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Abstract: In statistical landslide susceptibility evaluation, the quality of the model and its prediction
image heavily depends on the quality of the landslide inventories used for calibration. However,
regional-scale inventories made available by public territorial administrations are typically affected
by an unknown grade of incompleteness and mapping inaccuracy. In this research, a procedure
is proposed for verifying and solving such limits by applying a two-step susceptibility modeling
procedure. In the Torto River basin (central-northern Sicily, Italy), using an available regional
landslide inventory (267 slide and 78 flow cases), two SUFRA_1 models were first prepared and
used to assign a landslide susceptibility level to each slope unit (SLU) in which the study area was
partitioned. For each of the four susceptibility classes that were obtained, 30% of the mapping units
were randomly selected and their stable/unstable status was checked by remote analysis. The new,
increased inventories were finally used to recalibrate two SUFRA_2 models. The prediction skills
of the SUFRA_1 and SUFRA_2 models were then compared by testing their accuracy in matching
landslide distribution in a test sub-basin where a high-resolution systematic inventory had been
prepared. According to the results, the strong limits of the SUFRA_1 models (sensitivity: 0.67 and
0.57 for slide and flow, respectively) were largely solved by the SUFRA_2 model (sensitivity: 1 for
both slide and flow), suggesting the proposed procedure as a possibly suitable modeling strategy for
regional susceptibility studies.

Keywords: landslide susceptibility; public landslide inventory; MARS; landslide incompleteness

1. Introduction

Landslide susceptibility assessment can be performed by applying statistical methods
to model the dependence between a set of predictors and an outcome expressing the
stable/unstable status of a mapping unit [1–4]. The reliability of a predictive model strongly
relies on the completeness and representativeness of the landslide inventory that is used
for calibration [5–9]. In particular, regional landslide susceptibility studies require the use
of landslide inventories, which are typically available only from public administrations. In
fact, such a big database is typically the result of long-term cumulative reported cases that
are mapped following warnings from local municipality offices, transportation companies,
or even citizens. As a matter of fact, the reported landslide cases are clustered around
urban areas and the infrastructural axis. For this reason, this kind of inventory suffers from
an unknown grade of incompleteness and inaccuracy. The number of cases is also too large
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for an accurate check to be performed by regional authorities. Both multiple typologies
and landslide polygons are frequently corrected. These limits are obviously much more
marked in agricultural and pastoral areas [10,11], where the potential interest for urban
development is not infrequent. On the other hand, regional landslide databases allow
the available landslide inventories to be immediately obtained, thereby saving time and
resources from mapping [12].

Thus, defining a useful way to increase the quality of regional landslide inventories
is a goal of research focused on landslide susceptibility evaluation but also of public
administrations. In fact, the latter, generally determine landslide risk by crossing the
inventoried phenomena (and their typological/geometrical characteristics) and the exposed
vulnerable areas (e.g., urbanized sectors or communication routes). In addition, support
for territory management, planning, and safety measures is mainly defined based on geo-
hydrological hazards. In this sense, public administrations have made various efforts to
obtain more correct and complete landslide inventories [13,14].

In light of the abovementioned issues, a need arises to find possible modeling proce-
dures for regional landslide susceptibility assessment that are capable of both detecting
and solving the potential limits induced by poor calibration inventories. However, studies
aimed at evaluating the effects of incomplete inventories are nowadays focused on the
models’ performance [7] or the variables’ importance [5,10]. In this research, a procedure for
using regional landslide inventories to prepare reliable and accurate susceptibility models
is proposed. By applying the approach suggested by Martinello et al. [7], the potential
limits of a susceptibility model calibrated with the source inventory were first identified.
By systematically checking a portion of the study area, an enrichment of the original cali-
bration landslide inventory was then obtained. A new model was then recalibrated and its
accuracy evaluated and compared with that of the source model.

The research was carried out in the context of the SUFRA project, a challenging project
that involves the analysis and evaluation of all types of landslide susceptibilities (slide,
flow, rapid flow, fall-topple, and lateral spread) for the whole regional territory of Sicily
(~26,000 km2). It is the first project focused on landslide susceptibility evaluation at the
regional scale, and it will be used by the public administration for territorial planning
and civil protection aims. Considering the short duration of the project (only two years),
we were forced to base our analysis on the landslide inventories already available with
the Sicilian public administration. At the same time, in the context of the PNRR project
GeoSciences IR, the research was focused on defining strategies to increase the overall
quality of public landslide inventories, thus optimizing costs, resources, and time.

2. Materials and Methods

The available slide and flow inventories of the Torto River basin (420 km2, central-
northern Sicily), which were prepared by the “Dipartimento Regionale dell’Autorità di
Bacino del Distretto Idrografico Sicilia” (the so-named P.A.I. inventories), and a set of twelve
geo-environmental predictors were used to produce two basin-scale susceptibility models
(for slides and flows, respectively) by applying multivariate adaptive regression splines
(MARS). The obtained first-level landslide susceptibility maps were used for checking
30% of mapping units in which no landslides of P.A.I. were present and defining their
stable/unstable status with respect to flow and slide movements. The checked archives
were used for integrating the main inventories (the P.A.I. inventories) in order to obtain
second-level landslide susceptibility maps. Once all landslide susceptibility maps were
produced (first level and second level), the accuracy of the obtained maps was verified by
validating high-resolution flow/slide archives detected for a small sub-basin (Sciara) of the
Torto catchment.

The research was implemented using open-source geographical information system
software (GIS; Quantum GIS [15], GRASS GIS [16], and SAGA GIS [17]) and the Rstudio
statistical platform [18].
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2.1. Study Area

The Torto River extends for 423 km2 in the northern section of Sicily (Italy, Figure 1a)
between two mountain ranges, namely, the Madonie Mountains at the east and the Termini
Mountains at the west, and the Tyrrhenian Sea. The geomorphological setting of the study
area is the result of tectonic and selective erosion, karstification, and deep-seated gravitation
slope deformation [19,20].
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Figure 1. (a) Location of the Torto River basin. (b) Bedrock lithology map of the study area.
(1) Anthropic deposits; (2) alluvial deposits; (3) alluvial fan and talus deposit; (4) colluvium and
old landslide deposits; (5) evaporitic rocks; (6) sandstones; (7) Flysch Numidico pelites; (8) Fly-
sch Numidico sandstones/conglomerates; (9) “Terravecchia” pelites; (10) “Terravecchia” sand-
stones/conglomerates; (11) “Varicolori” clays; (12) calcareous and clayey marls; (13) lithoid units.

In fact, the study area falls within the central-western section of the Sicilian fold
and thrust belt, which is the result of the retreat of the subduction hinge of the Ionian
oceanic lithosphere and the postcollisional convergence between Africa and Europe [21–24].
This complex structural setting results in a multiduplex system where the basin tectonic
units overthrust platform tectonic units across subhorizontal surfaces with prevalent S–SW
transport direction and components of northward back-thrusting. In the area, Sicilide
units and the Numidian Flysch are widely outcropped, while Imerese basin units mainly
represent the basal body. However, Plio-Quaternary high-angle faults create new contacts
between the carbonatic Imerese successions and Cenozoic clayey rocks belonging to the
Numidian Flysch, which are sometimes overthrust by the Sicilide units [19,20] (Figure 1b).

According to the geological setting, the study area is characterized by a hilly landscape
modeled by gravitational movements and water erosion, whilst carbonate reliefs [20,25]
are affected by gravitational (mainly falls) and karstic processes. Mount San Calogero is
the highest relief of the area (1370 m s.l.m).
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The climate of the Torto River basin is classified as the Mediterranean type, with rainfall
concentrated mainly in the winter semester, while the summer period is characterized by
almost drought conditions. The mean annual rainfall is around 600 mm, while the mean
temperature value is about 15 ◦C.

2.2. Landslide Inventory

Starting from the available P.A.I. (Piano stralcio di bacino per l’Assetto Idrogeologico)
landslide archives prepared by the “Dipartimento Regionale dell’Autorità di Bacino del
Distretto Idrografico Sicilia”, slide, flow, and complex inventories were distinct and submit-
ted to remote checking. In fact, frequently, single phenomena are typically grouped into
large polygons in these inventories, and, moreover, their boundaries are not so accurate
(Figure 2a).
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Figure 2. (a) Top image: landslides as mapped in the original P.A.I. inventory (yellow polygons are
complex landslides, purple polygons are flows, red polygons are slides, and green polygons are
diffused erosional areas); bottom image: mapping of single phenomena (red polygons). (b) Example
of P.A.I.-driven mapping: original P.A.I. landslide inventory (polygons) and checked P.A.I. landslide
inventory (LIPs).

In order to propose a landslide susceptibility evaluation technique with statistical
methods, it is necessary to discriminate every individual landslide and, when needed,
reinterpret the type of movement [26,27]. It is worth noting that the single phenomena were
checked only inside the P.A.I. landslide polygons. This means that instead of a systematic
(and complete) inventory, P.A.I.-driven mapping was produced (Figure 2b). The reason
for this choice lies in the aim of the research, i.e., testing a good practice where available
regional public landslide inventory can be used to obtain basin-scale susceptibility maps.
In this way, according to Hungr et al. [26], for complex landslides, each component of the
phenomenon was defined so that only two different inventories were obtained at the end of
the mapping: the slide (78 cases) and the flow (267 cases) archives. In fact, it was assumed
here that rotational and translational slides share their slope susceptibility conditions to a
large extent. With regard to checking the P.A.I. inventory, the more frequently observed
flaws (12 cases) concerned large earth-flows, which were misclassified as (rotational) slides.

Two examples of these very diffused landslide types are given in Figure 3. The
landslide identification point (LIP), which corresponds to the highest point along the crown
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of the landslide area, was assumed as diagnostic in potentially marking unstable slope
conditions [27–31].
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2.3. Mapping Units and Landslide Conditioning Factors

Considering the type of phenomena analyzed and the scale of the landslide suscepti-
bility evaluation, we decided to employ slope units as mapping units (SLU). In fact, for the
purpose of the project, we needed to detect the activation area but also include the potential
area of propagation and arrest of the phenomena. According to the literature [6,9,32], SLUs
have been demonstrated to be more geomorphologically adequate to represent all land-
slide phases (for the flow and slide phenomena) as it is assumed the complete landslide
kinematic (initiation, propagation, and accumulation) occurs inside. For this research,
SLUs were delimited by applying the r.watershed [33,34] GRASS GIS module using the
2000 contributing area threshold. By overlapping the SLUs with the landslide inventories,
the stable/unstable status with respect to the slide and flow phenomena was defined for
each slope unit depending on whether it hosts at least one LIP.

Geo-environmental predictors were selected on the basis of the expected direct or
proxied role in landslides [7,27,35] (Table 1): outcropping lithology (LITO), land use (ob-
tained by the Corine Land Cover 2018-USE), elevation (ELE—10 m), landform classification
(LCL), steepness (SLO), aspect (expressed as northerness and easterness), plan (PLN), and
profile (PRF) curvatures, topographic wetness index (TWI), and stream power index (SPI).
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For the continuous variables, a multicollinearity analysis was carried out using the variance
inflation factor (VIF) obtained by applying the “usdm” R-package [36]. No multicollinearity
emerged between the selected predictors. However, considering that specific modeling
procedures were implemented separately for flow and slide, the SPI predictor was excluded
for the slide model, while the TWI variable was excluded from the flow model.

Table 1. Details of the employed geo-environmental variables (modified from [7,27]).

Acronym Description of Predictor References Potential Proxy Significance

ELE Distribution of elevation Mean annual rainfall

LCL

Morphological classification of the
territory based on the variation in

elevation with respect to the
neighbouring areas

[37] Morphological setting

SLO The first derivative of elevation [38] Speed of the water and potential
underlying rupture surfaces [6,27]

N Cosine of aspect (direction in which
the slope degrades more rapidly) [39] Seasonal wet/dry cycles of soils [40]

E Sine of aspect (direction in which the
slope degrades more rapidly) [39] Seasonal wet/dry cycles of soils [40]

PLN
The second derivative of elevation,

computed along the
horizontal plane

[41] Activation and propagation of
landslides [42]

PRF
The second derivative of elevation,
computed along the direction of the

highest slope gradient
[41] The direction of flow [42]

TWI

Calculated as ln[A/tanβ], where A
and β, computed on each cell,

corresponds to the area of upslope
drained cells and the slope gradient,

respectively

[43] Potential infiltration or saturated soil
thickness [6,27]

SPI
Natural logarithm of the catchment
area multiplied by the tangent of the

slope gradient
[44] Proxy of the intensity of surface

water erosion [6]

LITO Original geological map Physical–mechanical properties of
rocks [27]

USE CORINE land cover (2018)
Potential hydrological and surface

hydric erosion induced
disturbances [27]

Each variable was then characterized inside the SLUs by zonal statistics as deciles for
the continuous variables and as relative frequencies for the categorical ones.

2.4. Statistical Model, Validation Tools, and Model-Building Strategies

The multivariate adaptive regression splines (MARS; [45]) method was used for all
modeling procedures as it has been confirmed to be very effective in modeling nonlinear
components of the relationship between landslides and their causative factors [6,46].

MARS is a nonparametric regression method that splits each independent variable
into branches (optimizing their number based on the characteristics of the variable itself
and the correlation with the distribution of other predictors). Each branch is defined by
a hinge function (a function used for defining a nonlinear relationship between y and x)
and the relative knot. The derived structures (hinge function and knots) identify a basis
function that can take the shape of a simple linear regression (when the basis function
corresponds to the model intercept, set to a constant value of 1) or more complex geometry
(when the basis function is the product of one or more hinge functions associated with
different covariates).
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In this way, hinge functions boost the maximum-likelihood-based adaptation skill of
the logistic regression method, according to

y = f (x) = α+ ∑N
i=1 βihi(x) (1)

where y is the dependent variable (the outcome) predicted by the function f(x), α is the
model intercept, and βi is the coefficient of the hi basis functions given the N number of
base functions. For other information about the method, please refer to [6,27,35,47–49]. For
this research, MARS analysis was performed using the “earth” R-package [50].

Due to the fact that the MARS method is based on a presence–absence approach, a
random extraction of negative cases in the same number as the positive cases was carried
out. The random selection of negative cases and the subsequent modeling was replicated
one-hundred times to evaluate the independence of the results (resolution and precision)
from the specific choice of the negative cases [6,27]. On the other hand, to verify the
prediction skill of the models, each balanced dataset was randomly split using 75% for
calibration and the remaining 25% for validation [51].

AUC value (area under the curve) in the ROC (receiver operating characteristics) [52–54]
was employed to evaluate the prediction skill of the model according to Hosmer and
Lemeshow [55]. At the same time, the Youden index optimized score cut-off [56] was
obtained from the ROC plots to set confusion matrices and calculate the related validation
indices (sensitivity, specificity, and accuracy). Nested applications of the Youden index
cut-off were employed to define the different cut-offs of four susceptibility levels in an
objective way: S1 (low), S2 (moderate), S3 (high), and S4 (very high).

In Figure 4, the model-building strategy employed in this research is synthetically
shown. Once the P.A.I. inventory was checked and the relative LIPs extracted, a first model
named SUFRA_1 was obtained and validated, both for slide and flow landslides. Thus,
each SLU was classified according to the resulting susceptibility score classes.
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Figure 4. Synthetic scheme of the adopted model-building procedures.

To test the quality of the prediction images in predicting a high-resolution unknown
landslide inventory, a second validation was performed in the small Sciara sub-basin
(~21 km2), where a new systematic inventory for flow and slide was prepared using remote
surveys. The Sciara sub-basin was selected because, in light of its geomorphological setting,
it is largely representative of the landslide susceptibility in the whole Torto basin area.
Then, 30% of unrecognized P.A.I. SLUs were randomly extracted for each susceptibility
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class and submitted to remote detection of stable/unstable status with respect to flow and
slide movements. Thus, using both the checked P.A.I inventory and the 30% systematically
mapped one, two new (slides/flows) SUFRA_2 models were prepared. Finally, the per-
formance of the models was evaluated both with respect to the whole Torto basin (P.A.I.
checked inventories) and the Sciara basin.

3. Results

In Figure 5, the ROC plots for the SUFRA_1 models, both for the validation in the
whole Torto basin and the Sciara sub-basin, are shown. The AUC values for SUFRA_1
models were outstanding for validation in the Torto basin (Figure 5a,b). However, the
values decreased when the validation was focused on the Sciara sub-basin with respect
to the systematic inventories (Figure 5c,d). This lowering was more marked for the flow
model whose performance went from outstanding to good (0.77).
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Confusion matrices (Table 2) confirmed these behaviors, with very high values of
sensitivity (Sens. values of 1 and 0.98 for slide and flow model, respectively). However,
a limited specificity (Spec. values of 0.69 and 0.67 for slide and flow model, respectively)
resulted due to the high number of false positives (FPs) produced. These very low values
of specificity also affected the accuracy (Acc.), which showed just sufficient values (~0.7).
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Table 2. Confusion matrix of the SUFRA_1 models in the Torto basin and in the Sciara sub-basin.

Positive
Cases

Negative
Cases TN FN FP TP Acc. Sens. Spec.

To
rt

o
A

re
a

SUFRA_1
Slide 45 968 666 0 302 45 0.70 1 0.69

SUFRA_1
Flow 78 935 627 1 308 77 0.69 0.98 0.67

Sc
ia

ra
A

re
a

SUFRA_1
Slide 9 90 70 3 20 6 0.77 0.67 0.78

SUFRA_1
Flow 7 92 72 3 20 4 0.77 0.57 0.78

On the other hand, the validation in the Sciara sub-basin revealed that the sensitivity
suffered in the prediction images produced for both the slide and flow models when a
systematic high-resolution archive was detected. This limit was more evident for the flow
model for which the sensitivity was markedly insufficient (<0.6).

The ROC plots relative to the validation of the SUFRA_2 models for slide and flow
movements are shown in Figure 6. In this case, outstanding AUC values (>0.9) were
achieved for both the whole Torto basin (Figure 6a,b) and the Sciara sub-basin (Figure 6c,d).
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Confusion matrices (Table 3) confirmed the high performance in validation within a
coeval/homogeneous inventory of calibration with sensitivity values of 1 for slide and 0.95
for flow. Again, the specificity was just over 0.7 due to the high number of FPs produced.
However, the validation in the Sciara sub-basin confirmed the better performance of the
prediction images produced: the sensitivity was 1 for both flows and slides and, at the
same time, the specificity was 0.75 for slides and 0.8 for flows; better values of accuracy
(0.77 and 0.82 for slides and flows, respectively) were consequently obtained.
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Table 3. Confusion matrix of the SUFRA_2 models in the Torto basin and in the Sciara sub-basin.

Positive
Cases

Negative
Cases TN FN FP TP Acc. Sens. Spec.

To
rt

o
A

re
a

SUFRA_2
Slide 85 928 682 0 246 85 0.76 1 0.73

SUFRA_2
Flow 122 891 643 6 248 116 0.75 0.95 0.72

Sc
ia

ra
A

re
a

SUFRA_2
Slide 9 90 67 0 25 9 0.77 1 0.74

SUFRA_2
Flow 7 92 74 0 18 7 0.82 1 0.80

4. Discussion

The validation results of the SUFRA_1 models in the whole Torto River basin showed
outstanding AUC values but with limited specificity compared to the very high values of
sensitivity. Considering that the false positives are not only errors but also future positives,
these results gave us a warning about the accuracy of the predicted landslide scenario. The
validation in the Sciara sub-basin, where new systematic inventories for flow and slide were
detected, showed that the quality of the prediction images produced was inaccurate. In fact,
the sensitivity dramatically decreased here, especially for the flow model, clearly reflecting
the limited skill of the models to detect new unknown phenomena. Considering the
geomorphological setting of the Sciara sub-basin is representative of a very large part of the
Torto River catchment, the limits of SUFRA_1 were considered relevant. On the other hand,
the SUFRA_2 models maintained outstanding AUC values with very high sensitivity and
good specificity and, differently from SUFRA_1, the new models still showed outstanding
AUC values in the Sciara basin. More importantly, the sensitivity reached the maximum
performance with good to excellent specificity. The false-positive rates still suggest the
basin is characterized by relevant proneness to both flow- and slide-type slope failures. The
same high-model performance was observed for both the landslide typologies, confirming
that the goodness of this model procedure is independent of the landslide typology and
number of cases (provided the inventory is representative).

According to our test, the proposed two-step approach is suitable for optimizing
landslide susceptibility evaluation when the source inventory is affected by incompleteness
or mapping inaccuracy. In fact, the second step of mapping (the susceptibility level-driven
checking) permitted us to increase the quality of the calibration inventory and to cost-
effectively correct the potential misleading results of the SUFRA_1 models. Obviously,
the percentage of slope units checked (30% in this test) is not a standard but needs to
be tuned case by case. At the same time, the selection of a single test sub-basin could
be insufficient in the case of a more articulated geomorphological setting of the whole
study area, and criteria for selecting the number and extension of such sectors need to be
optimized (see [7] for a deeper inside of this issue). Indeed, different criteria for selecting
the checking areas to improve the original inventory could be also explored. In our study,
we precautionarily decided to maintain the same percentage of random extraction for each
SUFRA_1 susceptibility class.

5. Conclusions

The research we conducted was focused on detecting a useful way to use public
landslide regional inventory in statistical landslide susceptibility evaluation at a basin
scale. In the Torto River basin, the original P.A.I. inventories of slide and flow movements
were submitted to remote checking to produce more accurate archives that are suitable for
statistical modeling. The proposed procedure seems to be robust in strengthening weak
inventories, maximizing cost-effectiveness in regional landslide susceptibility studies. In
fact, the proposed procedure simply requires, together with a first susceptibility model, a
status slope unit check for a small percentage of the study area and systematic mapping in
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one or more smaller subareas. The study was focused on slide and flow landslide typologies,
but the strategies of analysis can also be helpful for increasing landslide archives and related
resolution of landslide susceptibility maps for any other type of landslide (such as falls,
topples, and deep-seated typologies) with the aim of identifying areas to be analyzed
at a larger scale through the application of empirical or analytical models for rockfalls
(e.g., [57–59]) or to assess the magnitude and deformations rate for other slower and more
complex landslides (e.g., [60,61]).
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