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Abstract: The horticultural sector is seeking innovative and sustainable agronomic practices which
could lead to enhanced yield and product quality. Currently, plant biofortification is recognized
as a valuable technique to improve microelement concentrations in plant tissues. Among trace
elements, iodine (I) is an essential microelement for human nutrition. Concomitantly, the application
of biostimulants may improve overall plant production and quality traits. With the above background
in mind, an experiment was designed with the aim of assessing the interactive impact of a seaweed
extract-based biostimulant (SwE) (0 mL L−1 (served as control) or 3 mL L−1 (optimal dosage)) and
0, 100, 300, or 600 mg L−1 I on the growth parameters, yield, fruit quality, minerals, and functional
characteristics of the tunnel-grown “Savana” strawberry. SwE foliar application improved the
plant growth-related traits, total and marketable yield, fruit color parameters, soluble solids content,
nitrogen (N), potassium (K), and magnesium (Mg) fruit concentrations. Furthermore, an enhancement
in the fruit dry matter content, ascorbic acid, and I concentration in fruits was detected when the SwE
supply interacted with a mild I dose (100 or 300 mg L−1). The research underlined that combining
SwE application and I biofortification increased the strawberry yield and quality and enhanced the
plant nutritional status variation, thereby, determining a boosted strawberry I tolerance.

Keywords: biostimulants; algae extract; biofortification; stress tolerance; abiotic stress; Fragaria × ananassa

1. Introduction

Nowadays, agriculture is undertaking several efforts to enhance crop yield and quality,
increase plant adaptability to climate change, and ameliorate plant tolerance to distresses [1,2].
Consequently, specific agronomic strategies are required [3,4] through the application of
which all the above could be possible. Currently, as testified by Rouphael et al. [5], biostim-
ulants represent an effective agricultural technique to elicit plant growth and development,
as well as the yield and product quality of several vegetables. The advantages that arise
through the application of biostimulants are mainly due to the plant physiological benefits
and low application dosage per treatment [6,7].

Numerous authors [5,8–14] report that primary and secondary metabolism, nutrient
element modulation, phytotoxic substance accumulation, and biotic and abiotic stress
tolerance are affected by either microbial or non-microbial biostimulants. Among those
substances, seaweed extracts (SwE) are an imperative class, and their benefits are con-
nected to enzymes involved in nitrogen and carbon metabolic pathways, glycolysis, and
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the Krebs cycle. Moreover, SwE may stimulate mineral uptake and accumulation, as
well as phytohormones biosynthesis [15–17]. Concurrently, there is growing attention to
vegetable enrichment in functional components to elude human diseases, such as min-
eral malnutrition. Biofortification is considered an efficient and sustainable technique to
increase microelement concentrations in vegetable crops [9,12,14]. Additionally, a bios-
timulant supply can interconnect with trace elements to augment the yield and quality of
vegetables [12,14].

Iodine (I) is a crucial component of the human organism [18]. It is implicated in thyroid
hormone synthesis, metabolic regulation processes, and the main physiological functions of
the organism [19–23]. Low I intake causes goiter, reduced IQ, miscarriages, infant mortality,
and birth defects [24]. The enrichment of fruits and vegetables with I could also be a valid
alternative to the use of iodized salt in human nutrition. However, although this element is
contained in foods, it is generally insufficient to provide the recommended daily intake
(150–250 µg/day of I per adult) [25]. Moreover, as iodine is volatile, it frequently evaporates
during storage, transportation, and cooking [26,27].

There are several reports on the I biofortification of leafy and fruiting vegetables [19,28–31],
as well as of field crops [32,33]. However, few studies have been conducted on the I
biofortification of strawberries.

Fragaria × ananassa is considered a relevant fruit crop in the northern hemisphere with
a global production of over 8.861.381 tons estimated to worth over USD 22.065.163 million
in 2020 [34]. China is the prominent world producer, followed by the USA and Egypt,
while Spain and Russian Federation are the leading strawberry producers in Europe [34].
Strawberries are considered fruits of high preference by consumers; they are rich in bioac-
tive components, such as anthocyanins, β-carotene, folate, phenolic compounds, vitamin C,
vitamin E, and elements with strong relation to therapeutic benefits [35–37]. Considering
that: (i) the application of SwE and agronomic biofortification with I are simple, safe, and
sustainable strategies that result in the increased yield and quality of vegetables [38,39];
(ii) SwE can enhance plant abiotic stress tolerance [40,41], and (iii) as there are no reports
concerning the interactive effects between SwE supply and I biofortification in strawberries,
specific studies are required. Therefore, this research was designed to evaluate the influ-
ences of I and SwE foliar application on the plant growth parameters, yield traits, minerals,
and nutritional and functional components of strawberries cultivated in tunnels.

2. Results
2.1. Plant Growth and Visual Quality

The statistics displayed that SwE and I and their interaction significantly affected plant
growth parameters and plant visual quality (Table 1). The highest values of the No. of
shoots, root collar diameter, and plant visual quality were collected from plots treated only
with SwE. Plots treated with 3 mL L−1 of algae and 0 or 100 mg L−1 of I showed the highest
plant height. The lowest plant height was recorded in non-biostimulated plants enriched
with the highest I dose (Table 1).

2.2. Plant Yield

Regarding yield traits (total yield and marketable yield), the statistics showed a signif-
icant impact of the experimental factors and their interaction. Plants biostimulated and not
exposed to I treatment had the highest total and marketable yield (Figure 1A,B), whereas
the lowest production performance was detected in plants treated with the maximum
dose of biostimulant (600 mg I L−1) and the non-biostimulated (Figure 1A,B). Overall, I
biofortification negatively affected production traits, regardless of the SwE application.
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Table 1. Effect of seaweed extract (SwE) and iodine (I) treatment on plant height, No. of shoots, root
collar diameter, and plant visual quality of strawberries.

Treatments Plant Height (cm) Shoot Number
(plant−1)

Root Collar
Diameter (mm)

Plant Visual Quality
(1–9)

SwE Iodine (mg L−1)

0 mL L−1

(control)

0 27.8 c 5.0 c 22.8 c 8.8 b
100 25.9 d 4.5 d 20.2 e 7.0 c
300 23.5 e 4.1 e 18.7 f 5.9 d
600 18.9 f 3.2 f 17.2 g 2.5 f

3 mL L−1

0 31.3 a 6.3 a 26.4 a 9.0 a
100 31.8 a 5.5 b 23.9 b 8.9 b
300 29.3 b 4.9 c 21.7 d 7.0 c
600 25.6 d 3.9 e 18.6 f 5.2 e

Significance
SwE *** *** *** ***

I *** *** *** ***
SwE × I *** * *** ***

Values with diverse letters are significantly different at p ≤ 0.05. * and *** mean significant at p ≤ 0.05 or significant
at 0.001, respectively.
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Figure 1. Influence of seaweed extract (SwE) and iodine (I) treatment on total yield (A) and marketable
yield (B) of strawberries. Values with different letters indicate a significant difference at p ≤ 0.05.
*** means significant at p ≤ 0.001. Bars represent mean ± SE.

2.3. Color Parameters

For two out of the three CIELAB color parameters (a* and b*), a SwE × I interaction
was found (Figure 2A,B); in contrast, for the L* color parameter, no interaction was detected
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(Figure 2C). The highest value of a* was recorded in fruits from plots treated with the
SwE and the non-biofortified, whereas the lowest a* were documented in fruits from non-
biostimulated plants biofortified with 300 mg I L−1 (Figure 2A). The highest b* was found in
the control plants, whereas the lowest was recorded in strawberries from non-biostimulated
plots and those subjected to 300 mg of I per liter (Figure 2B). Concerning L*, regardless of
the biofortification, fruits from the biostimulated plants showed a higher lightness than
fruits from non-treated ones (Figure 2C). Averaged over the biostimulants, fruits from
plants biofortified with a I dosage of 0 or 100 mg L−1 showed the highest values. Plants
treated with the highest dose of I showed the lowest L* values (Figure 2C).
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Figure 2. Influence of seaweed extract (SwE) and iodine (I) treatment on CIELab parameters—a* (A), b*
(B), and L* (C)—of strawberries. Values with different letters indicate a significant difference at p ≤ 0.05.
NS and *** means not significant or significant at p ≤ 0.001, respectively. Bars represent mean ± SE.
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2.4. Fruit Dry Matter, Firmness, Soluble Solids Content, Ascorbic Acid, Phenolic Concentration,
and Anthocyanins

Regarding the dry matter percentage, a significant influence of the SwE × I interaction
was found (Figure 3). Fruits from plants treated with SwE and 100 mg I L−1 showed the
highest dry matter percentage, followed by those from biostimulated plants and those
subjected to 300 mg I L−1. The lowest dry matter percentage was recorded in fruit from
non-biostimulated plants and those exposed to the highest I dose (Figure 3).
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Figure 3. Influence of seaweed extract (SwE) and iodine (I) treatment on dry matter percentage of
strawberries. Values with different letters indicate a significant difference at p ≤ 0.05. *** means
significant at p ≤ 0.001. Bars represent mean ± SE.

The ANOVA for firmness, soluble solid content (SSC), ascorbic acid, phenolic concentra-
tion, and anthocyanins showed a significant SwE × I interaction (Table 2). Data on firmness
revealed that fruits from the control plots (0 mL L−1 of SwE × 0 mg I L−1) showed the highest
values, whereas the SwE × 600 combination showed the lowest fruit firmness (Table 2). Re-
garding SSC, the fruits from biostimulated plants not exposed to the I biofortification showed
the highest SSC (Table 2). The lowest SSC was detected in fruits from non-biostimulated
plants treated with 600 mg I L−1. With regard to the ascorbic acid content, phenolic content,
and anthocyanins, the highest results were always found in fruits from plants treated with
3 mL L−1 of SwE and 600 mg I L−1 (Table 2). The fruits from the control plants (control × 0)
displayed the lowest ascorbic acid, phenolic, and anthocyanin concentrations (Table 2).

Table 2. Influence of seaweed extract (SwE) and iodine (I) treatment on firmness, soluble solid content
(SSC), ascorbic acid, phenolic concentration, and anthocyanins of strawberries.

Treatments Firmness (N) SSC (◦Brix) Ascorbic Acid
(mg L−1)

Phenolic
Concentration
(mg 100 g−1)

Anthocyanins (mg
Cya-3-Glucoside 100 g−1)

SwE Iodine (mg L−1)

0 mL L−1

(control)

0 −7.52 f 7.0 b 40.6 h 443.0 h 85.9 h
100 −7.05 e 6.7 c 45.6 g 455.0 g 91.5 g
300 −6.77 d 5.5 d 52.2 e 474.3 e 107.0 d
600 −6.11 b 5.1 e 61.0 c 491.3 c 120.8 b

3 mL L−1

0 −6.93 e 7.4 a 49.8 f 462.3 f 93.4 f
100 −6.72 cd 6.9 b 59.3 d 480.3 d 104.0 e
300 −6.59 c 6.7 c 68.2 b 503.3 b 117.6 c
600 −5.45 a 5.6 d 69.4 a 538.3 a 127.5 a

Significance
SwE *** *** *** *** ***

I *** *** *** *** ***
SwE × I ** *** *** *** ***

Values with diverse letters are significantly different at p ≤ 0.05. ** and *** mean significant at p ≤ 0.005 or
significant at 0.001, respectively.
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2.5. Fruit N and Mineral Profile

Regarding the mineral concentration (N, P, K, and Mg) of fruits (Table 3), the ANOVA
showed a non-significant influence neither of the I biofortification nor of the SwE × I
interaction (Table 3). Regardless of I biofortification, the SwE application increased N, K,
and Mg fruit concentrations, without significantly affecting the concentration of P in the
fruits (Table 3).

Table 3. Influence of seaweed extract (SwE) and iodine (I) treatment on mineral concentrations (N, P,
K, and Mg) of strawberries.

Treatments N (g 100 g−1 DW) P (mg g−1 DW) K (mg g−1 DW) Mg (mg g−1 DW)

SwE
0 mL L−1 (Control) 8.61 b 3.46 6.46 b 1.68 b

3 mL L−1 9.61 a 3.45 8.72 a 1.96 a

Iodine (mg L−1)
0 9.13 3.46 7.65 1.83

100 9.13 3.46 7.58 1.83
300 9.08 3.46 7.58 1.80
600 9.08 3.46 7.55 1.81

Significance
SwE *** NS *** ***

I NS NS NS NS
SwE × I NS NS NS NS

Values with different letters indicate a significant difference at p ≤ 0.05. NS and *** mean not significant at
p ≤ 0.005 or significant at 0.001, respectively.

2.6. Fruit Iodine Concentration

Regarding iodine, as shown in Figure 4, the ANOVA showed a significant difference
for the SwE × I interaction. Fruits from the plants biostimulated with 300 mg of I L-1
accumulated the highest concentrations of I, followed by those from the control × 300
combination. The lowest concentration of I was recorded in non-biostimulated plants
exposed to the highest dose of I (Figure 4).
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2.7. Heat Map Analysis

Figure 5 shows a heat map that graphically summarizes the effects of experimental
factors on the strawberry plants The graphic analysis showed a dendrogram at the top



Plants 2023, 12, 245 7 of 15

(Dendrogram 1), including the treatments, and another on the left (Dendrogram 2), includ-
ing the variables studied. Dendrogram 1 showed two main groups; the group on the left
included the combinations with 0 and 100 mg I L−1, while the group on the right included
the combinations with 300 and 600 mg I L−1 (Figure 5). In particular, the combinations
not treated with SwE and biofortified with 0 or 100 mg I L−1 were divided from those
treated with biostimulants and exposed to 0 or 100 mg I L−1. The latter combinations
exhibited high firmness, anthocyanins, ascorbic acid, phenolic concentration, P, I, N, K, Mg,
percentage of dry matter, plant height, L*, shoot number, root collar diameter, SSC, visual
quality of the plant, total and marketable yield values. The group on the left included the
control × 0 and control × 100 combinations. In this group, the combination control × 0
was characterized by the highest P, b*, percentage of dry matter, height of the plant, L*,
number of shoots, root collar, SSC, visual quality of the plant, and marketable yield values.
The group on the right included SwE × 0 and SwE × 100 combinations. In this group, the
SwE × 0 combination stood out with the highest values of a*, N, L*, number of shoots,
root collar diameter, SSC, total yield, and marketable yield. Analyzing the right side of
Dendrogram 1, two main groups were identified. The group on the left included the control
× 300 combination, while the group on the right included the SwE × 300, control × 600,
and SwE × 600 combinations. The control × 300 was distinguished from the others by a
lower firmness, anthocyanins, ascorbic acid, and a* and b* phenolic concentration. Within
the left cluster, SwE × 300 was distinguished by higher I, b *, percentage of dry matter, plant
height, L*, shoot number, root collar diameter, SSC, visual quality of the plant, and total
and marketable yield. Looking at the right side of the latter cluster (comprising the control
× 600 and SwE × 600 combinations), the control × 600 combination was characterized by
lower firmness, anthocyanins, ascorbic acid, phenolic concentration, I, a*, b*, N, K, Mg,
percentage of dry matter, plant height, L*, number of shoots, root collar, SSC, visual quality
of the plant, and total and marketable yield.
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3. Discussion

Modern consumers increasingly require food containing high amounts of macro- and
micronutrients [1,42,43]. This need is linked to the lack of essential elements in human
diets [23,44,45]. As a consequence, biofortification is recognized as a useful tool to enhance
the concentration of trace elements, such as I [19,28,30], zinc [23,46,47], selenium [48–51],
manganese [52–54], molybdenum [14,55–58], iron [59–61], and bioactive compounds in
fruits and vegetables. Inadequate I intakes can create I deficiency disorders (IDD) in
humans, with considerable consequences on life quality [62–65].

Considering that the application of algae extracts can improve mineral absorption and
stress tolerance in plants [9,12,19], we evaluated the mutual effect of SwE foliar supply
and I biofortification on the productive and qualitative features of strawberries grown
under tunnels.

The outcomes of our study showed that I supply reduced plant yield. This is in
contrast to the findings of Li et al. [1] who studied the effect of different forms of I on
the growth and quality of strawberry plants, finding higher yields of strawberry plants
treated with low doses of I. Our results on yield are in contrast to Lawson et al. [66] and
Signore et al. [67], which found that the I supply had no significant effect on the yield of
field-grown vegetables (kohlrabi, butterhead lettuce, and radish) and carrot, respectively.
In contrast, our results are totally in agreement with the findings of Sabatino et al. [19] on
curly endive. Consequently, we can assume that the effect of I on plant yield is a genotype-
dependent trait and is strongly correlated with the I tolerance of the species. In previous
studies [21,30,68,69], phytotoxic effects such as necrosis, chlorosis, and abscission of the
leaves due to high I doses have been reported. In our study, combining SwE with high I
doses (300 or 600 mg L−1) induced limited toxic effects. As reported by Blasco et al. [70],
the utilization of a high quantity of I causes a slowdown of superoxide dismutase which
is fundamental in preventing an oxygen reactive species (ROS) defense. Furthermore, as
stated by Mynett and Wain [71], oxidation to elemental I, which occurs within cells, could
cause adverse effects and inhibit photosynthesis.

The results highlighted that SwE application stimulates strawberry plant productivity.
This is in line with the results of La Bella et al. [12], who obtained higher yields in spinach
with the foliar application of SwE and those of Di Mola et al. [72] on lettuce and Rouphael
et al. [73] on spinach, who observed an increase in yield when plants were subjected to SwE
supply. Our results agree with those of Lawson et al. [66] who, by appraising the influence
of I-based foliar treatments in lettuce and radish, found a significant decrease in yield
compared to untreated plants. A comparable pattern of findings was described by Sabatino
et al. [19] who, by investigating the effect of I-enrichment on curly endive, found that yields
decrease as the I dose increases. These findings could be related to the harmful effect of I
on photosynthesis, as I is stored, largely, in chloroplasts [28,31]. Alongside mitigating the
influence of higher doses of I, SwE supply may elicit plant yield due to the polysaccharide
content that stimulates endogenous hormonal homeostasis [73–75].

As regards the dry matter, the foliar application of SwE also limited the inhibitory
effects of I; greater accumulation was obtained in biostimulated plants with 100 mg I L−1.
Overall, these data fit with the findings of Incrocci et al. [76] who studied the I influence
in different sweet basil genotypes cultivated in a hydroponic system, finding that a mild I
dosage (10 µM KI) did not significantly affect plant dry matter. On the other hand, Rouphael
et al. [73] stated an upsurge in the dry matter percentage of spinach treated with SwE.

In contrast with Budke et al. [21] who did not find significant variations in strawberry
fruit firmness when administering various doses of I, in our study, fruit firmness was
significantly affected by I doses; lower values were found in fruits from plants exposed to
high iodine doses (300 or 600 mg I L−1). This can be explained because iodate (IO3−) is
reduced to I− which can disrupt plant membrane cells [62,66]. Our data also fit with the
findings of Sabatino et al. [77] who evaluated the effect of grafting and different classes
of biostimulants on eggplant, finding that fruits from biostimulated plants have higher
firmness than those from control plants.
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Our findings revealed a linear fruit SSC decrease as the I dose increased. Similar
results were observed by Consentino et al. [31] who studied the combined effect between I
biofortification and grafting in eggplant and found a reduced amount of fruit SSC in the
biofortified plants. Concomitantly, SwE application enhanced the fruit SSC. These basic
results are in agreement with previous studies showing that the application of different
types of biostimulants in strawberries improve fruit SSC [38]. These results could be linked
to the fact that—as reported by Nguyen-Quoc and Foyer [78]—SwE supply improves
glucose biosynthesis, contributing to enhanced SSC.

In our study, the biostimulant supply and highest I dose elicited fruit functional trait
(ascorbic acid, phenols, and anthocyanins) concentration. This agrees with the results
obtained by various authors on strawberries [35,38]. Our findings also agree with the
findings of Blasco et al. [70] who found an upsurge in ascorbic acid concentration in lettuce
enriched with a high I dose. Sabatino et al. [19] reported a similar trend for ascorbic acid
and phenols in curly endive plants treated with iodine. Moreover, Consentino et al. [31]
reported that I-enriched fruits had the highest anthocyanin content. As stated by Medrano-
Macías et al. [62], these findings are possibly connected to the fact that these secondary
metabolites are enclosed in plant defense system stresses, embracing mineral stress. On the
other hand, our findings showed that SwE treatments significantly increased strawberry
functional traits. Similar outcomes were reported by Boselli et al. [79] who revealed an
upsurge of phenol and anthocyanin concentrations in fruits treated with a plant-based
biostimulant. However, Soppelsa et al. [38] found that SwE application enhances phenols
and anthocyanin concentrations and reduces ascorbic acid in strawberry fruits. These
data are similar to the findings of Rouphael et al. [73] who showed a higher phenol
and anthocyanin concentration in spinach treated with SwE. The secondary metabolism
stimulation (resulting in the increased biosynthesis of active compounds, such as phenols,
anthocyanins, and ascorbic acid) could be related to the activity of a key enzyme (chalcone
isomerase) involved in phytochemical homeostasis [80,81]. Our study pointed out that
the mineral profile was not significantly affected by the different iodine doses; in contrast,
the SwE treatments significantly increased N, K, and Mg concentrations in strawberry
fruits. Several authors [19,31] discovered no significant variations in the mineral profile
of I-biofortified vegetables. Our results agree with the findings of La Bella et al. [12] who
observed higher concentrations of N, P, K, and Mg when administering SwE. Furthermore,
Rouphael et al. [73] observed an increase in K and Mg concentrations in spinach plants
treated with SwE. However, our results are not in agreement with those of Colla et al. [82]
on tomatoes and Soppelsa et al. [38] on strawberries who observed no significant effect of
SwE treatments on the mineral profile. We found that the fruit I concentration increased up
to a dose of 300 mg I L−1. Concomitantly, the application of SwE improved the I content in
all treated plants. This results are confirmed by various authors [19,29,70,76] who, carrying
out I-based biofortification treatments on various species, found an increase in the element
concentration up to an optimal dose above which the I content decreased (overdose). It has
been observed that plants can absorb iodine from both epigeous and hypogeum organs [83].
Budke et al. [21] achieved an increase in iodine content, applying the element both through
foliar treatments and soil applications. In a study on eggplant, Consentino et al. [31]
obtained similar results. As noted by Lawson et al. [66], leaf treatments appear to improve
iodine accumulation in plant tissues compared to radical administration.

4. Materials and Methods
4.1. Strawberry Materials and Trial Conditions

The experiment was performed throughout the year 2021–2022 growing period near
Marsala, in an experimental field of the Department of Agricultural, Food, and Forest Sci-
ences of Palermo (SAAF). Strawberry (Fragaria × ananassa “Savana”) plants were planted
at a density of 8 plants m−2, following the traditional fall–winter–spring cultivation cycle
conventionally adopted in Sicily [84]. The study was carried out under multiple tunnels
covered with polyethylene. The soil hosting the experiment was solarized with polyethy-
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lene (0.05 mm) during the 2022 summer months (75 days of solarization in total). The
film was kept for the terrain mulching. The soil originated from the conversion of the
characteristically fertile Sicilian “sciare” soils (less than 80% of sand, 8.8% of limestone, rich
in K2O, phosphorous, and nitrogen). Maximum and minimum temperatures values inside
the tunnel were recorded (Figure 6).
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4.2. Study Set-Up and Experimental Design

The biostimulant treatments were supplied to plants weekly starting seven days
after transplanting using Kelpstar® (Mugavero fertilizers, Palermo, Italy), an extract of
Ecklonia maxima obtained via a cold micronization process, which prevents the degrada-
tion of seaweed bioactive components. They included organic N (1%), organic C (10%),
hormones (11 mg L−1 of auxin and 0.03 mg L−1 of cytokinin), and organic substances
(weight < 50 kDa) (30%). I was supplied via foliar spray using potassium iodate (purity
99.5%). I biofortification began 10 days after transplanting (DAT) and was repeated ev-
ery 10 days. For each treatment, 0.5 L m−2 of solution was used. Two dosages of SwE
(0 (as control treatment) or 3 mL L−1 (as recommended dosage)) were combined with four
iodine (I) doses, namely, 0 (control), 100, 300, or 600 mg L−1. Each treatment included
3 replications, and each consisted of 15 plants arranged in a randomized complete block
design (RCBD), for a total of 24 experimental units (2 SwE × 4 I × 3 replicates).

4.3. Measurements and Analysis

Marketable (fruits not affected by malformation or Botrytis) and total fruit yield were
assessed on all plants from November to May (entire production cycle). The dry matter of
fruit was obtained by placing 150 g of fruits at 105 ◦C to constant weigh, and its value was
expressed as percentage.

At the first harvest (58 days after transplanting), strawberry growth parameters were
evaluated. At harvest, the plant visual quality was also noted and recorded using a
9 to 1 scale where 9 is excellent, 7 is good, 5 is fair with marketable fruits, 3 is fair with
unmarketable fruits, and 1 is seriously damaged.

Qualitative analyses were carried out on 10 fruit samples for each replication, be-
longing to the 4th harvest (150 days after transplanting). At the fruit sampling, plants
received twenty SwE applications and fourteen I biofortification treatments. CIElab colour
parameters were measured on the fruit with the use of a Chromameter CR-400 (Minolta
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Corporation, Ltd., Osaka, Japan). A penetrometer (Trsnc, Italy) was employed to mea-
sure fruit firmness. Values were shown as newtons (N). The soluble solids content (SSC)
was appraised on filtered fruit juice with the use of MTD-045nD digital refractometer
(Three-In-One Enterprises Co., Ltd., New Taipei, Taiwan).

4.4. Fruit Composition and Mineral Content

Ascorbic acid (AA) concentration of fruit was estimated with the Reflectometer RQflex10
Reflectoquant (Sigma-Aldrich, Saint Louis, MO, USA) and the Reflectoquant Ascorbic Acid
Test strips. Findings were presented as mg AA 100 g−1 strawberry fresh weight.

The phenolic concentration of fruit was assessed following the method of Slinkard
and Singleton [85]. Results were shown as mg 100−1 g dry weight (DW).

The anthocyanin concentration was measured as reported by Rabino and Mancinelli [86].
The anthocyanin concentration in fruit was expressed as mg of Cya-3-glucoside equivalent
100 g−1 of dry weight.

Fruit N concentration was appraised via the Kjeldahl method. The values were re-
ported as g 100 g−1 DW. The P concentration was determined using the method of Fogg and
Wilkinson [87]. The K concentration was assessed via atomic absorption spectroscopy. Mag-
nesium concentration was determined as suggested by Morand and Gullo [88]. Minerals
were expressed as mg g−1 DW.

The total I concentration in fruits was evaluated via ICP-MS, following the official
methodology (European Standard BS EN 15111:2007). The I concentration was expressed
as mg kg−1 DW.

4.5. Statistical Analysis and Heat Map

For statistics, the SPSS software package version 28 was used (StatSoft, Inc., Chicago,
IL, USA). The influence of the treatments was appraised by two-way analysis of variance
(ANOVA). Means were separated via the Tukey HSD test (p ≤ 0.05).

A color heat map analysis of all productive and qualitative aspects of strawberry
plants in response to SwE applications and I supply was also produced by the web tool
ClustVis https://biit.cs.ut.ee/clustvis/ (accessed on 12 September 2022).

5. Conclusions

Nowadays, improving nutraceutical profiles by maximizing fruit and vegetable yields
and using eco-friendly tools is a major challenge for many researchers. Obtaining products
with a high health value is one of the objectives to be pursued in order to augment the
quality of life and improve the nourishing profile of diets.

In the current research, an E. maxima-based biostimulant application significantly
elicited plant growth, yield, and nutritive and nutraceutical characteristics, as well as fruit
mineral profiles. Concurrently, I-enrichment at the highest doses boosted the ascorbic
acid, phenol, and anthocyanin concentrations. The highest fruit I concentration was
observed by applying 300 mg L−1. Remarkably, our study highlighted that combining
SwE application with I biofortification at a dosage of 100 mg−1 considerably mitigated the
negative effects of I supply. Furthermore, these findings provide additional information on
the interaction between I biofortification and sustainable agronomic practices, concluding
that a reciprocal supply of SwE and I at 100 mg L−1 may proficiently mitigate yield
reduction and, concomitantly, improve strawberry fruit quality.
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