple permutation of the nodal ratios. 

Finally, the ordinary gear sets have the role of tuning the speeds inside the PSU, once chosen the functional parameters 

and synthesized the PGs [36]. Indeed, imposing a certain synchronous point for the involved PGs results in constraining 

the fixed-ratio gears of the respective TPM: 

 
𝑘𝑥
𝑘𝑦
=
𝜏𝑥
𝜏𝑦
|
𝜏∗

= −
𝜏𝑥#𝑦
𝜏𝑦#𝑥

∙  
𝜏∗ − 𝜏#𝑥
𝜏∗ − 𝜏#𝑦

                                 
𝑘𝑥
𝑘𝑧
=
𝜏𝑥
𝜏𝑧
|
𝜏∗

= −
𝜏𝑥#𝑧
𝜏𝑧#𝑥

∙  
𝜏∗ − 𝜏#𝑥
𝜏∗ − 𝜏#𝑧

 (14) 

Using two equations like (14) for each TPM is sufficient to completely arrange the ordinary gear sets. 

2.2.2 Characteristic functions and PSU analysis 

In an analysis stage, the Willis’ ratios of the involved PGs are known parameters as well as the connections between 

their shafts and the PSU ports. Thus, Eq (11) and Eq. (12) can be used to compute the overall transmission ratio 

corresponding to the PG synchronism as follows: 

 𝜏∗ =
Ψ (

𝜏#𝑧 − 𝜏#𝑦
𝜏#𝑧 − 𝜏#𝑥

) 𝜏#𝑥 − 𝜏#𝑦

Ψ (
𝜏#𝑧 − 𝜏#𝑦
𝜏#𝑧 − 𝜏#𝑥

) − 1
 (15) 

where 𝜏#𝑥 is the nodal ratio referred to the main port linked with the ring gear, 𝜏#𝑦 is referred to the main port linked with 

the sun gear and 𝜏#𝑧 is referred to the main port linked with the carrier. 

Furthermore, characteristic functions represent the opposite of the ratios between the ideal powers transmitted by two 

shafts of a TPM: 

 𝜙𝑥 𝑦⁄
𝑧 = −

𝑃𝑦

𝑃𝑥
= −

𝑝𝑦

𝑝𝑥
 (16) 

The property (16) is a powerful tool for assessing the ideal power flow distribution in the PSU, as it is addressed in the 

next section 2.3.  

2.3 PSU mechanical power losses 

The total power losses of the PSU are the sum of the mechanical losses occurring in every PG and OG. These can be 

calculated by the swift approximate method proposed in [38], which is ruled by nodal ratios and characteristic functions. 

In the following, power losses are normalized to the input power and the power flows and torques referred to the real 

conditions are indicated by an overline. For an OG linking the branch x of the TPM to the shaft X of the PG is: 

 𝑝̅𝐿|𝑂𝐺 ≈ −|(1 − 𝜂𝑋 𝑥⁄ ) 𝑝𝑥| (17) 

where 𝜂𝑋 𝑥⁄  is the OG efficiency, while for a PG it is: 

 𝑝̅𝐿|𝑃𝐺 ≈ − |(1 − 𝜂𝑌 𝑋⁄
𝑍 ) (

𝜙𝑥 𝑦⁄
𝑧 − 𝜓𝑋 𝑌⁄

𝑍

1 − 𝜓𝑋 𝑌⁄
𝑍 ) 𝑝𝑥| (18) 

in which 𝑝𝑥 is the ideal normalized power flowing through the x shaft external to the TPM. When possible, it is more 

convenient to use for 𝑝𝑥  one of the four PSU external shafts because their power flows are known (1 or ) or directly 

computable (Eqs. (8)-(10)). Otherwise, 𝑝𝑥 can be easily calculated by using one equation of power conservation in an 

isokinetic joint combined with the property (16) of characteristic functions. Moreover, 𝜓𝑋 𝑌⁄
𝑍 = (𝜓𝑌 𝑋⁄

𝑍 )
−1

 is the fixed-Z 

speed ratio of the PG and 𝜂𝑌 𝑋⁄
𝑍 = (𝜂𝑋 𝑌⁄

𝑍 )
−1

 its related apparent efficiency, i.e. 

 𝜓𝑋 𝑌⁄
𝑍 =

𝜔𝑋 − 𝜔𝑍
𝜔𝑌 − 𝜔𝑍

=
𝜔𝑋
𝜔𝑌
|
𝜔𝑍=0

                          𝜂𝑌 𝑋⁄
𝑍 = −

𝑃̅𝑌

𝑃̅𝑋
|
𝜔𝑍=0

 (19) 

 Note that it is also 𝜓𝑋 𝑌⁄
𝑍 = 𝜙𝑥 𝑦⁄

𝑧 (𝜏∗), where 𝜏∗ is the overall speed ratio for which the PG is synchronous (see Eq. 

(12)). 

Usually, these parameters are known with reference to the fixed-carrier condition and they are named respectively 

Willis’ ratio Ψ = 𝜓𝑅 𝑆⁄
𝐶  and basic efficiency 𝜂0 = 𝜂𝑅 𝑆⁄

𝐶 . Nevertheless, in some cases it is needed to match a different 

permutation of X, Y, Z, depending on which 𝑝𝑥 TPM power flow is known or more directly computable. In these cases, 



𝜓𝑋 𝑌⁄
𝑍  can be calculated by the relationships of Table 1 as functions of Willis’ ratio Ψ [38], while for 𝜂𝑌 𝑋⁄

𝑍  we propose 

here a more straightforward formulation than [38]. Indeed, it is simply: 

 𝜂𝑌 𝑋⁄
𝑍 = 𝜓𝑌 𝑋⁄

𝑍 /𝜓̅𝑌 𝑋⁄
𝑍  (20) 

 where 𝜓̅𝑋 𝑌⁄
𝑍  is an adjusted fixed-Z speed ratio which can be yet obtained from Table 1 by replacing Ψ with Ψ/𝜂0. 

 

𝝍
𝑹 𝑺⁄
𝑪

 𝝍
𝑺 𝑹⁄
𝑪

 𝝍
𝑺 𝑪⁄
𝑹

 𝝍
𝑪 𝑺⁄
𝑹

 𝝍
𝑪 𝑹⁄
𝑺

 𝝍
𝑹 𝑪⁄
𝑺

 

Ψ 
1

Ψ
 

Ψ − 1

Ψ
 

Ψ

Ψ − 1
 

1

1 − Ψ
 1 − Ψ 

Table 1. Relationships between the speed ratio of two PG shafts when the third one is 

motionless and the Willis’ ratio. 

 For example, supposing that the fixed-Z apparent efficiency of our interest is 𝜂𝑅 𝐶⁄
𝑆 , we have: 

 

{
 
 

 
 
𝑇̅𝐶 + 𝑇̅𝑅 + 𝑇̅𝑆 = 0

Ψ =
𝜔𝑅 −𝜔𝐶
𝜔𝑆 − 𝜔𝐶

𝜂0 = −
𝑇̅𝑅

𝑇̅𝑆

𝜔𝑅
𝜔𝑆
|
𝜔𝐶=0

       ⇒            
𝑇̅𝑅

𝑇̅𝐶
= −

1

1 − Ψ 𝜂0⁄
            

𝜔𝑅
𝜔𝐶
|
𝜔𝑆=0

= 1 − Ψ = 𝜓𝑅 𝐶⁄
𝑆    (21) 

hence: 

 𝜂𝑅 𝐶⁄
𝑆 = −

𝑇̅𝑅

𝑇̅𝐶

𝜔𝑅
𝜔𝐶
|
𝜔𝑆=0

=
1 − Ψ

1 −Ψ 𝜂0⁄
= 𝜓𝑅 𝐶⁄

𝑆 /𝜓̅𝑅 𝐶⁄
𝑆   (22) 

and similarly, for the other cases. Furthermore, it is useful to highlight that since Eq. (18) is valid only if 𝜂𝑌 𝑋⁄
𝑍  is high, 

and this occurs for the common values of 𝜂0 if it is Ψ < 0.5 or Ψ > 2 [38], then 𝜂𝑌 𝑋⁄
𝑍  and its reciprocal 𝜂𝑋 𝑌⁄

𝑍  can be used 

interchangeably in Eq. (18). In fact, [38] itself have proved that if 𝜂𝑌 𝑋⁄
𝑍 → 1 then 1 𝜂𝑌 𝑋⁄

𝑍⁄ ≅ 2 − 𝜂𝑌 𝑋⁄
𝑍  and therefore Eq. 

(18) remains unchanged. This implies that the definition of the only Z is sufficient to assess the fixed-Z apparent 

efficiency. 

For a given input and output power, the PSU mechanical losses have to be compensated by the electric machines whose 

real powers can be directly obtained by reworking the formulas of [38] as follows: 

 𝑝̅𝑜 = 𝑝𝑜 −
𝜏𝑜
𝜏𝑜#𝑖

[𝑝̅𝐿 + (
𝜕𝑝̅𝐿
𝜕𝜏

+
𝜕𝑝̅𝐿
𝜕𝜂

𝜂

𝜏
) (𝜏#𝑖 − 𝜏)]        𝑝̅𝑖 = 𝑝𝑖 −

𝜏𝑖
𝜏𝑖#𝑜

[𝑝̅𝐿 + (
𝜕𝑝̅𝐿
𝜕𝜏

+
𝜕𝑝̅𝐿
𝜕𝜂

𝜂

𝜏
) (𝜏#𝑜 − 𝜏)]  (23) 

Once assessed the real CVU power flows, the real torque ratios 𝜃̅𝑜 and 𝜃̅𝑖 can be swiftly evaluated by dividing 𝑝̅𝑜 and 

𝑝̅𝑖  to 𝜏𝑜 and 𝜏𝑖, respectively. 

3. FULL ELECTRIC VEHICLE 

The parametric model described in the previous section is suitable for comprehensively analyzing any PS-CVT with 

two DOFs for both speeds (Eqs. (4)) and torques (Eqs. (7)) or powers (Eqs. (10)).  

In this section, we rearrange the previous formulas of section 2 to assess the mechanical power losses occurring in the 

PSU and the resultant power flowing into the electric machines in Full Electric Vehicle operation (FEV), whereby the 

ICE is switched off and the vehicle is propelled by the electric motors. Nonetheless, whilst for a power-split functioning 

it is convenient referring the variables to the input shaft, the normalization to 𝑇𝑖𝑛 and 𝑃𝑖𝑛  is not advisable in FEV modes, 

as 𝑇𝑖𝑛 is a reaction torque and 𝑃𝑖𝑛  is null. 

Indeed, in FEV functioning modes the shaft in (directly connected to the ICE) is kept motionless, thus only one 

kinematic DOF is available and the speed ratio between any two PSU branches is fixed and PGs are used only for torque 

multiplication from electric machines to the output. Therefore, the kinematic relationships (4) computed for 𝜔𝑖𝑛 = 0 (𝜏 →
∞) can be normalized to the output speed and are constant: 

 
𝜔𝑜
𝜔𝑜𝑢𝑡

|
𝜔𝑖𝑛=0

=
𝜏𝑜#𝑖

𝜏#𝑖 − 𝜏#𝑜
                      

𝜔𝑖
𝜔𝑜𝑢𝑡

|
𝜔𝑖𝑛=0

=
𝜏𝑖#𝑜

𝜏#𝑜 − 𝜏#𝑖
                   

𝜔𝑜
𝜔𝑖
|
𝜔𝑖𝑛=0

= −
𝜏𝑜#𝑖
𝜏𝑖#𝑜

 (24) 

The torques distribution can be derived from the ideal PSU power balance (5) computed for 𝑃𝑖𝑛 = 0: 

 𝑇𝑜𝑢𝑡𝜔𝑜𝑢𝑡 + 𝑇𝑜𝜔𝑜 + 𝑇𝑖𝜔𝑖 = 0 (25) 

By dividing Eq. (25) to 𝜔𝑜𝑢𝑡 and introducing Eqs. (24), the contribution of both electric motors to the output torque is: 

 𝑇𝑜𝑢𝑡 =
𝜏𝑜#𝑖

𝜏#𝑜 − 𝜏#𝑖
𝑇𝑜 +

𝜏𝑖#𝑜
𝜏#𝑖 − 𝜏#𝑜

𝑇𝑖 (26) 

In other words, given a certain 𝑃𝑜𝑢𝑡  requested for vehicle propulsion, the power flowing in one electric motor can be 

freely selected, as opposed to the power-split operation where it would be more convenient to constrain the electric unit 

behavior to the input (ICE) and output powers (Eqs. (8)-(10)). 



Furthermore, the same method proposed in section 2.3 enables the assessment of the PSU mechanical power losses 

occurring in FEV modes, if the power losses normalization is not performed to 𝑃𝑖𝑛  as in Eqs. (17)-(18). However, 𝜂𝑋 𝑥⁄ , 

𝜂𝑌 𝑋⁄
𝑍  and 𝜓𝑋 𝑌⁄

𝑍  are not affected by the variation of the normalizing power and neither is the characteristic function 𝜙𝑥 𝑦⁄
𝑧 , 

being a powers ratio (Eq. (16)). Consequently, for FEV modes, 𝜙𝑥 𝑦⁄
𝑧  can be easily computed by Eq. (11) for 𝜏 → ∞, by 

avoiding referring the branch x to a branch involving an infinite nodal ratio (such as the shaft in) to prevent numerical 

errors in 𝜙𝑥 𝑦⁄
𝑧  computation. As a result, the mechanical power losses can be normalized to any PSU power flow, if also 

𝑝𝑥 is normalized to the same power. For convenience, we choose −𝑃𝑜𝑢𝑡 = −𝑃̅𝑜𝑢𝑡 as reference power (by considering the 

actual negative sign of 𝑃𝑜𝑢𝑡 , because coming out from the PSU) and Eqs. (17)-(18) become: 

 𝑝̅′𝐿|𝑂𝐺 ≈ −|(1 − 𝜂𝑋 𝑥⁄ ) 𝑝′𝑥| (27) 

 𝑝̅′𝐿|𝑃𝐺 ≈ − |(1 − 𝜂𝑌 𝑋⁄
𝑍 ) (

𝜙𝑥 𝑦⁄
𝑧 − 𝜓𝑋 𝑌⁄

𝑍

1 − 𝜓𝑋 𝑌⁄
𝑍 )𝑝′𝑥| (28) 

where 𝑝̅′𝐿 = −𝑃̅𝐿 𝑃𝑜𝑢𝑡⁄  and 𝑝′𝑥 = −𝑃𝑥/𝑃𝑜𝑢𝑡 .  
Moreover, the ideal power balance (25) becomes 𝑝′𝑜 + 𝑝′𝑖 = 1, from which 𝑝′𝑜 = 1 − 𝑝′𝑖  and 𝑝′𝑖 = 1 − 𝑝′𝑜. Instead, 

in real condition it is: 

 𝑝̅′𝑜 + 𝑝̅′𝑖 + 𝑝̅′𝐿 = 1 (29) 

from which we can derive the real power flowing in one electric motor once fixed the real power flowing in the other 

motor and calculated the power losses. However, neither 𝑝̅′𝑜 nor 𝑝̅′𝑖 should take on negative values, thereby avoiding 

unnecessary CVU power recirculation. After assessing the real power ratios of the electric motors, the real torque ratios 

can be swiftly evaluated by dividing them by the speed ratios (24). 

4. IDENTIFICATION OF THE FUNCTIONAL PARAMETERS 

According to the previous section, any PS-CVT can be comprehensively described using a unique mathematical model 

based on nodal ratios and corresponding speed ratios. However, generally, manufacturers do not explicitly disclose these 

functional parameters, but they have to be derived from the constructive arrangement of the transmission. A first method 

that meets this objective was presented in [37]. It was based on the identification of four main groups, depending on the 

triad of main external shafts linked to each TPM. The equations for identifying the functional parameters were strictly 

dependent on the couple of the involved functional groups. Then, it required the standardization of the Willis’ ratio 

depending on the position of the carrier, the sun gear and the ring gear. Furthermore, this identification procedure was 

suitable only for power-split transmissions with one or two TPMs. 

The approach proposed in this section allows the calculation of the functional parameters from the constructive ones 

in a more straightforward way and regardless of the number of TPMs. Moreover, it does not require any case-related 

formulas, thus the computing process is easily automatable if performed in proper numerical software.  

Before performing the calculation approach under consideration, we need to know: 

 constructive parameters of the involved gear sets (i.e. PGs and OGs teeth ratios). 

 mutual connections between the devices; 

The aim is to evaluate the following parameters: 

 nodal ratios, i.e. the mechanical points (𝜏#𝑜 and 𝜏#𝑖) and the ones referred to the neutral nodes (𝜏#𝑛1, 𝜏#𝑛2, …); 

 corresponding speed ratios for each nodal ratio. 

As it is explained in section 2.2, the number of proper nodal ratios equals the number of TPMs; each nodal ratio 

implies as many corresponding speed ratios as the number of TPMs minus one. 

The functional parameters are obtained by performing matrix operations derived from the linear system of the 

kinematic constraints of the PSU: 

 [𝐊]{𝛚} = {0} (30) 

where [𝐊] is the constraints matrix and {𝛚} is a vector containing the rotational speeds of the PSU. As it will be 

evident later, to streamline the computational process, it would be better to sort the element in {𝛚} so that the elements 

of the first rows are the rotational speeds of the main shafts, starting from 𝜔𝑜𝑢𝑡 and 𝜔𝑖𝑛 and then 𝜔𝑜 and 𝜔𝑖, immediately 

followed by the ones referred to the neutral nodes and then all the others, and thus {𝛚} is defined as follows: 

 {𝛚} = [𝜔𝑜𝑢𝑡 𝜔𝑖𝑛 𝜔𝑜      𝜔𝑖 𝜔𝑛1 𝜔𝑛2     ⋯ ]′ (31) 

Each row of the matrix [𝐊] reflects the kinematic constraints due to each mechanical device, hence [𝐊] is a sparse 

matrix. In particular, for the j-th PG we can write: 

 𝜔𝐶𝑗(1 − Ψ𝑗) + 𝜔𝑆𝑗(Ψ𝑗) + 𝜔𝑅𝑗(−1) = 0 (32) 

where Ψ𝑗 is the related Willis’ ratio. For the x-th OG it is: 

 𝜔𝑥(−1) + 𝜔𝑋(𝑘𝑥) = 0 (33) 

An isokinetic joint linking two shafts is a particular OG with 𝑘 = 1. Furthermore, a clutch can be mathematically 

modeled by fixed-ratio gears having a constructive ratio tending to ∞ when the clutch links a shaft to the framework, 

otherwise it acts as an isokinetic joint between the two involved shafts. Thus, Eq. (33) is sufficient to consider the variation 

of the internal connections in the PSU due to a mode shift, making this method well-suited even for multimode 

transmissions, usually complicated to analyze. It is worth noting that although assembling [𝐊] is relatively trivial for a 

known PSU, designing a new one starting from scratch and generating a reasonable constraints matrix is a rather tricky 



task, which has been the subject of extensive literature. In this respect, the graph theory [29]-[35] is widely used to explore 

the possible solutions; yet, identifying the most suitable layouts among the feasible ones is not immediate because there 

is no way to detect the best solution without simulating them all, and this requires using complex optimization algorithms 

and time-consuming calculations. On the contrary, the approach by functional parameters [36] makes the preliminary 

design of a new PS-CVT quite simple and fast. 

The [𝐊] matrix has as many rows as the constraints (NC) are, i.e. the number of TPMs plus the further constraints 

realized by fixed-ratio gears, isokinetic joints, or clutches. The number of columns of [𝐊] equals the number of rows of 

the {𝛚} vector, which is NC + 2 since the PSU has two degrees of freedom. Therefore, Eq. (30) is a linear system in NC 

equations and NC + 2  variables. By supposing that two of the variables (e.g. 𝜔𝑜𝑢𝑡 and 𝜔𝑖𝑛) are known, we can write the 

rotational speed of the remaining PSU shafts as their function. For this purpose, it is necessary to perform a partition of 

the [𝐊] matrix in order to obtain a two-column matrix [𝐖], linking the rotational speeds of the PSU output and input to 

the other speeds contained in {𝛚}: 
 

 

 
𝑘1,1 𝑘1,2 𝑘1,3 ⋯ 𝑘1,NC+2 𝜔𝑜𝑢𝑡  

 𝑘2,1 𝑘2,2 𝑘2,3 ⋯ 𝑘1,NC+2 𝜔𝑖𝑛  

[𝐊] {𝛚}   = 𝑘2,1 𝑘2,2 𝑘2,3 ⋯ 𝑘1,NC+2 𝜔𝑜 =    {0}  

 ⋮ ⋮ ⋮ ⋱ ⋮ 𝜔𝑖  

 𝑘NC,1 𝑘NC,2 𝑘NC,3 ⋯ 𝑘NC,NC+2 ⋮  

      𝜔NC+2   

 

(34) 

 

 

[𝐊(1,2)] is a submatrix of [𝐊] that includes only its first two columns, while [𝐊1,2] is a submatrix of [𝐊] obtained by 

removing them. Hence, the previous equation can be rewritten as follows: 

 [𝐊]{𝛚} = [𝐊(1,2)]{𝛚𝑘𝑛𝑜𝑤𝑛} + [𝐊1,2]{𝛚𝑢𝑛𝑘𝑛𝑜𝑤𝑛} = {0} (35) 

from which we can calculate the column vector of the unknown rotational speeds: 

 {𝛚𝑢𝑛𝑘𝑛𝑜𝑤𝑛} = −[𝐊1,2]
−1
∙ [𝐊(1,2)]{𝛚𝑘𝑛𝑜𝑤𝑛} (36) 

In other terms: 

 (

𝜔𝑜
𝜔𝑖
𝜔𝑛1
⋮

)

NCx1

= [𝐖] (
𝜔𝑜𝑢𝑡
𝜔𝑖𝑛

) (37) 

where 

 [𝐖] = −[𝐊1,2]
−1
∙ [𝐊(1,2)] (38) 

Note that in Eq. (37) the vector of the unknown rotational speeds contains NC elements. By using the MATLAB notation 

that can appear more familiar, Eq. (38) can be considered as follows: 

 [𝐖] = −[𝐊(: , 3: end)]−1 [𝐊(: , 1: 2)] (39) 

At this point, the calculation of the functional parameters from the matrix [𝐖] is straightforward. After normalizing 

Eq. (37) to 𝜔𝑖𝑛 we get: 

 (

𝜏𝑜
𝜏𝑖
𝜏𝑛1
⋮

)

NCx1

= [

𝑤1,1 𝑤1,2
𝑤2,1 𝑤2,2
⋮

𝑤NC,1

⋮
𝑤NC,2

] (
𝜏
1
) (40) 

The first row of the system is: 

 𝜏𝑜 = 𝑤1,1𝜏 + 𝑤1,2 (41) 

The previous equation computed for 𝜏𝑜 = 0 leads to the calculation of the nodal ratio 𝜏#𝑜: 

 0 = 𝑤1,1𝜏#𝑜 +𝑤1,2               ⇒              𝜏#𝑜 = −
𝑤1,2
𝑤1,1

 (42) 

Obviously, [𝐖] is speed-independent, since its terms are derived from the constructive constraints of Eqs. (32)-(33). 

Similarly, by calculating the second row for 𝜏𝑖 = 0, we can obtain the nodal ratio 𝜏#𝑖 as −𝑤2,2 𝑤2,1⁄  and so on for the 

other nodal ratios. Thus, the nodal ratios are the opposite of the ratio between each element of the second column of [𝐖] 
and the corresponding element in the first column. This operation is handily viable in MATLAB by using the element-

wise division to obtain the nodal ratios vector: 

[𝐊(1,2)] [𝐊1,2] 

{𝛚𝑘𝑛𝑜𝑤𝑛}    

{𝛚𝑢𝑛𝑘𝑛𝑜𝑤𝑛}    



 (

𝜏#𝑜
𝜏#𝑖
𝜏#𝑛1
⋮

)

NCx1

= − [𝐖(: ,2)] . [𝐖(: ,1)]⁄  (43) 

If the vector {𝛚} is sorted properly (Eq. (31)), we can replace [𝐖] with its submatrix [𝐖(1,…,NTPM)], which consists of the 

first NTPM-th rows of [𝐖], if NTPM is the number of involved TPMs and thus of proper nodal ratios. In this way, we avoid 

the calculation of the nodal ratios related to the shafts rotating at one speed proportional to the speed of the main shafts 

and thus Eq. (43) returns a nodal ratios vector containing non-redundant elements. 

The same simplified [W] matrix allows also the identification of the corresponding speed ratios. Indeed, when for 

example Eq. (40) is computed for 𝜏 = 𝜏#𝑜, it gives the corresponding speed ratios of the mechanical point of the electric 

machine O. The same is for the other nodal ratios. By properly assembling all the corresponding speed ratios we get a 

NTPM by NTPM square matrix whose diagonal elements are all equal to zero, while the other elements are the corresponding 

speed ratios: 

 [

0 𝜏𝑜#𝑖 𝜏𝑜#𝑛1 ⋯

𝜏𝑖#𝑜
𝜏𝑛1#𝑜
⋮

0
𝜏𝑛1#𝑖
⋮

𝜏𝑖#𝑛1
0
⋮

⋯
⋯
⋱

]

NTPMxNTPM

= [𝐖(1,…,NTPM)] [
𝜏#𝑜 𝜏#𝑖

1 1
    
𝜏#𝑛1 …  

1 …  
]
2xNTPM

 (44) 

5. EXAMPLE OF APPLICATION 

This section aims to test the functionality of the novel procedure addressed in section 4 for identifying the functional 

parameters of any PS-CVT. To prove the flexibility of the model, we propose an exhaustive analysis of a complex 

multimode PS-CVT, the General Motors transmission of the Cadillac CT6 Luxury Sedan with a plug-in hybrid 

powertrain, whose constructive layout is showed schematically in Fig. 4. It is derived from the paper [39] submitted by 

the manufacturer and the patent [40]. In [15] Lee et al. used the lever analogy for investigating the mode selection of the 

Cadillac CT6 PS-CVT. They analyzed the efficiency of the transmission throughout the entire speed ratio range by 

supposing different loss factors in the electric power conversion occurring in the electric machines. The mechanical power 

losses were neglected. On the contrary, our application aims to deduce the range of utilization of each power-split mode 

starting from the basic functional parameters. These lead also to the calculation of the PSU mechanical power losses, 

which enable the calculation of the real power flowing in the electric unit (section 2.3). 

The transmission under consideration consists of three planetary gear trains: PG1 and PG2 are identical and their 

Willis’ ratio is Ψ1 = Ψ2 = −0.505; PG3 includes two sets of planet gears and its Willis’ ratio is Ψ3 = 0.44. The ICE is 

connected to the PG1 ring gear. The PG3 ring gear is the transmission output, which is connected to a final drive for 

delivering power to the wheels. In the following, the final drive is ignored because it does not affect the PSU behavior. 

Also, the PG1 carrier, the PG2 carrier and the PG3 sun gear are constrained to rotate together by a common shaft that is 

a neutral node. Furthermore, the powertrain involves two electric machines, equal in size, which can act as motors or as 

generators: Motor O is directly linked with the PG1 sun gear, Motor I is directly linked with the PG2 sun gear. Lastly, 

five multi-plate clutches potentially enable several different modes of operation. The half-stationary clutches C1 and C3 

can act as a brake on the PG3 carrier and the PG2 ring gear, respectively. The fully-rotating clutch C2 can connect the 

PG2 sun gear (and thus Motor I) to the PG3 carrier, while the fully-rotating clutch C4 can connect the PG1 sun gear (and 

thus Motor O) to the PG2 ring gear. The clutch E prevents the ICE from moving and provides the reaction torque on the 

input shaft during full-electric functioning. 

Fig. 4. Constructive layout of the Cadillac CT6 Plug-in HEV power-split CVT (derived from [40]). 



Clutches could be engaged in 25 = 32 different arrangements, of which 16 are potential FEV modes (clutch E engaged) 

and the remaining 16 potential power-split hybrid operations [15]. However, not all alternatives are suitable for vehicle 

propulsion with available power on the output shaft. Indeed, the transmission with all the clutches opened has four 

available kinematic DOFs, i.e. two for each PG (six in total) minus two DOFs owing to the common shaft. Since each 

engaged clutch subtracts a further DOF, two clutches (not more and not less than two) among C1, C2, C3 and C4 must 

engage to achieve the power-split hybrid propulsion. However, C1 and C2, or C3 and C4 cannot be engaged at the same 

time otherwise the transmission is unable to transmit power to the output. 

As a result, the viable power-split modes are only the four reported in Table 2. In particular, if clutches C1 and C3 are 

engaged, a Shunt input-split mode is achieved, since PG2 and PG3 are kinematically equivalent to an ordinary gear set 

and the output speed is proportional to the speed of Motor I. Another input-split mode is realized when C2 and C3 are 

both engaged because all the three PG3 branches rotate at proportional speed to the one of Motor I. By engaging the 

clutches C1 and C4, PG1 and PG2 operate in a Compound split mode, while PG3 acts as an OG. Finally, all the three 

PGs are active in a second Compound split mode, where C2 and C4 are engaged. 

 

Mode C1 C2 C3 C4 E 

SHUNT 1 X  X   

PARALLEL 1 X  X X  

COMPOUND 1 X   X  

PARALLEL 2 X X  X  

COMPOUND 2  X  X  

PARALLEL 3  X X X  

SHUNT 2  X X   

FEV 1 X  X  X 

FEV 2 X   X X 

FEV 3   X X X 

FEV 4  X X  X 

Table 2. Cadillac CT6 PS-CVT clutches operations for each of the eleven modes. 

Engaged clutches are marked with X. 

 

If three clutches are engaged, the transmission has only one DOF and the overall speed ratio is fixed. This situation is 

useful when a motor is still at its mechanical point. Indeed, by closing a third clutch the reaction torque on the shaft that 

connects the motor to the PSU can be provided by the frame, rather than by the motor itself, which therefore is unloaded. 

This condition determines a fixed-ratio parallel hybrid mode, whereby a motor is switched off while the other electric 

machine can provide additional power for boosting the vehicle propulsion or can recharge the battery, but at a fixed speed 

ratio. However, since operating in a fixed-ratio parallel hybrid mode means operating in correspondence of a mechanical 

point of a power-split mode, it does not need to be addressed separately. Table 2 also shows that for each power-split 

mode there is a corresponding FEV mode, achieved by engaging the clutch E. 

Fig. 5 summarizes the functional layout of the Cadillac CT6 transmission. With reference to the notation adopted in 

the previous sections, the subscripts in, out, o and i are referred to the PSU ports linked with the engine, PSU output, 

Motor O and Motor I, respectively. The neutral node is indicated by n. 

Once identified the functional parameters for each power-split mode in section 5.1, these are used in section 5.2 to 

deduce the range of utilization of each mode by analyzing the rotational speed of the electric machines. Section 5.3 

calculates the mechanical power losses and real CVU powers. The FEV operation is examined in section 5.4. 
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Fig. 5. Functional layout for Cadillac CT6 transmission and its operating modes. 



5.1 Calculation of the functional parameters 

In this section, the functional parameters are derived by applying the new method explained in section 4. 

The first step is to determine the constraints matrix from the constructive arrangement of the PSU. As it is addressed 

in section 4, the constraints matrix [𝐊] has as many rows as the number of constraints. Ignoring the simple isokinetic 

joints, which would cause redundant equations, the constructive constraints are related to the three PGs and the clutches 

system. In particular, the action of the clutch E is not taken into account throughout this evaluation because it only affects 

the full electric modes. Also, since the activation of C3 and C4 is mutually exclusive, they impose a single constraint on 

the shaft linked to the PG2 ring gear, which can be indicated by a fictitious fixed-ratio gear 𝑘𝑅2 (Fig. 5) that switches 

from 1 to ∞ depending on the engaged clutch. The clutches C1 and C2, likewise, constrain the PG3 carrier acting like a 

fictitious fixed-ratio gear 𝑘𝐶3. Hence, there are 3+2 constraints: the [𝐊] matrix dimension is 5x7 (i.e. NC x (NC + 2)), 
while the rotational speed vector {𝛚} contains 7 elements (NC + 2). 

The rotational speed vector chosen to properly assemble [𝐊] is: 

{𝛚} = [𝜔𝑜𝑢𝑡 𝜔𝑖𝑛 𝜔𝑜      𝜔𝑖 𝜔𝑛 𝜔𝑅2   𝜔𝐶3]′  
The general constraint matrix related to the power-split modes is: 

 
 

0 −1 Ψ1 0 1 − Ψ1 0 0 

 
0 0 0 Ψ2 1 − Ψ2 −1 0 

[𝐊]   = −1 0 0 0 Ψ3 0 1 − Ψ3 
 

0 0 −1 0 0 𝑘𝑅2 0 

 
0 0 0 −1 0 0 𝑘𝐶3 

 

where 𝑘𝑅2 = 𝜔𝑜/𝜔𝑅2 and 𝑘𝐶3 = 𝜔𝑖/𝜔𝐶3. According to Table 2 and Fig. 5, 𝑘𝑅2 is equal to 1 when the clutch C4 is engaged 

(in Compound 1 and Compound 2 operating modes) or to ∞ when the clutch C3 is engaged (in Shunt 1 and Shunt 2). 

Similarly, 𝑘𝐶3 is equal to 1 when the clutch C2 is active (in Compound 2 and Shunt 2) or to ∞ when the clutch C1 is 

active (in Shunt 1 and Compound 1). 

After determining [𝐊], we implemented the model in MATLAB and calculated the matrix [𝐖] using Eq. (38). 

Exploiting some for-loops speeds up the replication of the same calculations for every mode. This makes the model highly 

automatable. In the numerical computing environment, we replaced ∞ with a value high enough (e.g., 105). Since there 

are three TPMs, only the first, second and third row of [𝐖] are necessary to evaluate the nodal ratios and the corresponding 

speed ratios of the shafts o, i and n by Eqs. (43)-(44). The results are reported in Table 3. 

 

Mode 𝝉#𝒐 𝝉#𝒊 𝝉#𝒏 𝝉𝒐#𝒊  𝝉𝒐#𝒏  𝝉𝒊#𝒐 𝝉𝒊#𝒏 𝝉𝒏#𝒐 𝝉𝒏#𝒊  

SHUNT 1 0.29 0 0 -2.0 -2.0 2.0 0 0.66 0 

COMPOUND 1 0.29 0.59 0 2.0 -2.0 2.0 3.9 0.66 1.3 

COMPOUND 2 1.4 0.59 2.2 2.0 -2.0 2.0 3.9 0.66 1.3 

SHUNT 2 1.4 0 0 -2.0 -2.0 2.0 0 0.66 0 

Table 3. Nodal ratios and corresponding speed ratios for o, i and n for each power-split mode. 



5.2 Kinematic analysis and mode shift 

The mechanical points and the corresponding speed ratios characterize the CVU kinematic. The rotational speed of 

Motor O (𝜏𝑜) and Motor I (𝜏𝑖) are reported in Fig. 6 as a function of the overall transmission speed ratio τ. 

It is noteworthy that each power-split mode could be ideally exploited for any overall transmission ratio τ, except that 

constructive constraints limit the maximum speed achievable by the electric machines. For this reason, there is the need 

to arrange multimode transmissions, which modify the PSU internal connections and thus the functional parameters, as 

well (Table 3). Different functional parameters involve different speed ratios (Fig. 6). However, it is advisable to perform 

the shift between two sequential modes to prevent clutches slipping. It is possible to realize a synchronous switch if the 

relative speeds of the involved shafts are null, i.e. in correspondence of the mechanical points, where one electric machine 

is motionless. Therefore, from Table 3 it is clear that the shift between Shunt 1 and Compound 1 must be performed in 

the common mechanical point 𝜏#𝑜 = 0.29, the shift between Compound 1 and Compound 2 must be performed in 𝜏#𝑖 =
0.59 and the shift between Compound 2 and Shunt 2 must be performed in 𝜏#𝑜 = 1.4 (Fig. 6). 

Moreover, as stated before, the mechanical points can be exploited as fixed-ratio parallel hybrid modes. Thus, at 𝜏#𝑖 =
0.59 both the clutches C1 and C2, as well as C4, must engage to unload the Motor I. Instead, at 𝜏#𝑜 = 0.29 and 𝜏#𝑜 = 1.4 

both the clutches C3 and C4, as well as C1 or C2 respectively, must engage to unload the Motor O.  

To conclude the kinematic analysis of the transmission, we calculated the overall speed ratio for which every PG 

reaches its synchronism in each power-split mode (Eq. (15)). Obviously, the PGs operating like OGs throughout a certain 

power-split mode, do not reach the synchronous condition within that mode. Eventually, all the active PGs reach the 

synchronism at the same 𝜏∗ in Compound split modes because of the lack of OGs on the shaft connecting them. 

 

 SHUNT 1 COMPOUND 1 COMPOUND 2 SHUNT 2 

PG1 0.44 0.44 1.0 2.1 

PG2 - 0.44 1.0 - 

PG3 - - 1.0 - 

Table 4. Overall transmission ratio 𝜏∗ corresponding to the synchronism of each PG. 

5.3  Mechanical power losses 

 According to section 2.3, the overall mechanical power losses result from the sum of the mechanical losses occurring 

in each PG. Any losses in the clutches are neglected. Thus, the total power losses are: 

𝑝̅𝐿 = 𝑝̅𝐿|𝑃𝐺1 + 𝑝̅𝐿|𝑃𝐺2 + 𝑝̅𝐿|𝑃𝐺3  

which are calculated by Eq. (18), after labeling each branch of the TPMs as reported in Table 5. In this respect, it is worth 

noting that any reference notation can be applied, since the PGs mechanical power losses computed by Eq. (18) prescind 

from it, depending only on the relative motion between PG shafts and torques. 

 

Fig. 6. Rotational speeds of Motor O (𝜏𝑜) and Motor I (𝜏𝑖). 



 x X y Y z Z 

PG1 in ring o sun n carrier 

PG2 n carrier i sun o ring 

PG3 out ring n sun i carrier 

Table 5. Reference notation of the TPMs shafts for the calculation 

of power losses in power-split modes. 

 

Therefore: 

𝑝̅𝐿|𝑃𝐺1 = − |(1 − 𝜂𝐶) (
𝜙𝑖𝑛 𝑜⁄
𝑛 − 𝜓𝑅 𝑆⁄

𝐶

1 − 𝜓𝑅 𝑆⁄
𝐶 )𝑝𝑖𝑛| 

𝑝̅𝐿|𝑃𝐺2 = − |(1 − 𝜂𝑅) (
𝜙𝑛 𝑖⁄
𝑜 − 𝜓𝐶 𝑆⁄

𝑅

1 − 𝜓𝐶 𝑆⁄
𝑅 )𝑝𝑛| 

𝑝̅𝐿|𝑃𝐺3 = − |(1 − 𝜂𝐶) (
𝜙𝑜𝑢𝑡 𝑛⁄
𝑖 − 𝜓𝑅 𝑆⁄

𝐶

1 − 𝜓𝑅 𝑆⁄
𝐶 ) 𝑝𝑜𝑢𝑡| 

We chose the most convenient branch x for each PG. Indeed,  𝑝𝑖𝑛 = 𝑝̅𝑖𝑛 = 1 and  𝑝𝑜𝑢𝑡 =  𝑝̅𝑜𝑢𝑡 = −𝜂 by definition. 

Furthermore, the real power transmitted by PG1 ring gear equals  𝑝𝑖𝑛  and the real power transmitted by PG3 ring gear 

equals  𝑝𝑜𝑢𝑡 , owing to the lack of OGs on the involved shafts. On the other hand, the power transmitted by the PG2 carrier 

can be calculated only in ideal conditions, by the principle of power conservation in the neutral node n and Eq. (16): 

𝑝𝑛|𝑃𝐺2 = − 𝑝𝑛|𝑃𝐺1 − 𝑝𝑛|𝑃𝐺3 = 𝑝𝑖𝑛 ∙ 𝜙𝑖𝑛 𝑛⁄
𝑜 + 𝑝𝑜𝑢𝑡 ∙ 𝜙𝑜𝑢𝑡 𝑛⁄

𝑖  

Table 6 summarizes the fixed-Z apparent efficiencies 𝜂𝑍 and the fixed-Z speed ratios 𝜓𝑋 𝑌⁄
𝑍  for each PG, based on the 

functional and constructive layout of the transmission. The basic efficiency is supposed to be slightly lower for PG3 

because it has one more gear meshing between the two sets of planet gears. 

 

 Ψ 𝜼𝟎 𝝍𝑿 𝒀⁄
𝒁  𝜼𝒁 = 𝝍𝑿 𝒀⁄

𝒁 /𝝍̅𝑿 𝒀⁄
𝒁  

PG1 -0.505 0.97 Ψ 𝜂0 

PG2 -0.505 0.97 
Ψ

Ψ− 1
 

Ψ
(Ψ − 1)⁄

Ψ 𝜂0⁄
(Ψ 𝜂0⁄ − 1)⁄

 

PG3 0.44 0.96 Ψ 𝜂0 

Table 6. Fixed-Z apparent efficiencies and fixed-Z speed ratios as functions of the basic 

efficiency 𝜂0 and the Willis’ ratio Ψ. 

The involved characteristic functions are obtained by Eq. (11) using the proper nodal ratios from Table 3, as well as 

𝜏#𝑖𝑛 = 105 and 𝜏#𝑜𝑢𝑡 = 0. At this point, the calculation of the power losses is straightforward and leads to the power 

losses map of Fig. 7, handled as a function of the overall transmission ratio τ and the overall apparent efficiency 𝜂. They 

are intended as a fraction of the input power and the contour spacing is 0.005. In both the compound-split modes, the 

power losses are minimum for 𝜏 = 0.44 and 𝜏 = 1, which correspond to synchronous conditions (see section 5.2). 

 

 



Once computed the power losses, the real power flowing in the electric machines are obtained by Eqs. (23) and shown 

in Fig. 8 (Motor O) and Fig. 9 (Motor I). The contour spacing is 0.1. Even though the power losses do not show any 

discontinuities, their gradient does, owing to a torque or speed reversal in the PSU. In other words, such discontinuities 

are due to an inversion of the basic efficiency 𝜂0 occurred in PGs, but the addressed approximated method brings the 

advantage of not requiring to predict a priori any switch. The gradient discontinuity is reflected in real power flows near 

to the synchronism or the mode shift. The same trend would be noticed in real torques developed by the electric motors, 

which can be computed by dividing 𝑝̅𝑜 by 𝜏𝑜 and 𝑝̅𝑖 by 𝜏𝑖. 
 

Fig. 7. Mechanical power losses occurring in power-split operation (as a fraction of the input power). 

Fig. 8. Real power flowing through the Motor O (as a fraction of the input power). 



5.4 Full electric operation 

According to section 3, the same functional parameters of each power-split mode can be used to evaluate the 

transmission behavior in the respective FEV operation. Hence, this section analyzes the four FEV modes indicated in 

Table 2 and Fig. 5, by using the nodal ratios and the corresponding speed ratios of Table 3.  

The ratios between the speed of electric machines and transmission output are computed by Eqs. (24) and shown in 

Table 7. They are constant, thus imposing 𝜔𝑜𝑢𝑡 implies univocal rotational speeds for both Motor O and Motor I. 

Furthermore, FEV 1 and FEV 2 achieve the highest speed ratios available among the FEV modes, which are very similar 

to the speed ratio between the Motor I and the output shaft realized for the fixed-ratio operation at the mechanical point 

𝜏 = 𝜏#𝑜 = 0.29. Therefore, both FEV 1 and FEV 2 might be used for providing acceleration at low vehicle speed, because 

of constructive constraints on the maximum speed achievable by the electric machines. The choice to exploit FEV 1 rather 

than FEV 2 or vice versa may be due to the mechanical power losses occurring in the PSU devices. On the other hand, 

the speed ratios of FEV 3 and FEV 4 are lower, therefore they can be used at higher vehicle speed. Nonetheless, the speed 

ratio of FEV 4 is the same speed ratio between the Motor I and the output shaft realized at the mechanical point 𝜏 = 𝜏#𝑜 =
1.4 in hybrid operation. Since this fixed-ratio functioning point is exploited for overdrive, FEV 4 might not be suitable 

for pure electric propulsion because the vehicle usually achieves a lower maximum speed, and then the electric motors 

might be forced to operate at an inconveniently low speed. Moreover, Motor O and Motor I rotate at a very similar speed 

in all FEV modes (except for the direction of rotation in FEV 2 and FEV 3). 

 

Mode 
𝝎𝒐

𝝎𝒐𝒖𝒕
⁄  

𝝎𝒊
𝝎𝒐𝒖𝒕
⁄  

𝝎𝒐
𝝎𝒊
⁄  

FEV 1 6.8 6.8 1.0 

FEV 2 6.8 -6.6 -1.0 

FEV 3 -2.5 2.4 -1.0 

FEV 4 1.4 1.4 1.0 

Table 7. Speed ratios in FEV modes. 

The mechanical power losses in FEV modes are assessed by the same equations used in section 5.3 computed for 𝜏 =
𝜏#𝑖𝑛 = 105 and normalized to the opposite of the output power. Moreover, we need to change the reference notation for 

PG1 to avoid the use of  𝑝𝑖𝑛 (see section 3). 

 

 x X y Y z Z 

PG1 o sun in ring n carrier 

PG2 n carrier i sun o ring 

PG3 out ring n sun i carrier 

Table 8. Reference notation of the TPMs shafts for the calculation 

of power losses in FEV modes. 

 

Fig. 9. Real power flowing through the Motor I (as a fraction of the input power). 



The equations used for calculating power losses are: 

𝑝̅′
𝐿
|
𝑃𝐺1

= − |(1 − 𝜂𝐶) (
𝜙𝑜 𝑖𝑛⁄
𝑛 − 𝜓𝑆 𝑅⁄

𝐶

1 − 𝜓𝑆 𝑅⁄
𝐶 ) 𝑝′𝑜| 

𝑝̅′
𝐿
|
𝑃𝐺2

= − |(1 − 𝜂𝑅) (
𝜙𝑛 𝑖⁄
𝑜 − 𝜓𝐶 𝑆⁄

𝑅

1 − 𝜓𝐶 𝑆⁄
𝑅 )𝑝′𝑛| 

𝑝̅′
𝐿
|
𝑃𝐺3

= − |(1 − 𝜂𝐶) (
𝜙𝑜𝑢𝑡 𝑛⁄
𝑖 − 𝜓𝑅 𝑆⁄

𝐶

1 − 𝜓𝑅 𝑆⁄
𝐶 )𝑝′𝑜𝑢𝑡| 

where 𝑝′𝑜𝑢𝑡 = 𝑝̅′
𝑜𝑢𝑡

= −1, while 𝑝′
𝑜
|
𝑃𝐺1

and 𝑝′𝑛|𝑃𝐺2 must be assessed by combining Eq. (16) with the principle of power 

conservation: 

𝑝′
𝑜
|
𝑃𝐺1

= 𝑝′
𝑜
− 𝑝′

𝑜
|
𝑃𝐺2

= 𝑝′
𝑜
+ 𝜙𝑖 𝑜⁄

𝑛 ∙ 𝑝′
𝑖
|
𝑃𝐺2

= 𝑝′
𝑜
+ 𝜙𝑖 𝑜⁄

𝑛 ∙ (𝑝′
𝑖
− 𝑝′

𝑖
|
𝑃𝐺3
) =

= 𝑝′𝑜 + 𝜙𝑖 𝑜⁄
𝑛 ∙ (𝑝′𝑖 + 𝜙𝑜𝑢𝑡 𝑖⁄

𝑛 ∙ 𝑝′𝑜𝑢𝑡)
 

𝑝′𝑛|𝑃𝐺2 = − 𝑝′𝑛|𝑃𝐺1 − 𝑝′𝑛|𝑃𝐺3 = 𝑝′
𝑜
|
𝑃𝐺1

∙ 𝜙𝑜 𝑛⁄
𝑖𝑛 + 𝑝′𝑜𝑢𝑡 ∙ 𝜙𝑜𝑢𝑡 𝑛⁄

𝑖  
Fig. 10 shows the power losses as a function of 𝑝′𝑖 = −𝑃𝑖/𝑃𝑜𝑢𝑡 = 𝑝̅

′
𝑖
, Fig.11 shows the power flowing in Motor O 

and in Motor I in real condition, where 𝑝̅′
𝑜
= 1 − 𝑝̅′

𝐿
− 𝑝̅′

𝑖
. Fig. 10 suggests that FEV 1 should be preferred to FEV 2 

for lower vehicle speeds because of the lower power losses. Furthermore, the power losses occurring in FEV 1 are 

constant, therefore the PSU mechanical efficiency is not affected by the power rates provided by each motor. FEV 4 is 

the most efficient mode, thus, where possible, it should be preferred to FEV 3, which, on the contrary, is the least efficient. 

However, as stated before, FEV 4 might be unsuitable for pure electric propulsion, thus the exploitation of FEV 3 for the 

highest vehicle speeds may be unavoidable. 

 

 

Fig. 10. Mechanical power losses occurring in FEV modes (as a fraction of the output power). 



 

6. CONCLUSIONS 
The wide variety of the viable power-split transmissions requires to seek a proper mathematical model that can address 

PS-CVTs both in analysis and in the design phase. In this respect, the unified parametric model used in this paper emerges 

as a highly functional tool, particularly for modeling electric PS-CVTs. However, its use requires knowledge of the 

functional parameters on which it is based. The new method proposed in this study for the identification of these functional 

parameters starting from the transmission constructive layout was proven to be rapid and practical because it is easily 

automatable in numerical software. This new formulation is based on a matrix approach that befits any power-split 

transmission, regardless of the number of planetary gear sets and their constructive arrangement in the power-split unit, 

as well as of ordinary gearing or clutches. Indeed, it enables an effortless identification of the functional parameters even 

for multimode PS-CVTs. 

Moreover, a rearrangement of the previous analysis model allowed us to assess the mechanical power losses occurring 

in the power-split unit and the consequent real power flowing into the electric machines, not only during hybrid-electric 

propulsion but also in pure electric operation.  

Finally, the application of this model to the complex multimode PS-CVT of the Cadillac CT6 resulted in a 

comprehensive analysis of the kinematics, mechanical power losses and power flows when functioning in each of the 

eleven available functioning modes. However, the major strength of the model is to be highly versatile, and therefore it 

can be applied with equal ease to any other power-split transmission. 
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