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Abstract 

Background Causal mediation analysis is widespread in applied medical research, especially in longitudinal settings. 
However, estimating natural mediational effects in such contexts is often difficult because of the presence of post-
treatment confounding. Moreover, many models frequently used in applied research, like multilevel and latent growth 
models, present an additional difficulty, i.e. the presence of latent variables. In this paper, we propose a causal inter-
pretation of these two classes of models based on a novel type of causal effects called separable, which overcome 
some of the issues of natural effects.

Methods We formally derive conditions for the identifiability of separable mediational effects and their analytical 
expressions based on the g-formula. We carry out a simulation study to investigate how moderate and severe model 
misspecification, as well as violation of the identfiability assumptions, affect estimates. We also present an application 
to real data.

Results The results show how model misspecification impacts the estimates of mediational effects, particularly 
in the case of severe misspecification, and that the bias worsens over time. The violation of assumptions affects sepa-
rable effect estimates in a very different way for the mixed effect and the latent growth models.

Conclusion Our approach allows us to give multilevel and latent growth models an appealing causal interpreta-
tion based on separable effects. The simulation study shows that model misspecification can heavily impact effect 
estimates, highlighting the importance of careful model choice.

Keywords Longitudinal mediation analysis, Separable effects, Causal effects, Multilevel models, Latent growth 
models

Introduction
In recent years mediation analysis has increasingly been 
used with the aim to investigate causal mechanisms 
underlying phenomena of interest. In mediational set-
tings, the effect of a treatment or an exposure on a certain 

response variable may be conveyed by a third variable 
called mediator. For example, physical activity may have 
a causal effect on blood pressure, at least in part medi-
ated by body fat percentage. Given the dynamic nature of 
many phenomena, including the one in the example just 
provided, causal effects are generally not instantaneous 
and may need time to manifest. As a consequence, lon-
gitudinal data are particularly suited, if not required, to 
address mediation.
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Many methods have been proposed to deal with lon-
gitudinal mediation analysis. Some of them fall under 
the SEM framework, such as cross-lagged panel mod-
els [1], latent growth models [2, 3] and latent difference 
score models [4]. Other models account for longitudinal-
ity by including mixed effects [5, 6], other else consider 
a dynamic process perspective, the so-called dynamic 
path analysis [7, 8]. Due to the fact that in epidemiology 
the interest often lies in time-to-event outcomes, several 
methods have been developed to address mediation in 
a survival setting: [9] adopt a semiparametric approach 
based on influence functions, [10] propose a gener-
alisation of dynamic path analysis, while many authors 
[11–13] propose a mediational g-formula for estimating 
effects. Finally, there are also examples of continuous-
time methods based on derivatives [14–16].

In this paper, we will focus on two models frequently 
used for longitudinal analysis and which share some 
similarities, i.e. multilevel (or mixed-effect) models [17, 
18] and latent growth models (LGMs, [19]). Both mod-
els have been discussed from a causal perspective using 
the so-called natural mediational effects [20, 21]. How-
ever, the identifiability of these natural (in)direct causal 
effects, i.e. the ability to express them as a function of 
observed data, relies on the absence of post-treatment 
confounding. Bind et al. [5] addresses longitudinal medi-
ation analysis using mixed-effect models, but only in set-
tings without time-varying confounding, i.e. covariates 
which vary over time and whose presence violates clas-
sical assumptions required for non-parametric identifica-
tion of natural effects [13]. Another limitation of natural 
mediational effects is the fact that they are defined in 
terms of nested counterfactuals [21, 22], i.e. counterfac-
tuals depending on other counterfactuals. In particular, 
natural mediational effects are defined as contrasts of 
two counterfactual values of the response, which depend 
on counterfactual values of the mediator. In other words, 
natural effects entail conceptualizing a specific interven-
tion on the mediator, which is not always straightforward 
or meaningful as it involves setting the treatment to two 
different values simultaneously. For example, [23] pro-
pose a causal interpretation of LGMs through natural 
effects, but their approach implies devising an interven-
tion on mediators, which, in the case of LGMs, are latent 
variables. This can be rather counterintuitive and the 
practical relevance is limited.

An alternative approach to mediation analysis, called 
separable (treatment) effects was proposed by [24] (the 
name was coined by [25]), and recently applied to lon-
gitudinal mediation settings with a time-to-event out-
come [26–28]. This approach relies on the assumption 

that the exposure or treatment can be separated into 
two (or more) components, one having a direct effect 
only on the mediator and the other one directly activat-
ing only the outcome. Some of its key advantages are that 
it does not require the notion of an intervention on the 
mediators, since only the components of the exposure 
are considered as separate interventional targets, and 
that causal effects can easily be interpreted in terms of 
modifications of these components. The separable effects 
approach overcomes some of the issues characterizing 
natural effects, since separable causal effects are defined 
without nested counterfactuals and their identifiability is 
obtained under assumptions that are in principle testable 
[29] as they do not involve cross-world independencies, 
unlike natural effects [30].

In this article, we propose a causal interpretation 
of generalised mixed-effect models and latent growth 
models in terms of separable effects. This enables us to 
provide explicit assumptions for endowing mediational 
effects with such an interpretation, and these assump-
tions can easily be interpreted from an interventional 
point of view [24, 31]. Furthermore, we prove that, in the 
linear case, formulas for the separable effects are consist-
ent with those derived from path analysis.

Methods
In this section, we first introduce separable mediational 
effects and then we discuss their application to multilevel 
and latent growth models. We also describe the simula-
tion study carried out to evaluate how model misspecifi-
cation affects the estimates of causal effects and show the 
results of the data analysis.

Separable mediational effects
Causal mediation analysis has traditionally been 
addressed in the counterfactual framework. Denoting 
by X, M and Y the exposure, the mediator and the out-
come, respectively, let M(x) and Y(x) be the value of the 
mediator and the response, respectively, if X were set to 
x, and let Y(x, m) denote the value of the response had X 
been set to x and M to m. Direct and indirect effects are 
usually defined as contrasts (the difference or the ratio) 
of nested counterfactual quantities [20, 21]: Y(x,  M(x)) 
and Y (x′,M(x)) for the direct effect, Y(x,  M(x)) and 
Y (x,M(x′)) for the indirect one, with Y (x,M(x′)) denot-
ing the value of the outcome had X been set to x and the 
mediator to the natural value it would have had if X were 
set to x′ , being x  = x′ . For this reason, these effects are 
generally called natural [21].

The main problem of causal inference is how to express 
counterfactual quantities in terms of observed data, an 
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issue known as identifiability. For natural effects to be 
identifiable from observational data, specific assumptions 
about confounding are required. Specifically, the expo-
sure-mediator, exposure-outcome and mediator-out-
come relationships should be unconfounded. Moreover, 
another condition is the so-called cross-world independ-
ence assumption. As its name suggests, this assump-
tion involves counterfactuals referring to two different 
‘worlds’ or scenarios, since it states that the counterfac-
tual value of the outcome if X were set to x is independ-
ent of the mediator if X were set to a different value x′ , i.e. 
Y (x,m) ⊥⊥ M(x′).

The definition of natural mediational effects relies on 
nested counterfactuals, which require to think of setting 
the exposure to two different values at the same time, 
which may be quite counterintuitive, and to intervene on 
the mediator, a task sometimes even difficult to conceive. 
In addition, the cross-world independence assumption is 
untestable and can easily be violated in real settings, for 
example in the presence of an exposure-induced (or post-
treatment) confounder [32], although [30] discuss other 
scenarios in which such an assumption can be violated. 
The separable effects approach overcomes these issues.

The basic idea underlying separable effects is to extend 
the model by including two additional variables, XM and 
XY  , which can be thought of as two separate components 
of the exposure, the former influencing directly only the 
mediator, the latter only the outcome. This is graphically 
depicted in Fig. 1, since only an arrow emanates from XM 
and it goes into M, likewise there is only an arrow from 
XY  to Y. The introduction of these new variables allows 
for the definition of separable mediational effects as the 
contrasts of (single-world) counterfactuals involving only 
them, not the mediator. Although these variables are not 
observed, since we observe only the value of X, and in 
observational data it holds that X ≡ XY ≡ XM , they turn 
out to be very useful to give insights into the mechanism 
linking X to Y. First, these additional variables allow us 

to disentangle the pathways through which the exposure 
effects propagate. As an example, suppose we are inter-
ested in the effect of breastfeeding on a child’s weight 
mediated by addictive behaviours like sugar craving: one 
can think of two distinct components of breastfeeding, 
one metabolic, affecting directly the child’s weight, and 
another neurological, affecting the addictive behaviour. 
Second, it is possible to conceive a future trial where the 
two X components are randomised independently. For 
example, the metabolic component is given by the nutri-
tional compounds contained in the maternal milk, while 
the neurological component comes from the experience 
of breastfeeding, like the sense of closeness and attach-
ment a child feels staying in the mother’s arms. In this 
setting, the two distinct components of X are interven-
ing variables and, as we shall detail below, they allow us 
to define mediational effects without devising an inter-
vention on the mediator, as required, instead, by natu-
ral effects. In the breastfeeding example, the metabolic 
component could be administered by giving children 
maternal milk through a baby bottle, the neurological 
component by reproducing a ‘breastfeeding situation’ 
without giving the milk. As another example, consider a 
study to investigate the effect of smoking cigarettes on 
the risk of myocardial infarction, mediated by hyperten-
sion. Robins and Richardson [24] argue that the natural 
effects proposed by Pearl involve thinking of interven-
ing on subjects’ hypertensive status, but Pearl himself, to 
motivate the example, never mentions such an interven-
tion, focusing instead on an intervention on two com-
ponents of cigarettes, i.e. the nicotine and non-nicotine 
substances that they contain.

Third, the identification of separable mediational 
effects relies on weaker assumptions than those required 
by natural effects; in particular, they do not require any 
cross-world independence, since they are not defined in 
terms of nested counterfactuals. See [31] for a detailed 
discussion.

Our interest lies in longitudinal contexts, where the 
assumptions for identifiability of natural (in)direct effects 
are rarely plausible. This is due to the very likely presence 
of post-treatment confounding, i.e. confounders of M and 
Y affected by X. As already said, such variables violate the 
cross-world independence assumption, ruling out natural 
effects as possible estimands of longitudinal mediational 
effects. This is the reason why alternative definitions 
of causal direct and indirect effects are required. In this 
paper, we focus on separable effects, but other alternatives 
like interventional effects have been suggested [9, 11, 13].

We will consider a setting with a baseline binary expo-
sure X, and a mediator M and a response Y measured 

Fig. 1 Separable effects via exposure decomposition
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over time for T different time occasions, where M is 
measured immediately before Y. The estimand of inter-
est for each t = 1, . . . , T  is E[Yt(XY = x,XM = x′)] , 
that is, the expectation of the response at time t under a 
hypothetical intervention setting the components of X 
to two different values x and x′ . The mediational effects 
are indeed defined in terms of quantities of this kind, 
namely the separable direct effect (SDE) can be defined 
as a contrast

and the separable indirect effect (SIE) as a contrast of

For these effects to be identifiable from data on 
(X , {Mt}, {Yt}) , since XM and XY  are not observed, some 
assumptions are necessary. As in [26], we assume the 
following

Property P1 
E[Y (XY = x, XM = x)] ≡ E[Y (X = x)].

Moreover, for any variable W, let Wt denote the history 
of Wt , i.e. the set of variables Wk for k ≤ t.

A0 The treatment is randomised, implying that 
E[Y (X = x)] = E[Y |X = x]

A1 For each time t, the mediator Mt is inde-
pendent of the value of XY  conditional on its 
observed past, previous values of Y and XM , 
Mt ⊥⊥ XY | (Mt−1,Y t−1,X

M)

A2 For each time t, the response Yt is inde-
pendent of the value of XM conditional on its 
observed past, previous values of M and XY  , 
Yt ⊥⊥ XM | (Mt ,Y t−1,X

Y )

If these assumptions are satisfied, then, the quantity 
E[Yt(X

Y = x, XM = x′)] , where the components of X 
are set to two different values, is non-parametrically 
identifiable through the mediational g-formula [26]

Assume that the causal structure is as in Fig.  2. At 
each time, the mediators have a cross-sectional effect 
on the response, M1 affects Y2 and Y1 affects M2 . More-
over, both the mediator and the outcome have autore-
gressive effects.

E[Yt(X
Y = x,XM = x′)] vs E[Yt(X

Y = x′,XM = x′)]

E[Yt(X
Y = x,XM = x)] vs E[Yt(X

Y = x,XM = x′)].

(1)

E[Yt(X
Y = x,XM = x′)] =

∑

mt ,yt−1

E[Yt |X = x, Mt = mt ,Y t−1 = yt−1]×

t∏

k=1

P(Mk = mk |X = x′,Mk−1 = mk−1,Y k−1 = Y k−1)×

P(Y k−1 = yk−1|X = x,Mk−1 = mk−1,Y k−2 = yk−2).

If the model in Fig. 2 reflects the true data generating 
mechanism, then assumptions A0-A2 are satisfied. As a 
consequence, applying Eq. (1) , E[Y2(XY = x,XM = x′)] 
results identified by

In the next sections, we apply the separable effects 
approach to mixed effects and latent growth models and 
derive analytical expressions for the mediational effects.

Mixed effect models
Mixed effect models, also known as multilevel or hier-
archical models, have traditionally been used for nested 
data, where observations belong to different groups or 
clusters. Examples of nested data are children in schools, 
people living in different areas of a city, or patients on 
which repeated measurements are taken over time. This 
class of models assumes the presence of random com-
ponents which encode individual deviations from the 
population average. By using [17] notation, a mixed effect 
model can be specified as

where i and j denote the subject and the cluster, respec-
tively, Yij is the response variable for subject i in cluster j, 
Xij and Zij are p× 1 and q × 1 vectors of known covari-
ates, β and u are p× 1 and q × 1 vectors of fixed and ran-
dom coefficients, respectively, with E[u] = 0 and εij an 

m1,m2,y1

E[Y2 |m1,m2, y1, x]P(m2|m1, y1, x
′)P(y1 |m1, x)P(m1|x

′).

(2)Yij = XT
ij β + ZT

ij uj + εij

Fig. 2 Longitudinal separable effect model with two time points
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error term with null expectation. The variables in Zij are 
generally a subset of those in Xij.

In a longitudinal mediation setting, mixed effect mod-
els could be fitted for both the mediator and the outcome, 
so that for each subject i

In the simplest case XMit includes only the intercept 
and the exposure and the same for XYit with the addition 
of the mediator at time t. The vectors β and γ are fixed 
effects common to all subjects, while b and g are subject-
specific random effects.

We have mentioned work dealing with longitudinal 
mediation using causal mixed-effect models. Among them, 
[5] propose assumptions for the identifiability of natural 
mediational effects in a simple setting without time-vary-
ing confounding. We consider a causal structure similar to 
theirs, but slightly modified by considering a baseline expo-
sure X and a mediator and a response measured at different 
time occasions. Unlike [5], we allow the mediators and the 
outcome to be directly linked, not just through the random 
coefficients in the models. In addition, cross-lagged effects 
are allowed. These changes make the mediator and the out-
come also time-varying confounders. Figure  3 shows the 
data structure for three waves.

(3)Mit = XT
Mit β + ZT

Mitbi + εMit

(4)Yit = XT
Yit γ + ZT

Yitgi + εYit .

We shall interpret the DAG in Fig.  3 as in the struc-
tural equation framework introduced by [33] (notice that 
we have explicitly included random effects as nodes in 
the graph). However, in contrast to the natural media-
tional effects, we do not consider any intervention on the 
mediators, but only on the separate components of the 
exposure.

The graph encodes some dependencies among variables: 
first, notice that the only children of XM are the media-
tors, and the only children of XY  are the outcome meas-
urements over time. This implies that XM is independent 
of the outcome conditional on the mediators, and XY  is 
independent of the mediators conditional on the outcomes 
and previous mediators. Second, notice that the bidirected 
arrow connecting random effects is dashed, meaning that 
they can be marginally independent or correlated. Whether 
this arrow is present or not has dramatic impacts on the 
identifiability of separable effects. We will address the case 
of uncorrelated and correlated random effects in turn.

Uncorrelated random effects
Let us start from the easiest case, where the two sets of ran-
dom effects are uncorrelated, i.e. there is no dashed link 
in Fig. 3. In such a model, assumptions A1 and A2 ensure 
identifiability of the separable mediational effects. To show 
this, we start by considering the interventional expecta-
tion of the outcome under an intervention setting XM = x′ 
and XY = x, with x, x′ ∈ {0, 1}, x �= x′ . Applying the law of 
iterated expectation:

with the assumption that variables with zero or negative 
subscripts are not present.

From assumption A1 and Property P1 it follows that, for 
each k,

(5)

E[Yt (X
Y = x,XM = x′)] =

∑

mt ,yt−1

E[Yt (X
Y = x,XM = x′) |Mt (X

Y = x,XM = x′) = mt ,

Y t−1(X
Y = x,XM = x′) = yt−1]×

t∏

k=1

P(Mk (X
Y = x,XM = x′) = mk | Mk−1(X

Y = x,XM = x′) = mk−1,

Y k−1(X
Y = x,XM = x′) = yk−1)×

P(Yk−1(X
Y = x,XM = x′) = yk−1 |Mk−1(X

Y = x,XM = x′) = mk−1,

Y k−2(X
Y = x,XM = x′) = yk−2)

Fig. 3 Three-wave mixed effect model with separable components 
of X. b and g are random effects
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and, since the treatment is randomised, this equals

The same holds for Yk by using A2 instead of A1, i.e.

It then follows that

Specifying parametric models for the mediator and the 
outcome allows us to derive separable direct and indirect 
effects in terms of regression coefficients. For example, 
assume a structure as shown in Fig. 3. For each subject 
i = 1, . . . , n and time occasion t = 1, . . . , T  , if the medi-
ator and the outcome are assumed to be Normally dis-
tributed and their expectations to be linear in the direct 
causes, possible models for their expectations can be

where the subscripts ℓ1(M) and ℓ1(Y ) denote the coeffi-
cients referring to Mt−1 and Yt−1 respectively ( ℓ1 stands 
for the lag operator of order 1), and we are assuming that

P(Mk (X
Y = x,XM = x′) = mk |Mk−1(X

Y = x,XM = x′),

Y k−1(X
Y = x,XM = x′))

= P(Mk (X
Y = x′ ,XM = x′) = mk |Mk−1(X

Y = x′ , XM = x′),

Y k−1(X
Y = x′ , XM = x′))

= P(Mk (X = x′) = mk |Mk−1(X = x′),Y k−1(X = x′))

P(Mk = mk |X = x′,Mk−1,Y k−1).

P(Yk(X
Y = x, XM = x′) = yk |Mk(X

Y = x, XM = x′),Y k−1(X
Y = x, XM = x′))

= P(Yk(X
Y = x,XM = x) = yk |Mk(X

Y = x,XM = x),

Y k−1(X
Y = x,XM = x))

= P(Yk(X = x) = yk |Mk(X = x),Y k−1(X = x))

= P(Yk = yk |X = x,Mk ,Y k−1).

(6)

E[Yt(X
Y = x, XM = x′)] =

∑

mt ,yt−1

E[Yt |X = x, Mt = mt , Y t−1 = yt−1]×

t∏

k=1

P(Mk = mk |X = x′, Mk−1 = mk−1, Y k−1 = yk−1)×

P(Yk−1 = yk−1 |X = x, Mk−1 = mk−1, Y k−2 = yk−2).

(7)E[Mit |Xi, Mit−1, Y it−1,bi] = (β0 + b0i)+ βXXi + β
ℓ1(M)

Mit−1 + β
ℓ1(Y )

Yit−1

(8)E[Yit |Xi, Mit , Y it−1, gi] =

(γ
0
+ g

0i)+ γXXi + (γMt
+ gMi)Mit + (γ

ℓ1(M)
+ g

ℓ1(M)i)Mit−1 + γ
ℓ1(Y )

Yit−1.

with � diagonal.
Going back to the initial example of breastfeeding and 

weight, these models imply that the being breastfed has 
an effect both on weight and sugar craving over time. 
Subjects can show heterogeneity in the extent to which 
the mediator affects the response, so that the effect of 
Mt and Mt−1 on weight at time t may vary across sub-
jects. The random effects gMi and g

ℓ1(M)i are included 
in the model to capture such heterogeneity. It is also 
plausible that the mediator and the outcome have 

autoregressive as well as cross-lagged effects, since, for 
example, a higher sugar craving at time t may lead to an 
increased weight at the subsequent measurement.

Suppose that one is interested in the separable effects 
of the exposure on the outcome at time t = 2 . Consid-
ering the difference as contrast and two different values 
of X , x and x′ , it can easily be proved that, applying the 
g-formula in (6), the separable effects, conditional on 
random effects, take the form

ui = (b0i, g0i, gMi , gℓ1(M)i)
′ ∼ MVN(0,�),

(9)
SDE|b,g = γX

[
1+ β

ℓ1(M)
(γM + gMi)+ γ

ℓ1(Y )

]
(x − x′ )
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and

Since one is usually interested in the average causal 
effects, random effects in the formulas above can be 
integrated out. In addition, since the random effects are 
assumed to be uncorrelated, the resulting effects are 
obtained by simply deleting the random coefficients, i.e.

It is interesting, but not entirely surprising, to notice 
that each term of these effects refers to a path contrib-
uting to the effect under examination: the SDE includes 
products of coefficients along all the paths connect-
ing XY  to Y2 , that is XY → Y2, X

Y → Y1 → M2 → Y2 
and XY → Y1 → Y2 , while SIE includes all path coef-
ficients between XM and Y2 , for instance the first 
two terms represent the paths XM → M2 → Y2 and 
XM → M1 → M2 → Y2 . This means that the separa-
ble effects are functions of time, since the more time is 
elapsed between the baseline measurement and that of 
interest, the more paths are involved.

Correlated random effects
The case of correlated random effects can be further 
divided into two sub-cases: the non-null correlation con-
cerns random effects related to the same variable, i.e. � is 

block diagonal, � =

(
�b 0
0 �g

)
, or random effects are 

free to covary with any element, so that � is a full, non-
diagonal matrix.

The former case is not conceptually different from 
that with uncorrelated effects, and assumptions A1-A2 
are still valid. The only difference is that integrating out 
random effects is less straightforward. To show how the 
correlation of random effects impacts the formulas of 
separable effects, let us consider again Normally distrib-
uted mediator and outcome, and models (7)-(8). Suppose 
that gMi is correlated with g

ℓ1(M)i in model (8), and the 
other random coefficients are uncorrelated.

In formulas (9)-(10) there are no paths involving both  
random terms, since the time elapsed is too short. But 
consider the separable indirect effect of X on Y3 : among 
the different paths contributing to this effect, there  
is XM → M1 → Y2 → M3 → Y3 , which is analytically 
expressed by the product βX (γℓ1(M)

+ g
ℓ1(M)i)βℓ1(Y )

(γM + gMi) . 

(10)
SIE|b,g =βX

[
(γM + gMi)+ β

ℓ1(M)
(γM + gMi)+ (γM + gMi)βℓ1(Y )

(γM + gMi)

+ (γ
ℓ1(M)

+ g
ℓ1(M)i

)+ (γM + gMi)γℓ1(Y )

]
(x − x′).

(11)SDE = γX

[
1+β

ℓ1(M)
γM + γ

ℓ1(Y )

]
(x − x′ )

(12)
SIE = βX

[
γM + β

ℓ1(M)
γM + β

ℓ1(Y )
γ 2

M
+ γ

ℓ1(M)
+ γM γ

ℓ1(Y )

]
(x − x′).

Given the correlation between gM and g
ℓ1(M)

 , random effects 
cannot simply be deleted as in the previous case.

To obtain an expression free of random terms, it is nec-
essary to solve the integral

where f is the joint density of the two random factors. 
Since f is a bivariate Normal with zero mean and non-
diagonal covariance matrix, it can be proved that the 
integral above reduces to γ

ℓ1(M)
γM + φgℓ1(M),gM , with 

φgℓ1(M),gM = Cov(g
ℓ1(M)

, gM ) . Thus, the g-formula in (6) 
is not non-parametrically identified, since to derive the 
previous formula we assumed the Normality of random 
effects.

As the number of paths increases, the expressions for 
the separable effects become increasingly complex and 
deriving their closed form is not trivial. For this reason, 
if random effects are believed to be correlated and/or the 
mediator and the outcome models to be non-linear, one 
of the solutions is to implement a code for the g-formula, 
without trying to solve it analytically.

Let us move to the case of non-diagonal � , so there 
is at least an element of b correlated to an element of 
g. In Fig. 3 the dashed bidirected arrow is then present. 
This simple modification makes separable effects uni-
dentifiable, since the mediators and the outcomes are 
now part of the same unique district, which is recant-
ing, since both treatment components affect nodes in 
the district [34]. In addition, assumptions A1 and A2 
fail, since M is no longer conditionally independent 
from XY  and Y is not conditionally independent from 
XM . These considerations shed light into the nature of 
districts characterizing mixed-effect models. Indeed, 
if random effects are uncorrelated, or if they are cor-
related only within their ‘block’, the mediators and the 
outcomes belong to two separate districts {M1, . . . , MT } 
and {Y1, . . . , YT } , which are not recanting, since nodes 
in a district are affected by only one of the compo-
nents of X. The link between separable components and 
recanting districts has already been noted by [26].

Latent growth models
Latent growth curve models (LGMs) are commonly 
used in social and behavioural sciences to model indi-
vidual trajectories of some variables of interest, like 

∫∫
(γ

ℓ1(M)
+ g

ℓ1(M)
)(γM + gM ) f (gℓ1(M)

, gM ) dgℓ1(M)
dgM
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depression or reading abilities in children. They allow 
each observation in the sample to have its own growth 
parameters so as to capture individual differences in 
change over time [35].

Using [19] notation, consider n individuals for which 
a variable of interest Y has been measured at T different 
time occasions. For each i = 1, . . . , n , and t = 1, . . . , T  , 
an LGM with two latent factors can be written as

where η
0i and η

1i are a random intercept and slope, 
respectively, and �t is a coefficient encoding time. The 
random factors can be modelled as the sum of common 
constant means µη0 and µη1 and stochastic fluctuations, 
i.e. η

0i = µη0 + ζη0i, η1i = µη1 + ζη1i (unconditional 
LGM), or they can depend on some additional covari-
ates (conditional LGM). Usually, to ensure the iden-
tifiability of model parameters, some constraints are 
imposed, for example the errors of observed variables 
are assumed to be uncorrelated with those of latent 
variables, i.e. cov(εit , ζη0i) = cov(εit , ζη1i) = 0 , the vari-
ances of observed variables may be assumed constant 
over time, or the time parameter �t can be fixed instead 
of being estimated. The choice of time coding is cru-
cial, since it determines the interpretation of the latent 
factors. One of the most common choices is to fix 
�t = t − 1, t = 1, . . . ,T  , which represents the assump-
tion of linear change in one time lag. In this case, the 
latent intercept can be interpreted as the average of Y at 
the first time occasion, and the latent slope as the rate of 
change.

Cheong et al. [2] and [3] address mediation models in 
an LGM framework by separately modelling the media-
tor and the outcome process and making the latent 
coefficients of the outcome model depend on those of 
the mediator and on the exposure, as described by the 
following equations:

which are the mediator and the outcome process, respec-
tively. Mi and Yi are T-dimensional vectors of repeated 
measures for subject i, ηMi and ηYi are two-dimensional 
vectors containing the latent growth factors η0i and η1i , � 
is a T × 2 matrix of coefficients for the latent factors, usu-
ally the first column is a vector of 1, the second accounts 
for time, and finally εMi and εYi are individual error vec-
tors. So an example of mediator model in its extended 
form may be

(13)Yit = η
0i + �tη1i + εit ,

(14)Mi = �M ηMi + εMi

(15)Yi = �Y ηYi + εYi

The latent factors are linked through the following 
relationships

All latent coefficients depend on the exposure, but, in 
addition, the outcome latent slope depends on the medi-
ator latent growth factors. A graphical representation 
including separable components of X is given in Fig.  4. 
Clearly, models can be made (reasonably) more complex 
by adding non-linear components or other dependencies 
among latent factors.

Notice the differences between models (14) - (15) and 
the mixed effect models in Eqs. (3) - (4): in LGMs there is 
not a direct relationship between the observed variables, 
that is, the repeated measurements of mediator and out-
come, instead they are indirectly connected through their 
latent factors. In mixed-effect models random effects 
explain heterogeneity among subjects and can be viewed 
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(16)η
0Mi = β00 + β01Xi + ζη0Mi

(17)η
1Mi = β10 + β11Xi + ζη1Mi

(18)η
0Yi = γ00 + γ01Xi + ζη0Yi

(19)η
1Yi = γ10 + γ11Xi + γ12η0Mi + γ13η1Mi + ζη1Yi .

Fig. 4 Three-wave latent growth model with separable components 
of X 
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as deviations from a common mean, while latent factors 
in LGMs determine the trajectories of observed vari-
ables over time. From another point of view, mixed effect 
models assume that the phenomenon happens at the 
level of repeated measures. In contrast, in LGMs, where 
a latent structure underlying the object of investigation 
is assumed, observed measurements are just indicators 
of this structure, since relationships of association and 
dependence involve random factors, not measurements.

The different specification impacts also the definition 
of intervention and the corresponding causal interpre-
tation of effects. In mixed-effect models we assume that 
intervening on XM produces a change on the mediator 
and, likewise, an intervention on XY  modifies the out-
come, at each time. In contrast, in LGMs, intervening 
on XM possibly leads to a change in the latent intercept 
η
0M and the latent slope η

0Y  of the mediator model. The 
same holds for XY  and the latent factors in the out-
come model. Then, intervening on XM and XY  affects 
indirectly the measurements of the mediator and the 
outcome, respectively. Once again, the effects of the 
intervention work at a latent level and have an indirect 
impact on the observed variables.

Considering again the running example, intervening 
on breastfeeding affects the mediator intercept, i.e. the 
average level of sugar craving at the beginning of the 
study, and its slope, that is, sugar craving change rate, as 
well as the average weight at time 0 and its change rate. 
In turn, the latent factors of sugar craving may have an 
effect on those related to weight. This mechanism is dif-
ferent from that described for the mixed effect model, 
since treatment assignment does not modify sugar 
craving or weight directly, but it affects their latent 
determinants. So, in a sense, the causal mechanism acts 
at a different, underlying level.

In contrast to what happens for mixed models with 
uncorrelated random effects, the latent growth model 
is never non-parametrically identified. Nonetheless, a 
modified version of assumptions A1 -A2 allows us to 
express the effects in terms of model parameters.

We assume that, for each latent factor η in the model, 
η(x) ⊥⊥ X . In addition, the assumptions embedded in the 
model described by Eqs. (14)-(19) are

A1.1LGM The mediator latent factors are independent 
of XY  given XM : η

0M ⊥⊥ XY |XM , η
1M ⊥⊥ XY |XM  

A1.2LGM The outcome latent factors are independ-
ent of XM given XY  and the mediator latent factors: 
η
0Y

⊥⊥ X
M | (XY , η

0M
, η

1M
), η

1Y
⊥⊥ X

M | (XY , η
0M

, η
1M
, η

0Y
)  

A2LGM For each time t the response Yt is independent 
of the value of XM conditional on all latent factors and 
XY  , Yt ⊥⊥ XM | (η

0M , η1M , η0Y , η1Y , X
Y )

Applying again the law of iterated expectation one can 
derive expressions for the mediational effects as follows:

where by dη we mean that the integral is with respect to 
all the latent variables, and f (·) is the density of the latent 
factors; they are generally assumed to have a multivari-
ate Normal distribution. Making use of property P1 and 
assumptions A0, A1.1LGM , A1.2LGM and A2LGM yields

Looking at Eq. (21), it can be noted that it depends on 
both observed and unobserved variables and involves 
quantities non-identifiable in the absence of other paramet-
ric assumptions. Then, assumptions A1.1LGM , A1.2LGM 
and A2LGM are useful for expressing the interventional 
expectation E[Yt(XY = x, XM = x′)] as in (21). Paramet-
ric identification is achieved by exploiting the parametric 
assumptions encoded by LGMs about the distribution of 
the latents.

For a model like that described in Eqs. (14)-(19), the sep-
arable direct effect on the difference scale is

and the separable indirect effect

It is easy to notice that these expressions are the same 
ones that would be obtained by means of path analysis, 
since the effects are defined as sums of path-specific 
effects, which are in turn obtained as product of coef-
ficients lying on the path. For example, the direct effect 
is obtained by summing the effect through the path 
XY → η

0Y → Yt and that through XY → η
1Y → Yt ∀ t . 

Moreover, Eqs. (22)-(23) are consistent with the expres-
sions for natural effects obtained by [23]. However, the 
separable effects approach is much more intuitive, since 
it does not require any intervention on the model latent 
variables and the assumptions are all ‘single-world’, verifi-
able from the graph directly.

(20)

E[Yt (X
Y = x, XM = x′)] =

∫
E
[
Yt (X

Y = x, XM = x′) | η
0M (XY = x, XM = x′), η

1M (XY = x, XM = x′),

η
0Y (X

Y = x, XM = x′), η
1Y (X

Y = x, XM = x′)
]
×

f
(
η
0M (XY = x, XM = x′)

)
f
(
η
1M (XY = x, XM = x′)

)
×

f
(
η
0Y (X

Y = x, XM = x′)
)
×

f
(
η
1Y (X

Y = x, XM = x′) | η
0M (XY = x, XM = x′),

η
1M (XY = x, XM = x′), η

0Y (X
Y = x, XM = x′)

)
dη

(21)

E[Yt (X
Y = x, XM = x′)] =

∫
E[Yt |X = x, η

0M , η
1M , η

0Y , η1Y ]f (η0M |X = x′)

f (η
1M |X = x′) f (η

0Y |X = x) f (η
1Y |X = x, η

0M , η
1M , η

0Y )dη

(22)SDE = (γ01 + γ11�t)(x − x′)

(23)SIE = �t(β01γ12 + β11γ13)(x − x′).
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As remarked for mixed effect models, also, in this 
case, the mediational effects are time-varying. Notice, 
however, that Eqs. (9)-(10) are very different from (22)-
(23). The former show time dependence in the fact that, 
at each t, the number of paths connecting variables, and 
thus the number of coefficients, increases. The latter 
encode time dependence only via �t , t = 1, . . . , T .

Simulation study
In this section, we conduct a simulation study to assess 
how the choice of an incorrect latent structure, either in 
the mediator or the outcome model, affect the estima-
tion of separable effects via the g-formula. This may be 
due to model misspecification, or to the fact that iden-
tifying assumptions are not satisfied. We consider both 
cases and a simple scenario consisting of a binary expo-
sure and Normally-distributed mediator and outcome 
for T = 5 measurement occasions. Data were simulated 
from two different models: a linear mixed model as speci-
fied in Eqs. (7)-(8) with uncorrelated random effects, 
drawn from a multivariate Normal distribution with zero 
mean vector and identity covariance matrix, and a latent 
growth model as in Eqs. (16)-(19), where the ζ terms fol-
low a standard Normal distribution. The model coeffi-
cients are reported in Table 1.

Model misspecification
In principle, the g-formula does not require any para-
metric assumption. However, if the number of variables 
is large, it can be difficult to apply it without recurring 
to (semi-)parametric models. The parametric g-formula 
relies on the correct specification of such models. In gen-
eral, researchers are concerned about ignoring relevant 
variables, i.e. unobserved confounding. In longitudinal 

settings, there is also the issue of modelling the dynamic 
aspect of the phenomenon, which can be done in a wide 
variety of ways, involving latent structures or not. When 
a latent structure is taken into account, it is, however, dif-
ficult to select the most appropriate one.

To analyse the extent to which estimates are affected by 
the use of wrong models, we considered two degrees of 
misspecification: moderate misspecification, where the 
model is very similar to the true one, except for a term, 
which is missing, and severe misspecification, where the 
models are completely wrong. Specifically, for the mixed-
effect model we considered a moderate misspecification 
in the mediator model, which is assumed to be as in Eq. 
(7) but with β

ℓ1(Y )
= 0 ; for the LGM, we did not include 

η
0M in the model for η

1Y  . As regards severe misspecifica-
tion, the mixed-effect model was addressed as an LGM 
and, vice versa, the LGM as a mixed-effect model. This 
mirrors the case in which a researcher is completely 
agnostic about the true nature of the phenomenon under 
study.

For each generating mechanism, we simulated K = 500 
datasets with n = 1, 000 observations, on which we fit-
ted each misspecified model and estimated the separable 
direct and indirect effects on the difference scale through 
the mediational g-formula. True values of the parameters 
were obtained straightforwardly for LGMs by applying 
formulas (22)-(23), while they were estimated asymptoti-
cally for mixed-effect models, since the analytical form of 
effects is more complex. We evaluated the relative bias 
defined as

where θ̂kt is the estimate of the SDE or the SIE at time 
t obtained in the k-th simulation; the root mean square 
error (RMSE)

and the coverage rate of 95% confidence intervals, 
obtained through B = 500 bootstrap samples.

The g-formula algorithm can be divided into three 
steps: 

1. For each t = 1, . . . ,T  , fit parametric models for 
the mediator and the outcome conditional on the 
treatment and their histories, i.e. estimate densities 
fM(Mt |X ,Mt−1,Y t−1) and fY (Yt |X ,Mt ,Y t−1).

2. Select S ≥ 10, 000.

Relative bias =

∑K
k=1(θ̂kt − θt)

Kθt
,

RMSE =

√∑K
k=1(θ̂kt − θt)2

K
,

Table 1 Coefficients of the mixed-effect and latent growth 
models used to generate data

Mixed-effect model LGM

Coefficient Value Coefficient Value

β
0

1.3 β00 0.21

β
X

0.5 β01 0.16

βℓ1(M) 0.27 β10 0.7

βℓ1(Y) 0.11 β11 0.47

γ
0

0.45 γ00 0.3

γ
X

0.7 γ01 0.14

γ
Mt

0.2 γ10 0.59

γℓ1(M) 0.08 γ11 0.27

γℓ1(Y) 0.34 γ12 0.44

γ13 0.19
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• Specify an intervention or a set of interventions to 
compare, creating two variables XM and XY  and 
setting them to the values of interest.

• For each s = 1, . . . , S and t = 1, . . . ,T  , draw a value 
m̃st for the mediator from fM(Mt |x

M , m̃st−1, ỹst−1) 
estimated in step 1, conditional on xM and its 
(simulated) history. Do the same for Y, condi-
tional on xY  and its history, i.e. draw ỹst from 
fY (Yt |x

Y , m̃st , ỹst−1) . For continuous distributions 
whose variance is not a function of the mean, the 
variance is estimated through the model residual 
mean squared error [36].

3. Compute the intervention mean estimate at each 
time t = 1, . . . ,T  , by averaging the outcome expecta-
tion over simulated subjects: 

Standard errors and confidence intervals for the aver-
age intervention effect can be estimated through non-
parametric bootstrap, by repeating steps 2 and 3 B times, 
where B is the number of bootstrap samples.

The separable direct and indirect effects can easily be 
obtained by comparing expressions of the form (24), 
appropriately selecting xM and xY  . For example, if one 
wants to estimate the SDE and X is binary, one should 
compare XM = 0, XY = 1 with XM = 0, XY = 0.

Results
Simulations were conducted in the statistical software 
R, version 4.2.0. Results are shown in Tables 2 and 3. As 
expected, for data generated from a mixed-effect model, 

(24)

E[Yt(X
Y = xY ,XM = xM)] =

1

S

S∑

s=1

E[ỹst ]

Table 2 Results of simulations for data generated from a mixed model as in Fig. 3 with uncorrelated random effects

For every model, each row refers to a different time t = 1, . . . , 5

Misspecification True Estimates Rel. bias RMSE Coverage rate

SDE SIE SDE SIE SDE SIE SDE SIE SDE SIE

Moderate 0.700 0.100 0.699 0.114 -0.001 0.140 0.100 0.029 0.866 0.832

0.956 0.257 0.902 0.245 -0.056 -0.047 0.140 0.052 0.862 0.854

1.064 0.384 0.961 0.316 -0.097 -0.178 0.173 0.096 0.784 0.668

1.123 0.527 0.978 0.348 -0.129 -0.340 0.202 0.194 0.710 0.222

1.162 0.660 0.983 0.361 -0.154 -0.453 0.229 0.309 0.622 0.320

Severe - - 0.880 0.000 0.257 -0.999 0.251 0.100 0.814 0.000

- - 0.796 0.355 -0.167 0.383 0.261 0.137 0.886 0.868

- - 0.712 0.711 -0.331 0.849 0.448 0.378 0.738 0.632

- - 0.628 1.066 -0.440 1.023 0.613 0.610 0.690 0.542

- - 0.544 1.422 -0.532 1.154 0.769 0.851 0.696 0.486

Table 3 Results of simulations for data generated from a latent growth model as in Eqs. (14)-(15)

For every model, each row refers to a different time t = 1, . . . , 5

Misspecification True Estimates Rel. bias RMSE Coverage rate

SDE SIE SDE SIE SDE SIE SDE SIE SDE SIE

Moderate 0.140 0.000 0.138 0.000 -0.017 0.000 0.078 0.000 0.966 1.000

0.410 0.160 0.479 0.089 0.169 -0.445 0.124 0.074 0.878 0.308

0.680 0.319 0.821 0.177 0.207 -0.445 0.212 0.149 0.852 0.230

0.950 0.479 1.162 0.266 0.223 -0.445 0.309 0.222 0.838 0.206

1.220 0.639 1.504 0.354 0.233 -0.445 0.407 0.297 0.832 0.210

Severe - - 0.252 0.038 0.802 0.038 0.130 0.039 0.460 1.000

- - 0.456 0.112 0.031 -0.030 0.127 0.029 0.874 0.892

- - 0.625 0.329 -0.081 0.031 0.172 0.056 0.868 0.894

- - 0.770 0.546 -0.190 0.131 0.271 0.110 0.734 0.802

- - 0.897 0.794 -0.265 0.242 0.402 0.199 0.586 0.646
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moderate misspecification produced an underestimation 
of both SDE and SIE. This is consistent with the fact that 
the term expressing the lagged influence of the outcome 
was removed from the mediator model. When the mis-
specification is severe, the SDE is underestimated, while 
the SIE is overestimated, and the estimates are progres-
sively farther from the true values as the amount of 
time elapsed increases. Both relative bias and RMSE are 
smaller (in absolute values) for effects estimated through 
the moderately misspecified model than for effects 
estimated using the severely misspecified model, and 
those of direct effects are generally lower than those of 
the indirect effects. In addition, they show an increas-
ing trend over time. Coverage rates are lower than the 
nominal level and they decrease as time elapses, so they 
are higher for the effect of X on Y at the first time occa-
sions and tend to become smaller at subsequent times. 
The SDE coverage rates are very similar in both cases of 
misspecification, while for SIE they appear higher in the 
severe case, except for time 1.

Results for data generated from an LGM are less clear. 
The indirect effects estimated through the moderately 
misspecified model are smaller than the true ones, as 
expected, since the term β01γ12 in Eq. (23) is missing. Set-
ting γ12 = 0 influences also the estimate of SDE, which, 
on the contrary, is overestimated. In contrast, in the situ-
ation with severe misspecification, the SDE is underes-
timated, while the SIE is overestimated. Compared to 
mixed-effect model, it seems that misspecification affects 
the estimates in a more severe way, even when misspeci-
fication is only modest.

Relative bias and RMSE do not show clear patterns, 
and, in fact, in most cases they are smaller in the severe 
misspecification condition. Coverage rates for SDE are 
higher in the case of moderate misspecification, although 

below the nominal level. For SIE, coverage rates are bet-
ter in the severe case and this may be due to the fact that 
estimates are heterogeneous enough to include the true 
effects, while in the moderate misspecification case the 
estimates are too far from the true values and the confi-
dence intervals are not wide enough to include them.

Violation of assumptions
We run other simulations to assess how the violation of 
identifiability assumptions impacts the estimates of sepa-
rable effects. We generated data from a mixed-effect and 
a latent growth model as described in the previous sec-
tion, including also unobserved confounders violating 
some of the assumptions A1-A2 and A1.1LGM , A1.2LGM 
and A2LGM , respectively. Specifically, in the mixed-effect 
model, we included an unobserved confounder between 
M1 and Y1 that violates assumption A1, since Y1 is no 
longer independent of XM , while in the LGM we included 
an unobserved confounder between η

0M and Y, which 
makes the outcome depend on XM , violating assumption 
A2LGM . For each model, we generated data with a sample 
size of either 100 or 1000. Results are shown in Tables 4 
and 5.

For the mixed-effect model, the mediational effects are 
underestimated especially on later time occasions, and 
the reduction is more severe for the indirect effect. The 
RMSE and the coverage rates are obviously higher when 
n = 100 , although the coverage is always below the nomi-
nal level 0.95. Moreover, the coverage of SIE confidence 
intervals is lower than that of the SDE for the same time 
occasion.

For the LGM, the point estimates of mediational effects 
are not affected by the confounder, and also coverage 
rates are quite good. However, this is due to the fact that 

Table 4 Results of simulations for data generated from a mixed model as in Fig. 3 with uncorrelated random effects and an 
unobserved confounder between M1 and Y1

For every model, each row refers to a different time t = 1, . . . , 5

n True Estimates Rel. bias RMSE Coverage rate

SDE SIE SDE SIE SDE SIE SDE SIE SDE SIE

100 0.700 0.100 0.704 0.119 0.006 0.185 0.317 0.086 0.898 0.886

0.956 0.257 0.907 0.250 -0.051 -0.029 0.410 0.173 0.888 0.862

1.064 0.384 0.966 0.322 -0.092 -0.163 0.446 0.239 0.878 0.832

1.123 0.527 0.984 0.355 -0.124 -0.326 0.464 0.311 0.862 0.732

1.162 0.660 0.990 0.370 -0.149 -0.440 0.478 0.398 0.844 0.604

1000 - - 0.697 0.122 -0.004 0.221 0.106 0.035 0.856 0.754

- - 0.899 0.255 -0.059 -0.006 0.148 0.053 0.816 0.860

- - 0.957 0.327 -0.101 -0.149 0.181 0.090 0.750 0.716

- - 0.974 0.359 -0.132 -0.318 0.211 0.185 0.674 0.282

- - 0.979 0.373 -0.158 -0.435 0.237 0.299 0.618 0.056
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the estimates show a very high variability, especially in 
the scenario where n = 100 , where the confidence inter-
vals always contain 0. When n = 1000 , it seems that the 
effect of the confounder is mitigated.

These results, although for relatively simple models, 
suggest that even a moderate misspecification can have a 
considerable impact on the estimates of separable effects, 
as well as on their confidence intervals. Thus, researchers 
should carefully choose the most appropriate and plausi-
ble latent structure and model specification, especially in 
a longitudinal setting, where the dynamics can be difficult 
to capture and many interactions among variables may be 
present. Although there are no ‘golden rules’ to choose 
an appropriate model, there are some data characteristics 
that may help. For example, focusing on the two models 
discussed in this paper, when data are balanced or time-
structured, i.e. when each subject is measured at the 
same time occasions and the main interest lies in indi-
vidual trajectories, LGMs are more appropriate. When 
instead one wants to assess the effect of several variables 
on the outcome, or the data are unstructured, mixed-
effect models are a better choice. See Table 1 in [37] for 
a comparison, and [38, 39] for strategies to select the 
most appropriate mixed-effect model or LGM, respec-
tively. In general, longitudinal data can be very complex, 
and a variety of statistical models have been proposed. 
Choosing among the numerous alternatives may be diffi-
cult, and it is not the main focus of this paper. Interested 
readers may want to consult [40, 41] for roadmaps to the 
choice and comparisons of different models.

Data analysis
In this section, we consider the first four waves of data 
from the National Longitudinal Study of Adolescent to 
Adult Health (Add Health, [42]). The study’s first wave 
involved more than 90,000 US students in grades 7 

through 12 during the 1994-1995 school year. Some of 
them were re-interviewed three times until 2008 and, 
at each wave, they were asked about different aspects of 
their lives and, at wave I, one of the parents, generally 
the mother, also provided information on the adoles-
cent’s early childhood, family income, health insurance, 
and neighborhood. The subsequent questionnaires were 
administered in 1996, 2001 and 2008. The main aim of 
the study was to examine developmental and health tra-
jectories across the life course of adolescence into young 
adulthood.

We used the public version of the data set, whose 
first wave includes more than 6,000 subjects and 1,000 
variables. We selected only the subjects whose data 
were available at all waves so that the sample size was 
reduced to 1,659 individuals. Our interest lies in inves-
tigating the effect of breastfeeding on subjects’ body 
mass index (BMI) over time, measured in kg/m2 , with 
regular smoking as potential mediator, i.e. smoking at 
least one cigarette for thirty days. Both variables are 
time-varying, since they are measured at each wave. 
In terms of separable effects, the assumption is that 
breastfeeding has a metabolic component XY  (the 
intake of mother’s milk), acting on BMI directly, and 
another component XM , making smoking uptake at 
an adult age less likely. This could be, for example, a 
neurological component affecting nicotine receptors. 
Previous studies highlighted the important role of 
breastfeeding in regulating adult weight and body fat 
[43, 44], while the relationship between risky or addic-
tive behaviour in adulthood, like smoking and sub-
stance abuse, is yet to be investigated.

In more detail, the exposure (breastfeeding) is a cat-
egorical variable with seven levels, indicating how long 
each subject was breastfed. We used a dichotomised ver-
sion of this variable, obtained by assigning value 1 to all 

Table 5 Results of simulations for data generated from an LGM as in Fig. 4 with an unobserved confounder between η0M and the 
outcome at all times. For every model, each row refers to a different time t = 1, . . . , 5

n True Estimates Rel. bias RMSE Coverage rate

SDE SIE SDE SIE SDE SIE SDE SIE SDE SIE

100 0.140 0.000 0.124 0.000 -0.017 0.000 0.256 0.000 0.946 0.000

0.410 0.160 0.399 0.163 -0.026 -0.019 0.340 0.178 0.958 0.966

0.680 0.319 0.675 0.326 -0.007 -0.019 0.548 0.356 0.948 0.966

0.950 0.479 0.951 0.488 0.001 -0.019 0.788 0.534 0.948 0.966

1.220 0.639 1.227 0.651 0.006 -0.019 1.038 0.712 0.952 0.966

1000 - - 0.140 0.000 0.002 0.000 0.079 0.000 0.938 0.000

- - 0.414 0.159 0.010 -0.003 0.098 0.041 0.944 0.964

- - 0.688 0.318 0.011 -0.003 0.152 0.082 0.948 0.964

- - 0.961 0.477 0.012 -0.003 0.217 0.122 0.960 0.964

- - 1.235 0.637 0.012 -0.003 0.284 0.163 0.958 0.964
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the subjects breastfed for at least six months, 0 to the 
others. This threshold was selected on the basis of the 
World Health Organisation’s recommendations about 
breastfeeding. The mediator is a binary variable indicat-
ing if the subject smoked at least one cigarette a day in 
the thirty days before the interview. The outcome is con-
tinuous and positive. We modelled smoking as a bino-
mial variable using a logit link and the outcome with a 
Gamma distribution with log link; the linear predic-
tors are as in Eqs. (7)-(8), respectively. We also adjusted 
for several possible confounders, i.e. biological sex, age, 
weight at birth, average number of alcoholic drinks drunk 
in the last year, and whether the subject’s parents suffered 
from obesity, diabetes or alcoholism. The original data 
sets included hundreds of variables; therefore, the con-
founders to be included in the analysis were chosen using 
a two-step procedure. First, we selected a subset of more 
than thirty variables believed relevant based on subject 
matter knowledge (excluding, for example, variables like 
the number of the subject’s sexual partners or the times a 
subject was arrested). Under the assumption that this ini-
tial set of covariates is sufficient to control for confound-
ing, we can use variable selection methods (here we used 
AIC) to reduce the set to those covariates that are actu-
ally relevant [45]. Results are shown in Table 6.

It can be noticed that both separable effects are nega-
tive and significant at each wave and their magnitude 
(in absolute value) increases. This suggests that being 
breastfed for more than six months has a beneficial 
effect on BMI both directly and indirectly, by reducing 
the probability of smoking regularly which reduces BMI. 
The indirect effect is smaller than the direct one, with a 
proportion mediated (i.e. the ratio between the indirect 
effect and the total effect SIE

SDE+SIE ) varying between 1 

and 3% over the four waves. It is worth remarking that 
the confounders we included in the analysis are all time-
fixed, except for the average number of alcoholic drinks 
the subject drank in the year previous to the interview. 
We assumed that this is not a post-treatment confounder, 
i.e. it is not affected by breastfeeding. Including it as a 
post-treatment confounder would have been possible 
(see [28], for example), but would have make the analy-
sis more complex. Despite this limitation, our results 
provide an interesting starting point for future studies 
investigating the indirect effects of breastfeeding through 
its neurological component with a focus to risky/addic-
tive behaviour in adulthood, like smoking and substance 
abuse.

Conclusions
In this article, we have applied the separable effects 
approach for mediation analysis proposed by [24] to 
mixed-effect and latent growth models. For each of them, 
we proposed a set of assumptions which suffice for the 
identification of separable effects and derived formulas to 
estimate them using the g-formula.

When the relationships are linear, the separable effects 
can be expressed in closed forms that have a direct cor-
respondence with the graphs representing the models. As 
we saw, the separable direct effect is the sum of effects 
along all paths starting from XY  , while the separable 
indirect effect is obtained as the sum of all combinations 
of coefficients along paths having XM as starting node. 
This provides a connection with path analysis. Another 
advantage of the separable effects approach is that the 
estimands do not rely on the notion of intervening on 
the mediator: this feature is particularly useful in LGMs, 
where it would be difficult to conceive an intervention on 
the latent factors characterizing the mediator trajectory, 
as proposed in [23].

In our discussion, we focused primarily on linear 
models, although the g-formula in (6) can accommo-
date more complex models and variables with different 
distributions, as we showed in the application. How-
ever, the complexity of the models, in terms of non-
linearity of link functions, interaction terms and order 
of lagged effects, impacts the estimation procedure in 
two ways: First, finding closed forms for mediational 
effects becomes unpractical, so they have to be obtained 
through simulation, as described in the Simulation study 
section. Second, the more complex the model, the higher 
the computational intensity of the algorithm. For exam-
ple, our data analysis took around 30 minutes, while the 
simulation study took several hours, using an Intel core 
i7 PC with 16 GB of RAM. Especially for mixed-effect 
models, the computation time can become very long 

Table 6 Results of the analysis on the Add Health data, 
investigating the effects of breastfeeding on BMI through 
smoking. For each wave, estimates of SDE and SIE and the 
corresponding standard errors and confidence intervals are 
reported, based on 500 bootstrap replications

The last column reports the proportion mediated, obtained as the ratio of the 
SIE and the total effect, SDE+SIE

Wave SDE SIE Prop. Mediated

1 -0.765 (0.126) -0.011 (0.005) 0.014

(-0.999, -0.516) (-0.022, -0.002)

2 -0.930 (0.153) -0.030 (0.012) 0.031

(-1.218, -0.626) (-0.054, -0.008)

3 -0.943 (0.155) -0.032 (0.013) 0.033

(-1.233, -0.639) (-0.058, -0.007)

4 -0.979 (0.162) -0.032 (0.014) 0.032

(-1.277, -0.658) (-0.061, -0.006)
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depending to the number of random effects included in 
the analysis. This is one of the drawbacks of the estima-
tion via g-formula, mainly due to the need to use boot-
strap for estimating the effects’ confidence intervals, a 
highly time-consuming task.

This issue can be exacerbated when the design is 
unbalanced. We have not addressed this complication, 
and we think that it could be an interesting extension of 
the present work. Unbalanced designs are the rule, not 
the exception in real-world analyses. We have consid-
ered balanced designs to make the presentation of the 
approach clearer and easier to follow, but we acknowl-
edge that this is a limitation. A special case of unbalanced 
design is given by censoring in survival analyses, which 
has been addressed in a separable effect framework by 
[25, 28]. How design imbalances should be addressed in 
other model settings is yet to be investigated, although it 
should not add conceptual difficulties.

In our discussion, we focused on settings where 
the treatment is measured at baseline, but time-var-
ying treatments are very common in epidemiology. 
To the best of our knowledge, this issue has not yet 
been addressed from a separable effects perspective, 
although [31] suggests a possible way to deal with 
it. The basic idea is to expand the model by includ-
ing another component of the treatment which affects 
the treatment’s subsequent measurements. While this 
seems quite straightforward in the case of mixed-effect 
models, the presence of a time-varying treatment in 
LGMs is more difficult to address. Indeed, when also 
the treatment varies over time, its trajectory is mod-
elled as well, by means of latent variables shaping the 
form of individual trajectories. In such a case, the 
separability of the treatment should involve its latent 
factors, thus for each of them we could have a latent 
separable component related to the mediator and 
another related to the outcome. Giving a meaningful 
interpretation to these latent components seems quite 
complex, as well as devising possible interventions on 
them. For these reasons, the separable effects approach 
for LGMs in settings with time-varying treatments 
seems to be inadvisable.

Finally, we want to remark that conceiving different 
and separate components of X, i.e. components hav-
ing an effect only on the mediator or the outcome, 
respectively, and which can, in principle, be intervened 
upon separately, is not always feasible. When research-
ers believe that the outcome component exerts its 
effect also on the mediators or vice versa, the separa-
ble effects and perhaps causal mediation analysis alto-
gether should be avoided as the practical relevance will 
be questionable.

Abbreviations
BMI  Body mass index
LGMs  Latent growth models
RMSE  Root mean squared error
SDE  Separable direct effect
SIE  Separable indirect effect

Acknowledgements
Not applicable.

Authors’ contributions
All authors contributed to the conceptualization and development of this 
work. CDM wrote the paper, gave analytical proofs and carried out the simula-
tion study and the data analysis. VD supervised the work. All authors read and 
approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work 
received no funding.

Data availability
Data are freely available at https:// doi. org/ 10. 3886/ ICPSR 21600. v25.
Harris, Kathleen Mullan, and Udry, J. Richard. National Longitudinal Study of Ado-
lescent to Adult Health (Add Health), 1994-2018 [Public Use]. Carolina Popula-
tion Center, University of North Carolina-Chapel Hill [distributor], Inter-university 
Consortium for Political and Social Research [distributor], 2022-08-09.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 9 January 2024   Accepted: 30 September 2024

References
 1. Selig JP, Little TD. Autoregressive and cross-lagged panel analysis for 

longitudinal data. In: Laursen B, Little TD, Card NA, editors. Handbook of 
developmental research methods. New York: The Guilford Press; 2012. pp. 
265–78.

 2. Cheong J, MacKinnon DP, Khoo ST. Investigation of Mediational Processes 
Using Parallel Process Latent Growth Curve Modeling. Struct Equ Model. 
2003;10(2):238–62.

 3. von Soest T, Hagtvet K. Mediation Analysis in a Latent Growth Curve 
Modeling Framework. Struct Equ Model. 2011;18(2):289–314.

 4. McArdle JJ. A latent difference score approach to longitudinal dynamic 
structural analyses. In: Cudeck R, du Toit S, Sorbom D, editors. Structural 
equation modeling: Present and future. Lincolnwood: Scientific Software 
International; 2001. pp. 342–80.

 5. Bind MAC, VanderWeele TJ, Coull BA, Schwartz JD. Causal media-
tion analysis for longitudinal data with exogenous exposure. Biostat. 
2016;17(1):122–34.

 6. Bauer DJ, Preacher KJ, Gil KM. Conceptualizing and testing random 
indirect effects and moderated mediation in multilevel models: new 
procedures and recommendations. Psychol Methods. 2006;11(2):142–63.

 7. Fosen J, Ferkingstad E, Borgan Ø, Aalen OO. Dynamic path analysis - a 
new approach to analyzing time-dependent covariates. Lifetime Data 
Anal. 2006;12(2):143–67.

https://doi.org/10.3886/ICPSR21600.v25


Page 16 of 16Di Maria and Didelez  BMC Medical Research Methodology          (2024) 24:248 

 8. Strohmaier S, Røysland K, Hoff R, Borgan Ø, Pedersen TR, Aalen OO. 
Dynamic path analysis - a useful tool to investigate mediation processes 
in clinical survival trials. Stat Med. 2015;34(29):3866–87.

 9. Zheng W, van der Laan M. Longitudinal Mediation Analysis with Time-
varying Mediators and Exposures, with Application to Survival Outcomes. 
J Causal Infer. 2017;5(2):20160006.

 10. Vansteelandt S, Linder M, Vandenberghe S, Steen J, Madsen J. Media-
tion analysis of time-to-event endpoints accounting for repeatedly 
measured mediators subject to time-varying confounding. Stat Med. 
2019;38(24):4828–40.

 11. Lin SH, Young JG, Logan R, VanderWeele TJ. Mediation analysis for a sur-
vival outcome with time-varying exposures, mediators, and confounders. 
Stat Med. 2017;36(26):4153–66.

 12. Lin SH, Young J, Logan R, Tchetgen EJT, VanderWeele TJ. Parametric 
mediational g-formula approach to mediation analysis with time-varying 
exposures, mediators, and confounders. Epidemiol. 2017;28(2):266–74.

 13. VanderWeele TJ, Tchetgen EJT. Mediation analysis with time varying expo-
sures and mediators. J R Stat Soc Series B. 2017;79(3):917–38.

 14. Deboeck PR, Preacher KJ. No Need to be Discrete: A Method for Continu-
ous Time Mediation Analysis. Struct Equ Model. 2016;23(1):61–75.

 15. Ryan O. Interventions in dynamic systems: A causal approach to 
continuous-time mediation analysis. 2018. https:// doi. org/ 10. 31234/ osf. 
io/ n2fwt.

 16. Albert JM, Li Y, Sun J, Woyczynski WA, Nelson S. Continuous-time causal 
mediation analysis. Stat Med. 2019;38(22):4334–47.

 17. Henderson CR. Sire evaluation and genetic trends. J Anim Sci. 
1973;1973(Symposium):10–41.

 18. Laird NM, Ware JH. Random effects models for longitudinal data. Biom. 
1982;38:963–74.

 19. Bollen KA, Curran PJ. Latent curve models. A structural equation perspec-
tive. Hoboken: Wiley; 2006.

 20. Robins JM, Greenland S. Identifiability and Exchangeability for Direct and 
Indirect Effects. Epidemiol. 1992;3(2):143–55.

 21. Pearl J. Direct and indirect effects. In: Breese J, Koller D, editors. Proceed-
ings of the seventeenth conference on uncertainty in artificial intel-
ligence. San Francisco: Morgan Kaufmann Publishers; 2001. pp. 411–20.

 22. VanderWeele TJ. Explanation in causal inference: methods for mediation 
and interaction. New York: Oxford University Press; 2015.

 23. Sullivan AJ, Gunzler DD, Morris N, VanderWeele TJ. Longitudinal Media-
tion Analysis with Latent Growth Curves. 2021. arXiv:2103.05765[stat.ME]. 
https:// doi. org/ 10. 48550/ arXiv. 2103. 05765.

 24. Robins JM, Richardson TS. Alternative Graphical Causal Models and the 
Identification of Direct Effects. In: Shrout P, editor. Causality and psycho-
pathology: Finding the determinants of disorders and their cures. Oxford: 
Oxford University Press; 2011. pp. 103–58.

 25. Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA. Separable 
effects for causal inference in the presence of competing events. J Am 
Stat Assoc. 2022;117(537):175–83.

 26. Didelez V. Defining causal meditation with a longitudinal mediator and a 
survival outcome. Lifetime Data Anal. 2019;25(4):593–610.

 27. Aalen OO, Stensrud MJ, Didelez V, Daniel R, Røysland K, Strohmaier S. 
Time-dependent mediators in survival analysis: Modeling direct and indi-
rect effects with the additive hazards model. Biom J. 2020;62(3):532–49.

 28. Stensrud MJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM, Didelez V, 
Young JG. A generalized theory of separable effects in competing event 
settings. Lifetime Data Anal. 2021;27(4):588–631.

 29. Robins JM, Richardson TS, Shpitser I. An interventionist approach to 
mediation analysis. In: Probabilistic and Causal Inference: The Works 
of Judea Pearl. New York: Association for Computing Machinery; 2022. 
pp. 713–64.

 30. Andrews RM, Didelez V. Insights into the Cross-world Independence 
Assumption of Causal Mediation Analysis. Epidemiol. 2021;32(2):209–19.

 31. Robins JM, Richardson TS, Shpitser I. In: An Interventionist Approach to 
Mediation Analysis. 1st ed. New York: Association for Computing Machin-
ery; 2022. pp. 713–64.

 32. VanderWeele TJ, Vansteelandt S, Robins JM. Effect decomposition in 
the presence of an exposure-induced mediator-outcome confounder. 
Epidemiol. 2014;25(2):300–6.

 33. Causality Pearl J. Models, Reasoning, and Inference. 2nd ed. New York: 
Cambridge University Press; 2009.

 34. Shpitser I. Counterfactual Graphical Models for Longitudinal Mediation 
Analysis With Unobserved Confounding. Cogn Sci. 2013;37:1011–35.

 35. Duncan TE, Duncan SC. An Introduction to Latent Growth Curve Mod-
eling. Behav Ther. 2004;35(2):333–63.

 36. McGrath S, Lin V, Zhang Z, Petito LC, Logan RW, Hernán MA, et al. gfoR-
mula: An R Package for Estimating the Effects of Sustained Treatment 
Strategies via the Parametric g-formula. Patterns (NY). 2020;1(3):100008.

 37. McNeish D, Matta T. Differentiating between mixed-effects and 
latent-curve approaches to growth modeling. Behav Res Methods. 
2018;50:1398–414.

 38. Knafl GJ, Beeber L, Schwartz TA. A strategy for selecting among 
alternative models for continuous longitudinal data. Res Nurs Health. 
2012;35(6):647–58.

 39. Liu S, Rovine MJ, Molenaar PCM. Selecting a linear mixed model for longi-
tudinal data: Repeated measures analysis of variance, covariance pattern 
model, and growth curve approaches. Psychol Methods. 2012;17(1):15–
30. https:// doi. org/ 10. 1037/ a0026 971.

 40. Collins LM. Analysis of Longitudinal Data: The Integration of Theoreti-
cal Model, Temporal Design, and Statistical Model. Annu Rev Psychol. 
2006;57:505–28. https:// doi. org/ 10. 1146/ annur ev. psych. 57. 102904. 
190146.

 41. McCormick EM, Byrne ML, Flournoy JC, Mills KL, Pfeifer JH. The Hitch-
hiker’s guide to longitudinal models: A primer on model selection for 
repeated-measures methods. Dev Cogn Neurosci. 2023;63:101281.

 42. Harris KM, Udry JR. National Longitudinal Study of Adolescent to Adult 
Health (Add Health), 1994-2018 [Public Use]. Carolina Population Center, 
University of North Carolina-Chapel Hill [distributor], Inter-university 
Consortium for Political and Social Research [distributor]; 2022. https:// 
doi. org/ 10. 3886/ ICPSR 21600. v25.

 43. Parikh NI, Hwang SJ, Ingelsson E, Benjamin EJ, Fox CS, Vasan RS, et al. 
Breastfeeding in infancy and adult cardiovascular disease risk factors. Am 
J Med. 2009;122(7):656–63.

 44. Gibson LA, Hernández Alava M, Kelly MP, Campbell MJ. The effects of 
breastfeeding on childhood BMI: a propensity score matching approach. 
J Pub Health. 2017;39(4):e152–60.

 45. Witte J, Didelez V. Covariate selection strategies for causal inference: Clas-
sification and comparison. Biom J. 2019;61(5):1270–89.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.31234/osf.io/n2fwt
https://doi.org/10.31234/osf.io/n2fwt
https://doi.org/10.48550/arXiv.2103.05765
https://doi.org/10.1037/a0026971
https://doi.org/10.1146/annurev.psych.57.102904.190146
https://doi.org/10.1146/annurev.psych.57.102904.190146
https://doi.org/10.3886/ICPSR21600.v25
https://doi.org/10.3886/ICPSR21600.v25

	Longitudinal mediation analysis with multilevel and latent growth models: a separable effects causal approach
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Separable mediational effects
	Mixed effect models
	Uncorrelated random effects
	Correlated random effects

	Latent growth models
	Simulation study
	Model misspecification
	Results
	Violation of assumptions

	Data analysis
	Conclusions
	Acknowledgements
	References


