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In this paper, we address the location of locker boxes in the last-mile delivery context under uncertainty
in demand and capacity. The problem is modeled as an extension of the capacitated facility location prob-
lem, in which a fixed number of facilities has to be opened, choosing among a set of potential locations.
Facilities are characterized by a homogeneous capacity, but a capacity reduction may occur with a given
probability. The uncertainty in demand and capacity is incorporated through a set of discrete scenarios.
Each customer can be assigned only to compatible facilities, i.e., to facilities located within a given ra-
dius from the individual location. The goal is to first maximize the total number of customers assigned
to locker boxes, while, in case of a tie on this primary objective, a secondary objective intervenes aiming
at minimizing the average distance covered by customers to reach their assigned locker box. A stochastic
mathematical model as well as three matheuristics are presented. We provide an extensive computational
study in order to analyze the impact of different parameters on the complexity of the problem. The im-
portance of considering uncertainty in input data is discussed through the usage of general stochastic
indicators from the literature as well as of problem specific indicators. A real-world case related to the
City of Turin in Italy is analyzed in detail. The benefit achievable by optimizing locker box locations is
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discussed and a comparison with the current configuration is provided.
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1. Introduction and motivation

E-commerce has experienced a considerable growth during the
last decade, which has been further accelerated by the pandemic
situation that caused long lockdown periods for physical shops.

Online shopping and last-mile delivery of parcels is becoming a
huge business that will continue to grow worldwide by 10% per
year during the coming decade [1-3]|. The numbers concerning
last-mile distribution are astonishing. For example, Amazon has de-
livered 3.5 billion parcels in 2019 and is expected to deliver 6.5
billion by 2022 [4]. In order to face such a record growth, practi-
tioners and researchers are continuously trying to develop pow-
erful optimization tools with the aim of reducing delivery costs
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and increasing the distribution efficiency. In this context, one of
the most studied problems is that of defining least-cost distribu-
tion plans (see, for example, [5-9]).

The huge number of requests needed to be fulfilled every day
makes last-mile delivery a very critical issue for logistics compa-
nies. Barenji et al. [10] reported that, in a last-mile delivery con-
text, distribution can cost up to 40% of the price of a product,
therefore, it is of crucial importance to efficiently plan and orga-
nize delivery operations.

Currently, most of the logistic providers do not allow customers
to select a preferred delivery time slot, but just communicate the
day on which the delivery will be performed. This system, accord-
ing to data reported by Morganti et al. [11], can result in up to
40% of missed deliveries, with a consequent huge impact on de-
livery costs for the companies, who will have to reschedule the
visit to the unserved customers on the following days. To over-
come this relevant issue, alternative delivery systems have been
proposed, such as time window pricing techniques [12-14] or per-
sonalized time slot incentives [15-18]. However, although these de-
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livery systems actually help to reduce the distribution costs, many
operational challenges persist, which make them hardly viable for
companies handling a huge number of requests per day.

A new last-mile delivery concept involves unattended delivery
to shared locations, named locker box stations. These facilities are
generally located in widely accessible sites, such as supermarkets,
refueling stations, train stations, etc. Each facility consists of sev-
eral independent locker boxes and a terminal that manages the
system. Parcels belonging to the same customer can be stored in
the same locker box, if they fit, whereas parcels of different cus-
tomers cannot be packed together. Once the delivery to the locker
box has been performed, the customer receives a notification about
the successful delivery and a pick up code.

Typically, customers have few days to pick up their parcel, af-
ter which it is returned by the logistics provider to a distribution
center, but the advantage is that they have flexible pick up times.
Not all orders are suitable for this delivery option, due to the limi-
tations imposed by the parcel size or value, or by customers’ will-
ingness. Obviously, customers will not accept this delivery option if
the locker boxes are not conveniently accessible for them [7]. Cus-
tomers who reject the use of locker boxes must be served by the
typical home delivery, which is known to be very costly. Hence,
location planning is the key to achieve success in this delivery
model.

In our study, we focus on the strategic/tactical decision level
of locating locker stations. Customers’ locations are assumed to
be known in advance, whereas the specific demand to be served
varies from one day to another. In addition, available capacity is
considered uncertain as a locker box can be temporarily unavail-
able, due to customers not picking up their parcels on time. Since
we are addressing a strategic/tactical decision problem, we assume
that the exact location of customers per day are not known. Hence,
we cannot quantify the routing part, but we know that each cus-
tomer, who cannot be served by locker stations, must be served by
home delivery, and that each additional home delivery to perform,
negatively impacts routing costs. Therefore, our goal is to maximize
the number of customers serviceable by lockers stations.

Also, technical problems or vandalism can represent further
reasons for temporal unavailability. In [19], the authors report that
only 70% of customers pick up their parcels within the first 24
hours after the delivery. They also estimate that, on average, 8% of
the parcels cannot be delivered because of locker box occupancy.
This percentage further increases if we consider reverse flows, in
which customers use locker boxes for returning items to their sell-
ers.

We introduce, thus, the facility location problem (FLP) with un-
certain demand and uncertain capacity availability (FLP-UDUC). To
the best of our knowledge, this problem has never been addressed
before in the literature. The main contributions of this paper can
be summarized as follows:

1. We formally introduce the FLP-UDUC proposing an Integer Pro-
gramming formulation and a hierarchical objective function.

2. We design an efficient and effective matheuristic to address
large-sized instances.

3. We define a consensus search-based matheuristic that can be
generalized to a whole class of two-stages stochastic problems.

4. We present a detailed analysis of the Expected Value of Perfect
Information (EVPI) and of the Value of the Stochatic Solution
(VSS), two stochastic indicators that are commonly used to de-
termine the importance of considering the uncertainty in the
problem under exam.

5. We apply the proposed method to randomly generated in-
stances as well as to a real-world case in the City of Turin, Italy.
Potential benefits and further managerial insights are discussed.
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The paper is organized as follows. Section 2 presents an anal-
ysis of the related literature review. The problem description and
the mathematical formulation are reported in Section 3. Solution
approaches are presented in Section 4, whereas computational re-
sults are discussed and analyzed in Section 5. The consideration of
probability of locker box availability depending on utilization rate
is discussed in Section 5.4. Section 5.5 is devoted to the real-world
case. Finally, conclusions and future developments are reported in
Section 6.

2. Literature review

Last-mile logistics providers try to improve their efficiency and
to increase their market share with respect to their competitors
through expanding their locker stations network and optimizing
their configuration and location [20,21]. For example, Amazon was
committed to install up to 1,000 new digital locker stations in the
United States every month along the last few years [22]. More-
over, the leading delivery company InPost declared it has already
installed more than 3,000 locker stations in the UK and is plan-
ning to increase this number to reach 10,000 stations by 2024 [23].
Moreover, the company intends to expand its network to up to 1
million stations worldwide [24]. Similarly, the DPDHL group is aim-
ing to install at least 12,500 locker stations in Germany by the end
of 2023 [25].

A common challenge faced by all last-mile providers is de-
ciding the location of the locker units. Several studies and sur-
veys highlighted the importance of identifying suitable locker lo-
cations to ensure their attractiveness to a wide range of cus-
tomers [26-31]. Such a problem can be solved following a 2-
phase approach: first, a set of potential sites has to be identi-
fied and then, an appropriate subset of locations can be selected
among the candidate ones. Investigating the first phase is beyond
the scope of this study. However, interested readers can be re-
ferred, for example, to Lagorio and Pinto [32] or to Faugere and
Montreuil [33] who reviewed and analyzed several business mod-
els and real-life experiences and identified the most important
factors influencing the selection of potential locker station sites
(such as availability, accessibility, safety, environmental impact, and
costs).

The second phase consists of solving the FLP, which is by far the
most popular optimization problem, where a subset of locations
has to be selected among the set of potential sites [34,35].

2.1. Deterministic locker location problems

There are several papers addressing the deterministic version of
the locker station location problem in the context of last-mile de-
livery. Wang et al. [36] were the first to consider the viewpoint of a
new delivery provider entering a competitive market. The authors
develop an optimization model based on a maximal coverage loca-
tion formulation for locating its p new lockers. They make use of
public big data and apply the suggested model to a real-life prob-
lem in Singapore.

Deutsch and Golany [37] develop a binary linear model that
determines the location and size of locker stations. Their profit-
maximization objective function involves even a discount term
proposed to incentivize customers to accept the locker box deliv-
ery.

Lee et al. [38] identify a set of candidate sites to install the
locker stations in the city of Incheon in South Korea based on the
concepts of neighbourhood, accessibility, and availability of pub-
lic facilities. Then they combine the GIS technology, the set cov-
ering, and the p-median models within an integrated optimization
framework to optimally locate the lockers.
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Schwerdfeger and Boysen [39] deal with the variant of dynamic
locker stations that can change location over the day. The authors
develop three mixed integer models that minimize the number of
locker stations while satisfying the customers demand. They de-
velop specialized exact approaches and test them using randomly
generated instances.

Lin et al. [40] study the problem of designing a new locker sta-
tion network and develop an exact approach based on a mixed-
integer linear model strengthened by the conditional McCormick
inequalities. Moreover, they develop a suggest-and-improve ap-
proach to solve large-scale instances. They test both the exact and
heuristic methods on randomly generated instances and then on a
real-life case related to a pop-locker alliance in Singapore.

Yang et al. [41] solve the problem with specialized mod-
elling approaches based on the bilevel programming paradigm.
The upper-level model is devoted for solving the location prob-
lem, whereas the lower-level allows each customer to assign the
demand to the locker station, minimizing the pick up cost. The au-
thors develop a genetic algorithm approach, embedded with the
GIS technique, to solve the problem.

Besides the above-mentioned papers, there are some studies
that are predominantly oriented towards real-life applications such
as, for example, Simi¢ et al.[42] and Zheng et al. [43]. In addi-
tion, few other works combine the location problem with related
aspects of the locker station network design. More specifically,
Oliveira and dos Santos [44] combine the problem of locating the
locker boxes with that of defining a multi-shift routing plan. The
authors propose an integer model and develop a Variable Neigh-
borhood Descent-based heuristic to solve the problem. They also
test their approach on known instances appropriately adapted to
fit their context (a very similar integrated problem is discussed
in Veenstra et al. [45], but this latter arises in the field of health
care logistics). Likewise, [46] integrate the facility location with the
problem of assigning the customers to the locker boxes and ap-
ply their model to the locker station network design of the city of
Pamplona in Spain. The model, that minimizes both the location
and the assignment costs, involves even the cost of decommission-
ing some of the existing locker boxes.

2.2. Stochastic locker location problems

The lockers location problem is made challenging when un-
certainty related to the problems parameters is incorporated into
the optimization model. A review on the general facility location
model under uncertain data can be found in Snyder [47], and a
more updated survey has been recently proposed by Suryawanshi
and Dutta [48]. Most of the works available in the literature focus
on considering the demand as an uncertain parameter [49,50]. This
claim is made even more evident in the context of locating locker
units.

More specifically, [51] deal with the problem of selecting the
location of movable parcel locker units under stochastic demands
and propose a robust optimization model that minimizes the total
operating cost. Afterwards, the authors transform the robust for-
mulation into its integer program counterpart and use standard
commercial software packages to solve the resulting deterministic
equivalent problem.

Rabe et al. [52] and Rabe et al. [53] focus on the multi-period
variant of the locker station location problem and develop stochas-
tic simulation-optimization methods for its solution. The stochastic
demand is represented through a small set of distinct scenarios. In
their approach, the number and location of locker units is defined
through exact models whereas the reliability and cost correspond-
ing to each scenario is simulated by the Monte Carlo method. The
experimental results in Rabe et al. [53] discuss a real-life case re-
lated to the city of Dortmund in Germany.
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Kahr [54] deal with locating multi-compartment lockers in the
city of Vienna under a discrete stochastic demand representa-
tion. The location problem is formulated as an integer program
on the basis of which a Benders Decomposition approach is de-
veloped. The problem’s objective is to maximize the expected util-
ity derived from serving the demand. The problem is constrained
by a maximum number of lockers to be installed due to budget
restrictions.

Unlike all the above-mentioned works, in this paper, we deal
not only with the uncertainty in customers demand but also in the
locker box availability. To the best of our knowledge, this is the
first study that considers both these features simultaneously.

2.3. Facility location problems with capacity unavailabilities

For the sake of completeness, it is worth summarizing papers
covering stochastic FLP with capacity unavailabilities due to dis-
ruptions. However, none of these studies is related to the employ-
ment of lockers for last-mile delivery. Most of these articles arise
either in the context of military applications [55], emergency fa-
cility location for disaster preparedness [56], or in resilient supply
chain management [57]. The disruption is modelled in these cases
through the probability of facilities availability, i.e., the facility can
be fully operative with a probability p or is completely unavailable
with probability 1 — p.

Partial facility disruption, in which a facility can result to be
still available but with a lower capacity, has also been investigated.
Rohaninejad et al. [58] consider a probability of full or partial fa-
cility capacity failure in a multi-echelon network. In their prob-
lem, the authors allow to increase facility capacity, with an addi-
tional cost, in order to mitigate the effect of partial capacity fail-
ure, while in our case, capacity cannot be modified. Florez et al.
[59] study a robust humanitarian facility location in which the ca-
pacity of each facility is uncertain and may vary between a mini-
mum and a maximum value. The most related paper to our study
is [60], who consider that one or more facilities can be partially
operative and apply their approach to facility fortification prob-
lems under uncertainties. However, there are some substantial dif-
ferences with respect to our study. First, [60] formulate the prob-
lem as a robust optimization approach rather than a stochastic
model. Also, unlike our work, their goal is to minimize the to-
tal costs, given by the sum of facilities to be opened, customers-
facilities assignment, and the cost of not satisfying part of the de-
mand. Unknown facility capacity availability has been addressed
also in Ulmer and Streng [61], where the authors study the prob-
lem of same-day delivery with pick-up stations. They address a
decision problem arising at the operational level. A set of cus-
tomer requests dynamically arrives and the company has to de-
cide whether to accept or reject the request and to which pick-up
station to deliver the order. The time incurring between the de-
livery of the order to the station and the pick-up of the order by
the customer, is considered stochastic and it impacts the available
capacity at the station. Although this problem shows some sim-
ilarity to ours, the two problems are clearly different. Our prob-
lem arises on the strategic/tactical level and involves both facil-
ity location and assignment decisions, while the problem tackled
in Ulmer and Streng [61] is on the operational level, in a dy-
namic setting, and only deals with the assignment decision. Capac-
ity uncertainty is also experienced in different humanitarian logis-
tics. In these cases, the capacity of a facility is the quantity of re-
source it can supply to the population. This quantity may be not
known in advance, such as in the case of blood and medicines
donations, since it depends on donors availability which cannot
be controlled by the organization, being based on a voluntary ac-
tion. However, these problems are very different respect to ours,
in which instead, the maximum capacity is known, but a capac-
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Table 1
Summary of the related contributions.
STOCHAST. LOCKERS MODELING SOLUTION

ARTICLE DEM. CAP. LOCATION APPROACH APPROACH CASE
[36] J max. cov. realloc. constr. Singapore
[37] J IP exact Toronto
[38] Vv set cov.

p-median exact Incheon
[39] J MILP exact
[40] v MILP exact/heuristic Singapore
[41] Vv bilevel progr.  Genetic Algorithms Changsha
[44] v P VNS
[45] Vv MILP exact/heuristic Netherlands
[46] Vv MILP simul.-opt. Pamplona
[51] J J P robust opt.
[52] Vv J P simul.-opt. Dortmund
[53] N N P simul.-opt. Dortmund
[54] J Vv P Benders Decomp. Vienna
[58] J J MILP Benders Decomp.

samp. avg. approx.

[59] Vv Vv IP stoch. multi-scen. Peru
[60] J J robust opt. column-constr. gen.
This article ./ Vv Vv IP matheur. Turin

ity reduction can occur. For this reason, we do not explicitly cover
this topic in our literature review but we refer interested readers
to Donmez et al. [62].

On the basis of the above analysis and the overview of contri-
butions that we report in Table 1, it becomes obvious that this is
the first study dealing with the stochastic FLP while incorporating
the uncertainty not only in customer demands, but also in avail-
able capacity. We believe that our study closes a relevant gap and
brings research on locker stations closer to real-life settings.

3. Problem definition and Mathematical Formulation
3.1. Problem Definition

The problem addressed in this work is a strategic/tactical prob-
lem, where the goal is to determine the optimal location for a
fixed number of homogeneous lockers containing the same num-
ber of locker boxes. The decision is based on forecasts of future
customers’ demand and uncertain capacity availability. Customers
can be accepted, and assigned to one of the lockers within a max-
imum radius, or can be rejected. The overall goal is to first maxi-
mize the number of customers accepted, and then, in case of a tie
on this primary objective, to minimize the average travel distance
between a customer and the locker to which it has been assigned.
Available capacity is considered uncertain as a locker box can be
temporarily unavailable, due to, e.g., customers not picking up their
parcels on time or due to technical problems or vandalism acts. To
represent the two sources of uncertainty we consider a set of de-
mand scenarios and a set of capacity scenarios. We evaluate all the
possible combinations. Each customer belongs to one and only one
demand scenario, which means that demand scenarios are disjoint.
All the customers are evaluated in all the capacity scenarios. For
each demand and capacity scenario combination, we have to as-
sign customers to lockers, trying to maximize the number of cus-
tomers served, while respecting the available capacity. The novel
aspect of this problem, with respect to a classical stochastic facil-
ity location, is twofold. Firstly, we consider two sources of uncer-
tainty: customers’ demand and facilities’ available capacity, while
in the classical problem only uncertainty on customers’ demand
is handled. Secondly, we use a hierarchical function, in which the
primary goal is to maximize the served customers across all the
scenarios, while the secondary one aims at minimizing the aver-
age travel distance between a customer and the facility to which

it has been assigned. The classical problem, instead, deals with a
single objective.

In Figure 1 we depict, for the same customer scenario, the
customer-assignment in two different capacity scenarios (a and b).
The instance contains 22 customers, represented by small blue cir-
cles, and 5 locker locations, (A, B, C, D, and E). Among those 5 loca-
tions (facilities), 3 have to be selected. Open facilities are depicted
in green, whereas closed ones are depicted in red. Near each facil-
ity we report the available capacity in the specific scenario. In the
first scenario, available capacity allows to assign all the customers
to their nearest facility. Instead, in the second one, a capacity re-
duction occur on facility E. Hence capacity is reduced from 10 to 8.
Since the numbers of customers, for which E was the nearest facil-
ity, is 10, two of them have been allocated to D. The two customers
which have been reallocated are those with the lowest difference
of distance from D and from E. This solution implies the minimum
increment of averaged traveled distance, and therefore it is prefer-
able with respect to the others, according to the secondary objec-
tive. In fact, the primary objective is not affected by any allocation
change, but only by changes in the acceptance/rejection decisions.
Facility A also experiences a capacity reduction from 9 to 6. This
means that two of the 8 customers previously assigned to it, need
to be reallocated. Unfortunately, none of those customers can be
assigned to another open facility, since both D and E are too far
from them. Therefore, two customers must be rejected in scenario
b. The rejected customers are the two farthest from A. This, in fact,
reduces the average traveled distance for customers. Any other so-
lution, in which another pair of customers, previously assigned to
A, are rejected, would show the same primary objective value, but
a worse value for the secondary objective, and therefore, it would
be suboptimal. Rejected customers are depicted in the figure with
a dark-red circle. Note that, while in the depicted example the op-
timal solution can be reached with a very small and straight re-
allocation, in other cases complex reassignment chains could be
needed, potentially involving all the open facilities.

In the following we provide a formal description of the prob-
lem and introduce the notation used in the mathematical formula-
tion. The problem aims at determining the best location for a fixed
number of locker stations, P, chosen among a set of candidate loca-
tions J. Each locker station is composed of C locker boxes. A set of
demand scenarios S is considered. In each scenario s, where s € S,
a set of potential customers I° out of the set of all customers I has
to be served. All the demand scenarios are disjoint, meaning that
each customer belongs to one and only one scenario. Note that this
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Fig. 1. An illustrative example of customer assignments in two different capacity scenarios.

does not prevent having customers sharing exactly the same lo-
cation. It only means that scenarios are uncorrelated among each
other, i.e.,, we do not have customers simultaneously belonging to
several scenarios. Consequently, allocation decisions in one sce-
nario do not impact allocation decisions in other scenarios, while
location decisions impact all the allocation decisions in the differ-
ent scenarios. A customer may be accepted or rejected. If accepted,
it must be assigned to a compatible locker station, j, where j €.
Only locker stations located within a radius p from the customer’s
delivery address are considered as compatible. We indicate with
¢;; the compatibility between customer i (i € I) and a locker station
Jj (¢ij=1 indicates that they are compatible and ¢;;=0 that they are
not).

The number of customers assigned to a locker station, within
the same demand scenario, cannot exceed its capacity. A set of ca-
pacity reduction scenarios Q2 (w € 2) is defined. In each scenario,
the capacity of each locker station is reduced by a quantity 8;”
that represents a temporal unavailability of the capacity of a set of
locker boxes. The primary objective of the problem is to determine
the locker station locations which maximize the average number of
customers served by locker box delivery, over all the demand and
capacity availability scenarios. A secondary objective, which inter-
venes only in case of a tie, aims at minimizing the average travel
distance from customers’ locations to the locker stations to which
the customers have been assigned.

3.2. Mathematical Formulation

We introduce the following sets of decision variables exploited
in the mathematical model.

. Yl‘j’ binary variable indicating whether customer i is assigned
to facility j in scenario w or not

e Z;: binary variable indicating whether a locker station is placed
in location j or not

The problem is modeled as a two-stage stochastic model, where
the Z; are the first-stage decision variables while the Yﬁ) are asso-
ciated to second-stage decisions, that depend on the specific sce-
nario that materialized. The mathematical model can be formu-
lated as follows.

dmin 1
max )22 W+ 2 D0 5 Y gy M
weQ iel jef we2 iel je
D YP<C-8Y YoeQ VseSVje] (2)

iels

Y Y <1 Viel VoeQ (3)
Jjel

Yl.jf’=0 YoeQ V(iel je]l¢i;=0) (4)
Yo <Qlz; Vel (5)
we iel

Sz=p (6)
Jjel

Zie{0,1} VjeJ (7)
Y9 (0,1} VielVje] VoeQ (8)

The hierarchical objective function is reported in (1). It primar-
ily aims at maximizing the number of customers assigned to locker
stations, and secondly, to minimize the average distance covered
by a customer to pick up her parcel. The secondary objective is for-
mulated such that it can assume only values between 0 and 1. In
fact, for each served customer, i, we compute the ratio between the
potential minimum distance (d,;;,) between the customer and any
locker station and the actual distance (d;;) covered by customer i
to reach locker j, i.e. the one she was assigned to. Note that, in
case of d,;; = 0, we automatically set d,;;;, to be 50 meters. Other-
wise, the secondary objective would be equal to 0 for all solutions.
For a similar reason, very small values of d,;; (i.e.,, < 50 meters),
are rounded to 50 meters. Given the above assumption, the ratio
between dp;; and d;; can only take values between 0 and 1. It can
be 1 only if d;; and d;, coincide, and it can never be equal to
0. We also exclude here the special case in which d;; =0, that is
locker station j is installed in the same location as customer i).
Since each ratio is lower or equal to 1, and each customer can be
assigned to at most one locker station in each capacity scenario w,
the sum of the ratio in the secondary objective cannot be larger
than the number of customers multiplied by the number of capac-
ity scenarios, |I||€2|. Consequently, the second term of the objective
function is always between 0 and 1, while the primary objective is
always an integer number. Thus, the secondary objective only in-
tervenes in case of a tie on the primary objective. In other words,
it allows us to further discern among the set of solutions that are
optimal for the primary objective, selecting the one (or the subset
of them) with the highest value for the secondary objective.
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In our specific case, the primary goal is company-oriented. In
fact, it aims at maximizing the number of customers serviced by
locker box delivery. The secondary goal, however, is customer-
oriented, since it aims at minimizing the average travel distance.
Such hierarchical objective functions are particularly useful for
multi-objective optimization problems in which a ranking of the
objectives’ priority is known [63,64]. The role of the secondary ob-
jective is to help us to further distinguish among solutions hav-
ing the same primary objective value. This is particularly useful in
problems with a primary objective covering only discrete values,
which might lead to a large amount of equal solutions. One can
argue that the importance of the second objective is limited, since
the average travel distance will be small due to compatibility ma-
trix anyway. However, if we compare two solutions serving exactly
the same number of customers, we should prefer the one with the
shorter travel distance, even if the difference is rather small. Note
that our approach is not a classical weighted sum objective, where
a large gain on one objective can balance a small loss on the other
one. In fact, in our case, solutions having a better value on the pri-
mary objective will be always preferred, whichever is the value of
the secondary one.

Constraints (2) ensure that locker stations’ available capacity is
respected in all demand and capacity scenarios. A customer can be
assigned to at most one locker station in each capacity scenario,
as expressed in constraints (3). Furthermore, customers can be as-
signed only to compatible locations, as ensured by constraints (4),
only among those in which a locker station has been installed
(constraints (5)). The compatibility among customers and lockers
is computed in a preprocessing phase, in which we assign value
®;; =1 if the distance between customer i and locker j is lower
than the maximum allowed, and ®;; =0 otherwise. The assign-
ment variables related to an infeasible matching (where ®;; =0),
are forced to take value O due to constraints (4). Finally, the
number of locker stations to be installed, which is known to the
decision maker in advance to be equal to P, is ensured by con-
straints (6). All the variables involved in the model are binary. The
problem is NP-hard since it can be seen as an extension of the fa-
cility location problem which was proven to be NP-hard itself.

4. A matheuristic framework for the FLP-UDUC

As only small instances of the presented problem can be solved
to optimality within acceptable amount of time (see Section 5), we
propose a new matheuristic framework for solving large and chal-
lenging instances. In this framework we initially select a set of P
facilities to be added to an initial core. Keeping fixed the facilities
to open, the decision problem turns into an assignment problem,
in which each combination of demand and capacity scenario can
be solved separately. The optimal solution for the global problem
is then obtained merging the optimal solutions of each single com-
bined scenario, where the current best solution is. Then, all the fa-
cilities belonging to the core are marked, while all the others are
unmarked. After this preliminary phase, a local search procedure
is run. At each iteration, one of the unmarked facilities is added to
the core and it is marked as already processed. The resulting re-
stricted optimization problem is solved by running the model with
a commercial MIP solver. This subproblem is easier to solve with
respect to the original one, since we have to choose to open P fa-
cilities out of P+ 1. The non-opened facility is then removed from
the core. If the solution obtained so far is better then the current
best, then it is kept as current best. In this case, all the facilities
belonging to the core are marked and all the others are unmarked.
The procedure terminates when all the facilities are marked, i.e.
when all the possible single insertions in the core have been tested
without obtaining any improvement. This means that no further
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improvements can be achieved with the local search procedure. A
flowchart depicting the procedure is reported in Figure 2.

The performance of the algorithm strictly depends on two key
algorithmic decisions: 1) How to select the initial core and 2)
which criteria to use for choosing the next facility to be processed
(i.e. to be added to the core). We designed a version of this algo-
rithm, named Consensus Search (CS), which exploits ad hoc strate-
gies, for both 1) and 2), specifically tailored for this problem, and
compare it with two versions in which more classical strategies are
applied. Since these standard strategies yield to a premature con-
vergence toward local minima, we embed them in a metaheuristic
framework, equipped with diversification mechanisms, such as It-
erated Local Search (ILS) and Variable Neighborhood Search (VNS).
Note that this diversification is not necessary if the newly proposed
framework is used. The three different version of the algorithms
(CS, ILS, and VNS) are described in detail in the following.

4.1. The consensus search

In this section, we describe a new framework based on the idea
of searching for consensus among scenarios. For the sake of consis-
tency with existing literature, we denote a potential location of a
locker station as facility. Each facility is considered open if a locker
is installed therein, and closed otherwise. For the sake of clarity,
we first introduce three key concepts that are the basis for our
newly proposed method.

o Score: defined as the total number of scenarios in which facility
j is open, denoted as p;.

o Interchangeability: represents a measure of the proximity of fa-
cility j to the nearest other facility in any specific scenario w,
denoted as )/j“’.

o Attractiveness: is a measure of the importance of opening facil-
ity j in scenario w, that we denote as oc;”.

The algorithm starts by solving each capacity scenario w sepa-
rately to obtain an ideal set of facilities to open for specific scenario
(F»). We introduce a parameter crj‘”, which is equal to 1 if j belongs
to F, and O otherwise. Combining all the ideal sets may yield an
infeasible global solution since more facilities than the maximum
allowed number, have to be opened. If this is not the case, we al-
ready have a global consensus and the solution, in terms of set of
locations selected, is optimal. Otherwise, we search for consensus
among scenarios.

Besides computing the score p; for each facility j, we also cal-
culate the isolation degree, which is a normalized parameter taking
a value between 0 and 1. The higher the shorter distance between
j and any other facility, the greater the value of isolation. This is
due to the fact that solutions with a high degree of isolation are
most difficult to replace and therefore, they are more likely to stay
in the global optimal solution.

Additionally, we use a normalized value of the interchangeabil-
ity for each facility in each scenario w. The interchangeability pa-
rameter yj“’ can assume values between 0 and 1. If j belongs to

F,, yj“) is set equal to 0, otherwise it is fixed equal to dmin/&;”,

where d~;" = min;d;. We also define the attractiveness of facility
Jj in scenario w as a;" = Gj‘" + yj‘”. We then create a set of can-
didate facilities A®, which contains all the facilities ordered by a
non-increasing value of a;".

The role of the interchangeability and attractiveness parameters
is crucial in the success of the algorithm. They both help to better
rank the alternatives, avoiding ties among two or more of them,
which would render the ranking, and consequently the selection
of the alternatives, almost random.

To generate a first feasible solution S°, we create an initial core
of facilities to open, picking the P facilities with the highest score.
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SELECT AN INITIAL CORE OF P FACILITIES TO OPEN

l
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SAVE IT AS CURRENT BEST AND UNMARK ALL THE FACILITIES NOT IN THE CORE }7

Fig. 2. Flowchart of the matheuristic framework.

We solve the original problem by opening only the facilities in the
initial core. The objective function value associated to S° is denoted
as 0°. The improvement phase then starts and in each iteration, we
compute the level of satisfaction for each scenario, H® as the sum
of customers served in that scenario minus the average percentage
increment of distance between a customer location and the facility
to which it has been assigned, with respect to the nearest facility.
The scenario with the lowest satisfaction, denoted as wworst, is fur-
ther investigated. The first facility in the «-based preference list,
which has not been marked as tested yet, is marked as tested and
is added to the core. The problem is solved again with the updated
core. Since most P facilities can be used but the core contains P + 1
facilities, one of them will be discarded by the model. This facility
is removed from the core. Every time an improvement is found,
all the tested facilities are marked again as untested. The algo-
rithm terminates after a maximum number of iterations (itermax)
is reached in case all the facilities, not belonging to the current
core, are already marked as tested (i.e., if no further improvement,
according to our search strategy, is possible). The pseudocode of
the CS matheuristic is reported in Algorithm 1.

The concept of consensus searching is not entirely new in the
literature, since it has been introduced in Bent and Van Hentenryck
[65]. Nevertheless, the way in which this concept is applied here
represents one of the contributions of this paper. In [65], the au-
thors propose a general solution framework for dynamic stochas-
tic vehicle routing problem. At each timestep in which a decision
must be made, they generate a set of sampling scenarios, repre-
senting future requests, optimize each scenario separately and then
make the decision which resulted to be the best performing on the
largest number of scenarios. The same algorithm has been general-
ized to all online stochastic problems in Van Hentenryck and Bent
[66].

The main drawback of this strategy is that with a high proba-
bility, a tie could occur among two or more alternatives, and the
method is not able to further discern among them. Furthermore,
the method search for a global consensus, without looking at the
local consensus. This way, an alternative which is very convenient
in the 60% of the sampled scenarios, but very inconvenient for
the other 40%, would be always preferred respect to another alter-
native which is quite convenient in all scenarios. Differently from
them, in our consensus based matheuristic we first look for global

Algorithm 1 CS pseudocode

Require: 0°;
Require: set of facilities open in the initial solution (core);
Require: for each scenario w: O, (ideal objective function’s value
for scenario w);
Require: for each facility j: p; (score of facility j);
Require: a}”;
mark all the facilities as untested
solve the problem opening all the facilities belonging to the core
best < 0°
compute satisfaction of each scenario H®
Wworst = ArgMing,cqoH®
candidate < the first facility within the list of untested facilities
ordered by a;"w"’“
add candidate to the core
iter < 1
while iter < itermax and at least one facility is marked as
untested do
oOiter — solve the problem allowing to open only facilities be-
longing to core
compute the happiness of each scenario H®
Wworst = Argming,.qH®
candidate <« the first facility scrolling the list of untested fa-
cilities ordered by o/®worst
add candidate to the core
iter < iter +1
if Ote" > best then
best < oiter
mark all facilities as untested
remove from the core the facility which has not been
opened
else
remove candidate from the core
mark candidate as tested
end if
end while
return best
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consensus and then, starting from it, we try to increase the lo-
cal one. Moreover, we introduce two parameters, interchangeability
and attractiveness, which helps us ranking alternatives which ob-
tained a tie in the consensus score.

The concept of consensus is studied also in Crainic et al. [67],
in which the authors present a progressive-hedging based meta-
heuristic for stochastic network design. This method starts from
an overall design based on all the scenarios and iteratively mod-
ify variables selection fixed costs in the objective function in or-
der to push local design to converge to an overall one, achieving a
better global consensus. Although this method share some similar-
ity to our, the two methods present strong differences. In [67], the
method act on the local consensus, trying to perturb fixed costs in
order to derive a stronger global consensus, while our algorithm
works exactly in the opposite direction, aiming at modifying the
global solutions, exploiting information coming from the local so-
lutions of the scenarios with the lower degree of consensus, also
listening to voices outside the choir.

4.2. Iterated Local Search

ILS is a very well known metaheuristic framework for combi-
natorial optimization problems [68]. The underlying idea is that a
local search mechanism is run several times starting from differ-
ent initial solutions. Local search is a powerful tool to explore so-
lutions spaces but its main flaw is that it tends to be trapped in
local optima. To overcome this issue, a re-start at another initial
solution can be conducted. At the end of the process, a set of lo-
cal - and possibly the global - optima are available. The selection
of the starting solution plays a crucial role. On the one hand, it is
important to choose a solution sufficiently far from the current lo-
cal optimum to allow to avoid being trapped in a local optimum.
On the other hand, it should not be too from a region which has
been shown to be promising. Therefore, a diversification mecha-
nism used to generate new starting solutions plays a crucial role
in the performance of the algorithm. If the local search mechanism
is carried out by means of an exact approach, the ILS becomes a
matheuristic, as in our case.

In the following, we describe the ILS we use to solve the FLP-
UDUC. First, we compute an initial solution following a classical
procedure for FLP, where we compute for each potential location
the number of customers that can be covered by it. This set of
customers is denoted as Cov; and includes all customers within a
compatibility radius j. We then open the P facilities with the high-
est value of Cov; and add them to the core. The optimal solution
obtained by solving the model presented in Section 3.2 with the
fixed set of open facilities is then kept as initial solution S° with a
corresponding objective function value 09,

Afterwards, a classical local search operator is used. Here we
consider as neighborhood all the solutions that can be obtained by
changing only one facility to open. The neighborhood is explored
following a first improvement strategy. The procedure works as fol-
lows: In each iteration, a candidate facility is selected and added
to the current core. Then, the model is solved, allowing to open
only facility belonging to the core. If the solution obtained is bet-
ter than the current best, it is kept as current best, the neighbor-
hood exploration is restarted, and the facility belonging to the core
and not opened in the new optimal solution is removed from the
core. Otherwise, the candidate facility is removed from the core.
Once no further improvements can be achieved, a perturbation is
applied, according to which two facilities are randomly removed
from the core and substituted with two other randomly selected
facilities from the set of currently closed ones. The overall proce-
dure is repeated npere times.
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4.3. Variable Neighborhood Search

VNS is a very broadly used metaheurstic framework for combi-
natorial optimization problems. After its introduction in 1997 [69],
VNS has been successfully applied to a wide range of problems.
The core idea of this method consists of a systematic change of
neighborhoods within a local search procedure. Although several
different versions have been proposed in the literature, the most
common practice is to exploit concentric neighborhoods of increas-
ing size. Every time a local optimum is reached, a random solu-
tion is generated in the new neighborhood and the local search
is restarted. When all the neighborhoods are tested without fur-
ther improvement, the procedure is terminated. We design a VNS
based algorithm specific for the FLP-UDUC. It starts from an initial
core computed in the same way as in the case of the ILS presented
previously. The corresponding objective function’s value is again
denoted as 0°. A set of neighborhoods A with a size of Nmax is
defined, where the nt" neighborhood consists of changing n ele-
ments of the core. Neighborhoods are explored in a size-increasing
order following a first improvement strategy. At each step, a so-
lution is randomly selected in the current neighborhood and the
local search is applied. Every time a local optimum is reached, the
next neighborhood in the list is analyzed. The local search operator
is the same as in the ILS.

The CS mathueristics introduces two main aspects of novelty.
The first one concerns the construction of the initial core of fa-
cilities to open, which is determined by a mechanism aiming at
achieving consensus among the different scenarios. Although the
idea of consensus search among scenarios is not completely new
(see [70]), it so far has been applied by simply counting the num-
ber of scenarios in which a variable is active and then using the
variables with the highest score. Conversely, we exploit a more
complex mechanism to evaluate the score of each facility, which
also takes into account the so called isolation degree. This yields to
fairer consensus decisions since the method does not consider only
the most preferred facilities but also try to take into account that
facilities within short distance can be easily interchangeable. This
way, the method tries to propose valid alternatives for the scenar-
ios for which the preferred facilities have not been included in the
initial core, increasing, thus, the global consensus. The second ele-
ment of novelty is the strategy according to which the local search
neighborhood is explored. In fact, CS, identifies the worst scenario
(i.e., the one which has been penalized the most by the consen-
sus achievement mechanism), and tries to increase its consensus
by inserting in the core the most preferred facility for that scenario
(among those who are not yet part of the core and who have not
been analyzed yet). This exploration strategy aims at converging
towards near-optimal solutions more quickly. This is in contrast to
classical exploration strategies in which facilities are analyzed in a
predetermined sequential order, which does not take into account
the level of satisfaction of the scenarios in the current solution.
Furthermore, a smart neighborhood exploration strategy, such the
one we propose, allows to avoid a premature convergence towards
local minima. As it is shown in the computational study (Section 5,
the exploration strategy is actually so successful in avoiding local
minima, such that CS does not need any diversification mechanism,
which, instead, are necessary for both ILS and VNS to avoid pre-
mature convergence towards low quality solutions. This makes the
CS not only more effective than ILS and VNS but also consider-
ably more efficient. Note that, while we suggest to start from the
worst scenario, the proposed framework is flexible enough to al-
low to pick other scenarios. Concluding, although the CS algorithm
seems very easy and simple at first sight, it is smarter than clas-
sical approaches. Its apparent simplicity is therefore a strength of
the algorithm, since it makes it faster without loosing in accuracy,
following the paradigm of less is more (see [71] and [72]).
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5. Computational study

Our computational experiments analyze several aspects. First,
we want to analyze how instances’ parameters affect the difficulty
of the problem and how they impact the computational times re-
quired to solve it to optimality. Second, in order to assess the per-
formance of the newly proposed CS, we compare it against ILS and
VNS, and the performance of a solver applied to the exact model.
Third, we analyze the importance of considering uncertainty in this
problem, rather than solving its deterministic counterpart. This is
performed by calculating problem specific indicators as well as two
well known uncertainty indicators in this problem: (1) the Ex-
pected Value of Perfect Information (EVPI) and (2) the Value of
the Stochastic Solution (VSS). Fourth, we conduct experiments re-
garding unavailability probabilities. Finally, we present experiments
based on real-world data from the city of Turin.

For the first analysis, we randomly generate 20 sets of instances
(S1-S20), each one composed of 10 instances. The first set, S1, cov-
ers (i) 5 demand scenarios with 20 customers each, (ii) 5 capac-
ity scenarios, (iii) 5 facilities (locker stations) with 5 locker boxes
each to be selected among 10 candidates, and (iv) an unavailability
probability of 10% for each locker box. Sets S2 and S3 are gener-
ated based on S1, but with unavailability probability increased to
20% and 30%, respectively. Sets S4 and S5 are also based on S1 but
with increased number of potential locations (20 and 30, respec-
tively). S6 and S7 are based on S5. Hence, the number of potential
locations is 30, but the number of facilities to open is increased to
10 and 15, respectively. In S8, S9, and S10 we consider the same
parameters as in S1, but we increase the number of demand sce-
narios to 10, 20, and 50, respectively. In S11 and S12, we also in-
crease the number of scenarios to 10 and 20, but we consider a
higher number of potential locations (30), such as in S5. In S13 and
S$14, we again start from S5, but we increase the number of capac-
ity scenarios to 10 and 20. In S15, S16, S17, and S18, we consider
an increment of the number of customers per scenarios, keeping
the number of scenarios fixed. In S15, S16, and S17, this number
is increased to 40, 100, and 200, respectively. However, the capac-
ity of the facilities in terms of number of locker boxes (5 locker
boxes each) is kept constant. In S18, we consider 200 customers
per demand scenario, but with a larger capacity at the facilities
(50 locker boxes). Finally, in S19 and S20, we start from S5 (30 po-
tential locations), and we simultaneously increase the number of
customers per scenario and the capacity of locker stations. Namely,
we have 100 customers and a capacity of 25 for S19, and 200 cus-
tomers and a capacity of 50 for S20.

To analyze the impact of each single instance’s parameter on
the computational times, we keep all the other parameters to very
small values, letting vary only the one under study. This allows to
exclude mutual interactions among parameters which might yield
to incorrect interpretations. Once we can determine the most in-
fluencing parameter, we perform further experiments by assuming
a large value for this parameter and vary the other parameters one
at a time. The aim of this analysis is to evaluate the impact of pa-
rameters variation on instances which are already challenging. The
computational study (see Section 5) reveals that some parameters
that seem to be not influential if analyzed singularly, turn out to
have a considerable impact on already challenging instances.

To improve readability of the paper, we resume the instance
characteristics for each set in Table 2. All data including detailed
results are publicly available in Mancini et al. [73].

5.1. Impact of instance parameters
Averaged results, obtained by solving the proposed mathemat-

ical model (Section 3.2) by means of a commercial solver with a
time limit of 3,600 seconds are reported in Table 3.
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Table 2

Overview of instance set characteristics: number of demand scenarios (#DS), num-
ber of capacity scenarios (#CS), number of customers in each demand scenario
(#CUST), number of locker facilities to open (#F), number of potential facility
locations (#PL), facility capacity (C), and probability of locker box unavailability
(P_UNAV). The latter is given as percentage value.

Set #DS #CS #CUST #F #PL C P_UNAV
S1 5 5 20 5 10 5 10
S2 5 5 20 5 10 5 20
S3 5 5 20 5 10 5 30
S4 5 5 20 5 20 5 10
S5 5 5 20 5 30 5 10
S6 5 5 20 10 30 5 10
S7 5 5 20 15 30 5 10
S8 10 5 20 5 10 5 10
S9 20 5 20 5 10 5 10
S10 50 5 20 5 10 5 10
S11 10 5 20 5 30 5 10
S12 20 5 20 5 30 5 10
S13 5 10 20 5 30 5 10
S14 5 20 20 5 30 5 10
S15 5 5 40 5 10 5 10
S16 5 5 100 5 10 5 10
S17 5 5 200 5 10 5 10
S18 5 5 200 5 10 50 10
S19 5 5 100 5 30 25 10
S20 5 5 200 5 30 50 10
Table 3

Averaged exact results obtained within a time limit of 3,600 seconds. The table
reports average value of the objective function (OF), upper bound (UB), percentage
of customers served (%SERVED), and computational time (time).

Set OF UB %SERVED TIME (SEC.)
S1 462.92 462.92 92.56 222

S2 444.41 444.41 88.86 0.88

S3 421.22 421.23 84.22 0.63

S4 485.92 485.92 97.16 11.75
S5 493.37 493.38 98.66 70.92
S6 499.13 499.14 99.80 0.35

S7 500.08 500.10 100.00 0.20

S8 951.37 951.37 95.13 2.68

S9 1,782.35 1,782.35 89.12 2.82
S10 4,584.43 4,584.47 91.69 54.72
S11 981.99 982.00 98.19 454.01
S12 1,960.83 1,964.25 98.04 1,944.73
S13 987.09 987.82 98.70 816.56
S14 1,951.37 1,958.98 97.57 1,961.33
S15 578.27 578.27 57.82 0.42
S16 580.32 580.32 58.03 0.42
S17 592.91 592.91 59.29 0.60
S18 4,738.24 4,738.24 94.76 39.32
S19 2,458.22 2,477.13 98.33 3,177.33
S20 4,822.92 4,962.31 96.46 3,600.00

The objective of these experiments is to analyze the impact of
instance features on computational times. The first analysis con-
cerns the impact of the locker box unavailability probability. By
comparing S1, S2, and S3, it can be seen that this parameter does
not significantly influence computational times, as it always re-
mains very short. Indeed, it even tends to decrease with the in-
crease of the unavailability probability. It is also interesting to note
that the number of customers served does not linearly decrease
with the availability of locker boxes. Even in set S3, where the
probability of unavailability is 30%, 84.22% of customers can be
served.

The number of potential locations has a strong impact on com-
putational times. While with 10 potential locations, the computa-
tional time is very low (see S1-S3 in Table 3), it rises considerably
when the number of potential locations increases (S4 and S5). Ob-
viously, the higher the number of potential locations, the higher is
the percentage of customers who can be served.
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Table 4
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Comparison of CS against MODEL, ILS, and VNS on challenging instances. We report average
values for the objective value of MODEL (OF) and run times (TIME). For CS, ILS, and VNS the
average gaps of the objective value compared against MODEL are also reported (negative gaps
indicate better solutions compared to MODEL).

SET  MODEL cs ILS VNS

OF TIME GAP TIME GAP TIME GAP TIME
S5 49337 70.92 0.0% 2099  0.0% 2411 -02%  26.38
S11 981.99 454.01 -0.1% 4089  -02% 14330 -02%  143.16
S12 1,960.83 1,94472 -0.1% 8039  -0.1% 37167 -0.1% 367.54
S13 245822 3,177.33 -02% 87.68  -02% 34342 -02% 38449
S14 482292  3,600.00 1.3% 129.74 12% 65826 1.1%  713.20
S19  987.09 816.56 0.0% 5612  0.0% 128.12  0.0% 136.95
S20 1,951.37 1,961.41 -0.1% 169.35 -0.2% 360.89 -0.2% 395.43
AVG 1950.83 1,717.85 0.11% 8356  0.07% 277.14 0.03% 298.28

If, while keeping fixed the number of potential locations, we in- Table 5

crease the number of facilities to be opened, the problem becomes
very easy to solve. In fact, with more facilities open, the total ca-
pacity increases, and almost all of the customers can be served.
Therefore, finding the optimal solution becomes trivial. With 20 fa-
cilities open (S7), all of the customers can be served. Therefore, no
acceptance or rejection decisions but only assignment decisions are
required.

The number of demand scenarios influences the computational
times, but only in combination with an increase in the potential
locations. This can be observed by the surge between S8-S10 com-
pared against S1-S12.

Furthermore, computational times strongly increase with the
number of capacity scenarios as can be seen by comparing S4 and
S5 against S13 and S14.

Increasing the number of customers per demand scenario,
while keeping constant the locker stations’ capacity does not have
any impact on computational times. The problem remains very
easy to solve (less than 1 second) even if we increase the number
of customers to 200 (S17). However, if we also increase the locker
station capacity from 5 to 50, which would allow to serve 250 cus-
tomers if no capacity failure occurs, the problem becomes more
difficult to solve (S18). Hence, as long as the capacity is rather very
small compared to the number of customers, the latter parameter
does not impact computational times, and the problem is very easy
to solve. But the number of customers per scenario has a consid-
erable impact if the capacity also grows.

5.2. Comparison of solution methods

To assess the performance of the newly proposed CS, we com-
pare it against the solution of: (i) mathematical model presented
in Section 3.2 (MODEL), (ii) ILS, and (iii) VNS, as described above.
It is worth noting that in the local search phase of ILS and VNS,
we exploit the same neighborhood we designed for CS. The dif-
ferences among CS and the other two matheuristics lies in the
following: (i) the procedure adopted to compute the initial solu-
tion, (ii) the order in which solutions belonging to the neighbor-
hood are analyzed, and (iii) the diversification mechanism, which
is not needed in CS, while it is a fundamental component for both
ILS and VNS. Such a comparison has been carried out only on the
most challenging sets of instances: S5, S11, S12, S13, S14, S19, and
S20. In fact, the other sets can be solved to optimality so quickly
that they do not require the usage of heuristic methods. The results
are reported in Table 4, where for each set, the average results
are considered. For the MODEL. a time limit of 3,600 seconds is
imposed.

Negative gaps indicate that the algorithm obtains better solu-
tions with respect to MODEL. This may happen because it was not
possible to solve all the instances to optimality within the imposed

10

Average iteration number, for each set of challenging instances, on which the best
solution is found by CS, ILS, and VNS.

SET CS ILS VNS
S5 6 154 161
S11 11 280 283
S12 12 257 266
S13 13 262 279
S14 20 272 288
S19 9 275 282
S20 7 268 288
AVG 11.14 252.57 263.86

time limit, and, therefore, some of the best solutions found by the
model are suboptimal.

The results reveal that all of the proposed matheuristic ap-
proaches show an excellent performance, obtaining near optimal
solutions for instances which are solved to optimality by the
MODEL. They strongly outperform the MODEL on the most chal-
lenging instance set (S14) for which the MODEL cannot provide
an optimal solution. Although from a solutions’ quality point of
view, all three of the algorithms are effective, CS strongly outper-
forms ILS and VNS in terms of efficiency. On average, CS requires
about 80% shorter average computational times than the other al-
gorithms. This is due to the high quality of the initial solution and
a smarter neighborhood exploration strategy. The fact that all three
of the algorithms perform very well highlights the effectiveness of
the newly proposed matheuristic local search routine. The idea of
searching consensus among scenarios allows us to start from good
quality solutions. Further, the consensus-searching mechanism that
we use to select the candidate facility for the core seems to be
highly effective to search the solution space.

In Table 5 we report for each set of instances tested with the
matheuristics, the average iteration in which the best solution has
been found by CS, ILS, and VNS. The trend is very clear and con-
firms that CS quickly converges towards very good solutions, while
the improvement path of both ILS and VNS is much slower. This is
due to the smart and effective strategy used by CS to select candi-
dates to be part of the core.

In Figure 3 we plot, for CS, ILS, and VNS, the average iteration
number, where a solution within 10%, 5%, 2%, and 1%, respecitvely,
has been found. The graphic shows that, while CS reaches a gap of
1% in very few iterations, both ILS and VNS, quickly reach a gap of
5%, but require a very large number of iterations to pass from good
to excellent solutions (within 1%).

Finally, we analyze in Figure 4 a single instance, namely 19 of
set S5, and plot the evolution of the solution across iterations, for
all the three methods. It is clear how, at each iteration along the
solving process, the best solution obtained by CS is constantly bet-
ter than those obtained by ILS and VNS.
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Fig. 4. Evolution of the current best solution of instance 19 from set S5, with CS, ILS and VNS.

5.3. Analysis of stochastic indicators

We conduct an analysis of the importance of recognizing the
stochastic version of the problem through the use of two well-
known and broadly used stochastic indicators, i.e., EVPI and VSS
[74]. EVPI measures the expected cost of uncertainty. It represents
the profit/loss due to uncertainty of data. The higher this value, the
higher the importance of having precise information on input data.
In a two-stage stochastic problem, where tactical and operational
decisions have to be taken, a low value of EVPI means that the op-
erational level does not have a strong impact on the fist, i.e., the
tactical stage. In the opposite case (i.e., when EVPI is high), input
data variation strongly impacts both stages.

In the context of the locker stations for last mile-delivery, a
low EVPI value would mean that it would be reasonable to invest
in having permanent lockers. On the contrary, a high EVPI would
mean that, in the case of high variability of demand and uncer-
tainty of input data, the company would do better to invest in mo-
bile lockers, which can be easily moved every day around the city
to meet customer demand. The EVPI can be calculated, in a max-
imization problem, as the difference between the objective value
of the solution of the wait-and-see strategy (WS) and the objec-
tive value of the solution of the stochastic problem (SP). The WS
strategy represents the utopian case in which perfect information
about the input data is available a priori to make the first stage

1

decisions. In other words, the first-stage variables are allowed to
take different values for each scenario. In our case, in the WS strat-
egy, we split the problem into several single-scenario problems,
and each one is solved separately. This way, the set of facilities
to be opened may vary among the different scenarios. The global
objective function of the WS strategy is computed by summing up
the objective values obtained in each scenario. We do not report
the actual EVPI value, but we report the percentage gain that is
obtainable after having perfect information about input data, com-
puted as EVPI = (WS — SP)/SP.

VSS represents the gain of profit achievable by solving the SP
with respect to solving a reference scenario, and then fixing the
first stage variables such that they are equal to the value assumed
in the optimal solution of the reference scenario. Generally, the
reference scenario is an average scenario in which the values of
uncertain parameters are substituted with their means. However,
while this procedure perfectly suits those problems where the in-
put data is distributed around a mean value, it does not apply to
problems in which there is uncertainty about, say, the reduction of
capacity or budget, such as in our case. In fact, considering an aver-
age scenario in which the capacity of the lockers is 10% less with
respect to the actual capacity, we will automatically exclude the
cases in which we have a full availability of capacity at some lock-
ers. Hence, we adopt, as a reference scenario, the ideal scenario in
which all of the boxes at a locker are available. The expected ob-
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Table 6

Average values of stochastic indicators.
SET SP WS EVPI UEve EEV AN uvss
S5 493.37 495.87 0.51% 2.5 485.56 1.63% 7.8
S11 981.99 984.79 0.29% 2.8 962.38 2.12% 19.6
S12 1,960.83 1,967.43  034% 6.6 1,923.61 1.96%  37.2

jective function value obtainable by fixing the first stage variables
to the value, they would assume in the deterministic problem that
is solved while replacing the uncertain parameters with their ex-
pected value, is referred to as the EEV [74]. VSS can be defined as
VSS = (SP — EEV)/SP.

We also compute two problem-specific parameters, i.e., UEVF!
and UVSS, The former represents the number of home deliveries
that can be avoided by having perfect information on input data,
and it is computed as |WS]| — |SP], while UYSS indicates the num-
ber of home deliveries avoided by solving the SP, instead of its de-
terministic version in which uncertain parameters are substituted
by their expected values, and they are computed as [SP] — |EEV].

In Table 6 we report the results for the stochastic indicators, for
instance, for Sets S5, S11, and S12, which are of particular interest,
as they reflect variations in demand scenarios.

The percentage value of EVPI is very low for all of the three
sets. This means that having perfect information would imply only
a little increment in customers served by locker boxes and conse-
quently in home deliveries being avoided. Note that each customer
that cannot be served by lockers, must be served by home deliv-
ery. This result supports the choice of locating permanent facilities
rather than mobile ones.

Although, the percentage value of VSS is also quite low, it is
very important to address the SP, and uncertainty in capacity avail-
ability cannot be neglected. In fact, solving the SP instead of solv-
ing its deterministic counterpart, in which uncertain parameters
are substituted by their expected value, we can serve, by locker
stations, up to 37 more customers (see UYSS column) and conse-
quently save up to 2% of home deliveries every day, which repre-
sents a huge reduction in routing costs. However, it is interesting
to note that, increasing the number of demand scenarios from 5
(S5) to 20 (S12), the VSS value does not significantly change. This
means that analyzing a small number of scenarios is already suffi-
cient to capture the stochasticity of the problem. Also the number
of capacity scenarios does not need to be particularly large, since
several capacity reduction scenarios do not directly impact the op-
timal solution. For instance, if in the optimal solution of the case
with full capacity availability, a facility j is used at the 80% of its
actual capacity, all the scenarios in which its capacity is between
80% and 100% and the capacity of the other facilities open in the
optimal solution are not reduced, will not impact at all the optimal
solution. However, when the other facilities in the optimal solution
experience a capacity reduction, the reduction of the capacity of j
may play a role, since the additional capacity, initially not needed,
could be helpful to mitigate the impact of the unavailability in the
other facilities. However, the impact in these cases is generally not
very relevant. The scenarios which actually impact the solution, are
those in which the capacity reduction directly affects a facility fully
(or almost fully) exploited in the optimal solution. In these cases,
the impact of the unavailability can be strongly relevant and can
generate a cascade effect on all the other facilities. Therefore, it
is not necessary to analyze a large number of capacity scenarios,
but it is sufficient to analyze those who really impact the decision
problem. Hence, if we carefully select the scenarios to analyze, we
can strongly limit their number without loosing relevant informa-
tion. For these reasons, we consider only 5 demand scenarios and 5
capacity scenarios for the analysis of the real-world case presented
in the following section.
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In Figure 5 we depict, for the sample instance shown in
Figure 1, the optimal solution of the reference scenario (EEV), in
which all the facilities are assumed to have full capacity, and of
the SP. Customers are depicted by blue circles, while facilities are
indicated with squares, which are red if the facility is closed in the
optimal solution and green if it is open. Each facility has a capac-
ity of 10. Dotted orange circles represent facilities’ coverage area.
The number of facilities to open is 3. Five capacity reduction sce-
narios are considered: [2,0,0,0,0], [0,2,0,0,0], [0,0,2,0,0], [0,0,0,2,0],
[0,0,0,0,2]. A single demand scenario is analyzed. In the optimal
solution of EEV, the open facilities are A, C and E, which are able
to cover all the 22 customers in the first four capacity scenarios,
while in the fifth, where E has a capacity of 8, only 20 customers
are covered. In the optimal solution of SP, the open facilities are
A, D and E. This configuration allows to cover all the 22 customers
in every scenario. In fact, the partial overlapping of coverage ar-
eas of D and E allows to remedy to the capacity reduction in E,
by covering with D the 2 customers located in the intersection of
the two coverage areas. This example emphasizes the importance
of considering the stochasticity in the capacity availability.

5.4. Impact of facility utilization rate on unavailability probability

In this work we assume to have an estimation of the proba-
bility of locker box unavailability. This obviously holds for boxes,
which were used in the previous delivery time slot (i.e., the day
before), while for boxes, which were already empty the day be-
fore, the probability of finding them occupied is zero. This implies
that if a facility is always underutilized the probability to find an
unavailable box in this facility is very low. Hence, the probability
that, when a capacity failure occurs, this actually impacts the opti-
mal solution, is also almost zero. In fact, the only cases in which it
can have an impact are those where a facility is underutilized on
average, but is fully utilized in a specific scenario, and a capacity
failure occurs exactly in that scenario, which is very unlikely. How-
ever, we modify the model in order to take into account that the
probability of unavailability depends on the utilization rate, and
compare the obtained results with those of the original model. The
goal of this experiment is twofold. Firstly, we would like to analyze
the impact of this dependency on the optimal solution, regarding
customers serviceable by lockers. Secondly, we quantify the impact
on computational times and difficulty to solve the problem.

The capacity dependency can be modeled substituting con-
straints (2) with the following ones.

ZYi‘J’?SC—Sj"uj/C YoeQ VseS Vje]

ielg

9)
where u; is a variable representing the number of boxes used in
facility j:

TEDIDN i

we2 iel

Vjel (10)

We test the new model on the most challenging set of in-
stances: S5, S11 and S12. Results are reported in Table 7.

As we can notice from the table, the benefit of considering the
unavailability dependency on utilization is negligible. In set S5, the
number of customers served is exactly the same. In S11, the gain
achievable is very low (0.2 additional customers served on aver-
age over 1,000), while in S12 results obtained considering depen-
dency are even slightly worse. This happens because, while with
the original model we solve to the optimality all instances, the new
model is more complex to solve and therefore a lower number of
instances can be solved. In fact, computational times and also run-
time memory required by the new model are much larger.

Resuming, we observe that, even if availability probability actu-
ally depends on the utilization rate, considering this dependency
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Fig. 5. Optimal solution for the EEV (a) and the SP (b) for a sample instance. If the capacity of E, which is assumed to be 10, is reduced, not all customers can be served by

the locker station.

Table 7

Comparison of results considering unavailability probability independent or depen-
dent from utilization rate. We compare the number of customers served and the
computational time elapsed (in seconds) with a time limit of 3,600 seconds (if the
time limit is reached, the best solution found is considered).

#CUSTOMERS SERVED COMPUTATIONAL TIME (s)

INDEPENDENT DEPENDENT INDEPENDENT DEPENDENT
S5 493.3 493.3 71 91
S11 981.9 982.1 454 853
S12 1,960.8 1,959.1 1,945 3,079

does not yield any significant benefit, but makes the problem con-
siderably more complex to solve.

5.5. A real-world case in the city of Turin

To investigate a real-world case, we considered Turin, a city of
900 thousand inhabitants, located in the north west of Italy. The
city is divided into 34 districts and grouped into 10 wards as de-
picted in Figure 6.

We used Google maps! to derive the addresses of 80 locker sta-
tions, spread all over the city. However, in our analysis, we focused
only on the southern part of the city, which comprises wards 1, 2,
3, 8, 9, and 10, which cover the districts from 1 to 9 and from 28
to 34, adding up to a total of 16 districts. In this area, 40 locker
stations were available, but we considered 40 additional potential
locations at refueling stations, large super markets, and shopping
malls. All of these 80 lockers (40 existent and 40 potential) that
were covered by this study are illustrated in Figure 7.

For each district, the city of Turin provides, in the public do-
main, information about the number of inhabitants for certain age
classes?. Five such classes were considered (0-17, 18-30, 31-45, 46-
65, and > 65). The number of inhabitants per class and the distri-
bution of population per age class, are reported in Table 9 in the
Appendix. As can be noted from the table, the distribution of popu-
lation significantly varies from one district to another. For instance,

1 www.google.it/maps/.
2 http://aperto.comune.torino.it/.
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while in District 2 (Crocetta), a significant number of the inhabi-
tants are aged over 65 (34%), in Cavoretto and Borgo Po only 5.14%
are aged over 65, while the largest part of the population belongs
to Classes 31-45 and 46-65 (37.6% and 39.9%, respectively). Further-
more, only 1.85% are aged under 18 years. In District 3 (Santa Rita),
the largest quote is for the Class 46-65 (40%), while in District 4
(Mirafiori Nord), young adults are almost absent (only 0.16%).

The age distribution of the population is of crucial importance
for this study, as the willingness to select the option of delivery
to locker stations, strongly varies among age classes. We used the
data from a survey conducted in Austria, which was used to de-
termine the probability of acceptance of this delivery option and
cities of different sizes. In Figure 8, we report data for the 4 ty-
pologies of cities. Turin belongs to the large city category (upper-
left graphic in the figure).

The data from the the survey indicates that, for this category,
the probability of using locker stations is quite homogeneous for
the first 4 age classes (from 67% to 71%), whereas it consider-
ably decreases for older people (only 47%). It is worth noting that
for different city typologies, remarkable differences in customers’
behaviors can be observed. Combining data about the population
distribution and the willingness to use lockers, we calculated the
probability of a customer being located in a specific district as
reported in Table 10 in the Appendix. We used these probabil-
ities, as determined, to create 5 demand scenarios. The number
of customers per scenario was 200. The number of capacity sce-
narios was 5. Each of the 80 locker stations being considered has
a capacity of 10 locker boxes. We assumed that 40 locker sta-
tions have to be opened. We considered two probability levels
for capacity unavailability (10% and 30%) and two compatibility
thresholds for the customers being assigned to the locker stations
(500m and 1km).

The layout of the instance is reported in Figure 9. The cus-
tomers are marked in green, existent locker stations in red, and
potential locations in blue. Distances among points have been com-
puted using the Manhattan distance formula. Since Turin’s map is
very similar to the Manhattan one, i.e., it is composed of a set of
orthogonal streets, using Manhattan distances seem to be perfectly
suitable.

The results are presented in Table 8. For each combination of
P_unav and compatibility threshold, we report the optimal num-
ber of customers served using only the 40 locker stations actually
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Table 8

Results of the Turin case with two compatibility thresholds and two reduction of ca-

pacity scenarios.

THRESHOLD  §'=10% §°1=30%
OLD OLD+NEW OLD OLD+NEW
# cust. served 0.5 km 4445 4535 4405 4524
1 km 4955 4975 4955 4975
avg. dist. (m) 0.5 km 389 340 405 340
1 km 531 475 573 604
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Fig. 9. Instance layout for the case study. Customers are depicted in green, existent locker stations in red, and potential locations in blue.

in use (OLD) and those serviceable choosing the best 40 locations
among the 80 available (OLD+NEW). We also report the average
distance covered by customers to reach a locker station.

When the compatibility threshold is larger, the location of the
locker station becomes a less critical issue. Although the percent-
age improvement achievable, considering more potential locations
is quite small (0.4%), it corresponds to a total saving of 20 cus-
tomers (i.e., 4 per demand scenario on average). In terms of the
routing costs, this increment in the number of home deliveries re-
quired is not necessarily costly, but it might still impact routing
costs. The probability of unavailability does not impact the num-
ber of served customers at all, but it does yield a considerable in-
crement in the distance covered by customers. When the compat-
ibility threshold is smaller, the location of locker stations plays a
crucial role. In fact, exploiting a larger number of potential loca-

15

tions allows to save 119 home deliveries, which can presumably
effect a huge reduction in routing costs. In this case, the prob-
ability of unavailability impacts the number of serviceable cus-
tomers. When P_Unav grows to 30%, the number of serviceable
customers is reduced to 40 for the OLD configuration, while with
the OLD+NEW configuration, we have a reduction of only 11 cus-
tomers. This means that the impact of unavailability is smaller if
the locker station distribution is smarter.

For what concerns the covered distance, the OLD+NEW configu-
ration guarantees the same average covered distance independent
of the probability of unavailability, while with the OLD configura-
tion shows a slight increment in distances. In terms of covered dis-
tance, we observe that the average distance does not grow linearly.
For instance, by allowing a maximum covered distance of 500 me-
ters, the average covered distance is 340, while by allowing a max-



S. Mancini, M. Gansterer and C. Triki

imum of 1 km, the average covered distance is only 475 meters.
This seems to be based on a saturation level of the required cov-
ered distance.

6. Conclusions and future developments

In this paper, we studied the problem of locker station loca-
tion under conditions of uncertain demand and capacity availabil-
ity. The problem is modeled as an extension of the capacitated fa-
cility location problem in which a fixed number of facilities have to
be open, choosing among a set of potential locations. The facilities
have homogeneous capacities; however, a capacity reduction can
occur for a given probability. A set of different demand and capac-
ity scenarios was considered. Each customer can be assigned only
to compatible facilities, i.e., those facilities located within a given
radius. The primary objective of solving the problem is to max-
imize the total number of customers assigned to locker stations;
however, in case of a tie on the primary objective, the secondary
objective is to minimize the average distance covered by customers
to reach the locker station to which they have been assigned.

To solve the problem, we developed a mathematical model and
three matheuristics, two of which are based on established frame-
works, i.e., ILS and VNS, while the third one, CS, is a newly pro-
posed approach. All of the three models exploit the same local
search mechanism designed for this specific problem, but they
utilize different procedures to generate an initial solution, differ-
ent neighborhood exploration strategy, and different diversification
schemes.

All of the proposed matheuristics show excellent performance
in terms of the solution’s quality, but CS strongly outperforms the
other two in terms of computational times. A detailed analysis of
the impact of instance features on the difficulty of the problem is
provided through an extensive computational campaign. The im-
portance of considering the SP, instead of solving its deterministic
equivalent variant, is discussed by means of standard stochastic in-
dicators, namely EVPI and VSS, as well as some problem-specific
stochastic indicators. This analysis showed that it is important to
address the stochastic version of the problem, as considering un-
certainty of input data may allow to serve several additional cus-
tomers and, consequently, to avoid several costly home deliveries.

A real-world case related to the city of Turin (Italy) is discussed.
We have shown that smartly located locker stations can save a
considerable number of home deliveries.

Future developments in this field could focus, from a method-
ological point of view, on the adaptation of the CS framework to a
broad class of two-stage SPs as well as a specific class of bi-level
problems, with one first-level decision maker and several second-
level ones. From an application point of view, it would be inter-
esting to explicitly include routing aspects, addressing a location-
routing version of the problem, as well as to consider a distribu-
tion system involving more delivery options, such as roaming de-
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livery, cargo bikes, and pedestrian and occasional drivers. Other
interesting research avenues could be the fortification techniques
that could mitigate the impact of uncertainty in input data, as well
as the application of the SC reduction to other facility location
problems, arising in different fields of application. It would be also
interesting to perform an ex-post analysis on how the reduction
of the number of delivery stops actually impacts on the reduction
on routing costs. Another interesting development could cover the
definition of a chance-constraint model, where in each scenario, a
minimum number of satisfied customers must be guaranteed with
a given probability.
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Appendix

This Appendix includes some additional input data related to
our real-world case study. More specifically, Table 9 reports the
number of inhabitants in each district of the city of Turin together
with the population distribution per age classes and Table 10 in-
cludes the probability of a customer to be located in each of these
districts.
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Table 9

Number of inhabitants and population distribution for age classes in Turin.

Omega 120 (2023) 102910

# INHABITANTS

POPULATION DISTRIBUTION

ID NAME 0-17 18-30 3145  46-65 > 66 Total 0-17 18-30 31-45 46-65 > 66
1 Centro 5374 5755 8760 13499 8929 42317  12.70%  13.60%  20.70%  31.90% 21.10%
2 Crocetta 4681 4287 9625 10106 15050 43749  10.70%  9.80% 22.00%  23.10%  34.40%
3 Santa Rita 7087 6555 4097 16510 6719 40968  17.30%  16.00%  10.00%  40.30%  16.40%
4 Mirafiori Nord 5679 47 7395 12436 8306 33863 16.77%  0.14% 21.84%  36.72%  24.53%
5 Borgo San Paolo 4545 4280 6515 10076 12462 37878  12.00% 11.30% 17.20%  26.60%  32.90%
6 Cenisia 2163 2102 4511 4837 6797 20410 10.60% 10.30%  22.10%  23.70%  33.30%
7 Pozzo Strada 7367 6441 477 16353 7244 37882  19.45% 17.00%  1.26% 43.17%  19.12%
8 Cit Turin 2644 2569 5512 5911 8306 24943  10.60% 10.30%  22.10%  23.70%  33.30%
9 Borgata Lesna 4050 3541 262 8991 3983 20827  19.45% 17.00%  1.26% 43.17%  19.12%
28  San Salvario 4744 4398 8051 1012 13002 31207 15.20%  14.09%  25.80%  3.24% 41.66%
29  Cavoretto 121 1015 2465 2613 337 6552 1.85% 15.49% 37.63% 39.89%  5.14%
30 Borgo Po 161 1346 3269 3465 446 8686 1.85% 15.49%  37.63% 39.89%  5.14%
31 Nizza Millefonti 3735 3572 7762 8119 9288 32476  11.50% 11.00%  23.90%  25.00%  28.60%
32 Lingotto 528 4609 882 11380 8090 25489  2.07% 18.08%  3.46% 44.65%  31.74%
33  Filadelfia 109 949 181 2343 1665 5247 2.07% 18.08%  3.46% 44.65%  31.74%
34  Mirafiori Sud 4671 4327 5298 10315 6741 31352 14.90% 13.80% 16.90%  32.90%  21.50%
Table 10 [14] Kéhler C, Ehmke JF, Campbell AM. Flexible time window management for at-
Customers’ distribution probability per district in Turin. tended home deliveries. Omega 2020;91:102023.
[15] Agatz N, Campbell A, Fleischmann M, Savelsbergh M. Time slot management
1D NAME PROB in attended home delivery. Transportation Science 2011;45(3):435-49.
1 Centro 9.72% [16] Yang X, Strauss A. An approximate dynamic programming approach to at-
2 Crocetta 9.56% tended home delivery management. European Journal of Operational Research
3 Santa Rita 9.57% 2017;263:935-45. . . S
. . : [17] Hernandez F, Gendreau M, Potvin J-Y. Heuristics for tactical time slot manage-
4 Mirafiori Nord 7.65% K D . . . . . .
ment: a periodic vehicle routing problem view. International Transactions in
5 Borg-O. San Paolo 8.33% Operational Research 2017;24(6):1233-52.
6 Cenisia 4.48% [18] Florio AM, Feillet D, Hartl RF. The delivery problem: Optimizing hit rates
7 Pozzo Strada 8.78% in e-commerce deliveries. Transportation Research Part B: Methodological
8 Cit Turin 5.47% 2018:117:455-72.
9 Borgata Lesna 4.83% [19] Schnieder M, Hinde C, West A. Combining parcel lockers with staffed collection
28 San Salvario 6.60% and delivery points: An optimization case study using real parcel delivery data
29 Cavoretto 1.59% (london, uk). Journal of Open Innovation: Technology, Market and Complexity
30 Borgo Po 2.12% 2021;183(7).
31 Nizza Millefonti 7.25% [20] Moroz M, Polkowski Z. The last mile issue and urban logistics: choosing parcel
32 Lingotto 5.69% machines in the context of the ecological attitudes of the y generation con-
33 Filadelfia 117% sumers purchgsing online. Trar_lsponjtation Research Procedia 2016;16:378—93.
34 Mirafiori Sud 7.19% [21] Seghezzi A, Siragusa C, Mangiaracina R. Parcel lockers vs. home delivery: a
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