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A B S T R A C T

In this work, an adaptive Ritz model for the analysis of variable angle tow composite plates featuring damage
initiation and evolution under progressive loading is proposed, developed, implemented and tested. The
plate kinematics is represented employing a first-order shear deformation theory, while the plate equilibrium
equations at a given load step are obtained by minimizing the structure potential energy. The constitutive
behaviour is modelled within the framework of continuum damage mechanics. In particular the initiation and
evolution of damage, up to failure, are tracked by defining irreversible damage indices related to both fibres
and matrix, both in tensile or compression loading. The discrete equations are then obtained by assuming a
polynomial Ritz approximation of the primary kinematic variables in the energy minimization. Preliminary tests
show how the application of the method as a single-domain approach induces the emergence of problematic
spurious effects, related to Gibbs artefacts due to the inability of the selected polynomial basis to represent
damage localization. An adaptive multi-domain technique is thus proposed to circumvent such issues, which
has been successfully validated by benchmark tests. Eventually, original results about variable angle tow plates
featuring damage evolution under progressive loading are presented.
1. Introduction

Multilayered composite materials enable the design of lightweight
structures with improved stiffness, strength and fatigue properties when
compared to metallic structures. For this reason, they find extensive
applications in various fields of engineering, including the aerospace,
naval, and automotive industries. Recent advancements in manufac-
turing techniques such as automated fibre placement, automated tape
laying, and additive manufacturing have made it possible to create
composite structures with variable mechanical properties [1–4]. This
innovation has led to the development of Variable Angle Tow (VAT)
laminates, in which the in-plane orientation of the fibres within the
individual plies varies according to selected laws throughout the struc-
ture [5]. Significant advances have been made in the development and
optimization of VAT composites, trying to identify the fibre patterns
that may enhance properties of interest, e.g. the buckling load [6],
the fundamental frequencies [7,8], or the dynamic response under
low-speed impact [9].

Designers and engineers require modelling and computational tools
capable of accurately predicting the structural response of the designed
components. The need for such tools is particularly critical when new
manufacturing techniques, as in the case of VAT composites, widen

∗ Corresponding author.
E-mail address: ivano.benedetti@unipa.it (I. Benedetti).

the design space. One of the most widely used computer methods for
solving structural problems is the Finite Element Method (FEM) [10–
13], which has also attained a recognized level of commercial maturity.
Due to the high variability of the in-plane and through-the-thickness
material features, the accurate FE analysis of VAT laminates critically
depends on the quality and resolution of the employed mesh, thus
generally attracting considerable computational costs [14]. To mitigate
such problems and speed up the analysis, while retaining a high level
of accuracy, various mesh-less methods have been developed as alter-
natives to FEM [15–18]. The Ritz method, which may be thought of as
a global mesh-less technique in this context, has shown success in the
study of conventional, laminated, and VAT composite structures [7,8,
19–22].

Although there is great interest in the study of VAT composites, not
many works have focused on the study of damage evolution within
them [23–25]. Modelling progressive damage in composite materials
is challenging due to the many damage mechanisms that must be
considered. Depending on the idealization scale, damage can be mod-
elled in various ways, from the microscale to the macroscale. Using a
micromechanical approach, damage initiation and evolution in hetero-
geneous materials can be investigated considering individual material
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phases within representative volume elements (RVSs) [26–28]. Instead,
at the macroscale laminate level, damage may be generally represented
either as a softened region [29–31] or as a hard discontinuity [6,22].
At the intermediate mesoscale level, in which individual plies are
represented as homogeneous, Continuum Damage Mechanics (CDM) is,
among different approaches, one of the most employed frameworks
for investigating the initiation and evolution of damage [32,33]. In
CDM, damage is generally represented as a progressive loss of material
stiffness and different FE approaches have been developed based on
such modelling assumption [34–36].

Finite element formulations have also been employed to develop
three dimensional CDM-based material models to simulate the pro-
gressive intra-laminar degradation of fibre reinforced laminates as
well as delamination using cohesive interfaces between layers [37–
39]. In addition to FE-based analysis methods, single domain meshless
approaches, such as the Ritz method, have been shown to be effective,
especially when dealing with smeared damaged zones [25].

However, in some cases, damage tends to concentrate in a narrow
region due to specific loading conditions or initial imperfections [40,
41]. Within a classical single-domain Ritz approach, this localization
of damage can introduce spurious effects when reconstructing the
damaged state, commonly due to Gibbs effects, which can result in non-
physical responses. Therefore, designers and engineers must be aware
of the constraints and limitations associated with various modelling
and computational tools when predicting the structural behaviour of
composite materials and components.

Although the Ritz method offers several advantages, there is limited
literature considering this approach to investigate damage initiation
and evolution. Existing works on this topic often employ overly sim-
plified damage models that provide a binary representation of dam-
age [42], which are more suitable for identifying damage initiation
rather than capturing damage evolution. Therefore, these approaches
tend to be overly conservative.

The goal of this study is the development of a Ritz-based strategy
able to consider the initiation and localization of damage, while provid-
ing physically objective responses. It will be shown as the employment
of single-domain Ritz approximations in modelling damage gives rise
to the mentioned spurious effects, that can be overcome by adopting
an adaptive domain-splitting technique. The method still retains the
advantages of the Ritz approach, ensuring reduced degrees of freedom
compared to FE models while providing a highly accurate description
of the damage process and a physically meaningful response. The
modelling of damage initiation and evolution through the proposed hp-
adaptive multi-domain Ritz method constitutes the key novelty of the
present contribution.

The manuscript is structured as follows: Section 2 specifies the
considered problem, introduces the geometric description of the plate,
the kinematic model, the constitutive relations employed to take into
account the presence of damage and the plate governing equations
derived using the principle of minimum potential energy. In Section 3,
using the Ritz solution scheme, the discrete form of governing equations
is built and written in incremental form to solve the non-linear damage
evolution problem. Moreover, some details about the implementation
into numerical software are given. In Section 4 firstly, some results
about spurious numerical effects that may arise using single-domain
discretizations are presented, and then results concerning the multi-
domain adaptive strategy adopted in this work are shown. Finally,
after the validation of the proposed approach, results of different VAT
composite plates are presented. Section 5 discusses the strengths and
limitations of the present work before Conclusions are drawn.

2. Plate modelling

In this section, the key items of the formulation are briefly presented
and discussed.
2

Fig. 1. Schematic representation of multilayered composite plate.

Fig. 2. Geometric description of VAT lamina for fibre orientation definition.

2.1. Problem statement

A quadrilateral laminated composite plate referred to a Cartesian
coordinate system 𝑥1, 𝑥2, 𝑥3, with the axis 𝑥3 directed along the thick-
ness ℎ, is considered, as shown in Fig. 1. The reference mid-plane lies
on the plane 𝑥1 𝑥2 and is denoted by 𝛺 while 𝛿𝛺 identifies its boundary.

The plate is assembled from 𝑁ply VAT laminae, whose reinforcing
ibres follow curved paths, thus exhibiting varying angles concerning
he structural reference directions. Such fibre paths are described by
pecifying suitable laws for the fibre orientation 𝜃. In this study,
eferring to Fig. 2, the following law is used

= 𝜃0 +
𝜃𝐴𝑟𝐵 − 𝜃𝐵𝑟𝐴
𝑟𝐵 − 𝑟𝐴

+ |𝑟|
𝜃𝐵 − 𝜃𝐴
𝑟𝐵 − 𝑟𝐴

(1)

where 𝜃0 is the angle between the baseline and the axis 𝑥1, 𝜃𝐴 and 𝜃𝐵
measure the angle of the fibres at the points A and B, whilst 𝑟𝐴 and
𝑟𝐵 are the distances of these points from the projection 𝑂′ of the plate
centre on the baseline. Following the notation introduced by Gurdal
et al. [5], point A is assumed to coincide with the projection of the
centre point of the plate 𝑂′ and 𝑟𝐵 = 2𝑎, so that the law that describes
the fibre path of a lamina can be denoted as 𝜃0 + ⟨𝜃𝐴|𝜃𝐵⟩.

To model general quadrilateral plates, a natural coordinate system
𝜉, 𝜂) ∈ [−1, 1] × [−1, 1] is introduced, as in Fig. 3. The in-plane

coordinates are given by

𝑥𝑖 =
4
∑

𝛼=1
𝑔𝛼(𝜉, 𝜂)𝑥𝑖𝛼 , 𝑖 = 1, 2 (2)

where 𝑥𝑖𝛼 are the coordinates of the 𝛼th vertex of the plate mid-plane
nd 𝑔𝛼 are the standard bi-linear shape functions, namely,

𝛼 =
(−1)𝛼−1

4
(𝜉 + 𝜉𝛼)(𝜂 + 𝜂𝛼), 𝛼 = 1,… , 4 (3)

2.2. Kinematic assumptions

In the present formulation, the plate kinematics is based on the
First-order shear deformation theory (FSDT) [43]. Thus, the displacement
vector components 𝒅 = {𝑑 , 𝑑 , 𝑑 }⊺ are given by
1 2 3
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Fig. 3. Plate mid-plane mapping: from the general quadrilateral domain in the 𝑥1𝑥2 coordinate system to square domain [−1; 1] × [−1; 1] in 𝜉𝜂 natural coordinate system.
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1 = 𝑢1(𝑥1, 𝑥2) + 𝑥3𝜗1(𝑥1, 𝑥2) (4a)

2 = 𝑢2(𝑥1, 𝑥2) + 𝑥3𝜗2(𝑥1, 𝑥2) (4b)

3 = 𝑢3(𝑥1, 𝑥2) (4c)

where 𝑢1 and 𝑢2 are the mid-plane in-plane displacement components,
𝑢3 is the mid-plane transverse deflection, 𝜗1 and 𝜗2 are the section
rotations. Eq. (4) can be compactly written as,

𝒅 = 𝒖 + 𝑥3𝑳𝝑 (5)

where, 𝒖 = {𝑢1, 𝑢2, 𝑢3}⊺, 𝝑 = {𝜗1, 𝜗2, 𝜗3}⊺ and

𝑳 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 0

⎤

⎥

⎥

⎦

. (6)

It is worth noting that 𝜗3 is a ‘‘drilling’’ rotation that does not affect
the plate deformation and it is used only to enforce the multi-domain
interface continuity condition as described in Section 3.2.1.

The strain vector 𝒆 is partitioned into in-plane and out-of-plane
components, denoted by the subscripts p and n respectively,

𝒆 = {𝑒11, 𝑒22, 𝑒12, 𝑒13, 𝑒23, 𝑒33}⊺ =
{

𝒆𝑝
𝒆𝑛

}

, (7)

ith

𝑝 = 𝑝𝒖 + 𝑥3𝑝𝑳𝝑 = 𝜺 + 𝑥3𝜿 (8a)

𝑛 = 𝑛𝒖 +𝑳𝝑 = 𝜸 (8b)

here 𝜺, 𝜿 and 𝜸 denote the in-plane strains, curvatures and shear
trains vectors, respectively, and 𝑝 and 𝑛 are matrix linear differ-

ential operators whose explicit expression is given in Appendix A.

2.3. Constitutive description in the presence of damage

In this section, the constitutive relations for a VAT lamina are
presented considering the possible presence of damage.

For the 𝑘th pristine lamina, assuming plane stress conditions, the
relations

𝝈𝑝 = 𝑸𝑝 (𝜃) 𝒆𝑝, 𝝈𝑛 = 𝑸𝑛 (𝜃) 𝒆𝑛 (9)

old, which link the components of stress and strain in the plate
tructural reference system 𝑥1, 𝑥2, 𝑥3 through the coefficient matrices
𝑝 (𝜃) and 𝑸𝑛 (𝜃). In general, the coefficient matrices, whose explicit

xpression is given in Appendix B, depend on the local fibre orientation
3

that, in VAT composites, vary over the lamina itself [44].
Following a classical CDM approach, the presence of damage can
be considered by expressing the link between in-plane components of
stress and strain within a lamina as

𝝈𝑝 = 𝑸̂𝑝 (𝜃,𝝎) 𝒆𝑝, (10)

here 𝝎 =
{

𝜔1, 𝜔2, 𝜔6
}⊺ is a vector collecting the damage indices

ssociated with the considered point in the lamina, which express
he level of longitudinal, transverse and shear material degradation
espectively. More explicitly

̂ 𝑝 (𝜃,𝝎) = 𝑻 (𝜃) 𝑸𝑝 (𝝎) (11)

where 𝑻 (𝜃) is the transformation matrix linking the structural and
aterial reference system and

𝑸𝑝 =
1
𝐷

⎡

⎢

⎢

⎢

⎣

(1 − 𝜔1)𝐸1 (1 − 𝜔1)(1 − 𝜔2)𝜈12𝐸1 0

(1 − 𝜔1)(1 − 𝜔2)𝜈12𝐸2 (1 − 𝜔2)𝐸2 0

0 0 𝐷(1 − 𝜔6)𝐺12

⎤

⎥

⎥

⎥

⎦

,

(12)

is the matrix linking the components of stress and strains in the material
reference system, aligned with the local fibre direction. In Eq. (12) 𝐸𝑖
are the Young’s moduli, 𝐺𝑖𝑗 are the shear moduli, 𝜈𝑖𝑗 are the Poisson’s
coefficients and

𝐷 = 1 − (1 − 𝜔1)(1 − 𝜔2)𝜈12𝜈21. (13)

Each damage index 𝜔𝑖 varies between 0, when no damage is present,
and 1, which indicates material failure.

Damage is activated when the local in-plain stress components
fulfil certain threshold conditions, which, in this work, are specified
following the Hashin’s criteria [45,46]. In particular, four different
activation conditions are considered, differentiating the case of tensile
or compression fibre damage activation

𝐹 𝑖𝑏𝑟𝑒

⎧

⎪

⎨

⎪

⎩

(

𝜎11
𝑋𝑇

)2
= 1 𝑇 𝑒𝑛𝑠𝑖𝑜𝑛

(

𝜎11
𝑋𝐶

)2
= 1 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

(14)

rom the case of matrix damage activation

𝑎𝑡𝑟𝑖𝑥

⎧

⎪

⎨

⎪

⎩

(

𝜎22
𝑌𝑇

)2
+
(

𝜎12
𝑆𝐿

)2
= 1 𝑇 𝑒𝑛𝑠𝑖𝑜𝑛

(

𝜎22
2𝑆𝐿

)2
+
[

(

𝑌𝐶
2𝑆𝑇

)2
− 1

]

𝜎22
𝑌𝐶

+
(

𝜎12
𝑆𝐿

)2
= 1 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛.

(15)

In the above equations 𝑋𝑇 and 𝑋𝐶 are the strengths in the fibre
direction either in tension or compression, 𝑌𝑇 and 𝑌𝐶 denote the tensile
and compression strengths in matrix direction, while 𝑆𝑇 and 𝑆𝐿 are the
longitudinal and transverse shear strengths.

Once damage is activated, further increases in the effective loads
generally result in the evolution of the activated damage indices and
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Fig. 4. Strain-softening constitutive behaviour.

thus in the degradation of the material properties associated with them.
The strain-softening constitutive behaviour adopted in this work is
linear, as shown in Fig. 4. The evolution of each damage variable
is assessed through equivalent strains that, for each loading/damage
mode, are given by

𝐹 𝑖𝑏𝑟𝑒𝑠

⎧

⎪

⎨

⎪

⎩

𝑒𝑓𝑡,𝑒𝑞 = ⟨𝑒11⟩

𝑒𝑓𝑐,𝑒𝑞 = ⟨−𝑒11⟩
𝑀𝑎𝑡𝑟𝑖𝑥

⎧

⎪

⎨

⎪

⎩

𝑒𝑚𝑡,𝑒𝑞 =
√

⟨𝑒22⟩2 + 𝑒212

𝑒𝑚𝑐,𝑒𝑞 =
√

⟨−𝑒22⟩2 + 𝑒212

(16)

where ⟨◦⟩ = (◦+|◦|)∕2 denotes the Macaulay brackets and the subscripts
𝑓𝑡, 𝑓𝑐, 𝑚𝑡, 𝑚𝑐 refer to fibres in tension and compression and matrix in
tension and compression respectively.

During the loading process, the value of the 𝑖th damage index can
be computed as

𝜔𝑖(𝜏) =
𝑒𝑓𝑖,𝑒𝑞

(

𝑒𝑖,𝑒𝑞 − 𝑒0𝑖,𝑒𝑞
)

𝑒𝑖,𝑒𝑞
(

𝑒𝑓𝑖,𝑒𝑞 − 𝑒
0
𝑖,𝑒𝑞

) , 𝑖 = 𝑓𝑡, 𝑓𝑐, 𝑚𝑡, 𝑚𝑐, (17)

where 𝜏 denotes a generic loading/time ordering parameter spanning
the loading history H , 𝑒0𝑖,𝑒𝑞 is the equivalent strain at the onset of
damage and 𝑒𝑓𝑖,𝑒𝑞 is the equivalent strain at rupture (𝜔𝑖 = 1). Moreover,
to ensure a monotonically increasing evolution, the current value of the
𝑖th damage index is defined as

𝜔𝑖 = max{0,min{ max
𝜏∈H

{𝜔𝑖(𝜏)}, 1}}. (18)

It is worth noting that, in general, different values of damage are
associated with tensile or compression loading, which means that, for
example, two different values of 𝜔1 are defined with respect to the
fibres direction at a given material point, and Eq. (18) must be updated
distinguishing tensile form compression loading, see e.g. Ref. [36].

In Eq. (17), the strain at rupture 𝑒𝑓𝑖,𝑒𝑞 can be computed from the
knowledge of the material fracture toughness 𝐺𝑐 [47,48]. To ensure
that the fracture toughness remains constant, 𝑒𝑓𝑖,𝑒𝑞 must be adjusted
introducing a discretization dependent length 𝐿𝑐 , which modifies the
shape of the strain-softening curve linking it to the size of the dis-
cretization itself, see e.g. Refs. [49,50]. In Fig. 4, the area under the
stress–strain curve

𝑔𝑐 = ∫

𝑒𝑓𝑒𝑞

0
𝜎𝑒𝑞𝑑𝑒𝑒𝑞 (19)

corresponds to the energy dissipated at failure per unit volume. Defin-
ing the equivalent displacement as 𝛿 = 𝑒 𝐿 , the fracture energy
4

𝑒𝑞 𝑒𝑞 𝑐
dissipated per unit area can be written as

𝐺𝑐 = 𝑔𝑐𝐿𝑐 = ∫

𝛿𝑓𝑒𝑞

0
𝜎𝑒𝑞𝑑𝛿𝑒𝑞 . (20)

Considering that the fracture energy 𝐺𝑐 is a known material property,
𝑒𝑓𝑖,𝑒𝑞 can be eventually computed as

𝑒𝑓𝑖,𝑒𝑞 =
2𝐺𝑐
𝜎0𝑒𝑞𝐿𝑐

. (21)

While in finite element models 𝐿𝑐 is directly linked to the mesh size,
in the proposed Ritz scheme

𝐿𝑐 =

√

𝑆
𝑀𝜒𝑁𝜒

(22)

where 𝑆 is the area of the discretized domain, whilst 𝑀𝜒 and 𝑁𝜒 are
the maximum degrees of the polynomial Ritz approximation scheme,
which will be further discussed in the subsequent section.

2.4. Variational statement and governing equations

The plate equilibrium equations are obtained by minimizing the
variation of the potential energy, considering the plate kinematic as-
sumptions and the constitutive equations.

The stationarity of the total potential energy at a given load level
reads

𝛿𝛱 = 𝛿𝑈 + 𝛿𝑉 = 0, (23)

where 𝑈 is the structure internal energy and 𝑉 is the work done by
the external forces. Considering the plate kinematics and constitutive
relations given in Sections 2.2 and 2.3, the internal energy 𝑈 may be
written as

𝑈 = 1
2 ∫𝛺

𝑁𝑝𝑙𝑦
∑

𝑘=1

{

∫

ℎ𝑘

ℎ𝑘−1

(

𝒆⊺𝑝𝝈𝑝 + 𝒆⊺𝑛𝝈𝑛
)

𝑑𝑥3

}

𝑑𝛺 =

= 1
2 ∫𝛺

𝑁𝑝𝑙𝑦
∑

𝑘=1

{

∫

ℎ𝑘

ℎ𝑘−1

[

(

𝜺⊺ + 𝑥3𝜿⊺)𝑸⟨𝑘⟩
𝑝

(

𝜺 + 𝑥3𝜿
)

+ 𝜸⊺𝑸⟨𝑘⟩
𝑛 𝜸

]

𝑑𝑥3

}

𝑑𝛺

(24)

while the external work is given by

𝑉 = −∫𝛺

(

𝒖⊺𝒒 + 𝝑⊺𝒎
)

𝑑𝛺 − ∫𝜕𝛺

(

𝒖⊺ 𝑵 + 𝝑⊺ 𝑴
)

𝑑𝜕𝛺 (25)

where 𝒒 = {𝑞1, 𝑞2, 𝑞3}⊺ and 𝒎 = {𝑚1, 𝑚2, 0}⊺ are the external forces
and moments per unit area applied over the domain 𝛺, whereas 𝑵
and 𝑴 denote prescribed forces and moments applied along the plate
boundary 𝜕𝛺𝑙 ⊂ 𝜕𝛺. The plate essential boundary conditions are
provided by prescribing the generalized displacements on the boundary
𝜕𝛺𝑐 as follows

𝜩𝑢𝒖 = 𝜩𝑢 𝒖 on 𝜕𝛺𝑐

𝜩𝜗𝝑 = 𝜩𝜗 𝝑 on 𝜕𝛺𝑐 (26)

where 𝜩𝑢 and 𝜩𝜗 are Boolean matrix operators used for selecting the
desired constrained generalized displacements, whereas the over-bar
denotes prescribed quantities.

3. Ritz solution scheme

Once the plate governing equations – Eqs. (23)–(24)–(25) – have
been written, their discrete form can be built using the Ritz approxi-
mation scheme developed e.g. in Refs. [19,20]. The main items of the
solution procedure are outlined in this section.

3.1. Ritz polynomial approximation

The Ritz scheme expresses the components of the generalized dis-
placements appearing in Eqs. (23)–(24) as
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𝜒 =
𝑀𝜒
∑

𝑚=1

𝑁𝜒
∑

𝑛=1
𝜓𝑚 (𝜉)𝜓𝑛 (𝜂)𝐶𝜒(𝑚−1)𝑀+𝑛

= 𝜳𝜒𝑪𝜒 (27)

where 𝜒 ∈ {𝑢1, 𝑢2, 𝑢3, 𝜗1, 𝜗2} is the generic component of displacement,
𝜓𝑚 (𝜉) and 𝜓𝑛 (𝜂) are the trial function of order 𝑚 or 𝑛 and 𝐶𝜒(𝑚−1)𝑀+𝑛
are the unknown Ritz coefficients. In this work, among other possible
choices, Legendre orthogonal polynomials

𝜓𝑛 (𝜁 ) =
1

2𝑛𝑛!
𝑑𝑛

𝑑𝜁𝑛
[

(

𝜁2 − 1
)𝑛] , (28)

ave been selected as trial functions 𝜓𝑚 (𝜉) and 𝜓𝑛 (𝜂), as they proved
effective in plate problems [51].

Eq. (27) can be specialized to the plate primary variables 𝒖 and 𝝑
and written in compact matrix form as

𝒖 =
⎡

⎢

⎢

⎣

𝜳 𝒖𝟏 0 0
0 𝜳 𝒖𝟐 0
0 0 𝜳 𝒖𝟑

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑪𝑢1
𝑪𝑢2
𝑪𝑢3

⎫

⎪

⎬

⎪

⎭

=
⎡

⎢

⎢

⎣

𝜱𝑢1
𝜱𝑢2
𝜱𝑢3

⎤

⎥

⎥

⎦

𝑼 = 𝜱𝑢𝑼 (29)

nd

=
⎡

⎢

⎢

⎣

𝜳𝝑𝟏 0 0
0 𝜳𝝑𝟐 0
0 0 𝜳𝝑𝟑

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑪𝜗1
𝑪𝜗2
𝑪𝜗3

⎫

⎪

⎬

⎪

⎭

=
⎡

⎢

⎢

⎣

𝜱𝜗1
𝜱𝜗2
𝜱𝜗3

⎤

⎥

⎥

⎦

𝜣 = 𝜱𝜗𝜣. (30)

sing the above equations, the in-plane strain vector 𝜺, the curvatures
ector 𝜿 and the shear strains vector 𝜸 can be written as

𝜺 = 𝑝𝑈𝑼

= 𝑝𝛩𝜣, 𝜸 = 𝑛𝑈𝑼 +𝑖𝛩𝜣
(31)

here the operators  are given by

𝑝𝑈 = 𝑝𝜱𝑢

𝑛𝑈 = 𝑛𝜱𝑢

𝑝𝛩 = 𝑝𝜱𝜗

𝑖𝛩 = 𝜱𝜗
(32)

.2. Ritz discrete solving system

By considering Eqs. (29)–(30) and employing a penalty approach
o enforce the essential boundary conditions, the stationarity condition
𝛱 = 0 with respect to 𝑼 and 𝜣 leads to the discrete system

∫𝛺

[

⊺
𝑝𝑈𝑨𝑝𝑈 +⊺

𝑛𝑈𝑨𝑠𝑛𝑈

]

𝑼𝑑𝛺 + ∫𝛺

[

⊺
𝑝𝑈𝑩𝑝𝛩

+⊺
𝑛𝑈𝑨𝑠𝑖𝛩

]

𝜣𝑑𝛺

∫𝛺

[

⊺
𝑝𝛩𝑩𝑝𝑈 +⊺

𝑖𝛩𝑨𝑠𝑛𝑈

]

𝑼𝑑𝛺 + ∫𝛺

(

⊺
𝑝𝛩𝑫𝑝𝛩

+⊺
𝑖𝛩𝑨𝑠𝑖𝛩

)

𝜣𝑑𝛺

+∫𝜕𝛺𝑐

(

𝜱⊺
𝑢𝜩

⊺
𝑢𝝁𝑢𝜩𝑢𝜱𝑢𝑼 +𝜱⊺

𝜗𝜩
⊺
𝜗𝝁𝜗𝜩𝜗𝜱𝜗𝜣

)

𝑑𝜕𝛺

= ∫𝛺

(

𝜱⊺
𝑢𝒒 +𝜱⊺

𝜗𝒎
)

𝑑𝛺 + ∫𝜕𝛺𝑙

(

𝜱⊺
𝑢𝑵 +𝜱⊺

𝜗𝑴
)

𝑑𝜕𝛺

+∫𝜕𝛺𝑐

(

𝜱⊺
𝑢𝜩

⊺
𝑢𝝁𝑢𝜩𝑢𝜱𝑢 𝒖+𝜱⊺

𝜗𝜩
⊺
𝜗𝝁𝜗𝜩𝜗𝜱𝜗 𝝑

)

𝑑𝜕𝛺,

(33)

where 𝑨, 𝑩, 𝑫 and 𝑨𝑠 represent the plate generalized stiffness matrices
given by

𝑨 =
𝑁𝑝𝑙𝑦
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝑸̂⟨𝑘⟩
𝑝 (𝜃,𝝎) 𝑑𝑥3 𝑩 =

𝑁𝑝𝑙𝑦
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝑥3 𝑸̂

⟨𝑘⟩
𝑝 (𝜃,𝝎) 𝑑𝑥3

𝑫 =
𝑁𝑝𝑙𝑦
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝑥23 𝑸̂

⟨𝑘⟩
𝑝 (𝜃,𝝎) 𝑑𝑥3 𝑨𝑠 =

𝑁𝑝𝑙𝑦
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝑸⟨𝑘⟩
𝑛 (𝜃) 𝑑𝑥3,

(34)

where the summation is made for each kth ply in the laminate, while
𝝁𝑢 and 𝝁𝜗 are diagonal matrices containing the penalty coefficients.
Eq. (33) may conveniently written in compact form as
(

𝑲 +𝑹
)

𝑿 = 𝑭 + 𝑭 (35)
5

0 𝐷 𝐿 𝜦
where 𝑿 = {𝑼 , 𝜣}⊺ is the vector collecting the unknown coefficients
of the Ritz series expansion, 𝑲0 is the stiffness matrix, and 𝑹 is the
matrix originating from the enforcement of the BCs through a penalty
approach. On the right-hand side, the vectors 𝑭𝐷 and 𝑭𝐿 collect
the discrete terms associated with the external loads. Details on the
matrices appearing in Eq. (35) are given in Appendix C.

To solve the non-linear problem given in Eq. (35), an incremental-
iterative procedure is employed. It is important to observe that the local
stiffness of the laminate layers, and thus the stiffness matrix 𝑲0, is
affected by the damage level 𝝎[H (𝑿)]. The vector 𝝎[H (𝑿)], which
collects the damage indices, plays the role of an internal state vector
that depends on the loading/solution history H (𝑿). Noting this, the
ncremental form of Eq. (35) may be expressed as

𝛥𝑿 + 𝛥
[

𝑲0𝑿
]

= 𝛥𝑭𝐷 + 𝛥𝑭𝐿 (36)

ith
[

𝑲0𝑿
]

= 𝑲 𝑡,𝑑𝑚𝑔𝛥𝑿, (37)

here 𝛥 (◦) is the incremental operator, whilst 𝑲 𝑡,𝑑𝑚𝑔 is the tangent
tiffness matrix contribution related to the damage evolution. Further
etails are reported in Appendix D.

.2.1. Multidomain Ritz model: sub-domains continuity conditions
As mentioned in the Introduction, the direct application of a Ritz ap-

roximation to problems involving a hard discontinuity, e.g. a damage
ocalization or crack, gives rise to artefacts induced by the unavoidable
resence of Gibbs effects. This issue, which will be further highlighted
nd investigated in the numerical tests, has called for the development
f mitigation strategies able to ensure the objectivity of the response
pon damage localization. Among various strategies, an adaptive subdi-
ision of the Ritz analysis domain into smaller subdomains, over which
ierarchical variable order Ritz approximations are further adopted,
as proved one of the most promising in contrasting the observed issue.
he subdivision scheme is here described, together with the method
sed to transfer the information from a parent domain to its children
nes, and it will be further discussed in the subsequent sections.

Consider the original plate subdivided into 𝑁𝑒𝑙 quadrilateral sub-
omains; the quantities associated with such sub-domains are denoted
y the superscript ⟨𝑡⟩. Each separate sub-domain ⟨𝑡⟩ is mapped into its
orresponding natural coordinate system and is associated with its gov-
rning equations provided in Eq. (35). Let 𝛤𝑝𝑞 denote the edge shared
etween two contiguous sub-domains ⟨𝑝⟩ and ⟨𝑞⟩: the integrity of
he domain requires displacement continuity and traction equilibrium
long 𝛤𝑝𝑞 .

The displacement continuity on 𝛤𝑝𝑞 requires that: (i) the modelling
lane translations of the two contiguous sub-domains have equal com-
onents in the global reference system 𝑥1𝑥2𝑥3; (ii) the rotations around
he global axes 𝑥𝑖 of the two contiguous sub-domains are equal. These
onsiderations give
⟨𝑝⟩
𝑢 𝒖⟨𝑝⟩ = 𝜦⟨𝑞⟩

𝑢 𝒖⟨𝑞⟩ on 𝛤𝑝𝑞 (38a)

⟨𝑝⟩
𝜗 𝝑⟨𝑝⟩ = 𝜦⟨𝑞⟩

𝜗 𝝑⟨𝑞⟩ on 𝛤𝑝𝑞 (38b)

here 𝜦⟨𝑟⟩
𝛼 are suitable transformation matrices from the local to the

lobal reference systems. It is worth noting that the introduction of the
rilling rotation 𝜃3 does not affect the plate displacements but it allows
o generalize the rotation continuity condition through Eq. (38b), see
.g. Ref. [52].

On the other hand, the traction equilibrium is enforced in terms of
esultant forces and moments along 𝛤𝑝𝑞 , written as

⟨𝑝⟩
𝑢 𝑵̃ ⟨𝑝⟩ +𝜦⟨𝑞⟩

𝑢 𝑵̃ ⟨𝑞⟩ = 𝟎 (39a)

⟨𝑝⟩ ̃ ⟨𝑝⟩ ⟨𝑞⟩ ̃ ⟨𝑞⟩

𝜗 𝑴 +𝜦𝜗 𝑴 = 𝟎 (39b)
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Fig. 5. Block diagram representing the phases of the adaptive Ritz damage model.
The overall set of discrete equations, considering the subdivision
of the original domain into sub-domains, is then obtained by applying
the variational formulation and Ritz approximation scheme to all the
sub-domains, and enforcing the boundary and continuity conditions
expressed in Eq. (38) through suitable penalty terms, see e.g. Ref. [53].
Therefore, the resolving system of equations, for 𝑡 = 1…𝑁𝑒𝑙 is

⎛

⎜

⎜

⎜

⎝

𝑲⟨𝑡⟩
0 +𝑹⟨𝑡⟩ +

𝑁𝑒𝑙
∑

𝑟=1
𝑟≠𝑡

𝑷 ⟨𝑡,𝑡⟩
𝑟𝑡

⎞

⎟

⎟

⎟

⎠

𝑿⟨𝑡⟩ −
𝑁𝑒𝑙
∑

𝑟=1
𝑟≠𝑡

𝑷 ⟨𝑡,𝑟⟩
𝑟𝑡 𝑿⟨𝑟⟩ = 𝑭 ⟨𝑡⟩

𝐷 + 𝑭 ⟨𝑡⟩
𝐿 , (40)

where the matrices 𝑷 ⟨.,.⟩
𝑟𝑡 , explicitly given in Appendix C, are introduced

to properly describe the connection between sub-domains.
The incremental form associated with Eq. (40) is eventually given

by

⎡

⎢

⎢

⎢

⎣

𝑹⟨𝑡⟩ +
𝑁𝑒𝑙
∑

𝑟=1
𝑟≠𝑡

𝑷 ⟨𝑡,𝑡⟩
𝑟𝑡

⎤

⎥

⎥

⎥

⎦

𝛥𝑿⟨𝑡⟩ −

⎡

⎢

⎢

⎢

⎣

𝑁𝑒𝑙
∑

𝑟=1
𝑟≠𝑡

𝑷 ⟨𝑡,𝑟⟩
𝑟𝑡

⎤

⎥

⎥

⎥

⎦

𝛥𝑿⟨𝑟⟩ + 𝛥
[

𝑲⟨𝑡⟩
0 𝑿⟨𝑡⟩

]

= 𝛥𝑭 ⟨𝑡⟩
𝐷 + 𝛥𝑭 ⟨𝑡⟩

𝐿

(41)

for 𝑡 = 1…𝑁𝑒𝑙.

3.3. Implementation details

The proposed model has been implemented using MATLAB® [54].
In this study, the nonlinear damage evolution problem is solved

by employing an incremental-iterative Newton–Raphson scheme in
displacement control. Once the solution at a given load step is obtained,
a load increment is enforced, and the Newton–Raphson iteration is
started, triggering the non-linear evolution of the internal damage
6

variables; the process is arrested when the residual is reduced below
a preset tolerance, so that a subsequent increment, if of interest, may
be applied. A block diagram describing the most relevant phases of the
implemented model is reported in Fig. 5.

Some remarks about how the adaptive multi-domain procedure
works are herein reported. All the subdomains are initially flagged as
undamaged, unless some a priori damage is considered. If, upon load
increment, the failure criteria are met in an undamaged sub-domain,
then the adaptive procedure is activated. Hence, the program steps back
to the previous converged solution and subdivides the considered sub-
domain, which is going to feature damage initiation, into a collection
of patches. It is worth mentioning an important constrain that must be
considered in the subdivision process: the stress–strain diagram must
not present snap-back that may arise after the computation of 𝑒𝑓𝑖,𝑒𝑞 in
Eq. (21). To ensure that, the maximum size for the new sub-domains
in which damage can spread is:

𝐿𝑐 ≤
2𝐸𝑖𝐺𝑐,𝑖
𝑋𝑖

𝑖 = 𝑓𝑡, 𝑓𝑐, 𝑚𝑡, 𝑚𝑐, (42)

where 𝐸𝑖, 𝐺𝑐,𝑖 and 𝑋𝑖 are the Young modulus, fracture energies and
strengths associated with their corresponding damage modes, respec-
tively. This is consistent with what often done in CDM approaches, see
e.g. [47,55]. Those new sub-domains are still flagged as undamaged,
except those within which the damage threshold will be overcome by
re-applying the load increment.

To transfer the fields information from the last converged state,
involving a certain set of domains, to the new subdivided domains,
a least square procedure is employed. Therefore, after computing and
assembling the stiffness and penalty matrices, the solution vector of the
new discretization 𝑋𝑚 is computed by equating the displacement field
of the previous discretization and the multi-domain discretization of



Composite Structures 331 (2024) 117915D. Campagna et al.
Fig. 6. Schematic representation of square plate loaded with a prescribed displacement
𝑢1 in the 𝑥1 direction applied on the right edge.

the available converged solution,

𝒖(𝑥1, 𝑥2) = 𝒖̃(𝑥1, 𝑥2) = 𝜱(𝑥1, 𝑥2)𝑿 = 𝜱̃(𝑥1, 𝑥2)𝑿𝑚 (43)

where 𝒖̃ and 𝜱̃(𝑥1, 𝑥2) are respectively the displacements and the matrix
of polynomials associated with the new discretization. The solution
vector 𝑿𝑚 is then obtained by minimizing not only ‖𝜱̃(𝑥1, 𝑥2)𝑿𝑚 −
𝜱(𝑥1, 𝑥2)𝑿‖ but also ‖𝑿𝑚‖ [56].

Finally, it is worth highlighting an important implementation fea-
ture before presenting the validation and numerical result; convergence
issues are frequent and well-known in material models that show soft-
ening and stiffness loss. In this study, a viscous regularization approach
is used as mentioned in Ref. [34], to mitigate such numerical conver-
gence issues. The following evolution equation is then introduced

𝜔̇𝑣𝑖 =
1
𝛽
(

𝜔𝑖 − 𝜔𝑣𝑖
)

(44)

where 𝛽 is a viscous parameter and 𝜔𝑣𝑖 denotes the regularized damaged
variable for the ith damage mode, computed as

𝜔𝑣|𝑛 =
𝛥𝜏 𝜔𝑖|𝑛 +

𝛽
𝜔𝑣|𝑛−1, (45)
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𝑖 𝛽 + 𝛥𝜏 𝛽 + 𝜏 𝑖
Table 1
Material properties of straight fibre lamina.

Properties Values

Modulus [GPa] 𝐸11 = 105.0; 𝐸22 = 8.57;
𝐺23 = 𝐺13 = 3.05; 𝐺12 = 4.39

Poisson’s ratio 𝜈12 = 0.34

Strength [MPa]
𝑋𝑇 = 1400.0; 𝑋𝐶 = 930.0;
𝑌 𝑇 = 47.0; 𝑌 𝐶 = 60.3;
𝑆𝐿 = 𝑆𝑇 = 53.0

Fracture toughness [kJm−2] 𝐺𝑐,𝑓 𝑡 = 200; 𝐺𝑐,𝑓𝑐 = 100
𝐺𝑐,𝑚𝑡 = 1.0; 𝐺𝑐,𝑚𝑐 = 1.0

where, the subscripts 𝑛 − 1 and 𝑛 denote two subsequent time/load
steps, and 𝛥𝜏 is the interval between them, while 𝜏 is the time/load
parameter.

It has been demonstrated that, when the viscosity parameter 𝛽 is
small compared to 𝛥𝜏, the viscous regularization scheme improves the
rate of convergence without significantly affecting the accuracy of the
results. Therefore, for all applications shown in the following section
the value of 𝛽 = 1 × 10−5 has been chosen.

4. Numerical validation and test results

In this section, some applications of the developed method are
presented. The first test shows the spurious effects that may arise with
the localization phenomena using a single-domain Ritz approach. Using
a multi-domain discretization it is possible to obtain a meaningful
response without un-physical behaviour. In all tests, the same order of
polynomial for both directions was chosen, namely 𝑀𝜒 = 𝑁𝜒 = 𝑝.

4.1. Treatment of damage Gibbs artefacts

To illustrate the issues arising when coupling the single domain Ritz
method with a localized damage representation, a square unidirectional
composite lamina subjected to uniaxial tension is considered, as shown
in Fig. 6. Moreover, a narrow band of material along the 𝑥2 axis in
the left vertical edge has strength lower than the rest of the plate,
to artificially induce the onset of the damage. The plate has sides
𝐿 = 𝐻 = 10mm, and the material properties are given in Table 1.

The analysis is performed in displacement control, by setting the
maximum displacement 𝑢1 = 0.15mm. Fig. 7 shows the damage plot

related to the damage index 𝜔𝑓𝑡 in the fibre direction for different
Fig. 7. Damage plot of 𝜔𝑓𝑡 index for lamina in tension showing Gibbs effects.



Composite Structures 331 (2024) 117915D. Campagna et al.
Fig. 8. Multi-domain discretizations used: (a) discretization 3E2B; (b) discretization 5E4B; (c) discretization 9E8B.
Fig. 9. Damage plots of 𝜔𝑓𝑡 index for lamina in tension adopting different discretizations showing the removal of Gibbs effect.
Fig. 10. Force-vs-displacement result of unidirectional composite lamina in tension: (a) comparison for three different discretizations showing discretization-independent results;
(b) comparison of present method with ABAQUS.
polynomial expansions used in the Ritz approximation scheme. It is
clear that the Gibbs effect is present and generates an oscillatory
behaviour of the damage along the 𝑥1 axis. The presence of Gibbs
effects is due to the employment of the single domain Ritz method,
which has a global support, for capturing a localized damage phe-
nomenon. After reaching the peak stress, material points unaffected by
damage generally unload. As a result, the strain values in contiguous
material points can exhibit steep variations. Hence, the polynomial Ritz
approximation in Eq. (31) may fail to capture such localized variation,
giving rise to the mentioned Gibbs effect [57].

To address this inconvenience, this study has explored various meth-
ods, such as utilizing filters to minimize the presence of Gibbs ripples.
Although such approaches have demonstrated some advantages, they
were not able to fully remove Gibbs artefacts. Therefore, a strategy
based on the adaptive multi-domain subdivision of the analysis domain
has been considered. The same test as that performed above is now
analysed using the adaptive multi-domain procedure schematically rep-
resented in the block diagram in Fig. 5. Starting from a single domain
representation, the damage onset is triggered at the level of displace-
ment 𝑢2 = 0.0165mm. At this stage, the multi-domain discretization
procedure is activated. The new sub-domains, which are coloured in
grey in Fig. 8, adopt a Ritz polynomial expansion of order 𝑝 = 1, whilst
the bigger sub-domain maintains a higher polynomial order, namely
8

𝑝 = 4, to retain a high level of accuracy. As shown in Fig. 8, three
different discretizations were employed to verify the independence of
the response from the number and the dimension of the sub-domains:
(i) discretization of Fig. 8(a) is named 3E2B and uses two sub-domains
in the damaged band; (ii) discretization of Fig. 8(b) is named 5E4B
and uses four sub-domains in the damaged band; (iii) discretization of
Fig. 8(c) is named 9E8B and uses eighth sub-domains in the damaged
band.

Damage plots related to each discretization used are reported in
Fig. 9, where it appears that the Gibbs effect is completely removed.

Fig. 10(a) shows the result in terms of force-vs.-displacement, which
confirms the independence of the type of multi-domain discretization
used, thus validating the objectivity of the response. Finally, the so-
lution of the present method is compared with FE results obtained
with the ABAQUS built-in CDM model in Fig. 10(b). The comparison
of the results shows excellent agreement with established FE analysis
methods.

4.2. Method validation

For validation purposes and to assess the capabilities of the de-
veloped adaptive multi-domain Ritz method, another test is herein
reported. The damage evolution in a composite unidirectional lamina
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Fig. 11. Geometry and boundary condition for unidirectional lamina with a pre-
existing crack.

under tensile load with a pre-existing crack spanning half length of the
edge has been considered. The plate was modelled taking advantage
of the symmetry to reduce the number of degrees of freedom. The
geometry and boundary conditions of this test case are reported in
Fig. 11. The half specimen modelled is a square plate with sides 𝐿 =
𝐻 = 200mm and thickness ℎ = 1mm. Material properties for the
composite material used are reported in Table 1 and the lamina has
a fibre orientation 𝜃 = 0◦ with respect to the 𝑥1 axis.

The whole plate domain was initially divided into three
sub-domains as shown in Fig. 12(a), where the sub-domain (1) was
used to model the pre-existing crack by setting all the damage indices
𝜔𝑖 = 1.

During the incremental loading procedure, the damage starts de-
veloping at the crack tip. Hence, the adaptive refinement is activated
following the procedure illustrated in Fig. 5. The damage propagates
along the 𝑥1 direction and the new sub-domains were added only next
to the crack tip. Fig. 12(b) shows an intermediate discretization step
where the subdomains in which the damage spread are coloured in
grey. The final stage of discretization is reported in Fig. 12(c), where
the damage is fully propagated along the side of the plate.

The solution convergence concerning the polynomial order has been
evaluated by examining the total reaction force and displacement in
the 𝑥2 direction, as shown in Fig. 13(a). The analysis demonstrates
that, in the specific case studied, rapid convergence is attained by
utilizing a polynomial order of 𝑝 = 6 for the undamaged sub-domains.
These findings have been compared to results obtained using ABAQUS,
employing a converged mesh composed of 20 × 20 finite elements.
Fig. 13(b) illustrates a strong agreement between the results, validating
the proposed approach. Furthermore, a reduction of approximately
60% in the number of degrees of freedom (DOFs) of the system can
be observed: the proposed model, employing a polynomial expansion
of 𝑝 = 6, has a total of 1068 DOFs, while the FE analysis involves 2646
DOFs.

4.3. Notched VAT thermoplastic lamina

Subsequent tests were performed to show the behaviour of a single-
edge notched VAT lamina loaded in tension. The schematic representa-
tion of the problem is reported in Fig. 11 with geometrical parameters
𝐿 = 1mm and 𝐻 = 0.75mm. The properties of the material used refer
to an AS4/PEEK thermoplastic composite material that are reported in
9

Table 2
Properties of AS4/PEEK composite lamina.

Properties Values

Modulus [GPa] 𝐸11 = 127.6; 𝐸22 = 10.8;
𝐺12 = 𝐺13 = 6.0; 𝐺23 = 5.7

Poisson’s ratio 𝜈12 = 0.32

Strength [MPa]
𝑋𝑇 = 2023.4; 𝑋𝐶 = 1234.1;
𝑌 𝑇 = 92.7; 𝑌 𝐶 = 176.0;
𝑆𝐿 = 𝑆𝑇 = 186.0

Fracture toughness [kJm−2] 𝐺𝑐,𝑓 𝑡 = 201; 𝐺𝑐,𝑓𝑐 = 128
𝐺𝑐,𝑚𝑡 = 0.8; 𝐺𝑐,𝑚𝑐 = 0.8

Table 2. The analyses were performed in displacement control, using
a maximum displacement increment 𝛥 = 1 × 10−4mm which can be
automatically adjusted during the iteration to obtain a convergent
solution in the Newton–Raphson numerical procedure.

Four different VAT laminae were analysed having a fibre variation
angle of [0+⟨30|0⟩], [0+⟨45|0⟩], [0+⟨0|30⟩] and [0+⟨0|45⟩] respectively.
Fibre path representations for each lamina are reported in Fig. 14.

Fig. 15 shows the response in terms of force vs. displacements for
the analysed laminae. For all configurations, after the linear-elastic
branch, a nonlinear response occurs due to the onset and evolution of
damage, up to the point where the lamina is completely broken.

The discretization employed at the beginning of the analysis was
composed of three subdomains utilizing a polynomial order of 𝑝 = 12
for each of them giving a total number of 3042 DOFs. In the final stage,
the adaptive discretization results in a total number of 138 subdomains:
135 of order 𝑝 = 1 were used to track the damage evolution, whilst 3 of
order 𝑝 = 12 were used for the undamaged subdomains, giving a total
number of 6282 DOFs.

5. Discussion

In this section, some remarks about the potential, limitations and
future developments of the method are discussed.

The proposed formulation offers valuable insights into the initi-
ation, evolution, and failure of composite laminates, including VAT
configurations, with a remarkable reduction in computational costs, in
terms of number of DOFs with respect to more popular approaches.
The developed tool may be used to efficiently investigate damage
characteristics of VAT and classical laminates and find trade-off design
solutions. However, it has been shown that the coupling of a classical
single-domain Ritz approach, may result in an un-physical response,
due to the spreading of spurious numerical effects. Hence, designers
and engineers must consider the constraints and limitations associated
with different modelling and computational tools while predicting the
structural behaviour of composite materials and components.

The proposed adaptive hp-Ritz approach has shown to be a good
alternative to classical FE-based analysis. It is worth noting that, the
generalized displacements over the patches where damage localizes are
approximated using first-order polynomials, whilst the larger undam-
aged sub-domains retain a higher polynomial degree to avoid losing
accuracy. The use of first-order polynomials is crucial for representing
uniform strain states in the damaged areas, which allows capturing
uniform damage evolution within the considered damaged patches.

Although the proposed hp refinement solves the spurious effects
arising in single domain approaches, classical CDM approaches still
bear known issues linked with the discretization grids [50]. Indeed, the
proposed technique can capture cases in which damage localizes in nar-
row bands while a single-domain approach succeeds in capturing cases
where damage is distributed over a well-definite finite region [25]. In
the last case, the introduction of a multi-domain splitting may incur in
localization issues and associated spurious dependencies, analogously
to what happens in FE-CDM models, if no regularization technique
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Fig. 12. Different phases of adaptive discretization used: (a) initial discretization; (b) intermediate discretization; (c) final discretization.
Fig. 13. Results of the composite lamina with pre-existing crack loaded in tension: (a) convergence analysis; (b) comparison of results with ABAQUS.
Fig. 14. Fibre path representations for each lamina analysed.
is adopted. Therefore, different damage models could be investigated,
e.g. non-local, phase field or gradient approaches [48,58,59].

From a more physical standpoint, the model might be expanded
to take into account additional damage mechanisms, such as impact-
10
induced damage or inter-laminar delamination. Layer-wise displace-
ment approximations along the thickness, hybrid variational state-
ments [60], and cohesive inter-laminar traction–separation laws [61,
62] could all be used to describe delamination. The direct modelling of
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Fig. 15. Force vs. displacement curves for VAT AS4/PEEK thermoplastic composite
laminae.

the displacement jump between adjacent layers and their relationship
to inter-laminar damage, all the way to complete decohesion, would
be made possible by these techniques. In order to trace the evolution
of impact-induced damage, it is possible to examine contact mechan-
ics laws that are appropriate for describing the localized mechanical
effects of impacts [9] in conjunction with the incremental approach
proposed in this work. Moreover, the present model can be extended
to account for large strains. This can be done following the approach
adopted for example in Refs. [19,20,25], where proper non-linear
strain–displacement relationships are assumed and the suitable tangent
stiffness matrix operator, considering both material and geometric
non-linearities, is accordingly computed.

6. Conclusions

A non-linear Ritz methodology for the analysis of damage initiation
and evolution up to failure in VAT composite plates under progressive
loading has been developed, implemented and tested. The approach
is based on first order shear deformation kinematics, the formulation
of the equilibrium equations through energy minimization and the
constitutive description of irreversible damage accumulation within the
framework of continuum damage mechanics. The study has highlighted
how the application of the method in a single-domain version gen-
erally incurs in the emergence of artefacts induced by the inability
of polynomials with global support to represent localized phenomena,
such as damage. The issue has been circumvented by developing an
adaptive multi-domain Ritz approach, which still retains the advan-
tages of Ritz formulation, namely a reduced number of degrees of
freedom with respect to full field finite element analyses, and it is
able to capture damage evolution, thus going beyond available Ritz
formulation including damage in the form of an on/off parameter. The
method has been assessed and validated through benchmark test cases
and eventually some original results involving VAT composite plates
have been presented, as future reference. Few directions for further
investigation have been eventually identified and discussed.
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Appendix A. Differential operator

The matrix linear differential operators appearing in Eq. (8b) are
defined as

𝑝 =
⎡

⎢

⎢

⎣

𝜕𝑥1 0 0
0 𝜕𝑥2 0
𝜕𝑥2 𝜕𝑥1 0

⎤

⎥

⎥

⎦

𝑛 =
⎡

⎢

⎢

⎣

0 0 𝜕𝑥1
0 0 𝜕𝑥2
0 0 0

⎤

⎥

⎥

⎦

(A.1)

with 𝜕𝑥𝑖 = 𝜕(◦)∕𝜕𝑥𝑖.
After combining Eqs. (2) and (A.1), the matrix elements of the

differential operators becomes,

𝜕𝑥1 = 1
𝐽11𝐽22 − 𝐽12𝐽21

(

𝐽22
𝜕
𝜕𝜉

− 𝐽12
𝜕
𝜕𝜂

)

(A.2a)

𝜕𝑥2 = 1
𝐽11𝐽22 − 𝐽12𝐽21

(

−𝐽21
𝜕
𝜕𝜉

+ 𝐽11
𝜕
𝜕𝜂

)

(A.2b)

where 𝐽𝑖𝑗 are the elements of the Jacobian matrix associated with the
coordinate transformation.

Appendix B. Elastic matrices

Elastic coefficient matrices 𝑸𝑝 and 𝑸𝑛 appearing in Eq. (9) take the
form,

𝑸𝑝 =
⎡

⎢

⎢

⎣

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄16 𝑄26 𝑄66

⎤

⎥

⎥

⎦

𝑸𝑛 =
⎡

⎢

⎢

⎣

𝑄44 𝑄45 0
𝑄45 𝑄55 0
0 0 0

⎤

⎥

⎥

⎦

(B.1)

where,

𝑄11 = 𝑄̂11 cos4 𝜃 + 2
(

𝑄̂12 + 2𝑄̂66
)

sin2 𝜃 cos2 𝜃 + 𝑄̂22 sin
4 𝜃 (B.2a)

𝑄12 = 𝑄̂12 cos4 𝜃 +
(

𝑄̂11 + 𝑄̂22 − 4𝑄̂66
)

sin2 𝜃 cos2 𝜃 + 𝑄̂12 sin
4 𝜃 (B.2b)

𝑄22 = 𝑄̂11 sin
4 𝜃 + 2

(

𝑄̂12 + 2𝑄̂66
)

sin2 𝜃 cos2 𝜃 + 𝑄̂22 cos4 𝜃 (B.2c)

𝑄16 =
(

𝑄̂11 − 𝑄̂12 − 2𝑄̂66
)

sin 𝜃 cos3 𝜃 +
(

𝑄̂12 − 𝑄̂22 + 2𝑄̂66
)

sin3 𝜃 cos 𝜃

(B.2d)

𝑄26 =
(

𝑄̂11 − 𝑄̂12 − 2𝑄̂66
)

sin3 𝜃 cos 𝜃 +
(

𝑄̂12 − 𝑄̂22 + 2𝑄̂66
)

sin 𝜃 cos3 𝜃

(B.2e)

𝑄66 =
(

𝑄̂11 + 𝑄̂22 − 2𝑄̂12 − 2𝑄̂66
)

sin2 𝜃 cos2 𝜃 + 𝑄̂66
(

sin6 𝜃 cos4 𝜃
)

cos 𝜃

(B.2f)

𝑄 = 𝑄̂ cos2 𝜃 + 𝑄̂ sin2 𝜃 (B.2g)
44 44 55
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𝑄
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𝑲
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𝑷
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w

=

w
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w

𝛼

w

𝑨

𝑫

R

𝑄45 =
(

𝑄̂55 − 𝑄̂44
)

cos 𝜃 sin 𝜃 (B.2h)

55 = 𝑄̂44 sin
2 𝜃 + 𝑄̂55 cos2 𝜃 (B.2i)

he stiffness coefficients in the material reference system 𝑄̂𝑖𝑗 are col-
ected in the matrices

̂ 𝑝 =

⎡

⎢

⎢

⎢

⎣

𝑄̂11 𝑄̂12 0

𝑄̂12 𝑄̂22 0

0 0 𝑄̂66

⎤

⎥

⎥

⎥

⎦

𝑸̂𝑛 =
⎡

⎢

⎢

⎣

𝑄̂44 0 0
0 𝑄̂55 0
0 0 0

⎤

⎥

⎥

⎦

(B.3)

eing,

̂ 11 =
𝐸1

1 − 𝜈12𝜈21
𝑄̂22 =

𝐸2
1 − 𝜈12𝜈21

𝑄̂12 =
𝜈12𝐸2

1 − 𝜈12𝜈21
(B.4a)

̂ 66 = 𝐺12 𝑄̂44 = 𝐺23 𝑄̂55 = 𝐺13 (B.4b)

here 𝐸𝑖 are the Young’s moduli, 𝐺𝑖𝑗 are the shear moduli and 𝜈𝑖𝑗 are
he Poisson’s coefficients respectively.

ppendix C. Resolving system matrices

Matrices appearing in Eq. (35) have the following expressions

0 = ∫𝛺

⎡

⎢

⎢

⎣

(

⊺
𝑝𝑈𝑨𝑝𝑈 +⊺

𝑛𝑈𝑨𝑠𝑛𝑈

) (

⊺
𝑝𝑈𝑩𝑝𝛩 +𝑛𝑈𝑨𝑠𝑖𝛩

)

(

⊺
𝑝𝛩𝑩𝑝𝑈 +⊺

𝑖𝛩𝑨𝑠𝑛𝑈

) (

⊺
𝑝𝛩𝑫𝑝𝛩 +𝑖𝛩𝑨𝑠𝑖𝛩

)

⎤

⎥

⎥

⎦

𝑑𝛺,

𝑹 = ∫𝛺

[

𝜱⊺
𝑢𝜩

⊺
𝑢𝝁𝑢𝜩𝑢𝜱𝑢 0

0 𝜱⊺
𝜗𝜩

⊺
𝜗𝝁𝜗𝜩𝜗𝜱𝜗

]

𝑑𝛺,

𝑭𝐿 = ∫𝛺

{

𝜱⊺
𝑢𝒒

𝜱⊺
𝜗𝒎

}

𝑑𝛺 + ∫𝜕𝛺𝑙

{

𝜱⊺
𝑢𝑵

𝜱⊺
𝜗𝑴

}

𝑑𝜕𝛺,

𝑭𝐷 = ∫𝜕𝛺𝑐

{

𝜱⊺
𝑢𝜩

⊺
𝑢𝝁𝑢𝜩𝑢 𝒖

𝜱⊺
𝜗𝜩

⊺
𝜗𝝁𝜗𝜩𝜗 𝝑

}

𝑑𝜕𝛺.

(C.1)

The penalty matrix used for connection between subdomains ap-
earing in Eq. (40) is given by

⟨𝑟,𝑠⟩
𝑝𝑡 = ∫𝛤𝑝𝑡

⎡

⎢

⎢

⎢

⎣

(

𝜱⟨𝑟⟩
𝑢
𝑇𝜦⟨𝑟⟩

𝑢
𝑇𝝁⟨𝑝𝑡⟩

𝑢 𝜦⟨𝑠⟩
𝑢 𝜱⟨𝑠⟩

𝑢

)

𝟎

𝟎
(

𝜱⟨𝑟⟩
𝜗
𝑇
𝜦⟨𝑟⟩
𝜗
𝑇
𝝁⟨𝑝𝑡⟩
𝜗 𝜦⟨𝑠⟩

𝜗 𝜱⟨𝑠⟩
𝜗

)

⎤

⎥

⎥

⎥

⎦

𝑑𝛤

(C.2)

Appendix D. Tangent stiffness matrix contributions

The tangent stiffness matrix contribution 𝑲 𝑡,𝑑𝑚𝑔 is related to the
damage evolution in Eq. (37). Regarding the first term, from Eq. (37)
ones can write

𝛥
(

𝑲0𝑿
)

= 𝑲0𝛥𝑿 + 𝛥𝑲0𝑿. (D.1)

The second term of the right hand-side in Eq. (D.1) can be written as

𝛥𝑲0𝑿 = 𝛥

[

𝑲11
0 𝑲12

0

𝑲21
0 𝑲22

0

]{

𝑼

𝜣

}

. (D.2)

The detailed computation is developed only for the first term 𝑲11
0 of

the matrix appearing in Eq. (D.2), being the computation of the other
terms similar. One may write

𝛥
(

𝑲11)𝑼 = 𝛥
[

(

⊺ 𝑨𝑝𝑈 +⊺ 𝑨𝑠𝑛𝑈

)

𝑑𝛺
]

𝑼 (D.3)
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0 ∫𝛺 𝑝𝑈 𝑛𝑈
nd then, noting that, in the present formulation, the second term
ithin the integral sign does not depend on damage, recalling Eq. (34)

𝛥
(

𝑲11
0
)

𝑼 = ∫𝛺

∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1
⊺
𝑝𝑈𝛥

(

𝑸𝑝,𝑖
)

𝑝𝑈𝑼𝑑𝑥3𝑑𝛺 =

∫𝛺

∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1
⊺
𝑝𝑈

𝜕𝑸𝑝,𝑖

𝜕𝜔𝑣𝑖

𝜕𝜔𝑣𝑖
𝜕𝜔𝑖

𝜕𝜔𝑖
𝜕𝑒𝑖,𝑒𝑞

𝜕𝑒𝑖,𝑒𝑞
𝜕𝒆𝑝

𝜕𝒆𝑝
𝜕𝑿

𝛥𝑿𝑝𝑈𝑼𝑑𝑥3𝑑𝛺
(D.4)

here the derivation chain rule has been applied and the summation
s intended for 𝑖 ∈ {𝑓𝑡, 𝑓𝑐, 𝑚𝑡, 𝑚𝑐} and 𝑘 ∈ [1, 𝑁𝑝𝑙𝑦]. The derivatives
nvolved in Eq. (D.4) may be computed as

𝜕𝜔𝑣𝑖
𝜕𝜔𝑖

= 𝛥𝜏
𝛽 + 𝛥𝜏

,
𝜕𝜔𝑖
𝜕𝑒𝑖,𝑒𝑞

=
𝛼𝑖

𝛼𝑖 − 1

(

𝑒0𝑖,𝑒𝑞
𝑒2𝑖,𝑒𝑞

)

,

𝜕𝑒𝑖,𝑒𝑞
𝜕𝒆𝑝

=
{ 𝜕𝑒𝑖,𝑒𝑞

𝜕𝑒11

𝜕𝑒𝑖,𝑒𝑞
𝜕𝑒22

𝜕𝑒𝑖,𝑒𝑞
𝜕𝑒12

,
}

𝜕𝒆𝑝
𝜕𝑿

𝛥𝑿 = 𝑝𝑈𝛥𝑼 + 𝑥3𝑝𝛩𝛥𝜣,

(D.5)

here

𝑖 =
2𝐺𝑐,𝑖

𝑒0𝑒𝑞𝜎0𝑒𝑞𝐿𝑐
(D.6)

Noting that the product of Eqs. (D.5) results in a scalar, this block is
conveniently moved at the end of the integral as follows

∫𝛺

∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1
⊺
𝑝𝑈

𝜕𝑸𝑝,𝑖

𝜕𝜔𝑣𝑖
𝑝𝑈𝑼

𝜕𝜔𝑣𝑖
𝜕𝜔𝑖

𝜕𝜔𝑖
𝜕𝑒𝑖,𝑒𝑞

𝜕𝑒𝑖,𝑒𝑞
𝜕𝒆𝑝

𝜕𝒆𝑝
𝜕𝑿

𝛥𝑿𝑑𝑥3𝑑𝛺

= ∫𝛺
⊺
𝑝𝑈

[

∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1

𝜕𝑸𝑝,𝑖

𝜕𝜔𝑖𝑖
𝑝𝑈𝑼𝜁 (𝛼𝑖, 𝛽, 𝛥𝜏)𝑑𝑥3

]

𝑝𝑈𝛥𝑼

+⊺
𝑝𝑈

[

∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1

𝜕𝑸𝑝,𝑖

𝜕𝜔𝑖𝑖
𝑝𝑈𝑼𝜁 (𝛼𝑖, 𝛽, 𝛥𝜏)𝑥3𝑑𝑥3

]

𝑝𝑈𝛥𝜣

= ∫𝛺
⊺
𝑝𝑈𝑨

∗,1𝑝𝑈𝛥𝑼 +⊺
𝑝𝑈𝑩

∗,1𝑝𝑈𝛥𝜣𝑑𝛺,

(D.7)

where

𝜁 (𝛼𝑖, 𝛽, 𝛥𝜏) =
𝛥𝜏

𝛽 + 𝛥𝜏
𝛼𝑖

𝛼𝑖 − 1

(

𝑒0𝑖,𝑒𝑞
𝑒2𝑖,𝑒𝑞

)

𝜕𝑒𝑖,𝑒𝑞
𝜕𝒆𝑝

. (D.8)

Repeating the same procedures for all the elements of the matrix 𝑲0,
the final expression of the matrix 𝑲 𝑡,𝑑𝑚𝑔 is obtained as

𝑲 𝑡,𝑑𝑚𝑔 = 𝑲0 + ∫𝛺

[

⊺
𝑝𝑈𝑨

∗𝑝𝑈 ⊺
𝑝𝑈𝑩

∗𝑝𝛩

⊺
𝑝𝛩𝑩

∗𝑝𝑈 ⊺
𝑝𝛩𝑫

∗𝑝𝛩

]

𝑑𝛺, (D.9)

here

∗ =
∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1

𝜕𝑸𝑝,𝑖

𝜕𝜔𝑖𝑖

(

𝑝𝑈𝑼 + 𝑥3𝑝𝛩𝜣
)

𝜁 (𝛼𝑖, 𝛽, 𝛥𝜏)𝑑𝑥3,

𝑩∗ =
∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1

𝜕𝑸𝑝,𝑖

𝜕𝜔𝑖𝑖

(

𝑝𝑈𝑼 + 𝑥3𝑝𝛩𝜣
)

𝜁 (𝛼𝑖, 𝛽, 𝛥𝜏)𝑥3𝑑𝑥3,

∗ =
∑

𝑖,𝑘
∫

ℎ𝑘

ℎ𝑘−1

𝜕𝑸𝑝,𝑖

𝜕𝜔𝑖𝑖

(

𝑝𝑈𝑼 + 𝑥3𝑝𝛩𝜣
)

𝜁 (𝛼𝑖, 𝛽, 𝛥𝜏)𝑥23𝑑𝑥3.

(D.10)
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