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Abstract: The term artificial intelligence (AI) was coined in the 1950s and it has successfully made its
way into different fields of medicine. Forensic sciences and Al are increasingly intersecting fields
that hold tremendous potential for solving complex criminal investigations. Considering the great
evolution in the technologies applied to forensic genetics, this literature review aims to explore the
existing body of research that investigates the application of Al in the field of forensic genetics. Scopus
and Web of Science were searched: after an accurate evaluation, 12 articles were included in the
present systematic review. The application of Al in the field of forensic genetics has predominantly
focused on two aspects. Firstly, several studies have investigated the use of Al in haplogroup analysis
to enhance and expedite the classification process of DNA samples. Secondly, other research groups
have utilized AI to analyze short tandem repeat (STR) profiles, thereby minimizing the risk of
misinterpretation. While Al has proven to be highly useful in forensic genetics, further improvements
are needed before using these applications in real cases. The main challenge lies in the communication
gap between forensic experts: as Al continues to advance, the collaboration between forensic sciences
and Al presents immense potential for transforming investigative practices, enabling quicker and
more precise case resolutions.

Keywords: artificial intelligence (AI); forensic sciences; forensic genetics; forensic implication; STR
interpretation

1. Introduction

Although the term artificial intelligence (AI) was coined in the 1950s by McCarthy
et al. [1], other important concepts, such as neural networks, were defined in the 1940s [2].
Based on the definition of McCarthy, Al represents the science and engineering of making
intelligent machines, especially intelligent computer programs [2]. The most significant
developments in the last sixty years have been in search and machine learning (ML)
algorithms, as well as in the integration of statistical analysis, and applying this knowledge
in covering different important aspects of healthcare [3]. Forensic sciences and Al are
increasingly intersecting fields that hold tremendous potential in solving complex criminal
investigations [4—6]. Al technologies, such as ML and computer vision, have improved how
forensic evidence is analyzed and interpreted. Al is the study of creating computer systems
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that are capable of activities like pattern recognition, problem-solving, and decision-making
that normally require human intellect [7]. In the last decade, there has been a surge of
interest surrounding the domain of Al due to the availability of various open-source module
packages such as TensorFlow, Keras, and PyTorch, as well as commercial software such as
PLS_Toolbox and Solo 9.0 [8].

Most of the research investigating the role of Al in forensic sciences has focused on
areas such as sex and age estimation [9-18], physical attributes, and in forensic odontology
and anthropology for human identification purposes [12,19-26]. Furthermore, Al could
be very helpful in the evaluation of DNA methylation-based age prediction. Specifically,
Thong et al. showed that an artificial neural network (ANN) had a higher accuracy in
age prediction than a regression model, even though regression models are commonly
used to estimate age [27]. Other experimental papers have explored the challenging field
of definition of the cause of death: in rare cases, it can be difficult to define the manner
of death and Al could be helpful. For example, in cases of drowning, several research
papers have focused on the application of Al in automating diatom testing, with the aim
of achieving higher levels of efficiency and accuracy in the definition of the exact cause of
death [11,28-33]. Other authors have tried to apply Al in the evaluation of firearm lesions,
demonstrating that digitizing and analyzing the fired projectile specimens could be used
for firearm identification [34]. At the same time, Al systems could be applied in order
to identify gun-shot entrance/exit wounds [35]. Several applications have been used to
perform biomechanical studies on patterns of cranial bone fracture [36]. Furthermore, other
papers have focused on the application of Al for the definition of the post-mortem interval
(PMI) [37]. Finally, in medico-legal sciences, Al could play a pivotal role in the management
of medical liability [38,39].

The integration of Al algorithms and forensic genetics has the potential to enhance
the accuracy, efficiency, and reliability of forensic investigations, ultimately leading to
better outcomes in solving crimes and identifying perpetrators [40]. The seminal paper
that focused on the application of Al to forensic genetics was published in 2008 [41]. In
that article, the authors discussed the application of multiple independent ML methods
to develop formal classification functions, resulting in an integrated high-throughput
analysis system for cost-effective and accurate classification of large numbers of samples
into haplogroups. Moreover, Al tools are applied to a wide range of genetic and genomic
analyses, such as the creation of genomic annotations, the identification of functional
genomic components, and the comprehension of gene expression mechanisms [42].

Forensic science is defined as multidisciplinary, considering the wide range of disci-
plines integrated into this field. For this reason, to solve a crime, it could be necessary to
analyze different biological data. In this context, the intricacy and richness of biological
data (DNA, RNA, protein, and epigenetic markers), as well as the differentiation between
human and non-human evidence, make this endeavor difficult [43]. Complex analyses are
needed for the processing of generated data, and these tasks cannot be completed without
computational support [44]. Current applications of ML in forensic biology can be divided
into three categories: applications related to human identification, applications related to
forensic intelligence, and applications related to increasing the evidential value of DNA
evidence [40].

Forensic anthropology, forensic odontology, forensic pathology, forensic genetics, and
other forensic fields are among the five subsections into which one group of authors sepa-
rated their findings [4]. The keywords they used to analyze the implications between Al
and forensic genetics were, however, too limited, as we discovered after closely examining
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their use of the following terms: “artificial intelligence”, “deep learning”, “forensic”, “medi-
colegal”, “forensic anthropology”, “forensic odontology”, “forensic pathology”, “forensic
genetics”, “forensic radiology”, “forensic medicine”, “forensic entomology”, “ballistics”,
“traffic medicine”, “death”, “postmortem interval”, “DNA”, and “ethics”.

Moreover, considering the great evolution in the technologies applied to forensic

genetics, this literature review aims to explore the existing body of research that investigates
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the application of Al in the field of forensic genetics. Analyzing the published articles, the
goal of this review is to provide a comprehensive overview and potential future directions
in this interdisciplinary domain.

2. Materials and Methods

A systematic review was conducted according to the PRISMA guidelines [45].

Scopus and WOS databases were used as the search engines from 1 January 1980 to 3
December 2023. The following keywords were used: (artificial intelligence) AND (Forensic
genetics)—21; (artificial intelligence) AND (DNA mixture profiling)—10; (artificial intelli-
gence) AND (forensic biological evidence)—7; (artificial intelligence) AND (forensic human
identification)—98; (artificial intelligence) AND (NGS forensic analysis)—1; (artificial in-
telligence) AND (forensic genetics laboratory)—4; (artificial intelligence) AND (massively
parallel sequencing)—11; (artificial intelligence) AND (forensic DNA typing)—?2; (artificial
intelligence) AND (Y AND X chromosome STR)—1; (artificial intelligence) AND (STR
typing)—1; (artificial intelligence) AND (STRs)—5.

2.1. Inclusion and Exclusion Criteria

The following exclusion criteria were used: articles not in English (12), conference
papers (25), reviews (20), book chapters (3), books (2), conference reviews (2), short surveys
(2), editorials (1), and notes (1). The inclusion criteria were as follows: original articles,
articles in English.

2.2. Quality Assessment and Data Extraction

ES first assessed all the articles by evaluating their titles, abstracts, and the entire
text. Subsequently, M.S. conducted an independent reanalysis of the selected articles.
If there were any conflicting opinions among the articles, they were referred to C.P. for
further evaluation.

2.3. Characteristics of Eligible Studies

Out of a pool of 161 articles, 16 duplicates were eliminated, and 68 studies were
excluded because of specific criteria. The remaining 77 articles (reported in the Supple-
mentary Materials Table) were first evaluated based on the abstract content: the 36 articles
marked in red in the Supplementary Materials Table were removed after abstract evalu-
ation. Forty-one full-text papers were further analyzed, excluding 29 articles (marked in
yellow in the Supplementary Materials Table) and including 12 articles (marked in green
in the Supplementary Materials Table). Finally, the systematic review included a total of
12 articles (Figure 1).
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Identification of studies via databases

(Artificial Intelligence) AND (Forensic genetics) (Artificial Intelligence) AND (DNA mixture profiling) (Artificial Intelligence) AND
WOS n. 6; Scopus n. 21; duplicates n. 6 WOS n. 1; Scopus n. 10; duplicates n. 1 (forensic biological evidence)
(n=21) (n=10) WOS n. 0; Scopus n. 7; duplicatesn. 0 (n=7)
(Artificial Intelligence) AND (Artificial Intelligence) AND (Artificial Intelligence) AND
(forensic human identification) (NGS forensic analysis) (forensic genetics laboratory)
WOS n. 40; Scopus n. 98; duplicates n. 40 (n = 98) WOS n. 0; Scopus n. 1; duplicatesn. 0 (n=1) || wos n. 0; Scopus n. 4; duplicates n. 0 (n = 4)
[
L]
b (Artificial Intelligence) AND (Artificial Intelligence) AND (forensic DNA typing) (Artificial Intelligence) AND
‘g ( ively parallel seq ing) WOS n. 2; Scopus n. 1; duplicates n. 1 (Y AND X chromosome STR)
'E WOS n. 4; Scopus n. 9; duplicates n. 2 (n =11) (n=2) WOS n. 0; Scopus n. 1; duplicates n. 0 (n = 1)
-
i (Artificial Intelligence) AND (STR typing) (Artificial Intelligence) AND (STRs)
WOS n. 1; Scopus n. 1; duplicates n. 1 WOS n. 0; Scopus n. 5; duplicates n. 0
(n=1) (n=5)
L 1
Records identified from
Databases (n = 161)
l m==fp 16 duplicates removed
Records after duplicates removed
(n =145)
o 68 articles excluded:
‘s - articles not in English (12), - conference
5 — papers (25), - reviews (20), - books (2), -
o conference reviews (2), - book chapters (3), -
S short surveys (2), - editorial (1) and - note (1).
Records screened
__ (n=77)
N 36 studies excluded
(filtered after abstract evaluation)
g Full-text articles assessed for
-% eligibility —l 29 studies excluded after full
= (n=41) evaluation
w
3
= Studies included
g (n=12)

Figure 1. Flow diagram illustrating included and excluded studies in this systematic review.

3. Results

According to the assessment of the first author, the selected articles were contributed
by research groups from various countries including the United States (3), Australia (2),
China (2), India (1), Netherlands (1), Poland (1), Portugal (1), and the United Kingdom (1).
When examining the distribution of articles based on the year of publication, the earliest
relevant paper to our research topic was published in 2008. Notably, a significant number
of studies were conducted in the last three years. This review included publications in 2008
(1), 2011 (1), 2014 (1), 2016 (1), 2018 (1), 2019 (1), 2020 (1), 2021 (2), 2022 (1), and 2023 (2).

The application of Al in the field of forensic genetics has predominantly focused
on two aspects. Firstly, several studies have investigated the use of Al in haplogroup
analysis to enhance and expedite the classification process of DNA samples. Secondly,
other research groups have used Al to analyze STR profiles, thereby minimizing the risk of
misinterpretation. Information about each publication (first author, year, and nationality),
the Al application used in the study, and the main findings are reported in Table 1.
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Table 1. The Al applications used in each included study, and the main findings.

First Author, Year, and Nationality Article Title

AI Application

Main Findings

Machine-learning approaches for classifying

Schlecht etal,, 2008, US.A. [41] haplogroup from Y chromosome STR data

The authors report ML approaches for classifying the
haplogroup from Y chromosome STR data.

The authors introduce a novel alternative using modern ML
algorithms to infer Y chromosome haplogroups with high
accuracy by scoring a relatively small number of Y-linked

short tandem repeats (STRs). The authors demonstrate that the

application of MLA represents an integrated high-throughput

analysis system for cost-effective and accurate classification of
large numbers of samples into haplogroups.

PopAffiliator: online calculator for individual
affiliation to a major population group based
on 17 autosomal short tandem repeat
genotype profile

Pereira et al., 2011, Portugal [46]

The authors employ an ML model constructed from a
dataset of approximately fifteen thousand individuals to
identify individual population affiliation.

The authors introduce a free online calculator called
PopAffiliator, (wWhen checked it was not accessible at the link
reported in the paper—http:/ /cracs.fc.up.pt/popaffiliator,
accessed on 27 February 2024), designed for individual
population affiliation in three main population groups:
Eurasian, East Asian, and sub-Saharan African.

Identification of unique repeated patterns,
location of mutation in DNA finger printing
using artificial intelligence technique

Mukunthan and Nagaveni, 2014,
India [47]

Artificial neural network techniques were applied to DNA
profiling and sequencing.

The authors discuss the challenges in genetic engineering and
forensic identification using conventional techniques and
algorithms for analyzing DNA profiles. The authors
demonstrate that these methods involve complex
computational steps and mathematical formulas could be
useful in forensic identification.

Teaching artificial intelligence to read

Taylor and Powers, 2016, Australia [48] electropherograms

The authors apply artificial neural networks (ANN) in order
to recognize different aspects of an electropherogram.

The work demonstrates the application of an artificial neural
network trained to interpret electropherograms, showcasing
its ability to generalize to unseen profiles.

DNA methylation-based age prediction using
massively parallel sequencing data and
multiple machine learning models

Alfieri et al., 2018, United Kingdom [49]

Al was applied to extract information from DNA evidence
using a DNA methylation quantification assay for
chronological age estimation.

The authors demonstrate the importance of Al in the analysis
of data obtained through massively parallel sequencing (MPS).

Automated detection and removal of
capillary electrophoresis artifacts due to
spectral overlap

Adelman et al., 2019, USA [50]

The authors apply an Al model (a series of mathematical
models, created using symbolic regression achieved through
genetic programming) in order to improve
electropherogram analysis.

The authors conclude that by employing models in
combination with a dynamic threshold, the presence of
pull-up peaks within true alleles can be effectively addressed,
resulting in the elimination of artefactual pull-up peaks and
accurate peak height corrections, improving the interpretation
of STR analysis

Artificially intelligent scoring and

Siino and Sears, 2020, USA [51] classification engine for forensic identification

The authors enhance the Elston-Stewart algorithm to create
a groundbreaking method for matching individuals with
pedigrees based on likelihood ratio. This Al model
incorporates a prediction cascade that utilizes gradient
descent logistic regression, enabling iterative solutions for
scenarios involving multiple missing persons.

The described innovative approach enhances the balance
between sensitivity and specificity, improving the
conventional kinship analysis tools.
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Table 1. Cont.

First Author, Year, and Nationality

Atrticle Title

AI Application

Main Findings

Li et al., 2021, China [52]

Validation studies of the ParaDNA®
Intelligence System with artificial evidence
items

The authors test a reliable STR profiling platform known as
the ParaDNA Intelligence Test System. This innovative
system enables investigators to obtain early tactical
intelligence and make informed decisions regarding sample
prioritization for detection.

The ParaDNA intelligence test is highly effective in producing
valuable DNA profiles, particularly in cases involving blood,
saliva, and semen samples that contain abundant DNA.

Volgin et al., 2021, Australia [53]

Validation of a neural network approach for
STR typing to replace human reading

The authors test an ML tool known as an artificial neural
network (ANN), which can perform the same task as a
human profile reader to interpret STR capillary
electrophoresis profile data.

The tool’s accuracy in detecting allele peaks in reference
profiles was found to be 99.7%, which was considered
sufficiently high.

Veldhuis et al., 2022, Netherlands [54]

Explainable artificial intelligence in forensics:

Realistic explanations for number of
contributor predictions of DNA profiles

The authors apply an ML approach to achieve impressive
accuracy in determining the number of contributors (NOC)
in short tandem repeat (STR) mixture DNA profiles.

The described tool can be used for the prediction of the
number of contributors in a mixture profile.

Chen et al., 2023, China [55]

Comprehensive evaluations of individual
discrimination, kinship analysis, genetic
relationship exploration and biogeographic
origin prediction in Chinese Dongxiang
group by a 60-plex DIP panel

In this study, the authors apply four Al algorithms and four
biogeographic origin inference models in order to predict
the biogeographic origins of individuals based on the results
obtained through amplification and genotyping with the
60-plex panel.

The Al models applied to their data demonstrated that the
biogeographic origin prediction model could be predicted
accurately in 99.7% of biogeographic origin models based on
three continents; this value decreased to 90.59% on a model
based on five continents.

Klosa et al., 2023, Poland [56]

A Machine-Learning-Based Approach to
prediction of biogeographic ancestry within
Europe

The authors apply three classifiers (Random Forest, Support
Vector Machine (SVM), and XGBoost) to the prediction of
biogeographic ancestry within Europe, in order to classify

DNA samples from Slavic and non-Slavic individuals.

The best results were obtained using SVM that demonstrated
an accuracy of 99.9% and F1-scores of 0.9846-1.000 for all
classes.
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In the field of Al researchers have harnessed its power to improve various aspects of
forensic genetics, including haplogroup classification. Haplogroups are groups of individu-
als who share a common ancestor through their maternal or paternal lineage. These groups
can be distinguished by specific variations in their mitochondrial DNA (mtDNA) or on the
Y chromosome in males. Forensic geneticists often use haplogroup classification to deter-
mine the ancestral origins of unidentified remains or individuals in criminal investigations.
By understanding a person’s haplogroup, it becomes easier to narrow down potential geo-
graphic origins and genetic relationships. Al can significantly enhance the efficiency and
accuracy of haplogroup classification in forensic genetics: using the traditional approach,
haplogroup classification required experts to manually analyze genetic data, which was a
time-consuming and labor-intensive process. Al algorithms can automate this classification
process, greatly reducing the time and effort required. Furthermore, Al systems can learn
from large datasets and adapt to new information [41,46,51,55,57].

Analyzing the application of Al in the interpretation of STRs, these tools could be very
useful in the creation of automated DNA profile interpretation systems. These systems
use ML algorithms to analyze DNA profiles generated from STR typing, analyzing a vast
amount of data and identifying patterns that may not be easily recognizable by human
examiners. In this way, it is possible to reduce the risk of human error, enhancing the speed
and accuracy of DNA matching in forensic genetics. By comparing an individual’s DNA
profile to a massive DNA database, Al algorithms can quickly identify potential matches.
This process, known as DNA fingerprinting, has been instrumental in solving cold cases
and exonerating wrongfully convicted individuals [47,48,50,56].

Although Al has brought several benefits to STR interpretation in forensic genetics,
challenges still exist. Ensuring the transparency and interpretability of Al models is crucial
to gaining the trust of forensic examiners and legal professionals. Additionally, the ethical
implications of Al in forensic genetics, such as privacy concerns and potential misuse of
technology, must be carefully addressed. The ethical issues and challenges of using Al in
forensic science focused on criminal cases: there is a need for a comprehensive definition
of Al systems, accountability, and legal procedures, emphasizing the application of these
tools under human control [58].

4. Discussion

Al techniques, such as ML, data mining, and pattern recognition, can be effectively
employed to analyze genetic data and facilitate the identification of suspects. These tech-
nologies enable forensic experts to process and obtain valuable results from vast amounts
of data, including fingerprints, DNA samples, and surveillance footage, facilitating faster
and more accurate identification of suspects [40]. Moreover, Al-driven facial recognition
systems assist in identifying criminals from images or videos, assisting law enforcement
agencies in solving crimes and bringing justice to victims [40]. There are limitations and
potential biases that may arise when utilizing Al algorithms in forensic genetics, and, as
such, emphasis must be placed on the importance of transparency, interpretability, and
fairness in algorithmic decision making [59]. To reduce Al bias, several strategies could
be applied, such as robust data augmentation for each algorithm used, the application of
counterfactual fairness, and the imperative for diverse, representative datasets alongside
unbiased data collection methods [60]. Moreover, each tool must report its known limita-
tions. As previously described, an important step is represented by the definition of ML
algorithms. In this sense, ANNSs are networks that, by employing a condensed set of ideas
from biological neural systems, mimic a biological neural network. ANNs simulate the
electrical activity of the brain and nervous system: there are neurodes arranged as a layer
or vector: each output represents an input for the following layers. To date, in the forensic
context, ANN applications have been useful in criminal detection through the comparison
of faces [61]. Another algorithm is the Random Forest which operates by constructing a
multitude of decision trees based on samples, their variables, and their class. An exam-
ple of its application is the age estimation of bloodstains based on temporal colorimetric
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analysis. The SVM is an ML algorithm that determines boundaries between data points
based on predefined classes, labels, or outputs [62]. It uses supervised learning models
to solve complex problems related to classification, regression, and outlier detection. In
forensic sciences, it is frequently used in anthropology studies [63]. Another algorithm that
could be used for ML is XGBoost; it belongs to the ensemble learning category, specifically
the gradient boosting framework, using decision trees as base learners and employing
regularization techniques to enhance model generalization. This algorithm could be used
in a forensic context to evaluate biogeographic ancestry [56].

A fundamental step is the evaluation of the algorithm used for the ML. For example,
the classification accuracy represents the ratio of the total number of input samples to the
number of accurate predictions; it is used to evaluate the accuracy. Another method used
for algorithm evaluation is the Area Under Curve (AUC). It is used for binary classification
problems: the likelihood that a randomly selected positive example will be ranked higher
than a randomly selected negative example is known as the AUC of a classifier. The F1
Score represents the harmonic mean of memory and accuracy. The F1 Score is used to
provide two key performance indicators and it has a range of (0, 1). The indicators are the
number of examples that the classifier properly classifies (its precision) and the number of
instances that it does not miss (its robustness) [64,65].

Different genomics and genetics issues have been addressed by ML techniques, such
as functional gene annotations, pattern recognition in DNA sequences, and annotation
of genomic sequence elements. Histone modification, transcription factor (TF) binding
ChIP-seq data, chromatin accessibility assays, microarray or RNA-seq expression data,
and other genomic assay data can all be fed into ML. Gene expression data can be utilized
to find potentially useful illness biomarkers and differentiate between various disease
characteristics. It may be possible to identify new types of functional elements by using
chromatin data to annotate the genome in an “unsupervised” manner [40].

In order to comprehend the mechanics underlying gene expression, ML techniques
have also been applied. While some methods take into account TF binding profiles at the
gene promoter region or ChIP-seq histone modification, others predict gene expression only
based on the DNA sequence. By developing a network model, more advanced techniques
try to jointly model the expression of every gene in a cell [66].

ML researchers have a history of concentrating on a subset of statistical problems and
placing a strong emphasis on the analysis of big, diverse data sets. The ML literature gener-
ally lacks basic statistical notions like power calculations, statistical confidence estimation,
and likelihood estimate calibration [67].

Due to their complexity and diversity, the detection of genetic markers employed for
forensic DNA typing necessitates a substantial amount of data, which may make manual
implementation challenging [68]. In addition, handling such data, interpreting it, and com-
paring it by hand is difficult, labor-intensive, and prone to inaccuracy, despite it occurring
rarely [69]. Therefore, analyzing and interpreting such a large amount of data may be made
easier by artificial intelligence, which has access to bioinformatic techniques, mathematical
algorithms, and statistical computations. Based on the data obtained through this literature
review, to date the application of Al in the field of the forensic genetics is limited to two
main fields: haplogroup classification and STR electropherogram interpretation.

From a practical standpoint, Al can expedite the forensic investigation process, helping
forensic geneticists and law enforcement agencies identify human remains or unknown
individuals more efficiently. This is particularly relevant in cases involving missing persons
or mass disasters, where the identification process can be challenging, considering the great
amount of data that could be handled. The application of Al algorithms in haplogroup
classification can streamline and improve the accuracy of this process, benefiting forensic
investigations and scientific research alike. With further advancements and continued
collaboration between these fields, Al can revolutionize the way forensic genetics and
haplogroup classification are conducted, enabling faster and more accurate analyses of
genetic data [5].
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In the same manner, Al has transformed the field of forensic genetics, especially in
the interpretation of STRs. The interpretation of DNA profiling is related to the peak
height intensities expressed in relative fluorescence units (RFU), which are shown on
an electropherogram (EPG), a graph of fluorescence vs. time. Allelic peak heights for
a perfect PCR process are correlated with the amounts that come from the contributing
individuals. These peak heights, however, are random and will differ between PCR
procedures, particularly in cases where there is little DNA or when there is degradation or
allelic drop-out—a result of low template and/or damaged DNA that leads to incomplete
DNA profiles, stutter, or artifacts [70,71]. Due to these factors, forensic genetic analyses
may complicate the manual interpretation of mixed DNA profiles, and STRs in particular
may be amplified and then sequenced [72]. These restrictions are removed and the full
potential of the DNA typing data is realized by statistical software packages that integrate
probabilistic interpretation models [73,74]. Fully continuous DNA mixture interpretation
software, such as STRmixTM, has been extensively tested and used in forensic DNA labs
to analyze STR data [75]. STRmixTM determines the probability of the profile given all
potential genotype combinations by utilizing quantitative data from an EPG, such as peak
heights. We give the normalized probability density a number, or weight. The likelihood of
the EPG given each potential genotype combination at a locus is given a relative weight by
STRmixTM [70]. Therefore, using probabilistic genotyping software facilitates the control
of imported trace samples, particularly those with damaged DNA [75,76]. It also enables
the comparison of the presence or absence of alleles in the reference profile and the trace
sample directly. Additionally, the availability of software tools reduces analysis time and
human weariness [77]. Prior to interpretation, the electropherogram must be inspected to
confirm if the profile is indicative of a DNA component or an artifact. There are two ways
to go about this phase. When done by hand, it takes a while and can produce different
results depending on the analyst reading the layout. To get around this restriction, an
analytical threshold—below which the data are discarded—or a double reading method
by two separate analysts is used. However, these methods may squander a significant
amount of genetic material and require an unnecessary amount of analytical time. However,
sophisticated EPG scanning systems like GeneMarker, OSIRIS, and Genemapper may be
able to automatically eliminate artifacts. Even with this capability, a lot of artifacts still need
to be manually removed before the EPG can be utilized for criminal investigations, which
prolongs the reading process. These days, ANNSs could be used to create an expert EPG
reading system that can discriminate between alleles and artifact, reducing the amount of
manual control that is required [48].

Moreover, the application of the latest techniques in forensic DNA profiling that have
been established in the last few years employing MPS, also known as NGS, is another crucial
question regarding the mixed profile [78]. These techniques can simultaneously identify
SNPs, STRs, and in/del (insertions and deletions). Using spatially separated and clonally
amplified DNA templates, MPS is related to a range of high-speed sequencing platforms
(sometimes referred to as “second generation” or “next generation”) that share a common
technical approach to sequence many fragments in parallel [79]. These methods include
multiple steps, including library construction, enrichment, and bridge amplification or
emulsion PCR. STRs may be amplified and then sequenced; this method allows nucleotide
variations found in the flanking regions and repeat motifs of interest to be analyzed. The
data produced by these new methods are compatible with previously archived data [80].
Moving forward with MPS will allow the forensic community to continue using millions
of DNA profiles that are currently stored in DNA databases, while also expanding its
use of forensic DNA typing with increased genetic diversity in STR and SNP. Continued
advances in Al are likely to play a crucial role in solving crimes and promoting justice in
the future [40,81].

Great progress has been made in other fields of forensic sciences such as forensic odon-
tology. One of the first applications was reported by Chen et al. [19], who described a dental
biometric system for human identification using dental radiographs. The described system
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is based on two main stages: feature extraction and matching. Tooth correspondences
between postmortem and antemortem radiographs are established, and a distance based on
corresponding teeth measures similarity. The potential applications of artificial intelligence
technology in forensic odontology can be categorized into four areas: analysis of human
bite marks, identification of sex determination, age estimation, and dental comparison [82].
For example, considering the international migration scenario that is considered a present
concern worldwide, determining a minor’s age represents an important goal for upholding
the rights of all minors [83]. Methods should be replicable, accurate, and objective: in this
regard, the use of new Al tools is necessary to guarantee a trustworthy procedure.

Patil and Ingle [84] analyzed the possibility of applying an algorithm to fingerprint
patterns, which are determined by a combination of genetic and environmental factors, to
determine gender and age group, and in predicting blood group and classifying common
clinical diseases that have a genetic basis, including hypertension, type-2 diabetes, and
arthritis. After all, electronic fingerprint recognition has been commercially applied with
identification purposes and could be translated to the forensic field [85]. Indeed, to date,
the use of fingerprints for identification purposes in the forensic field is one of the more
affordable methods, even though recognizing fragmented fingerprints is a difficulty for
forensic experts; in this way, the development of Al represents an important tool [86].
Moreover, in a recent study the main goal of the authors was to calculate the sexual
dimorphism in unfused or disarticulated hyoids, using ML methods [87].

Al and forensic genetics have emerged as two rapidly evolving fields that are revolu-
tionizing the way investigations are conducted in various domains, especially in the field
of criminal justice. Considering the paucity of research, to improve the Al application in
forensic genetics, there is a need for interdisciplinary collaboration between Al researchers,
forensic scientists, and legal experts to ensure the responsible and ethical implementation
of these technologies in the criminal justice system. Al may improve the accuracy of DNA
profiling, predicting physical traits and ancestry from DNA samples, and identifying po-
tential familial relationships among individuals [88]. Interestingly, there is a possibility of
exploring the use of Al in data interpretation in the field of DNA transfer. DNA transfer in
forensic investigation is a crucial process: the sensitivity and specificity of DNA analysis
techniques have greatly improved over the years, allowing investigators to detect and
analyze even the smallest traces of DNA that could be transferred in a direct/indirect
manner [89-93]. The ability to transfer DNA from one surface to another unintentionally,
referred to as secondary or indirect transfer, can occur through a variety of mechanisms,
such as direct contact or environmental factors [94,95]. Forensic investigators must carefully
consider the context of DNA findings, evaluating the likelihood of direct or indirect transfer,
and cross-checking various pieces of evidence to ensure accuracy in their conclusions [96].
Of particular interest is indirect transfer that occurs when DNA is transferred between
individuals or objects indirectly, often through third-party or environmental factors. One
common example is the transfer of DNA from an object to a person and then onto another
object [97-99]. Factors such as the duration of contact, intensity of contact, and the nature
of the surface can affect the presence and persistence of DNA [100,101]. For instance, if an
individual handles a weapon that is later used in a crime, their DNA may be transferred
from the weapon onto the perpetrator, providing a link between the suspect and the crime
scene. DNA can be carried through the air by particles such as dust, dander, or skin cells,
settling onto surfaces and ultimately being transferred to other objects or individuals [102].
It is crucial for forensic investigators to consider these mechanisms and recognize potential
sources of indirect transfer when analyzing DNA evidence. Understanding the principles
of DNA transfer (i.e., transfer, persistence, prevalence and recovery of DNA) is essential for
forensic investigators to accurately interpret DNA evidence and present reliable conclu-
sions in a court of law [100,103]. The Bayesian model has become widely used in evaluating
indirect DNA transfer in the forensic field, providing a statistical framework for assessing
the likelihood of such transfers. One key aspect of the Bayesian model is the use of prior
probabilities: these represent the initial beliefs about the likelihood of different scenarios.
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In this context, the application of Al tools for the analysis of the activity level could help
the investigator to evaluate the weight of evidence in the worked case. However, it is
important to note that the Bayesian model is dependent on the input data and assumptions
made. Biases or inaccuracies in the data or incorrect assumptions can impact the validity of
the results [104-106].

Al could be helpful in the prediction of physical traits and ancestry from DNA samples.
By training machine learning models on extensive genetic databases, researchers have
developed algorithms that can accurately predict a person’s physical characteristics, such
as eye or hair color, improving so-called forensic DNA phenotyping. Additionally, Al can
provide insights into a person’s ancestry or geographical origin by analyzing STRs and other
genetic markers, such as SNPs; to date, it is possible to use a set of ancestry informative
markers to determine the ancestry of an individual [88,107]. While the simultaneous
analysis of hundreds of DNA predictors with targeted MPS can be valuable in criminal
investigations, particularly in the identification of the suspect or the identity of unknown
human remains, it should be desirable to conduct further studies to achieve the forensic
validation of these tools [108].

5. Conclusions

Al algorithms are playing a crucial role in revolutionizing forensic investigations on
a global scale. The fields of Al and forensic genetics are rapidly evolving, particularly
within the criminal justice domain. While Al has proven to be highly useful in interpreting
STR profiles and conducting haplotype analysis, further improvements are needed before
deploying these applications in real cases. The main challenge lies in the communication
gap between forensic experts, crime investigators, and lawyers, causing statistical evidence
to be misunderstood and misinterpreted in court, leading to erroneous decisions. Thus,
there is a pressing need to develop methods that facilitate effective communication and
act as a bridge to address these issues. As Al continues to advance, the collaboration be-
tween forensic sciences and Al presents immense potential for transforming investigative
practices, enabling quicker and more precise case resolutions. However, it is important to
acknowledge that although Al has benefited forensic genetics, considering the variability
of forensic samples, it is difficult to expect Al tools to effectively understand, analyze, and
interpret genetic data as efficiently as human forensic experts, scientists, and investiga-
tors. Al can be seen as a valuable aid, but it should never replace the essential role of
human expertise.
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