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Abstract
We investigate the phenomenology leading to the non-conservation of energy of the continuous
spontaneous localization (CSL) model from the viewpoint of non-equilibrium thermodynamics,
and use such framework to assess the equilibration process entailed by the dissipative formulation
of the model (dCSL). As a paradigmatic situation currently addressed in frontier experiments
aimed at investigating possible collapse theories, we consider a one-dimensional mechanical
oscillator in a thermal state. We perform our analysis in the phase space of the oscillator, where the
entropy production rate, a non-equilibrium quantity used to characterize irreversibility, can be
conveniently analyzed. We show that the CSL model violates Clausius law, as it exhibits a negative
entropy production rate, while the dCSL model reaches equilibrium consistently only under certain
dynamical conditions, thus allowing us to identify the values—in the parameter space—where the
latter mechanism can be faithfully used to describe a thermodynamically consistent phenomenon.

1. Introduction

The quantum-to-classical transition, which is the process driving the quantum state of a system towards a
fully classical description of its physical configuration, is yet to achieve a full characterization and, most
remarkably, the satisfactory understanding of its underlying mechanism [1]. Particularly relevant is the
question on whether the loss of coherence experienced by a large and complex quantum system should be
ascribed to an intrinsic mechanism or the unavoidable presence of the surrounding environment [2]. As
environmental decoherence only provides a partial addressing of the measurement problem, alternative
theoretical frameworks, where the collapse of the wavefunction is lifted to the rank of a universal mechanism,
are currently being formulated and developed to attack the quantum-to-classical transition [3–6]. Such
collapse models are achieved through stochastic dynamics, and are usually characterized by
phenomenological parameters that are asked to satisfy criteria of reasonability based, for instance, on the
retrieval of a classical description in the macroscopic limit. The continuous spontaneous localization (CSL),
one of the most well-studied of such models [3], describes the loss of coherence in the position basis by way
of an extra dissipative term entering the master equation of a quantum system [7–9]. The physical intuition
behind it is that the wave function of the physical state of a system undergoes random localization processes,
called ‘jumps’, occurring due to a dissipative mechanism not ascribable to any of the other environmental
noise source, and taking place at a rate that depends on the dimension of the system itself: while microscopic
systems are left basically unaffected, linear superpositions of states of a macroscopic system would be
strongly suppressed due to an intrinsic amplification mechanism. Mathematically, this is achieved by
interpreting the wavefunction as a stochastic process in the Hilbert space [8].

Despite its apparent simplicity and appeal, the CSL model suffers of the fundamental shortfall of being
inherent not energy-conserving: albeit at a very slow rate, the expectation value of the energy of a quantum
system of massm undergoing CSL-like dynamics grows indefinitely with time, thus signaling the
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fundamental unphysical nature of the model. A dissipative extension of this model—dubbed the dCSL
model—has been proposed [10], which, while still not conserving the energy, introduces a term that acts as
friction, allowing energy to reach an asymptotic finite value and thus an effective temperature at which the
system thermalizes.

In this paper, we provide an original characterization of CSL and dCSL model from the perspective
offered by non-equilibrium thermodynamics: by using a phase-space formulation of irreversible entropy [11,
12], which aptly quantifies the degree of thermodynamic irreversibility of a given physical process [13], we
address the collapse-affected dynamics of a quantum harmonic oscillator subjected to either CSL or dCSL.
We show that, while the standard CSL model implies the violation of Clausius law of thermodynamics,
witnessed by the occurrence of negative entropy production rates, the dCSL extension would result in
thermodynamically consistent descriptions, under suitably chosen dynamical conditions, despite the explicit
lack of energy conservation, thus embodying a more plausible formulation of a collapse mechanism to
consider. In providing such an assessment, we identify regimes of the dCSL model where, despite a dominant
dissipative character of the dynamics, a violation of the Second Law of thermodynamics is enabled by
suitably squeezing the initial state of the oscillator. By addressing the features of fundamental collapse
theories from a completely general thermodynamic standing point, our work demonstrates the intrinsic
value of non-equilibrium tools for the characterization of open quantum system dynamics.

The remainder of this paper is organized as follows. After briefly reviewing the salient features of CSL and
dCSL models (cf section 2), in section 3, the corresponding quantum Fokker–Planck equations are solved
numerically for an initial thermal state of the oscillator. In section 4, the quantities used in our
thermodynamic analysis will be briefly introduced, and the entropy production rate calculated numerically
for the case study and the results discussed in the manuscript. Finally, relevant concluding remarks are
offered in section 5, while a technical appendix reports details of the calculations required for the
phase-space formulation of the dynamics.

2. CSL and dCSLmodel: an introduction

The stochastic differential equation that describes the evolution of a state under the action of a collapse
mechanism such as one of those at the center of our study is d|ψ(t)⟩= Ô|ψ(t)⟩, where we have introduced
the operator Ô that acts on a generic state vector |a⟩ as

Ô|a⟩=

[
− iĤ

h̄
+γ

ˆ
d3xN̂(x)dB(x)−γ

2

ˆ
d3xN̂2 (x)dt

]
|a⟩. (1)

Here, B(x) is a continuous set of Wiener processes and N̂(x) =
∑

s

´
d3yg(y− x)â†(y, s)â(y, s) is an averaged

number operator—â and â† being the annihilation and creation operators of a harmonic oscillator—written

in the second quantization formalism, with a Gaussian weighing function g(x) =
(

α
2π

) 3
2 e−

α
2 (x)

2
. Such a

Gaussian weight is an assumption of the model that defines the length at which the suppression of
macroscopic linear superpositions takes place, as will be discussed shortly. In this equation, two important
parameters are present: the intensity of the Markovian noise entailed by the Wiener process γ, which is
related to the rate of the jumps, and the length-scale α, which is related to the typical localization volume
Vloc = α−3/2. The master equation of the CSL for the statistical operator can be shown to be

dρ̂(t)

dt
=− i

h̄

[
Ĥ, ρ̂(t)

]
+ γ

ˆ
d3xN̂(x) ρ̂(t) N̂(x)− γ

2

ˆ
d3x

{
N̂2 (x) , ρ̂(t)

}
. (2)

Some important results can be derived. Firstly, the off-diagonal elements of the statistical operator in the
position basis go to zero exponentially fast when considering distances greater than the typical localization
length 1/

√
α, which, together with the fact that the localization happens at the wave function level,

guarantees the effective suppression of macroscopic linear superpositions. The choice of the parameters γ
and α can be made in such a way that the localization happens on very short time scales for objects made of a
large number of particles (i.e. of the order of the Avogadro’s number), while leaving the standard
Schrödinger evolution for systems made of few particles basically uneffected (the aforementioned
amplification mechanism). Furthermore, the expectation values of the position and of the momentum
evolve in time like in the unitary evolution and the Ehrenfest theorem holds and the internal degrees of
freedom are decoupled from the center of mass as in the standard quantum theory. However in this simple
formulation the energy is not conserved and it is, on the contrary, divergent in time as

2
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⟨Ĥ⟩= ⟨Ĥ⟩Sch +
λαh̄2

4m
t, (3)

where ⟨·⟩ denotes the quantum expectation value taken with respect to the modified dynamic for ρ̂, while
⟨·⟩Sch is the quantum expectation value taken with respect to the standard Schrödinger dynamic [3]. The
dCSL extension of this model [10], fails to conserve energy but introduces in equation (1) a term that
depends on the momentum through a new parameter in the weighing function that acts as friction, thus
allowing the energy to reach an asymptotic finite value and thus an effective temperature at which the system
thermalizes.

3. Numerical solution of the dynamics in the phase-space picture

3.1. The quantum Fokker–Planck equation
In order to carry out a thermodynamical analysis of the dynamics, it is necessary to translate the master
equation, concerning the statistical operator, into a Fokker–Planck equation written in terms of the Wigner
function [14] of the system. The reason behind this will be clear in section 4 as it lies on the choice of the
entropy that will be used and, furthermore, allows for a simple numerical solution of the case study. This is
achieved, as far as the CSL model is concerned, via the Wigner–Weyl transform [15] of equation (2). The full
computation is carried out in the appendix. One can show that, for a one-dimensional (1D) system and
considering Gaussian states, i.e. states with Gaussian Wigner function (as the thermal state of the oscillator,
for example), the Fokker–Planck equation of the system can be well approximated with

∂tWρ̂ (q,p) = {WĤ,Wρ̂}∗ (q,p)+D∂2pWρ̂ (q,p) , (4)

where:WĤ is the Weyl symbol of the Hamiltonian,Wρ̂ is the Weyl symbol of the statistical operator, i.e. the
Wigner function of the system, and

{
WĤ,Wρ̂

}
∗ is the Moyal bracket [15] of the two symbols that comes

from the unitary term. This is written explicitly [15, 16] as

{WĤ,Wρ̂}∗ = 2WĤ sin

(
1

2

[
(
←−
∂q ,
−→
∂p

])
Wρ̂, (5)

where we have omitted the arguments of the Wigner function for simplicity of notation. Here,
D=

√
γ2α3/π is the diffusion parameter of the dynamics. Indeed, equation (4) shows that the simplified

collapse term is a simple anisotropic diffusion in the momentum direction. In what follows, unless otherwise
specified, we use natural units according to which h̄= 1 and rescale the position and momentum operators
as p/pzpf→ p and q/qzpf→ q with pzpf =

√
mw/2 and qzpf = 1/

√
2mw the zero-point fluctuations of an

harmonic oscillator with massm and frequency w. Correspondingly, we have α/2mw→ α. Considering
instead the dCSL model, it has been shown in [10] that the modified Schrödinger equation leads to an
asymptotic value of the mean energy

⟨Ĥ⟩=
(
⟨Ĥ⟩Sch−⟨Ĥ⟩as

)
e−ξ t + ⟨Ĥ⟩as, (6)

with ⟨Ĥ⟩as = h̄2α/(16mk), ξ =
γ(α/π)3/2

2(1+ k)2
and k is related to the parameter introduced in the momentum

dependent term in the modified Schrödinger equation. The equilibrium temperature of the system can thus
be written as T= αh̄2/(8kBk) and it is estimated to be T≃ 10−1 K. The friction effect driving the system to
such equilibrium configuration can be accounted for in the Fokker–Planck equation by adding a dissipative
term to equation (4) as follows

∂tWρ̂ = {WĤ,Wρ̂}∗ +D∂2pWρ̂ + ∂p (fpWρ̂) , (7)

where f is the dissipative constant and natural units and dimensionless q, p are considered once again.

3.2. CSLmodel: numerical solution of the dynamics in phase space
Keeping the natural units, but restoring the proper dimensions of the phase-space variables, we consider the
initial Wigner function

Wρ̂ (q,p) =
a0
π
exp

[
−a0

(
mwq2 +

p2

mw

)]
(8)

and the generic ansatz

Wρ̂ (q,p) =

√
a(t)b(t)− c2 (t)

π
e
−
(
a(t)mwq2+b(t) p2

mw+2c(t)pq
)

(9)

3
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Figure 1. Evolution of a(t) (dashed blue line), b(t) (solid red line), and c(t) (solid green curve) against time. All quantities are
dimensionless. In this simulation we have used the parameters D/(mω) = 0.1, a0 = b0 = 1/1.01, c0 = 0. The inset shows the
behavior in a shorter time-window to appreciate the nearly out-of-phase nature of a(t) and b(t) instigated by the uncertainty
principle.

to describe the anisotropic evolved state at a generic time of the dynamics. Here, the dimensionless
time-dependent parameters a(t), b(t) and c(t) need to be determined from the evolution of the system. Let

us call Σ= V the covariance matrix of the system, where V−1 =

(
a c
c b

)
. We start by looking into the

unitary term: from equation (5) it is straightforward to check that the Moyal bracket is equal to the Poisson
bracket up to order h̄, that is

{
WĤ,Wρ̂

}
∗ =

{
WĤ,Wρ̂

}
+O(h̄2). Furthermore, one can show that

WĤ(q,p) = (p2/m+mw2q2)/2 [14]. By using the ansatz in the Fokker–Planck equation and equating the
terms with the same powers of p, q and pq, we get the following set of differential equations

ȧ= 2wc− 4Dc2

mw
, ḃ=−2wc− 4Db2

mw
, ċ= w(b−a)− 4Dbc

mw
(10)

with the additional condition d
dt ln(ab− c2) =− 4Db

mw . While these equations do not admit a stationary
solution, it is straightforward to gather the temporal behavior of a(t) and b(t). We take D/(mw) = 0.1 as
diffusion coefficient, b0 = a0 = 1/1.01 and c0 = 0 as initial conditions and integrating over the dimensionless
evolution time ωt, thus finding the behavior illustrated in figure 1. Clearly, the dominant effect is diffusion,
leading to a progressive spread of the Wigner function that only reaches a non-equilibrium steady state. On
the other hand the unitary term causes a rotation in phase-space which is responsible for the emergence of
transient correlations. This will cause the variances to fluctuate around the linear increasing trend of the
diffusion, which would not be present in the q direction without the unitary term. Notice that without the
diffusion term, the rotation in the phase-space would not affect a symmetric Wigner function such as that of
a thermal state, which is in fact the stationary solution of the unitary dynamics.

3.3. Dissipative CSLmodel: numerical solution of the dynamics in phase space
The approach sketched above can be used also for the dCSL model, finding the dynamical equations

ȧ= 2wc− 4Dc2

mw
,

ḃ=−2wc− 4Db2

mw
+ 2fb,

ċ= w(b− a)− 4Dbc

mw
+ fc

(11)

with the further constraint d
dt ln(ab− c2) =−4Db/(mw)+ 2f. The additional, f -dependent terms in the

dynamical equations lead to a non-trivial isotropic stationary solution characterized by the equilibrium
parameters ceq = 0 and aeq = beq =mwf/(2D). Such isotropic state can be seen as a thermal state with a finite
effective temperature T determined by the following relation

aeq =
1

2

e
w
T − 1

e
w
T + 1

=
mw

2D
f. (12)

Depending on the relative value of D/mw and f, two cases can be identified: For the diffusion-dominated
case where f< D/mw, the final variances will end up being larger than any initial value. The phenomenology
is the opposite in the friction-dominated case corresponding to the choice f> D/mw. This is well illustrated

4
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Figure 2. Evolution of the variance of position (dashed blue line) and momentum (solid red line), and of the covarianceΣ12(t)
for the dCSL model. In panel (a) we look into the dynamics under dominant-friction conditions by taking D/(mw) = 0.5,
f = 0.7. Panel (b) is diffusion-dominated as we have chosen D/(mw) = 0.5, f = 0.4. The initial conditions are a0 = b0 = 1/1.01,
c0 = 0 in both panels. The quantities being plotted are all dimensionless.

Figure 3. Snapshots of the dynamics of the Wigner function of the system under the effects of the CSL mechanism. We sample the
distribution at four different times (wt= 0,1.6,3.2,5). All quantities are dimensionless. In this simulation we have used the
parameters D/(mω) = 0.9, a0 = b0 = 1/1.01, c0 = 0.

in figure 2, where we show the convergence of the elements of the covariance matrix of the system to the
asymptotic values.

As in the non-dissipative dynamics, the distribution is stretched along the p direction by the diffusion
and rotated by the unitary term. This time however the dissipation competes with the friction until the
distribution settles around a symmetric state whose variances, should the diffusion term dominate, would be
larger than the initial values (cf figures 3 and 4 for a qualitative comparison between the CSL and the dCSL
dynamics of the Wigner function of the system).

5
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Figure 4. Snapshots of the dynamics of the Wigner function of the system under the effects of the dCSL mechanism. We sample
the distribution at four different times(wt= 0,32,68,98). All quantities are dimensionless. In this simulation we have used the
parameters D/(mω) = 1.6, f = 2, a0 = b0 = 1/1.01, c0 = 0.

4. Entropic analysis of the collapse dynamics

4.1. The definition of entropy and the entropy production rate
Having characterized the phase-space dynamics of the system under the collapse models at the center of this
study, we now introduce the thermodynamical quantities used in the present paper. The main theoretical
tool is the entropy production [13, 17], i.e. the contribution to the total entropy of a thermodynamic
transformation or process that is produced by taking or keeping the system out of equilibrium. It embodies a
quantitative measure of irreversibility in such processes and its rate is used to determine whether a system
approaches thermal equilibrium during its dynamics [18]. For a general open-system dynamics, the entropy
production rate Π is defined as [13]

dS

dt
=Π(t)−ϕ (t) , (13)

where ϕ(t) is the entropy flux between the system and the environment it is in contact with. Its
thermodynamically consistent definition implies the request for the entropy production rate to satisfy a class
of fluctuation theorems, namely mathematical generalizations of the second law of thermodynamics [19],
thus giving rise to the constraint Π(t)⩾ 0 across a dynamics.

When working in the phase space, a successful formulation of the framework for the quantification of
entropy production, which allows to bypass some of the shortfalls of the standard approach based on the use
of von Neumann entropy (such as the so-called ultra-cold catastrophe [20]), makes use of the Rényi-2
entropy [11, 12] defined as S2 =−ln(Trρ̂2), where ρ̂ is the density matrix of the system. For Gaussian states,
such quantity is equivalently formulated—up to an irrelevant constant—as

S2 (t)=
1

2
ln [detV(t)]=−

ˆ
W(q,p, t) ln(W(q,p, t))dqdp (14)

when expressed in terms of the covariance matrix V(t) and Wigner functionW(p,q, t) at time t associated
with ρ̂ [21]. With such tool at hand, the entropy production rate is then defined as [11, 13]

Π (t) =−∂tK(W(q,p, t) ||W0 (q,p)) , (15)

whereW0(q,p) is the Wigner function of the equilibrium state of the system. Here

K(Wa||Wb) =

ˆ
dqdpWa (q,p) ln

(
Wa (q,p)

Wb (q,p)

)
(16)
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Figure 5. Entropy production rate (main panel, solid red line) and corresponding Wigner relative entropy (inset, dashed blue
curve) across the dynamics. The parameters used in this simulation are D= 0.1, b1(0) = a1(0) = 1/1.01, c1(0) = 0 for a target
state with a2 = b2 = 1.01k and k= 1, . . . ,5, growing in the sense of the arrows.

is the relative Wigner entropy between the Wigner functionsWa,b(q,p). Recently, this framework has been
successful in experimentally characterizing the degree of irreversibility of the non-equilibrium dynamics of
both an optomechanical system and an intra-cavity ultracold atomic system [22].

4.2. Entropy production rate of the CSL dynamics
Using the definition of entropy given in equation (14) it is possible to get an analytical expression for both the
entropy and the relative entropy of a Gaussian distribution, which will depend only on the covariance matrix.

The Wigner entropy of a single-mode Gaussian state reads

H(p) = S2 + 1+ lnπ = ln
(
π edet

√
V
)
, (17)

while the relative Wigner entropy can be computed explicitly as [21]

K(p1||p2) =
1

2
ln

(
detV2

detV1

)
+

1

2
Tr
(
V1V

−1
2

)
− 1, (18)

with V−1
j =

(
aj cj
cj bj

)
(j = 1,2). We can use the dynamics of the entries of the covariance matrix of the

system, and their equations of motion, to gather the behavior of the Wigner relative entropy
K(W(p,q, t)||Weq) and the entropy production rate. Needless to say, the ambiguity in this case is the lack of a
reference equilibrium state: the standard CSL model induces the unconstrained growth of the effective
temperature of the system without reaching a stationary state. Therefore, in order to gather an intuition of
the trend that the entropy production would follow, we compute the entropy production associated with
target thermal states of growing variances, thus providing information on the features of both the Wigner
relative entropy and Π(t).

Figure 5 summarizes the results of such a study. The Wigner relative entropy in general showcases a
non-monotonic behavior, reaching a minimum value and then growing nearly linearly as the evolved state of
the system departs from the chosen target state. Correspondingly, after remaining positive for a while, the
entropy production rate takes negative values, thus witnessing the violation of the second law embodied by
the constraintΠ(t)> 0. The minimum of relative entropy is attained at the time when the evolved state of the
system becomes as close as allowed by the dynamics to the thermal state of reference. This can be clearly seen
from the state fidelity between ρ̂(t) and the hypothetical reference state here at hand. Such figure of merit can
be calculated straightforwardly by using the covariance matrices Σ(t) and Σeq of such states as [23–27]

F(t) =
2

√
∆+Λ−

√
Λ

(19)

with the symplectic invariants∆= det(V(t)+Veq) and Λ = det(Σ(t)+ iΩ)det(Σeq + iΩ), and where we

have used the single-mode symplectic matrix Ω=

(
0 1
−1 0

)
. As it can be appreciated from figure 6, the state

fidelity peaks at the time wt when the mean number of excitations in the state of the system becomes
identical to that of the target thermal state. This is also when K(W(q,p, t)∥Weq) achieves its minimum.

Such phenomenology clearly takes place regardless of the chosen target state. This is as if the state is
interacting with a thermal bath with infinite temperature: effectively the dynamics has no physical

7
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Figure 6. State fidelity (panel (a)) and mean number of excitations in the state of the system (panel (b)) across the CSL dynamics.
We have used the following parameters for the simulations reported in the figure: D/(mw) = 0.1, 1/b0 = 1/a0 = 1.01, c0 = 0.
Moreover, we have considered target states with variances aeq = beq = 1.01k with k= 1, . . . ,5 varying in steps of 1. All the
reported quantities are dimensionless.

Figure 7. Entropy production rate and Wigner relative entropy (inset) over time for the dCSL model with dominant diffusion.
For this simulation, we have used the parameters D/(mw) = 0.9, and f = 0.1k with k= 1, . . . ,8, growing as shown by the sense
of the arrow in the figure. We have considered initial covariance matrix elements 1/b0 = 1/a0 = 1.01 and c0 = 0.

Figure 8. Entropy production rate and Wigner relative entropy (inset) over time for the dCSL model with dominant friction. For
this simulation, we have used the parameters D/(mw) = 0.5, and f = 0.1k with k= 6, . . . ,10, growing as shown by the sense of
the arrow in the figure. We have considered initial covariance matrix elements 1/b0 = 1/a0 = 1.01 and c0 = 0.

asymptotic state and thus there is no target state that could make the relative entropy disappear, reflecting the
linear increase in the average energy of the system predicted by the model.

4.3. Entropy production rate of the dissipative CSL dynamics
The analysis of the behavior of the entropy production rate in time can now be extended to the assessment of
the dCSL mechanism, where the two dynamical regimes identified previously should be addressed separately.

First, let us address the case of diffusion-dominated dynamics, where a clear stationary state is achieved
as a result of the competition between diffusion and friction-like effects. The phenomenology ofΠ(t) and the
Wigner relative entropy is shown in figure 7 for a set of values of the parameters characterizing the dynamics.
As the evolution has an asymptotic state and remains physically legitimate for any finite value of the ratio

8
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between D/(mw) and f, after a transient, the entropy production rate Π reduces to zero from otherwise
positive values, thus satisfying the second law.

On the other hand, care should be applied in the friction-dominated case, which is reported in figure 8:
some values of the ratio D/(mwf)may lead to physically inconsistent dynamics, as evidenced by the
violations of the constraints that a legitimate covariance matrix should satisfy [28], namely V(t)⩾ 0,
V(t)+ iΩ⩾ 0, which implies |iΩV(t)|⩾ 1. The violation of such conditions may result in Π(t)< 0 at some
instant of time, thus violating the second law of thermodynamics. A quantitative constraint comes from the
uncertainty principle leading to det(Veq)⩾ 1 or equivalently f ⩽ 2D

mw .
A way to obtain an inconsistent dynamics in the dCSL case is to consider a far out-of-equilibrium initial

states. For instance, we have found that suitably squeezed initial states, in the friction-dominated case, might
result in the violation of the second law, while still reaching an isotropic equilibrium state. Such instances do
not occur, instead, for diffusion-dominated dynamics. A full characterization of the dynamics with
non-isotropic initial states will be the core of a future investigation.

5. Conclusions

We have used a phase-space description of the dynamics entailed by both the CSL and dCSL model on a
quantum harmonic oscillator, providing a thermodynamics characterization of the dynamical features of
such collapse mechanisms. Through a study of the entropy production rate, we have highlighted the lack of
an equilibrium state for the case of the CSL dynamics. Correspondingly, such model violates the second law
of thermodynamics, as showcased by a negative entropy production rate. Differently, the dynamics induced
by the dCSL model indeed reaches, asymptotically, an equilibrium state for any choice of the parameters.
However, the model is generally thermodynamically consistent only in the diffusion-dominated case.

All this being said, it is clear that in general, thermodynamical transformations involving reservoirs
hotter than the system are physically acceptable, only that in this case a contribution to the entropy
production rate of the environment is present and must be taken into account. The present analysis is thus
only partial in addressing this problem, since with a proper model of the environment that generates the
noise, a non-zero temperature asymptotic state of the dynamics which does not violate the Second law could
be found (with different restrictions on the parameters). A starting point could be [29], where a microscopic
derivation of the noise is derived.

A similar analysis can be carried out also on other different declinations of the collapse models, such as
the famous Diósi–Penrose model [30, 31], which involves gravity, or energy conserving formulation of the
CSL.
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Appendix. Derivation of the Fokker–Planck equation of the CSLmodel

We provide the full derivation of the quantum Fokker–Planck equation of a Gaussian state subjected to CSL
used in section 3. As done previously, natural units and dimensionless position and momentum will be
considered. The Weyl symbol of the statistical operator is called the Wigner function and is defined as the
Fourier transform of the quantum characteristic function χρ(⃗s) = Tr[ρ̂D̂(s)] where D̂ is the displacement
operator [14]. We have

Wρ̂ (⃗r) =

ˆ
d2s

(4π)2
e−

i
2 r⃗

TΩ⃗sχρ̂ (⃗s)
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with r⃗= (q,p). This expression can be shown to be equivalent to

Wρ̂ (⃗r) =

ˆ
dy

4π
e−

i
2 py

〈
x+

y

2

∣∣∣ρ̂(x− y

2

)〉
,

and as this equivalence does not depend on the choice of the quantum operator which is to be transformed,
it holds for any other Weyl symbol as well, that isWÂ(q,p) =

´ dy
4π e

− i
2 py⟨q+ y

2 |Â
(
q− y

2

)
⟩. Now we can use

this expression to take the Weyl symbol of equation (2). One can start considering the time evolution of the
matrix elements in the position basis of the statistical operator, derived for example in [3]

∂

∂t
⟨q⃗ ′|ρ̂(t) q⃗ ′ ′⟩=−i⟨q⃗ ′|

[
Ĥ, ρ̂(t)

]
q⃗ ′ ′⟩− γ

( α
4π

) 3
2
[
1− e−

α
4 (q⃗ ′−q⃗ ′ ′)

2]
⟨q⃗ ′|ρ̂(t) q⃗ ′ ′⟩. (20)

Then, once specialized to the 1D case with one particle, it will be enough to take the Fourier transform to get
the Weyl symbol of the equation. The left-hand side will be, of course, ∂tWρ̂(q,p) as the time derivative can
be taken out of the integral. As for the right-hand side, let us consider first the non-Hamiltonian term, which
will lead to

− γ

4π

√
α

4π

ˆ
dye−

i
2 py

[
1− e−

α
4 (q+

y
2−q+ y

2 )
2]〈

q+
y

2
|ρ̂(t)

(
q− y

2

)〉
=−γ

√
α

4π

[
Wρ̂ (q,p)−

1

4π

ˆ
dye−

i
2 pye−

α
4 y

2
〈
q+

y

2
|ρ̂(t)

(
q− y

2

)〉]
=−γ

√
α

4π

[
Wρ̂ (q,p)−

1

4π

ˆ
dk√
π
e−k2
ˆ

dye
i
2 y(p−2

√
αk)

〈
q+

y

2
|ρ̂(t)

(
q− y

2

)〉]
=−γ

√
α

4π

[
Wρ̂ (q,p)−

ˆ
dk√
π
e−k2Wρ̂

(
q,p− 2

√
αk

)]
,

where we have used the following identity

ˆ
dk√
π
exp

(
−
(
k2 + i

√
αyk

))
= exp

(
−α
4
y2
)
.

For the Hamiltonian part we refer to [15] for the definition of the Moyal bracket as
{
WÂ,WB̂

}
∗ =−iW[Â,B̂],

finally getting

∂tWρ̂ (q,p) = {WĤ,Wρ̂}∗ (q,p)− γ
√

α

4π

[
Wρ̂ (q,p)−

ˆ
dk√
π
e−k2Wρ̂

(
q,p− 2

√
αk

)]
. (21)

As we are interested only in Gaussian states, we can simplify this expression through the Kramers-Moyal
expansion. First, let us rearrange the integral by making a change of variable p ′ = p− 2

√
αk, thus getting

ˆ
dke−k2

√
π

Wρ̂

(
q,p− 2

√
αk

)
=−
ˆ

dp ′
√
π

e−
(p−p ′)2

4α2

2
√
α

Wρ̂ (q,p
′) .

Considering only states whose Wigner function is well-localized around the origin (e.g. Gaussian states) one
can Taylor expand the Wigner function around p ′ = p to get an easier expression truncating at the first
non-trivial order, leading to

ˆ
dp ′
√
π

e−
(p−p ′)2

4α2

2
√
α

Wρ̂ (q,p
′)≃
ˆ

dp ′ e
− (p−p ′)2

4α

√
4πα

[
Wρ̂ (q,p)+ ∂pWρ̂ (q,p)(p

′− p)+ ∂2pWρ̂ (q,p)(p
′− p)

2
]

where the approximation sign is used as higher order terms have been neglected. As the second term is the
integral is identically zero in light of parity, after some algebra one is left with

Wρ̂ (q,p)+ 2α∂2pWρ̂ (q,p) .

Thus the Fokker–Planck equation will be of the form

∂tWρ̂ (q,p) = {WĤ,Wρ̂}∗ (q,p)+

√(
γ2α3

π

)
∂2pWρ̂ (q,p) .
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