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In this paper we investigate canonical extensions of conditional probabilities to Boolean 
algebras of conditionals. Before entering into the probabilistic setting, we first prove that 
the lattice order relation of every Boolean algebra of conditionals can be characterized 
in terms of the well-known order relation given by Goodman and Nguyen. Then, as 
an interesting methodological tool, we show that canonical extensions behave well 
with respect to conditional subalgebras. As a consequence, we prove that a canonical 
extension and its original conditional probability agree on basic conditionals. Moreover, 
we verify that the probability of conjunctions and disjunctions of conditionals in a recently 
introduced framework of Boolean algebras of conditionals are in full agreement with the 
corresponding operations of conditionals as defined in the approach developed by two 
of the authors to conditionals as three-valued objects, with betting-based semantics, and 
specified as suitable random quantities. Finally we discuss relations of our approach with 
nonmonotonic reasoning based on an entailment relation among conditionals.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Conditionals play a key role in different areas of logic, probabilistic reasoning and knowledge representation in AI, and 
they have been studied from many points of view, see, e.g., [1,6,8,9,17,28,29,34–36,39]. In particular, a three-valued calculus 
of conditional objects has been given in [11], where a simple semantics for the preferential entailment studied in [16,31,32]
has been provided. Other approaches to conditional objects in the realm of Boolean algebras have been studied in [15,27]. 
Further results, from an Artificial Intelligence perspective, have been given, for instance, in [3,4,30].

In the recent paper [14], an alternative algebraic setting for Boolean conditionals has been put forward. More precisely, 
given a finite Boolean algebra A = (A, ∧, ∨, �, ⊥, �) of events, the authors build another (much bigger but still finite) 
Boolean algebra C(A) where basic conditionals, i.e. objects of the form (A|B) for A ∈A and B ∈A′ =A \ {⊥}, can be freely 
combined with the usual Boolean operations, yielding compound conditional objects, while they are required to satisfy a 

✩ This paper is a fully revised and expanded version, with several new results, of the conference paper [12].
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set of natural properties. Moreover, the set of atoms of C(A) is fully identified and it is shown that they are in a one-to-one 
correspondence with sequences of pairwise different atoms of A of maximal length. Finally, it is also shown that any positive 
probability P on the set of events from A can be canonically extended to a probability μP on the algebra of conditionals 
C(A) in such a way that the probability μP (“(A|B)”) of a basic conditional (A|B) coincides with the conditional probability 
P (A|B) = P (A ∧ B)/P (B). This is done by suitably defining the probability of each atom of C(A) as a certain product of 
conditional probabilities.

On the other hand, the recent paper [13] presents results in the setting of conditional random quantities, with values 
in the unit interval [0, 1], where the numerical approach to conjunctions and disjunctions of conditional events (see, e.g., 
[21–23]) is extended in general to cover arbitrarily complex compound conditionals. These objects are conditional random 
quantities obtained by conjunctions, disjunctions, and negations of conditional events and/or compound conditionals.

In this paper we take the more symbolic algebraic approach to conditionals from [14] a step further and bring it closer 
to the more numerical approach of [13] and [21–23]. We do this by first providing new basic results on the algebras 
C(A) of conditionals themselves, and second by turning operational some of its algebraic and probabilistic definitions. For 
instance, and in contrast with the above mentioned papers, in [14] precise definitions of conjunction and disjunction of 
conditionals are not explicitly given. Rather, any compound conditional comes determined by the disjunction of those atoms 
in C(A) that lie below it. Similarly, the probability of any compound conditional is computed as the sum of the probabilities 
of the atoms below the conditional. But no operational and systematic procedure to do these computations avoiding a 
combinatorial explosion is provided in [14]. More precisely, the main novel contributions of the present paper are:

• We show that the construction of the algebra of conditionals C(A) from a finite algebra of events A is compatible with 
subalgebras. Also we explore the relationship of Goodman and Nguyen’s inclusion relation between basic conditionals 
with the natural order relation � in C(A).

• We extend the definition from [14] of the canonical extension to C(A) of a positive probability on A to the case of 
starting with a general conditional probability on A × A′ , and we show that this extension is compatible with taking 
restrictions on subalgebras and with Stalnaker’s thesis.

• We derive for the canonical extension the formula to compute the probability of a conjunction and a disjunction of con-
ditionals, and check they coincide with the ones proposed in the literature by McGee and Kaufmann, also in accordance 
with the random quantities approach.

• Finally, we introduce an entailment relation in terms of the lattice order in C(A) and we characterize probabilisti-
cally the entailment relation by canonical extensions. Then, we show that a corresponding nonmonotonic consequence 
relation on the algebra A satisfies the well-known rules of the system P.

The paper is structured as follows. After this introduction and some preliminaries in Section 2, we first examine in 
Section 3 the relation between the lattice order in a conditional algebra C(A) and the inclusion relation defined by Goodman 
and Nguyen. In Section 4 we show that the positivity assumption for a probability on A, needed in principle for its canonical 
extension to the algebra of conditionals C(A), can be lifted by starting from a conditional probability (in the axiomatic sense) 
on A ×A′ . Then in Section 5 we show that, if B is a subalgebra of events of A and P a conditional probability on A ×A′ , 
then the restriction of the canonical extension μP on C(A) to C(B) is, in fact, the canonical extension of the restriction of P
on B×B′ . This will allow us to prove that μP is such that μP (“(A|B)”) = P (A|B) and then in Section 6 that the probability 
of the conjunction coincides with McGee and Kaufmann’s expressions obtained within the approach developed by two of the 
authors to conditionals as three-valued objects, with betting-based semantics, and specified as suitable random quantities. 
We also obtain the probability of the disjunction and the probability sum rule, in agreement with the approach given in 
[21]. In Section 7 we first introduce an entailment relation in terms of the lattice order in C(A); then, we characterize 
probabilistically the entailment relation by canonical extensions. Also, we examine a nonmonotonic consequence relation on 
the algebra A, which satisfies the well-known rules of the system P. Moreover, we discuss the Rational Monotony and the 
disjunctive Weak Rational Monotony rules. We also illustrate an example related to the failure of the transitive property. 
We conclude in Section 8 with some remarks and prospects for future work.

2. Preliminaries

In this section we recall basic notions and results from [14] where, for any Boolean algebra of events A =
(A, ∧, ∨, �, ⊥, �), a Boolean algebra of conditionals, denoted C(A), is built. We will also denote a conjunction A∧B simply 
by AB . Intuitively, a Boolean algebra of conditionals over A allows basic conditionals, i.e. objects of the form (A|B) for A ∈A
and B ∈A′ =A \ {⊥}, to be freely combined with the usual Boolean operations up to certain extent.

In mathematical terms, the formal construction of the algebra of conditionals C(A) is done as follows. One first considers 
the free Boolean algebra Free(A|A′) = (F ree(A|A′), 
, �, �, ⊥, �)3 generated by the set A|A′ = {(A|B) : A ∈ A, B ∈ A′}. 
Then, one considers the smallest congruence relation ≡C on Free(A|A′) satisfying the following natural properties:

3 We will continue denoting the top and bottom of Free(A) by � and ⊥ respectively without danger of confusion.
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(C1) (B|B) ≡C �, for all B ∈A′;
(C2) (A1|B) 
 (A2|B) ≡C (A1∧A2|B), for all A1, A2 ∈A, B ∈A′;
(C3) (A|B) ≡C (�A|B), for all A ∈A, B ∈A′;
(C4) (A∧B|B) ≡C (A|B), for all A ∈A, B ∈A′;
(C5) (A|B) 
 (B|C) ≡C (A|C), for all A ∈A, B, C ∈A′ such that A � B � C .

Notice that, if A = A′ and B = B ′ in A, then (A|B) = (A′|B ′). Then, in a sense, the partial operation “|” is well-defined. 
Finally, the algebra C(A) is defined as follows.

Definition 1. For every Boolean algebra A, the Boolean algebra of conditionals of A is the quotient structure C(A) =
Free(A|A′)/≡C

.

Since C(A) is a quotient of Free(A|A), elements of C(A) are equivalence classes but, without danger of confusion, one 
can henceforth identify classes [t]≡C

with one of its representative elements, in particular, by t itself. Conditionals of the 
form (A|�) will also be simply denoted as A.

A basic observation is that if A is finite, C(A) is finite as well, and hence atomic. Indeed, if A is a Boolean algebra with 
n atoms at(A) = {α1, . . . , αn}, i.e. |at(A)| = n, it is shown in [14] that the atoms of C(A) are in one-to-one correspondence 
with sequences α = (αi1 , . . . , αin−1) of n − 1 pairwise different atoms of A, each of these sequences giving rise to an atom 
ωα of C(A) defined as the following conjunction of n − 1 basic conditionals:

ωα = (αi1 |�) 
 (αi2 |�αi1) 
 . . . 
 (αin−1 |�αi1 . . .�αin−2). (1)

In what follows the atom in (1) will be also denoted by the sequence 〈αi1 , . . . , αin−1 〉, or simply by ωi1···in−1 . It is then clear 
that the cardinality of the set of atoms of C(A) is |at(C(A))| = n!. We recall that the lattice order relation � in C(A) is 
defined as

t � s iff t 
 s = t iff t � s = s, for every s, t ∈ C(A). (2)

We also observe that, for every s, t ∈ C(A),

t � s iff t 
�s = ⊥, (3)

because t = t 
 � = (t 
 s) � (t 
�s). In [14, Proposition 4.7] it is shown that an atom ω = (αi1 |�) 
 (αi2 |�αi1) 
 · · · 

(αin−1 |�αi1 · · ·�αin−2) is below a conditional (A|H) w.r.t. the lattice order � in C(A), i.e. ω � A|H , if and only if, letting 
ω = 〈αi1 , αi2 , . . . , αin−1 〉, if j is the first index for which αi j � H , then αi j � A as well; in other words, the following condi-
tion is satisfied:

either “αi1 � AH”, or “αi1 � �H and αi2 � AH”, or . . . , or “αi1 � �H and . . . and αin2
� �H and αin−1 � AH”.

Next we will recall some properties holding in C(A) that will be useful for next sections. For each subvector (i1, . . . , ik) of 
(1, . . . , n) we set

ωi1···ik = αi1 
 (αi2 |�αi1) 
 · · · 
 (αik |�αi1 · · ·�αik−1), (4)

that is, the conjunction ωi1 ···ik , which we also denote by 〈αi1 , . . . , αik 〉, stands for the initial conjunction of k components of 
the atom ωi1···in−1 . Indeed, as (αin |�αi1 · · ·�αin−1) = (αin |αin ) = �, for each permutation (i1, . . . , in) of (1, . . . , n), we obtain the 
following atom of C(A):

ωi1···in = ωi1···in−1 = αi1 
 (αi2 |�αi1) 
 · · · 
 (αin−1 |�αi1 · · ·�αin−2).

We hence recall that, from [14, Proposition 4.3], for each k, the conjunctions ωi1···ik ’s constitute a partition of the algebra 
C(A). In particular this implies that �(i1,...,ik)∈�{ j1,..., jk} ωi1···ik = �, where �{ j1,..., jk} is the set of all permutations (i1, . . . , ik)

of the set { j1, . . . , jk}.

Example 1. An example of an algebra A, with 3 atoms, is obtained by considering the partition {α1, α2, α3} = {E H, �E H, �H}, 
where E, H are two uncertain logically independent events. In this case

A = {⊥,�, E H,�E H, �H, H, E H ∨ �H,�E H ∨ �H}.
The basic conditionals of C(A) are the elements of the set A|A′ = {(A|B) : A ∈ A, B ∈ A′}, where A′ = A \ {⊥}. Moreover, 
the atoms of C(A) are the 3! elements of the form ωi j = αi 
 (α j |�αi), with i �= j, that is,

at(C(A)) = {ω12,ω13,ω21,ω23,ω31,ω32},

3
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Fig. 1. The algebra of conditionals C(A) of Example 1, where at(A) = {α1, α2, α3} and at(C(A)) = {ω12, ω13, ω21, ω23, ω31, ω32}. The element t is obtained 
as ω12 � ω31. The atoms of C(A), the elements of the original algebra A, and the element t are identified with big dots.

where

ω12 = α1 
 α2|�α1 = E H 
 (�E H|�E ∨ �H), ω13 = α1 
 α3|�α1 = E H 
 (�H|�E ∨ �H),

ω21 = α2 
 α1|�α2 =�E H 
 (E H|E ∨ �H), ω23 = α2 
 α3|�α2 =�E H 
 (�H|E ∨ �H),

ω31 = α3 
 α1|�α3 = �H 
 (E H|H) = �H 
 (E|H), ω32 = α3 
 α2|�α3 = �H 
 (�E H|H) = �H 
 (�E|H).

A pictorial representation of the algebra C(A), with 23! = 26 = 64 elements, can be found in Fig. 1. We observe that

ω12 � ω13 = (E H 
 (�E H|�E ∨ �H)) � (E H 
 (�H|�E ∨ �H)) = E H = ω1 = α1,

ω21 � ω23 = (�E H 
 (E H|E ∨ �H)) � (�E H 
 (�H|E ∨ �H)) =�E H = ω2 = α2,

ω31 � ω32 = (�H 
 (E|H)) � (�H 
 (�E|H)) = �H = ω3 = α3,

ω12 � ω13 � ω21 � ω23 � ω31 � ω32 = ω1 � ω2 � ω3 = �.

Moreover, we have the following properties:

ωi 
 ωi j = ωi j, if i �= j; ωi j 
 ωrk = ⊥, if (i, j) �= (r,k); ωi 
 ωrk = αi 
 αr 
 αk|�αr = ⊥, if i �= r.

Finally any compound conditional t ∈ C(A) is a disjunction of the atoms below t . For instance, let

t = (α1|α1 ∨ α2) 
 ((α3|α1 ∨ α3) � (α2|α2 ∨ α3)) = E|H 
 ((�H|E H ∨ �H) � (�E H|�E ∨ �H)).

Based on [14, Proposition 4.7], we observe that E|H = ω12 � ω13 � ω31, (�H|E H ∨ �H) = ω31 � ω32 � ω23 and (�E H |�E ∨ �H) =
ω21 � ω23 � ω12. Then we have:

t = (ω12 � ω13 � ω31) 
 (ω31 � ω32 � ω23 � ω21 � ω23 � ω12) = ω12 � ω31.

Proposition 1. Consider two sequences of indices (i1, . . . , ik) and ( j1, . . . , jt), with k � t. Then:

(i) ωi1···ik 
 ω j1··· jt = ω j1··· jt , if (i1, . . . , ik) = ( j1, . . . , jk),
(ii) ωi1···i 
 ω j1··· jt = ⊥, if ih �= jh for some index h ∈ {1, . . . , k}.
k

4
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Moreover,

(iii) For every sequence (i1, . . . , ik), it holds that

ωi1···ik = �
{( j1,..., jn−1)∈�(1,...,n−1): jr=ir ,1�r�k}

ω j1··· jn−1 .

Proof. (i) Given two sequences (i1, . . . , ik) and ( j1, . . . , jt), with k � t and ( j1, . . . , jk) = (i1, . . . , ik), it holds that

ωi1···ik 
 ω j1··· jt = ωi1···ik 
 ωi1···ik 
 (α jk+1 |�α j1 · · ·�α jk ) 
 · · · 
 (α jt |�α j1 · · ·�α jt−1) =
= ωi1···ik 
 (α jk+1 |�α j1 · · ·�α jk ) 
 · · · 
 (α jt |�α j1 · · ·�α jt−1) = ω j1··· jt .

(ii) Denote by h the first index in the set {i1, . . . , ik} such that ih �= jh . Then

ωi1···ih = ωi1···ih−1 
 (αih |�αi1 · · ·�αih−1) , ω j1··· jh = ωi1···ih−1 
 (α jh |�αi1 · · ·�αih−1) ,

with (αih |�αi1 · · ·�αih−1 ) 
 (α jh |�αi1 · · ·�αih−1 ) = ⊥, so that

ωi1···ih 
 ω j1··· jh = ωi1···ih−1 
 (αih |�αi1 · · ·�αih−1) 
 (α jh |�αi1 · · ·�αih−1) = ⊥ .

Therefore,

ωi1···ik 
 ω j1··· jt =
= ωi1···ih−1 
 (αih |�αi1 · · ·�αih−1) 
 · · · 
 (αik |�αi1 · · ·�αik−1) 
 (α jh |�αi1 · · ·�αih−1) 
 · · · 
 (α jt |�αi1 · · ·�αit−1) = ⊥.

(iii) From (i), ωi1···ik 
 ω j1··· jt = ω j1··· jt , when ir = jr , 1 � r � k. In particular for t = n − 1 it holds that ωi1···ik 
 ω j1··· jn−1 =
ω j1··· jn−1 ∈ at(C(A)). Then, as � =�{( j1,..., jn−1)∈�(1,...,n−1)} ω j1··· jn−1 , from (ii) it follows that

ωi1···ik = ωi1···ik 
 � = �
{( j1,..., jn−1)∈�(1,...,n−1): jr=ir ,1�r�k}

ω j1··· jn−1 . �

Let us notice that the construction of the algebra C(A) presented above can be seen as a map that, for every finite 
Boolean algebra A, gives its associated Boolean algebra of conditionals C(A). For a later use, it is convenient to observe that 
such construction preserves subalgebras in the sense made clear by the next easy result.

Proposition 2. Let A be a finite Boolean algebra and let B be a subalgebra of A. Then C(B) is a subalgebra of C(A).

Proof. Since A and B are finite algebras, so are C(A) and C(B). Moreover, by the way atoms are characterized in every 
boolean algebra of conditionals, it is clear that |at(C(B))| � |at(C(A))|. Thus, by an easy cardinality argument, it immediately 
follows that C(B) is isomorphic to a subalgebra of C(A). More concretely, if β1, . . . , βt are the atoms of B, C(B) is the 
subalgebra of C(A) whose atoms are of the form ωB

i = (βi1 |�) 
 (βi2 |�βi1) 
 . . . 
 (βit−1 |�βi1 . . . �βit−2 ). Notice that each ωB
i

clearly is an element of C(A), whence C(B) is indeed the concrete subalgebra of C(A) having the ωB
i ’s as atoms. �

Subalgebras of C(A) of the form C(B), with B being a subalgebra of A, will be called conditional subalgebras of C(A).
A particularly useful class of subalgebras of a given algebra A are those generated by partitions of A standing for the 

different truth conditions of a set F of conditionals of C(A) taken as three-valued objects. In e.g. [22,23], the elements 
of such a partition are called the constituents generated by F . The simplest example is the case of a single conditional 
F1 = {(A|H)}, with A and H (uncertain) logically independent events, that generates the partition of A given by π1 =
{AH, �AH, �H}, where the event AH makes the conditional (A|H) true, the event �AH makes the conditional (A|H) false, 
while the event �H makes the conditional (A|H) void. In the case of two conditionals F2 = {(A|H), (B|K )}, we therefore 
have in principle 32 = 9 different combined truth conditions, leading to the following 9-element partition

π2 = {AH B K ,�AH B K , AH�B K ,�AH�B K , AH�K ,�AH�K , �H B K , �H �B K , �H �K }, (5)

assuming all these events are different from ⊥ (i.e. assuming the uncertain events A, H, B, K logically independent). When 
one deals with sets of more conditionals, the corresponding partitions can be defined by an easy generalisation of the 
previous procedure.

Now, consider a positive probability P : A → [0, 1] on the algebra of plain events A. It is shown in [14] that P can be 
extended to a probability μP : C(A) → [0, 1] on the Boolean algebra of conditionals C(A), called canonical extension, in such 
a way that μP (“(A|B)”), the probability of a basic conditional (A|B), coincides with the conditional probability of A given 
B , i.e.
5
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μP (“(A|B)”) = P (A|B) = P (A∧B)/P (B),

in accordance with the so-called Stalnaker’s thesis, stating that the probability of a conditional is the conditional probability, 
whenever the antecedent has non-zero probability [41]. In particular, μP (“(A|�)”) = P (A|�) = P (A) for any A ∈ A. Ac-
tually, the probability μP is first defined on the atoms of C(A) as follows: for any atom ωi1···in−1 = αi1 
 (αi2 |�αi1) 
 · · · 

(αin−1 |�αi1 · · ·�αin−2), its probability is defined as the following product of conditional probabilities:

μP (ωi1···in−1) = P (αi1) · P (αi2 |�αi1) · · · P (αin−1 |�αi1 · · ·�αin−2) = P (αi1) · P (αi2)

P (�αi1)
· · · P (αin−1)

P (�αi1 · · ·�αin−2)
.

This is well defined because of the assumption that P is positive. Then μP is extended to the whole algebra C(A) of 
conditionals by additivity: for any element t of C(A),

μP (t) =
∑

ωi1 ···in−1 �t

μP (ωi1···in−1),

where the lattice order � in C(A) is as defined in (2). Moreover, it is shown in [14] that for any k, the following factorization 
holds:

μP (ωi1···ik ) =
∑

(ik+1,...,in)∈�{1,...,n}\{i1,...,ik}
μP (ωi1···in−1) = P (αi1) · P (αi2 |�αi1) · · · P (αik |�αi1 · · ·�αik−1). (6)

We finally notice that, as observed above, since for each k the conjunctions ωi1···ik ’s constitute a partition of C(A), the 
sum of the probabilities over all of them is 1, that is:

1 =
∑

i

P (αi) =
∑

i

μP (ωi) =
∑
i �= j

μP (ωi j) = · · · =
∑

(i1,...,in)∈�{1,...,n}
μP (ωi1···in−1).

3. On the relation between the lattice order in C(A) and Goodman-Nguyen’s inclusion relation

In [26] Goodman and Nguyen introduced an inclusion relation between conditional objects in the context of measure-free 
conditionals. Adapted to the setting of conditionals in an algebra of conditionals it amounts to the following definition.

Definition 2. The Goodman-Nguyen inclusion relation between basic conditionals in an algebra C(A) is defined as follows: 
for any A|H, B|K ∈ C(A),

A|H ⊆ B|K iff AH � B K and �B K � �AH,

where � is the lattice order relation in A.

In this section we explore the relationship of this inclusion relation in C(A) with the natural order relation � in C(A), 
and we provide a full characterisation of � in terms of ⊆, extending partial results in [14].

Theorem 1. Given any conditional events A|H and B|K of an algebra C(A), it holds that

A|H � B|K ⇐⇒ either AH = ⊥ , or �B K = ⊥ , or A|H ⊆ B|K . (7)

Proof. (=⇒) If AH = ⊥, or �B K = ⊥, then the statement holds. Assume that AH �= ⊥, �B K �= ⊥, and by absurd that A|H �
B|K , that is AH � B K or �B K � �AH . If it were AH � B K , as AH �= ⊥ there would exist an atom α ∈ at(A) such that α � AH
and α � �B K∨�K . On the other hand, since �B K �= ⊥ there would exist an atom β ∈ at(A) such that β � �B K . Now let ω be an 
atom of C(A) of the form ω = 〈α, β, . . .〉. Then, it would be ω � A|H and ω � �B|K , hence (A|H) 
 (�B|K ) �= ⊥ because ω �
(A|H) 
 (�B|K ). This leads to a contradiction because by hypothesis A|H � B|K , that is, by recalling (3), (A|H) 
 (�B|K ) = ⊥.

If it were �B K � �AH , as �B K �= ⊥ there would exist an atom α ∈ at(A) such that α � �B K and α � AH∨�H . On the other 
hand, since AH �= ⊥, there would exist an atom β ∈ at(A) such that β � AH . Now let ω be an atom of C(A) of the form 
ω = 〈α, β, . . .〉. Then, it would be ω � A|H and ω � �B|K , which is absurd because it contradicts the hypothesis A|H � B|K .

(⇐=) Observe first that if AH = ⊥ or �B K = ⊥, then A|H = ⊥ or B|K = �, respectively. Thus, in both cases it holds that 
A|H = (A|H) 
 (B|K ) and hence, by recalling (2), the condition A|H � B|K is satisfied.
6
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Assume now that AH �= ⊥ and �B K �= ⊥. Moreover, assume that A|H ⊆ B|K , that is AH � B K and �B K � �AH . As AH � B K
and �B K � �AH , it holds that AH�B K = AH�K = �H�B K = ⊥. Taking into account these last logical relationships, it follows that 
the partition π2 of A generated by A|H and B|K is contained in the set {α1, . . . , α6},4 where

α1 = AH B K = AH, α2 = AH B K , α3 = AH B K =�B K , α4 = AH K , α5 = H B K , α6 = H K .

For the sake of simplicity we first assume all these αi ’s are different from ⊥, i.e. that π2 = {α1, . . . , α6}, and let B be 
the subalgebra of A generated by π2. In other words we assume at(B) = π2. Let us consider any atom ωi1···i5 = (αi1 |�) 

(αi2 |�αi1) 
 · · · 
 (αi5 |�αi1 · · ·�αi4 ) of the conditional algebra C(B), that is a subalgebra of C(A). According to Section 2, in order 
for the relation ωi1···i5 � A|H to be satisfied, in the sequence (i1 · · · i5) the number 1 must appear before the numbers 
2, 3, and 4. Then, the sequence must be such that i1 = 1, or (i1, i2) = (5, 1), or (i1, i2) = (6, 1), (i1, i2, i3) = (5, 6, 1), or 
(i1, i2, i3) = (6, 5, 1). From Proposition 1, we observe that, for instance, the disjunction of all the ω1i2 i3 i4 i5 ’s coincides with 
ω1 and the same for the other cases. Then,

A|H = ω1 � ω51 � ω61 � ω561 � ω651. (8)

Similarly, in order for the relation ωi1···i5 � �B|K to be satisfied, in the sequence (i1 · · · i5) the number 3 must appear before 
the numbers 1, 2, and 5. Then, the sequence must be such that i1 = 3, or (i1, i2) = (4, 3), or (i1, i2) = (6, 3), or (i1, i2, i3) =
(4, 6, 3), or (i1, i2, i3) = (6, 4, 3). Then

�B|K = ω3 � ω43 � ω63 � ω463 � ω643. (9)

By Proposition 1, v 
 w = ⊥, for each v ∈ {ω1, ω51, ω61, ω561, ω651} and w ∈ {ω3, ω43, ω63, ω463, ω643}. Then, from (8) and 
(9) it follows that (A|H) 
 (�B|K ) = ⊥. Therefore

(A|H) = ((A|H) 
 (B|K )) � ((A|H) 
 (�B|K )) = (A|H) 
 (B|K ),

that is A|H � B|K . Finally, notice that in the case where π2 ⊂ {α1, . . . , α6}, by a similar reasoning we would still obtain that 
A|H � B|K . �
Remark 1. Notice that formula (7) is also valid in terms of a numerical inequality where the conditional events are replaced 
by their indicators ([25, Equation (15)]). We also observe that in [20, Theorem 6] it has been proved that the condition

AH = ⊥ , or �B K = ⊥ , or A|H ⊆ B|K (10)

on the right side of formula (7) is equivalent to the property that, denoting by � the set of coherent probability assessments 
(x, y) on {A|H, B|K }, it holds that x � y, for every (x, y) ∈ �. Therefore, since every coherent probability assessment (x, y)

can be extended to a conditional probability P (see Remark 2), by Theorem 1 it follows that

A|H � B|K ⇐⇒ P (A|H) � P (B|K ),∀ P . (11)

The next result directly follows from Theorem 1 and specifies under which conditions the inequality � and the inclusion 
relation ⊆ between two conditional events are equivalent.

Corollary 1. Given any conditional events A|H and B|K , with either AH �= ⊥ and �B K �= ⊥, or AH = �B K = ⊥, then

A|H � B|K ⇐⇒ A|H ⊆ B|K .

It is interesting to remark that, regarding the above Corollary 1, when either AH = ⊥ and �B K �= ⊥, or AH �= ⊥ and �B K =
⊥, it holds that A|H � B|K , but it could be that A|H � B|K . For instance, if A = �H and �H �B K �= ⊥, then ⊥ = A|H � B|K , 
but �B K � �AH = H and hence A|H � B|K .

A slightly different (but still equivalent) characterization of the lattice order relation � among conditional events can be 
given as follows.

Theorem 2. Given any conditional events A|H and B|K , it holds that

A|H � B|K ⇐⇒ AH�B K = (A|H) 
 �H �B K = (�B|K ) 
 AH�K = ⊥.

4 Note that, in principle, depending on the logical relations among the events A, H, B and K , some of these αi ’s might be ⊥.
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Proof. (=⇒). The condition A|H � B|K amounts to (A|H) 
 (�B|K ) = ⊥. Then, by observing that (A|H) 
 H = AH and 
(�B|K ) 
 K =�B K , it follows that

(A|H) 
 (�B|K ) 
 H K = AH�B K = ⊥,

(A|H) 
 (�B|K ) 
 H�K = AH�K 
 (�B|K ) = ⊥, and

(A|H) 
 (�B|K ) 
 �H K = �H �B K 
 (A|H) = ⊥.

(⇐=). Assume that AH�B K = (A|H) 
 �H �B K = (�B|K ) 
 AH�K = ⊥. Then, the atoms are α1, . . . , αk+1, with k � 7. Moreover, by 
recalling that H∨K = H K∨�H K∨H�K , we obtain

(A|H) 
 (�B|K ) 
 (H∨K ) = (A|H) 
 (�B|K ) 
 H K � (A|H) 
 (�B|K ) 
 H�K � (A|H) 
 (�B|K ) 
 �H K = ⊥.

Then,

(A|H) 
 (�B|K ) = [(A|H) 
 (�B|K ) 
 (H∨K )] � [(A|H) 
 (�B|K ) 
 �H �K ] = (A|H) 
 (�B|K ) 
 �H �K
and it can be proved that (A|H) 
 (�B|K ) 
 �H �K = ⊥. Indeed, if there would exist ωi1 i2···ik � (A|H) 
 (�B|K ) 
 �H �K , then it 
would be αi1 = �H �K and αi j �= ⊥, for j = 2, . . . , k. Then ⊥ �= ωi2···ik i1 � (A|H) 
 (�B|K ) 
 (H∨K ), which is absurd. Therefore 
(A|H) 
 (�B|K ) 
 (�H �K ) = ⊥ and hence (A|H) 
 (�B|K ) = ⊥, that is A|H � B|K . �

Notice that Theorem 1 also follows as a corollary from Theorem 2. Indeed, if A|H ⊆ B|K , then AH�B K = AH�K = �H �B K =
⊥, and hence AH�B K = (A|H) 
 �H �B K = (�B|K ) 
 AH�K = ⊥.

4. Canonical extension of a conditional probability

In the definition of the canonical extension μP on C(A) in [14] that we recalled in Section 2, a crucial assumption is that 
P is positive, i.e. that P (α) > 0 for every α ∈ at(A), otherwise μP (ω) would be undefined for some ω ∈ at(C(A)) (it would 
be of the form 0/0). A way to overcome this limitation is, instead of starting with a positive (unconditional) probability 
on A, to directly start with a conditional probability on A × A′ in the axiomatic sense, that is to say, with a binary map 
P :A ×A′ → [0, 1], where A′ =A \ {⊥}, such that

(CP1) For all B ∈A′ , P (·|B) :A → [0, 1] is a finitely additive probability on A;
(CP2) For all A ∈A and B ∈A′ , P (A|B) = P (A∧B|B);
(CP3) For all A ∈A, B, C ∈A′ , if A � B � C , then P (A|C) = P (A|B) · P (B|C).

As usual, we will also denote P (A|�) simply by P (A), for every A ∈A.

Remark 2. As it has already been mentioned above, differently from the approach in [14], we do not assume here the 
positivity of the (conditional) probability P . Then, the function P may be such that P (A|B) = 0 and/or P (B) = 0 for some 
A ∈ A and B ∈ A′ . Moreover, we recall that, requesting P : A × A′ → [0, 1] to satisfy the above three postulates, assures 
that P is a coherent conditional probability assessment in the sense of de Finetti to all the conditional objects (A|B), 
with A, B ∈ A and B �= ⊥. In fact, a conditional probability assessment on an arbitrary family of (basic) conditional events 
P (A1|B1) = x1, . . . , P (An|Bn) = xn , is coherent iff it can be extended to a full conditional probability (in the above sense) on 
A ×A′ (see, e.g., [10]). In this paper, instead of starting from a (coherent) probability assessment on an arbitrary family of 
conditional events, we directly start with a full conditional probability P defined on A ×A′ .

Then, given a conditional probability P :A ×A′ → [0, 1], we can proceed as in the previous section to define a (uncon-
ditional) probability μP in C(A).

Definition 3. For any conditional probability P :A ×A′ → [0, 1], we define a mapping μP : at(C(A)) → [0, 1] as follows: for 
any atom ω = (α1|�) 
 (α2|�α1) 
 . . . 
 (αn−1|�α1 · · ·�αn−2),

μP (ω) = P (α1|�) · P (α2|�α1) · . . . · P (αn−1|�α1 · · ·�αn−2). (12)

Of course, μP (ω) = 0 if either P (α1|�) = 0, or P (α2|�α1) = 0, . . ., or P (αn−1|�α1 · · ·�αn−2) = 0. That is, differently from 
Section 2, as the positivity property has been lifted, it may be that μP (ω) = 0 for some ω ∈ at(C(A)).

One can check that μP so defined is a probability distribution on at(C(A)).

Proposition 3. 
∑

ω∈at(C(A)) μP (ω) = 1.
8
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Proof. Although one could adapt here the proof of [14, Lemma 6.8], we provide below a direct proof. Let at(A) =
{α1, . . . , αn}. Clearly, 

∑
α∈at(A) P (α|�) = 1; moreover, we have

P (α|�) = P (α|�) · P (�α|�α) = P (α|�) ·
∑
β �=α

P (β|�α) =
∑
β �=α

P (α|�) · P (β|�α),

and thus

1 =
∑
α

P (α|�) =
∑
α

∑
β �=α

P (α|�) · P (β|�α).

Now, if we consider sets of three atoms of A we get

1 =
∑
α

P (α|�) ·
∑
β �=α

P (β|�α) =
∑
α

P (α|�) ·
∑
β �=α

P (β|�α) · P (�α�β|�α�β) =

=
∑
α

P (α|�) ·
∑
β �=α

P (β|�α) ·
∑

γ /∈{α,β}
P (γ |�α�β) =

∑
α

∑
β /∈{α}

∑
γ /∈{α,β}

P (α|�) · P (β|�α) · P (γ |�α�β).

Iterating this procedure for sets of n − 1 atoms of A we finally get:

1 =
∑
β1

∑
β2 /∈{β1}

. . .
∑

βn−1 /∈{β1,...,βn−2}
P (β1|�) · P (β2|�β1) · . . . · P (βn−1|�β1 . . . �βn−2) =

=
∑

〈β1,...,βn−1〉∈at(C(A))

P (β1|�) · P (β2|�β1) · . . . · P (βn−1|�β1 . . . �βn−2)) =
∑

ω∈at(C(A))

μP (ω). �

Then, we can extend μP to a probability on the whole algebra C(A) in the usual way by additivity, as in the previous 
case: for any t ∈ C(A), μP (t) = ∑

ω�t μP (ω). We will keep referring to μP as the canonical extension of P .
We now check that Equation (6) keeps holding in this more general setting. Indeed, concerning the canonical extension 

on the conjunctions ωi1···ik ’s, we first observe that, as ω1···n−2 n−1 � ω1···n−2 n = ω1···n−2, from (12) it holds that:

μP (ω1···n−2) = μP (ω1···n−2 n−1) + μP (ω1···n−2 n) =
= P (α1)P (α2|�α1) · · · P (αn−2|�α1 . . .�αn−3)[P (αn−1|(αn−1∨αn)) + P (αn|(αn−1∨αn))] =
= P (α1)P (α2|�α1) · · · P (αn−2|�α1 . . .�αn−3).

Likewise μP (ωi1···in−2) = P (αi1 )P (αi2 |�αi1) · · · P (αin−2 |�αi1 · · ·�αin−3). Then, by backward iteration, for each k � n − 1, it holds 
that

μP (ωi1···ik ) = P (αi1)P (αi2 |�αi1) · · · P (αik |�αi1 . . .�αik−1). (13)

In particular

μP (ωi) = P (αi), i = 1, . . . ,n. (14)

The question of whether μP actually extends P , in the sense that, for any basic conditional (A|B) ∈ C(A), it holds 
μP (“(A|B)”) = P (A|B) is deferred to Theorem 5 in the next section. From now on, we will simply use the notation μP (A|B)

instead of μP (“(A|B)”) without danger of confusion.

5. The canonical extension and subalgebras, Stalnaker’s thesis, coherence and convexity

In this section we first prove two basic properties of the canonical extensions of conditional probabilities on an algebra 
of events A to the algebra of conditionals C(A), namely their compatibility with taking subalgebras, and based on this, their 
agreement with the initial conditional probability when restricted to basic conditionals. Then we show that {0, 1}-valued 
probabilities on C(A) are in fact always canonical extensions, and as a consequence it follows that the set of canonical 
extensions on C(A) is not a convex set of probabilities.

5.1. The canonical extension and subalgebras

Given the canonical extension μP to C(A) of a conditional probability P on C(A), and given a subalgebra B of A, in 
this subsection we first examine the restriction of μP to the conditional subalgebra C(B) of C(A), and we show that such 
restriction coincides with the canonical extension of the restriction of P to B. Then we use this result to show that μP is 
such that, for every basic conditional (A|B) ∈ C(A), μP (A|B) = P (A|B). This in fact can be regarded as a slight generalisation 
of the Stalnaker thesis mentioned in Section 2 as in this case the antecedent need not have strictly positive probability.
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To start with, let A be a finite Boolean algebra with at(A) = {α1, α2, . . . , αn}, and let B be a subalgebra of A. If β1, . . . , βk

are the atoms of B, it means that the set of atoms of A can be partitioned in non-empty subsets A1, . . . , Ak such that for all 
j = 1, . . . , k, β j = ∨

α∈A j
α. We will first consider the following particular case of a subalgebra B of A: take an index i < n, 

and let B the subalgebra of A generated by α1, . . . , αi−1, αi∨αi+1, αi+2, . . . , αn . In other words, for j = 1, . . . , n − 1, let

β j =
⎧⎨
⎩

α j, if j < i
αi∨αi+1, if j = i
α j+1, if j > i + 1.

(15)

Then B is the subalgebra of A generated by β1, . . . , βn−1 and at(B) = {β1, . . . , βn−1}.
Now let us consider P :A ×A′ → [0, 1] a conditional probability and μP : C(A) → [0, 1] its canonical extension to C(A). 

Further, let P ′ : B ×B′ → [0, 1] be the restriction of P to B ×B′ , and let μP ′ : C(B) → [0, 1] be its canonical extension to 
C(B). The question of interest is whether μP ′ is in fact the restriction of μP to C(B). Next theorem shows this is actually 
the case. Indeed, given any permutation ( j1, . . . , jn−1) of (1, . . . , n − 1), we let

ω′
j1··· jn−2

= (β j1 |�) 
 (β j2 |�β j1) 
 · · · 
 (β jn−2 |�β j1 · · · �β jn−3) ∈ at(C(B))

and we recall that, by definition of the canonical extension of μP ′ ,

μP ′(ω′
j1··· jn−2

) = P (β j1 |�)P (β j2 |�β j1) · · · · P (β jn−2 |�β j1 · · · �β jn−3) .

In the next result we show that μP (ω′
j1··· jn−2

) = μP ′ (ω′
j1··· jn−2

). But first we state a preliminary remark that will be useful 
in the proof.

Remark 3. For any events A, B , and C in an algebra A with A � B � C and B �= ⊥, and any conditional probability P :
A ×A′ → [0, 1], it holds that

P (A|B) = P (�B|C)P (A|B) + P (A|C). (16)

Indeed, when A � B � C , from (CP3) one has P (A|C) = P (A|B)P (B|C). Then one also has: P (A|B) = P (A|B)P (�B|C) +
P (A|B)P (B|C) = P (�B|C)P (A|B) + P (A|C).

Theorem 3. For each atom ω′
j1··· jn−2

∈ at(C(B)), the following holds:

μP (ω′
j1··· jn−2

) = μP ((β j1 |�) 
 (β j2 |�β j1) 
 · · · 
 (β jn−2 |�β j1 · · · �β jn−3)) =
= P (β j1 |�)P (β j2 |�β j1) · · · P (β jn−2 |�β j1 · · · �β jn−3) =
= μP ′(ω′

j1··· jn−2
).

(17)

Proof. Due to its length, and to easy the reading of the paper, the proof has been moved to Appendix A. �
As an illustration of Theorem 3, we examine the case of a simple example for n = 4.

Example 2. Let A be an algebra with four atoms {α1, α2, α3, α4}. Let us consider the partition defined by the elements 
β1 = α1, β2 = α2 and β3 = α3∨α4, and let B be the subalgebra of A generated by these three elements so that {β1, β2, β3}
become the atoms of B. As above, let P be a conditional probability on A × A′ , and let P ′ be its restriction to B × B′ . 
According to Theorem 3, let us show that μP ′ is the restriction of μP on C(B). We have to show that, for any pairwise 
different i, j ∈ {1, 2, 3}, the following condition holds:

μP (ω′
i j) = μP ((βi |�) 
 (β j|�βi)) = P (βi) · P (β j|�βi) = μP ′((βi|�) 
 (β j|�βi)) = μP ′(ω′

i j).

The cases (βi |�) 
 (β3|�βi) with i ∈ {1, 2} can be easily verified by exploiting (13). Let us consider the case (β3|�) 
 (β1|�β3), 
the other case (β3|�) 
 (β2|�β3) is analogous. We have to compute

μP ((β3|�) 
 (β1|�β3)) = μP ((α3∨α4|�) 
 (α1|α1∨α2)) .

We observe that

(α3∨α4|�) 
 (α1|α1∨α2) = (α3|�) 
 (α1|α1∨α2) � (α4|�) 
 (α1|α1∨α2).

In particular, concerning (α3|�) 
 (α1|α1∨α2), by applying the distributivity property and (C5), it holds that
10
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(α3|�) 
 (α1|α1∨α2) = (α3|�) 
 (α1∨α2∨α4|α1∨α2∨α4) 
 (α1|α1∨α2) =
= (α3|�) 
 (α1∨α2|α1∨α2∨α4) 
 (α1|α1∨α2) � (α3|�) 
 (α4|α1∨α2∨α4) 
 (α1|α1∨α2) =
= (α3|�) 
 (α1|α1∨α2∨α4) � (α3|�) 
 (α4|α1∨α2∨α4) 
 (α1|α1∨α2) = ω31 � ω341.

Then, by applying (16), with A = α1, B = α1∨α2, and C = α1∨α2∨α4, it holds that

P (α1|α1∨α2∨α4) + P (α4|α1∨α2∨α4)P (α1|α1∨α2) = P (α1|α1∨α2),

and hence

μP [(α3|�) 
 (α1|α1∨α2)] = μP (ω31 � ω341) = μP (ω31) + μP (ω341) =
= P (α3|�)[P (α1|α1∨α2∨α4) + P (α4|α1∨α2∨α4)P (α1|α1∨α2)] = P (α3|�)P (α1|α1∨α2).

Analogously, it holds that (α4|�) 
 (α1|α1∨α2) = ω41 � ω431 and hence

μP [(α4|�) 
 (α1|α1∨α2)] = P (α4|�)P (α1|α1∨α2).

Thus (β3|�) 
 (β1|�β3) = ω31 � ω341 � ω41 � ω431 and hence

μP ((β3|�) 
 (β1|�β3)) = [P (α3|�) + P (α4|�)]P (α1|α1∨α2) = P (α3∨α4|�)P (α1|α1∨α2) =
= P (β3|�)P (β1|�β3) = μP ′((β3|�) 
 (β1|�β3)).

Notice that, by suitably reordering the subscripts, the result of Theorem 3, still holds for the case where βi = αi∨αt , with 
t > i + 1. More in general, for each conditional subalgebra C(B) of C(A), by a suitable iterated application of Theorem 3 it 
can be verified that (17) is satisfied. This yields the following result.

Theorem 4. Let A be a finite Boolean algebra. For any subalgebra B of A, and any conditional probability P :A ×A′ → [0, 1], let P ′
be its restriction on B×B′ . Then,

(i) for every atom ω′ ∈ at(C(B)) it holds that μP (ω′) = μP ′ (ω′), and hence,
(ii) for each t ∈ C(B) it also holds that μP (t) = μP ′ (t).

Proof. Indeed, as already observed above, item (i) can be proved by an iterated application of Theorem 3. Then, (ii) follows 
by observing that t =�ω′�t ω

′ , and by (i) it follows that μP (t) = ∑
ω′�t μP (ω′) = ∑

ω′�t μP ′ (ω′) = μP ′ (t). �
To exemplify the iterative procedure to prove (i) in the above theorem, let us consider the following simple example.

Example 3. Let us consider the partition π of an algebra A◦ associated with a family of two conditional events {A|H, B|K }
from the conditional algebra C(A◦) and further consider the partition associated with the sub-family {B|K }, which we 
denote by π ′ and that is defined as follows:

π = {α1,α2,α3,α4,α5,α6,α7,α8,α9} , π ′ = {β1, β2, β3} ,

where

α1 = AH B K , α2 = AH�B K , α3 = AH�K , α4 = �AH B K ,

α5 = �AH�B K , α6 = �AH�K , α7 = �H B K , α8 = �H �B K , α9 = �H �K ,

and

β1 = B K = α1∨α4∨α7 , β2 = �B K = α2∨α5∨α8 , β3 = �K = α3∨α6∨α9 .

Let us denote by A the subalgebra of A◦ generated by π , that is, such that at(A) = π , and by B the subalgebra of A (and of 
A◦) generated by π ′ , that is, such that at(B) = π ′ .

Moreover, let us introduce the following ‘intermediate’ partitions:

π(1) = {α1,α2,α3,α4,α5,α6∨α9,α7,α8} , π(2) = {α1,α2,α3∨α6∨α9,α4,α5,α7,α8} ,

π(3) = {α1,α2,α3∨α6∨α9,α4,α5∨α8,α7} , π(4) = {α1,α2∨α5∨α8,α3∨α6∨α9,α4,α7} ,

π(5) = {α1,α2∨α5∨α8,α3∨α6∨α9,α4∨α7} , π(6) = {α1∨α4∨α7,α2∨α5∨α8,α3∨α6∨α9} ,

where π(6) = π ′ = {β1, β2, β3}. Note that each partition π(k) is the result of “fusing” two atoms in the previous partition 
π(k−1) . Then, by iteratively applying the result of Theorem 3, it follows that the property (i) holds on π(k) , k = 1, 2, . . . , 5, 
11
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A, P :A×A′ → [0,1]

B⊆A Restriction

Canonical extension

C(·), μ(·) C(A),μP : C(A) → [0,1]

C(B)⊆C(A) Restriction

B, P ′ :B×B′ → [0,1]
Canonical extension

C(·), μ(·) C(B),μP ′ : C(B) → [0,1]

Fig. 2. Compatibility of the canonical extension construction with respect to taking subalgebras. Notice that in the above diagram, μP ′ = μP �C(B) . That is 
to say, the canonical extension μP ′ of the conditional probability P ′ obtained by restricting P to B×B′ is the restriction of the canonical extension μP to 
the subalgebra C(B) of C(A).

and finally on π(6) = π ′ = {β1, β2, β3}. Therefore, we get that if P is a conditional probability on A ×A′ and P ′ its restriction 
on B×B′ , we have that

μP (ω′) = μP ′(ω′) ,

for every atom ω′ ∈ at(C(B)).

Theorem 4 shows that the restriction of the canonical extension μP on the conditional algebra C(A) to the conditional 
subalgebra C(B) coincides with the canonical extension μP ′ on the conditional subalgebra C(B), see the commutative dia-
gram in Fig. 2.

This result enables a local approach to study properties of basic and compound conditionals, as it will be done in the 
next section.

Actually, the above Theorem 4 is very powerful, because when dealing with a set of conditional events F = {(Ai |Hi)}i∈I
from C(A) and their probabilities, there is no need to resport to probabilities defined on the whole algebra C(A) (and 
thus specified on all the atoms of C(A)) but only on a relevant subalgebra of C(A). Indeed, it is enough to consider the 
conditional subalgebra C(B) where B is the subalgebra of A generated by a suitable partition determined by the family F
of conditional events along the lines studied in [23, Sec. 2.1].

In the next result we extend a main result of [14] in the following sense. In [14, Theorem 6.13] the authors show that 
if P is a positive probability on A, then its canonical extension on C(A) is such that μP (A|H) = P (AH)/P (H). That is, for 
positive probabilities, conditional probability can be understood as a simple probability over conditionals, a result that it 
is related to the well-known Stalnaker’s thesis. Thanks to Theorem 4, here we show that this still holds if we start with a 
conditional probability on A ×A′ .

Theorem 5. Let P be a conditional probability on A ×A′ and μP its canonical extension to C(A). Then, for every basic conditional 
(A|H) ∈ C(A), it holds that μP (A|H) = P (A|H).

Proof. Given any (A|H) ∈ C(A), let B be the subalgebra of A generated by the partition {β1, β2, β3} = {AH, �AH, �H}. Let 
P ′ : B × B′ → [0, 1] be the restriction of P to B × B′ , and let μP ′ : C(B) → [0, 1] be its canonical extension to C(B). Of 
course P ′(A|H) = P (A|H). From (C4) and (C5), it holds that (A|H) 
 H = (AH |H) 
 H = AH . Then,

(A|H) = ((A|H) 
 H) � ((A|H) 
 �H) = AH � ((A|H) 
 �H) = ω′
1 � ω′

31, (18)

where ω′
1 = β1 = AH and ω′

31 = β3 
 (β1|�β3) = �H 
 (A|H). Therefore, from (14) and Theorem 4

μP (A|H) = μP ′(A|H) = μP ′(ω′
1) + μP ′(ω′

31) = P (β1) + P (β3)P (β1|�β3) =
= P (AH) + P (�H)P (A|H) = P (H)P (A|H) + P (�H)P (A|H) = P (A|H). �

A direct consequence of the previous result is that, given two conditional probabilities P and P ′ , with P �= P ′ , it follows 
that μP �= μP ′ . Indeed, from Theorem 5, if μP = μP ′ , then P = P ′ because

P (A|H) = μP (A|H) = μP ′(A|H) = P ′(A|H) , ∀ A|H ∈ C(A) .

Remark 4. In light of Theorem 5, the result recalled in Remark 1 can be further extended so to involve also the canonical 
extensions of conditional probabilities. Indeed, we can now characterize the order � between conditional events in the 
following way: for every conditional events A|H and B|K , it holds that

A|H � B|K ⇐⇒ μP (A|H) � μP (B|K ), ∀P .
12
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Remark 5. Given three events A, B, C , with A � B � C , by (CP3) it holds that P (A|C) = P (A|B)P (B|C). Moreover, by recalling 
(C5), we observe that

(A|B) = [(A|B) 
 (B|C)] � [(A|B) 
 (�B|C)] = (A|C) � [(A|B) 
 (�B|C)],
and hence, from (16) and Theorem 5,

P (A|B) = P (A|C) + P (A|B)P (�B|C) = P (A|C) + μP [(A|B) 
 (�B|C)]. (19)

Thus,

μP [(A|B) 
 (�B|C)] = P (A|B) − P (A|C) = P (A|B) − P (A|B)P (B|C) = P (A|B)P (�B|C). (20)

As we can see, (20) shows that the “independence” between A|B and B|C , when A � B � C , still holds in terms of μP . In 
particular, given any events E and H , by applying (20) with A = E H, B = H , and C = �, as �H |� = �H , we obtain

μP ((E|H) 
 �H) = P (E|H)P (�H) . (21)

Formula (21) will be generalized in Theorem 6, where �H is replaced by any K such that H K = ⊥.

5.2. On the canonical extensions of {0, 1}-valued conditional probabilities

It is very well-known that homomorphisms from a Boolean algebra A into the two-element Boolean algebra 2 ={0, 1} are 
in fact the {0, 1}-valued probabilities on the algebra A. We now show that the homomorphisms from C(A) into to 2 are the 
canonical extensions of {0, 1}-valued conditional probabilities on A × A′ . Specifically, we prove that for each ω ∈ at(C(A))

the map μ : C(A) → {0, 1}, such that μ(s) = 1, if ω � s, and μ(s) = 0, otherwise, is a canonical extension of a suitable 
conditional probability on A ×A′ .

Lemma 1. For any atom ω ∈ at(C(A)), there is a conditional probability Pω :A ×A′ → [0, 1] whose canonical extension μPω is such 
that μPω (ω) = 1 and μPω (ω′) = 0 for any atom ω′ �= ω.

Proof. Assume ω = 〈α1, . . . , αn〉. For any event B ∈ A, let at�(B) be the set of atoms of A below B , and let min(B) =
min{i ∈ {1, ..., n}|αi ∈ at�(B)}. Then define Pω :A ×A′ → [0, 1] as follows:

Pω(A|B) =
{

1, if α j � A,where j = min(B)

0, otherwise

Notice that, from the definition, it directly follows that Pω(A|B) = 1 if ω � (A|B) in C(A), and Pω(A|B) = 0 otherwise. 
Moreover Pω is indeed a {0, 1}-valued mapping.

It is not difficult to check that, so defined, Pω is a conditional probability:

(CP1) We have to show that for all B ∈A′ , Pω(·|B) :A → [0, 1] is a finitely additive probability on A. Indeed, it is clear from 
the definition that Pω(�|B) = 1 and Pω(⊥|B) = 0. As for the additivity, assume A ∧ C = ⊥. Then Pω(A ∨ C |B) = 1 iff 
ω � (A ∨ C |B) = (A|B) � (C |B) iff ω � (A|B) or ω � (C |B) but not both, that is, iff Pω(A|B) = 1 and Pω(C |B) = 0, or 
Pω(C |B) = 1 and Pω(A|B) = 0. Therefore, Pω(A ∨ C |B) = 1 iff Pω(A|B) + Pω(C |B) = 1.

(CP2) For all A ∈ A and B ∈ A′ , we have to show that Pω(A|B) = Pω(A∧B|B). As observed above, Pω(A|B) = 1 iff ω �
(A|B) iff ω � (A ∧ B|B) iff Pω(A ∧ B|B) = 1.

(CP3) Finally, we show that for all A ∈ A, B, C ∈ A′ , if A � B � C , then Pω(A|C) = Pω(A|B) · Pω(B|C). We have that 
Pω(A|C) = 1 iff ω � (A|C), and since (A|C) = (A|B) 
 (B|C), ω � (A|C) iff ω � (A|B) and ω � (B|C), that is, iff 
Pω(A|B) = Pω(B|C) = 1.

Notice that, by direct application of the definition of Pω(·|·), it is easy to check that, for every i = 1, . . . , n − 1, we have 
Pω(αi |αi ∨ αi+1... ∨ αn) = 1 since i = min(αi ∨ αi+1 ∨ . . . ∨ αn). Therefore,

μPω(ω) = Pω(α1|�) · Pω(α2|α2∨...∨αn) · . . . · Pω(αn−1|αn−1∨αn) = 1,

and hence μPω (ω′) = 0 for ω′ �= ω. �
In the last part of the proof of the above lemma we have proved that, for any atom ω = 〈α1, . . . , αn〉 ∈ at(C(A)), Pω is 

such that

Pω(α1|�) = Pω(α2|α2∨...∨αn) = . . . = Pω(αn−1|αn−1∨αn) = 1,

and according to Remark 2, this means that the probability assessment P = (1, . . . , 1) on the family
13
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F = {(α1|�), (α2|�α1), . . . , (αn−1|�α1 · · ·�αn−2)}
(as a restriction of Pω) is coherent. In the rest of this subsection we show that this is in accordance with what can be 
obtained by applying the Algorithm 1 in [5,22], in order to check coherence of P, by considering a suitable sequence of 
linear systems and by verifying the solvability of each linear system.

Step 1 In the first step we consider the following system �1 associated with the pair (F , P) in the unknowns λ1, . . . , λn ,

(�1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 = P (α1|�)(λ1 + · · · + λn),

λ2 = P (α2|�α1)(λ2 + · · · + λn),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

λn−1 = P (αn−1|�α1 · · ·�αn−2)(λn−1 + λn),

λ1 + · · · + λn = 1,

λh � 0,∀h,

that is

(�1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 = λ1 + · · · + λn,

λ2 = λ2 + · · · + λn,

· · · · · · · · · · · · · · · · · · ,

λn−1 = λn−1 + λn,

λ1 + · · · + λn = 1,

λh � 0,∀h.

The system �1 has a unique solution given by the vector (λ1, . . . , λn) = (1, 0, . . . , 0), which can be interpreted as a 
(coherent) probability assessment π1 on {α1, . . . , αn}, defined as

π1 : P (α1) = 1 , P (α2) = · · · = P (αn) = 0 .

By the algorithm, we have I0 = {2, . . . , n − 1}, F0 = {α2|�α1, . . . , αn−1|�α1 · · ·�αn−2} and P0 = (1, . . . , 1). Then, the proce-
dure continues with the second step.

Step 2 In the second step we consider the following system �2, associated with the new pair (F , P) = ({α2|�α1,

. . . , αn−1|�α1 · · ·�αn−2}, (1, . . . , 1)), in the unknowns λ2, . . . , λn ,

(�2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ2 = λ2 + · · · + λn,

· · · · · · · · · · · · · · · · · · ,

λn−1 = λn−1 + λn,

λ2 + · · · + λn = 1,

λh � 0,∀h.

The system �2 has a unique solution given by the vector (λ2, . . . , λn) = (1, 0, . . . , 0), which can be interpreted as a 
(coherent) probability assessment π2 on {α2|�α1, . . . , αn|�α1}, defined as

π2 : P (α2|�α1) = 1, P (α3|�α1) = · · · = P (αn|�α1) = 0 .

By the algorithm, we have I0 = {3, . . . , n − 1}, F0 = {α3|�α1�α2, . . . , αn−1|�α1 · · ·�αn−2} and P0 = (1, . . . , 1). Then, the pro-
cedure continues with the third step.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Step n − 1 In the last step we consider the following system �n−1 associated with the pair (F , P) = ({αn−1|�α1 · · ·�αn−2}, (1)), 

in the unknowns λn−1, λn

(�n−1)

⎧⎨
⎩

λn−1 = λn−1 + λn,

λn−1 + λn = 1,

λn−1 � 0, λn � 0.

The system �n−1 has a unique solution (λn−1, λn) = (1, 0), which can be interpreted as a (coherent) probability assess-
ment πn−1 on {αn−1|�α1 · · ·�αn−2, αn|�α1 · · ·�αn−2}, defined as

πn−1 : P (αn−1|�α1 · · ·�αn−2) = 1, P (αn|�α1 · · ·�αn−2) = 0 .

By the algorithm, we have I0 = ∅; then, the procedure ends by declaring P coherent.
14
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Therefore, we have seen that the conditional probability P on A × A′ , extension of the assessment P on F , is such that 
μP (ω) = 1 and μP (ω′) = 0 for every atom ω′ �= ω. Then, since μP = μPω and, as we have observed above, the canonical 
extensions are unique, it holds that P = Pω , that is Pω is the unique extension of the assessment P on F as a (full) 
conditional probability to A ×A′ . Notice that, for each r = 1, . . . , n − 1, the probability assessment πr is a restriction of Pω

on the family {αr |�α1 · · ·�αr−1, . . . , αn|�α1 · · ·�αr−1}, that is on the family {αr |αr ∨ · · · ∨ αn, . . . , αn|αr ∨ · · · ∨ αn}.
We remark that, in order to verify the coherence of the assessment P on F , an equivalent procedure is given in [10]

which exploits a suitable class of (unconditional) probability assessments {Pr} agreeing with P. For each conditional event 
(αh|αh ∨ · · · ∨ αn) in F , its probability is represented as a ratio by using an element of the class. In our case the (unique) 
agreeing class is {P0, P1, . . . , Pn−1}, where, for each h, the assessment Ph−1 is defined as

Ph−1(αh) = 1 , Ph−1(α j) = 0 , j > h.

Indeed, we have

P (αh|αh ∨ · · · ∨ αn) = Ph−1(αh)

Ph−1(αh ∨ · · · ∨ αn)
, h = 1, . . . ,n .

We recall that in [10], given any event E ∈ A, with E �= ⊥, the zero-layer of E with respect to an agreeing class {Pr} is the 
first index k such that Pk(E) > 0, denoted o(E) = k. In our case, for each atom αh the first index k such that Pk(αh) > 0 is 
k = h − 1 and hence o(αh) = h − 1. Thus, the events α1, α2, . . . , αn belong to different zero-layers, because

o(α1) = 0 , o(α2) = 1 , . . . ,o(αn−1) = n − 2 , o(αn) = n − 1 .

Finally, in [10] the zero-layer of a conditional event E|H , with respect to an agreeing class {Pr}, is defined as o(E|H) =
o(E H) − o(H). Then, by observing that for every h it holds that o(αh) = o(αh ∨ · · · ∨ αn), with respect to {P0, P1, . . . , Pn−1}
we obtain

o(αh|αh ∨ · · · ∨ αn) = 0, ∀ (αh|αh ∨ · · · ∨ αn) ∈ F .

5.3. On the non convexity of the set of canonical extensions

Based on Lemma 1 we can verify that the set of canonical extensions μP on C(A) is not convex. Indeed, as we have seen, 
for every ω ∈ at(C(A)), the probability μPω as in Lemma 1 is a homomorphism of C(A) to the two element Boolean algebra 
{0, 1}. In other words, the set of all probability measures μP on C(A) that are canonical extensions of some conditional 
probability P contains all the homomorphisms of C(A) to {0, 1}. Thus, if the set of canonical extensions were convex, this 
set would coincide with the set of all probability measures of C(A) and this is known not to be the case, since there are 
probabilities on algebras C(A) that are not conditional probabilities and hence are not canonical extensions, see for instance 
[14, Example 6.3]. Next we provide another example.

Example 4. Let us consider an algebra A with atoms {α1, α2, . . . , α5}, and let A = α1 ∨ α2, H = α1 ∨ · · · ∨ α4 and B =
α1∨α3∨α5. Notice that AB H = α1, A�B H = α2, �AB H = α3, �A �B H = α4, �H = α5. Then, consider in C(A) the two atoms 
ω′ = ω1234 and ω′′ = ω2314, and the following conditional events:

A|H = (α1 ∨ α2|α1 ∨ · · · ∨ α4), �B|H = (α2 ∨ α4|α1 ∨ · · · ∨ α4), A|B H = (α1|α1 ∨ α3).

As it can be verified, it holds that: ω′ � (A|H), ω′ � (�B|H), ω′ � (A|B H), ω′′ � (A|H), ω′′ � (�B|H) and ω′′ � (A|B H). 
Therefore: ω′ � ω′′ � (A|H), ω′ � ω′′ � (�B|H) and ω′ � ω′′ � (A|B H). We can show that the set of canonical extensions 
μP on C(A) is not convex. For instance, by considering μPω′ and μPω′′ defined as in Lemma 1, and by setting μa =
aμPω′ + (1 −a)μPω′′ , we can show that μa is a canonical extension of a conditional probability if and only if a = 1 or a = 0, 
with trivially μ1 = μPω′ and μ0 = μPω′′ . Indeed, we observe that

μa(ω
′ � ω′′) = a · μPω′ (ω

′ � ω′′) + (1 − a) · μPω′′ (ω
′ � ω′′) = a + 1 − a = 1,

and moreover that μa(A|H) = μa(ω
′ �ω′′) = 1, μa(�B|H) = μa(ω

′′) = 1 −a, and μa(A|B H) = μa(ω
′) = a. If μa coincides with 

the canonical extension μP of some conditional probability P , then by Theorem 5 we have that P (A|H) = 1, P (�B|H) = 1 −a, 
and P (A|B H) = a. We can verify that the assessment P = (1, 1 − a, a) on the family {A|H, �B|H, A|B H}, where

P (A|H) = 1 , P (�B|H) = 1 − a , P (A|B H) = a ,

is coherent if and only if a = 0 or a = 1. Indeed, the constituents generated by {A|H, �B|H, A|B H} are

C0 = �H , C1 = AB H , C2 = A�B H , C3 = �AB H , C4 = �A �B H .

We set P (Ch|H) = λh , h = 1, 2, 3, 4. Then,
15
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1 = P (A|H) = P (C1|H) + P (C2|H) = λ1 + λ2,

1 − a = P (�B|H) = P (C2|H) + P (C4|H) = λ2 + λ4,

a2 = P (A|B H)P (B|H) = P (AB|H) = λ1,

1 = P (H|H) = P (C1|H) + · · · + P (C4|H) = λ1 + · · · + λ4,

(22)

or equivalently⎧⎪⎪⎨
⎪⎪⎩

λ1 = a2,

λ2 = 1 − a = 1 − a2,

λ3 = λ4 = 0,

λh � 0 , ∀h .

One can check that this linear system of equations on the unknowns λi ’s is solvable if and only if a = 1 or a = 0. Therefore, 
for every 0 < a < 1, there does not exist any conditional probability P which is the restriction of μa to the basic conditional 
events, that is, such that ∀(A|H) ∈ C(A), μa(A|H) = P (A|H). Thus, by Theorem 5, for every 0 < a < 1 the map μa cannot 
be the canonical extension of any conditional probability P and hence the set of canonical extensions μP on C(A) is not 
convex.

6. Probability of the conjunction and the disjunction of conditionals

In this section we start by showing that the probability of the conjunction K 
(A|H), when H K = ⊥, is the product of the 
probabilities of the conjuncts. Then, we represent the conjunction of two conditional events as a suitable disjunction. Finally, 
based on the canonical extension, we obtain the probability for the conjunction and the disjunction of two conditional 
events A|H and B|K , which are related with analogous results given in the setting of coherence in [21–23,25,24]. In the 
next result we generalize formula (21).

Theorem 6. Given an algebra A and any events A, H, K ∈A, with H �= ⊥ and H K = ⊥, given a conditional probability P on A ×A′
and its canonical extension μP to C(A), it holds

μP [K 
 (A|H)] = P (K )P (A|H) . (23)

Proof. As H K = ⊥, it holds that H�K = H , H∨�K = �K , and �H K = K ; then

� = (AH∨�AH∨�H) ∧ (K∨�K ) = AH�K∨�H K∨�AH�K∨�H �K .

We consider the partition {β1, . . . , β4}, where

β1 = AH�K = AH , β2 = �H K = K , β3 = �AH�K = �AH , β4 = �H �K ,

and the associated subalgebra B; moreover we consider the atoms ω′
i1 i2 i3

’s of C(B). As ω′
213 � ω′

214 = ω′
21, it holds that

K 
 (A|H) = ω′
213 � ω′

214 � ω′
241 = ω′

21 � ω′
241 .

Let P ′ be the restriction of P to B × B′ and μP ′ its canonical extension to C(B). As H�K = H it holds that P (AH |�K ) =
P (A|H�K )P (H |�K ) = P (A|H)P (H |�K ). Then, from Theorem 5 and from (13) we obtain

μP [K 
 (A|H)] = μP ′ [K 
 (A|H)] = μP ′(ω′
21) + μP ′(ω′

241) =
= P (β2)P (β1|�β2) + P (β2)P (β4|�β2)P (β1|�β2�β4) = P (K )P (AH|�K ) + P (K )P (�H|�K )P (A|H) =
= P (K )[P (AH|�K ) + P (�H|�K )P (A|H)] = P (K )[P (A|H)P (H|�K ) + P (A|H)P (�H|�K )] = P (K )P (A|H) . �

Using the above result, we can now provide a suitable representation of the conjunction of two conditionals based on 
which we will show in Theorem 8 how to compute the probability of such a compound conditional object.

Theorem 7. For any conditional events A|H, B|K ∈ C(A) it holds that

(A|H) 
 (B|K ) = [(AH B K |H∨K )] � [(A|H) 
 (�H B K |H∨K )] � [(B|K ) 
 (AH�K |H∨K )]. (24)

Proof. From (C5) it follows that (AH |H∨K ) = (A|H) 
 (H |H∨K ) and (B K |H∨K ) = (B|K ) 
 (K |H∨K ). Then

(A|H) 
 (B|K ) 
 (H K |H∨K ) = (A|H) 
 (H|H∨K ) 
 (B|K ) 
 (K |H∨K ) =
= (AH|H∨K ) 
 (B K |H∨K ) = AH B K |H∨K ,
16
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(A|H) 
 (B|K ) 
 (H�K |H∨K ) = (A|H) 
 (H|H∨K ) 
 (B|K ) 
 (�K |H∨K ) =
= (AH|H∨K ) 
 (B|K ) 
 (�K |H∨K ) = (B|K ) 
 (AH�K |H∨K ),

and

(A|H) 
 (B|K ) 
 (�H K |H∨K ) = (A|H) 
 (�H|H∨K ) 
 (B|K ) 
 (K |H∨K ) =
= (A|H) 
 (�H|H∨K ) 
 (B K |H∨K ) = (A|H) 
 (�H B K |H∨K ).

Then,

(A|H) 
 (B|K ) = (A|H) 
 (B|K ) 
 (H∨K |H∨K ) =
= [(A|H) 
 (B|K ) 
 (H K |H∨K )] � [(A|H) 
 (B|K ) 
 (H�K |H∨K )] � [(A|H) 
 (B|K ) 
 (�H K |H∨K )] =
= [(AH B K |H∨K )] � [(A|H) 
 (�H B K |H∨K )] � [(B|K ) 
 (AH�K |H∨K )]. �

In the next result we finally obtain the probability for the conjunction of two conditionals A|H 
 B|K in terms of 
conditional probabilities of events related to the partition obtained from the family {A|H, B|K }.

Theorem 8. Given an algebra A and a conditional probability P on A × A′ , let μP be the canonical extension to C(A). For any 
conditional events A|H, B|K ∈ C(A) it holds that

μP [(A|H) 
 (B|K )] = P (AH B K |H∨K ) + P (A|H)P (�H B K |H∨K ) + P (B|K )P (�K AH|H∨K ). (25)

Proof. From (24) it follows that

μP [(A|H) 
 (B|K )] = P (AH B K |H∨K ) + μP [(A|H) 
 (�H B K |H∨K )] + μP [(B|K ) 
 (�K AH|H∨K )]. (26)

In order to obtain (25) we need to show that

μP [(A|H) 
 (�H B K |H∨K )] = P (A|H)P (�H B K |H∨K ) (27)

and

μP [(B|K ) 
 (AH�K |H∨K )] = P (B|K )P (AH�K |H∨K ). (28)

We first assume that the uncertain events A, H, B, K are logically independent and we consider the subalgebra B generated 
by the partition {β1, . . . , β9}, where

β1 = AH B K , β2 = AH�B K , β3 = AH�K , β4 = �AH B K ,

β5 = �AH�B K , β6 = �AH�K , β7 = �H B K , β8 = �H �B K , β9 = �H �K .
(29)

Notice that, by logical independence, β j �= ⊥, for each j = 1, . . . , 9. Moreover, we consider the compound conditionals 
ω′

i1···ik
’s of C(B), 1 � k � 8. Let P ′ be the restriction of P to B × B′ and μP ′ its canonical extension to C(B). We recall 

that from Theorem 4, μP (C) = μP ′ (C), for every C ∈ C(B). By exploiting the distributivity property, we decompose the 
conjunction (A|H) 
 (�H B K |H∨K ) as

(A|H) 
 (�H B K |H∨K ) = [(A|H) 
 (�H B K |H∨K ) 
 (H∨K )] � [(A|H) 
 (�H B K |H∨K ) 
 (�H �K )]. (30)

For the compound (A|H) 
 (�H B K |H∨K ) 
 (H∨K ) it holds that

(A|H) 
 (�H B K |H∨K ) 
 (H∨K ) = (A|H) 
 �H B K ,

and, by Theorem 6, μP [(A|H) 
 (�H B K |H∨K ) 
 (H∨K )] = μP [(A|H) 
 �H B K ] = P (A|H)P (�H B K ). Moreover, as P (�H B K ) =
P (�H B K ∧ (H∨K )) = P (�H B K |H∨K )P (H∨K ), it follows that

μP [(A|H) 
 (�H B K |H∨K ) 
 (H∨K )] = P (A|H)P (�H B K |H∨K )P (H∨K ). (31)

For the compound (A|H) 
 (�H B K |H∨K ) 
 (�H �K ) it holds that

(A|H) 
 (�H B K |H∨K ) 
 (�H �K ) = ω′
971 � ω′

972 � ω′
973 � ω′

9781 � ω′
9782 � ω′

9783, (32)

where the list of ω′ ’s which appear in the previous formula are given in Table 1.
As

P (AH B K |H∨�B K ) + P (AH�B K |H∨�B K ) + P (AH�K |H∨�B K ) =
= P (AH|H∨�H �B K ) = P (A|H)P (H|H∨�H �B K ),
17
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Table 1
List of ω′ such that ω′ � (A|H) 
 (�H B K |H∨K ) 
 (�H �K ).

ω′
971 = �H �K 
 (�H B K |H∨K ) 
 (AH B K |H∨�B K ),

ω′
972 = �H �K 
 (�H B K |H∨K ) 
 (AH�B K |H∨�B K )

ω′
973 = �H �K 
 (�H B K |H∨K ) 
 (AH�K |H∨�B K ),

ω′
9781 = �H �K 
 (�H B K |H∨K ) 
 (�H �B K |H∨�B K ) 
 (AH B K |H),

ω′
9782 = �H �K 
 (�H B K |H∨K ) 
 (�H �B K |H∨�B K ) 
 (AH�B K |H),

ω′
9783 = �H �K 
 (�H B K |H∨K ) 
 (�H �B K |H∨�B K ) 
 (AH�K |H).

from (13) we hence have

μP (ω′
971 � ω′

972 � ω′
973) = μP (ω′

971) + μP (ω′
972) + μP (ω′

973) = · · · =
= P (�H �K )P (�H B K |H∨K )P (AH|H∨�H �B K ) =
= P (�H �K )P (�H B K |H∨K )P (A|H)P (H|H∨�H �B K ).

Likewise,

μP (ω′
9781 � ω′

9782 � ω′
9783) = μP (ω′

9781) + μP (ω′
9782) + μP (ω′

9783) = · · · =
= P (�H �K )P (�H B K |H∨K )P (�H �B K |H∨�H �B K )P (A|H).

Then, by recalling (32),

μP [(A|H) 
 (�H B K |H∨K ) 
 (�H �K )] = μP (ω′
971 � ω′

972 � ω′
973) + μP (ω′

9781 � ω′
9782 � ω′

9783) =
= P (�H �K )P (�H B K |H∨K )P (A|H)P (H|H∨�H �B K ) + P (�H �K )P (�H B K |H∨K )P (�H �B K |H∨�H �B K )P (A|H) =
= P (A|H)P (�H B K |H∨K )P (�H �K ).

(33)

Thus, from (30), (31), and (33) we obtain

μP [(A|H) 
 (�H B K |H∨K )] =
= μP [(A|H) 
 (�H B K |H∨K ) 
 (H∨K )] + μP [(A|H) 
 (�H B K |H∨K ) 
 (�H �K )] =
= P (A|H)P (�H B K |H∨K )P (H∨K ) + P (A|H)P (�H B K |H∨K )P (�H �K ) =
= P (A|H)P (�H B K |H∨K ),

that is formula (27). By a similar reasoning we can prove formula (28), and hence formula (25) holds in the case where 
A, B, H, K are logically independent.

Concerning the case where there are some logical dependencies among the events A, B, H, K , it may happen in (29) that 
βi = ⊥, for some i. In this case the proof can be adapted by considering the partition given by the βi ’s different from ⊥. �
Remark 6. Notice that formula (25) coincides with the prevision of the conjunction C = (A|H) ∧ (B|K ), introduced in the 
setting of coherence as the following conditional random quantity (see, e.g., [21,23])

(A|H) ∧ (B|K ) = (AH B K |H∨K ) + P (A|H)(�H B K |H∨K ) + P (B|K )(AH�K |H∨K ), (34)

that is

μP [(A|H) 
 (B|K )] = P (C) = P (AH B K |H∨K ) + P (A|H)P (�H B K |H∨K ) + P (B|K )P (�K AH|H∨K ), (35)

where P denotes the prevision and we use the same symbol for (conditional) events and their indicators.
Moreover, when P (H∨K ) > 0, formula (25) becomes

μP [(A|H) 
 (B|K )] = P (AH B K ) + P (A|H)P (�H B K ) + P (B|K )P (�K AH)

P (H∨K )
,

that is the formula obtained by McGee ([33]) and Kaufmann ([29]).

In the next result we first examine the conjunction between (A|H) 
 (B|K ) and H∨K , by showing the factorization of its 
probability. Then, we verify that the same property holds for the probability of the conjunction between (A|H) 
 (B|K ) and 
�H �K .
18
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Theorem 9. Given two conditional events A|H and B|K it holds that

μP [(A|H) 
 (B|K ) 
 (H∨K )] = P (AH B K ) + P (A|H)P (�H B K ) + P (B|K )P (�K AH)

= μP [(A|H) 
 (B|K )]P (H∨K ),
(36)

and

μP [(A|H) 
 (B|K ) 
 (�H �K )] = μP [(A|H) 
 (B|K )]P (�H �K ). (37)

Proof. We observe that from (24) it directly follows that

(A|H) 
 (B|K ) 
 (H∨K ) = AH B K � [(A|H) 
 (�H B K )] � [(B|K ) 
 (AH�K )], (38)

since (AH B K |H∨K ) 
 (H∨K ) = AH B K , (�H B K |H∨K ) 
 (H∨K ) = �H B K and (AH�K |H∨K ) 
 (H∨K ) = AH�K . By Theorem 6

μP [(A|H) 
 (B|K ) 
 �H K )] = μP ((A|H) 
 �H B K ) = P (A|H)P (�H B K ),

and

μP ((A|H) 
 (B|K ) 
 H�K ) = P (B|K )P (AH�K ),

it hence follows that

μP [(A|H) 
 (B|K ) 
 (H � K )] = μP [AH B K � (A|H) 
 (�H B K ) � (B|K ) 
 (AH�K )] =
= P (AB H K ) + P (�H B K )P (A|H) + P (AH�K )P (B|K ) =
= [P (AB H K |H∨K ) + P (�H B K |H∨K )P (A|H) + P (AH�K |H∨K )P (B|K )]P (H∨K ) =
= μP [(A|H) 
 (B|K )]P (H∨K ),

that is, (36) is satisfied.
For the compound (A|H) 
 (B|K ) 
 �H �K , as

(A|H) 
 (B|K ) = [(A|H) 
 (B|K ) 
 (H∨K )] � [(A|H) 
 (B|K ) 
 (�H �K )],
it follows that

μP [(A|H) 
 (B|K ) 
 �H �K ] = μP [(A|H) 
 (B|K )] − μP [(A|H) 
 (B|K ) 
 (H � K )] =
= μP [(A|H) 
 (B|K )] − μP [(A|H) 
 (B|K )]P (H∨K ) = μP [(A|H) 
 (B|K )]P (�H �K ),

that is, (37) is satisfied. �
The next result collects some particular expressions for the probability of the conjunction of two conditionals as direct 

consequences of Theorem 8.

Corollary 2. Given an algebra A and a conditional probability P on A ×A′ , let μP be the canonical extension to C(A). It holds that:

1. if H K = ⊥, then μP [(A|H) 
 (B|K )] = P (A|H)P (B|K );
2. if H∨K = �, then μP [(A|H) 
 (B|K )] = P (AH B K ) + P (A|H)P (�H B K ) + P (B|K )P (�K AH);
3. if H = K , then μP [(A|H) 
 (B|K )] = P (AB|H);
4. if �H B K = �K AH = ⊥, then μP [(A|H) 
 (B|K )] = P (AH B K |H∨K );
5. if A|H ⊆ B|K , then μP [(A|H) 
 (B|K )] = P (A|H);
6. if H B = ⊥ and H � K , then μP [(A|H) 
 (B|K )] = P (A|H)P (B|K ).
7. it holds that (�A|H) 
 (A|H ∨ K ) = (�A|H) 
 (A�H K |H ∨ K ) and

μP [(�A|H) 
 (A|H ∨ K )] = P (�A|H)P (A�H K |H ∨ K ) .

Proof. Assertion 1. If H K = ⊥, �H B K = B K , and AH�K = AH . Then, it holds that

P (AH B K |H∨K ) = 0 , P (�H B K |H∨K ) = P (B K |H∨K ) , P (�K AH|H∨K ) = P (AH|H∨K ) .

Then, by observing that

P (H|H∨K ) + P (K |H∨K ) = P (H∨K |H∨K ) = 1 ,

formula (25) becomes
19
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μP [(A|H) 
 (B|K )] = P (A|H)P (B K |(H∨K ) + P (B|K )P (AH|(H∨K ) =
= P (A|H)P (B|K )P (K |(H∨K ) + P (A|H)P (B|K )P (H|(H∨K ) = P (A|H)P (B|K ) .

Assertion 2. As H∨K = �, formula (25) directly becomes

μP [(A|H) 
 (B|K )] = P (AH B K ) + P (A|H)P (�H B K ) + P (B|K )P (�K AH) .

This formula, by observing that H � K = H K � �H K � H�K and that

(A|H) 
 (B|K ) = (A|H) 
 (B|K ) 
 (H � K ) =
= [(A|H) 
 (B|K ) 
 H K ] � [(A|H) 
 (B|K ) 
 �H K ] � [(A|H) 
 (B|K ) 
 H�K ] =
= AH B K � [(A|H) 
 �H B K ] � [(B|K ) 
 AH�K ] ,

also follows by exploiting Theorem 6.

Assertion 3. As H = K , it holds that (A|H) 
 (B|K ) = (A|H) 
 (B|H) = AB|H (i.e., the conjunction is a conditional event), with

P (�H B K |H∨K ) = P (�H B|H) = 0 , P (�K AH|H∨K ) = P (�H A|H) = 0 .

Then, formula (25) becomes

μP [(A|H) 
 (B|K )] = P [(A|H) ∧ (B|H)] = P (AB|H) .

Assertion 4. As �H B K = �K AH = ⊥, it holds that

(A|H) 
 (B|K ) 
 �H K = (A|H) 
 �H B K = ⊥ , (A|H) 
 (B|K ) 
 H�K = (B|K ) 
 �K AH = ⊥ .

Then, by recalling (24), we obtain (A|H) 
 (B|K ) = (AH B K |H∨K ), i.e., the conjunction is a conditional event, which in this 
case also coincides with the quasi conjunction of A|H and B|K , and with the conjunction (A|H) ∧df (B|K ) in the trivalent 
logic of de Finetti. Indeed the quasi conjunction of A|H and B|K is the conditional event

((�H∨AH) ∧ (�K∨B K )|H∨K ) = (AH B K∨�H B K∨�K AH|H∨K ) = (AH B K |H∨K )

and

(A|H) ∧df (B|K ) = AH B K |(AH B K∨�AH∨�B K ) = (AB H K |H∨K ),

because

H∨K = . . . = AH B K∨�AH∨�B K .

Then, formula (25) becomes μP [(A|H) 
 (B|K )] = P (AH B K |H∨K ).

Assertion 5. If (A|H) ⊆ (B|K ), then from Theorem 1, (A|H) 
 (B|K ) = (A|H); therefore μP [(A|H) 
 (B|K )] = P (A|H).

Assertion 6. If H B = ⊥ and H � K , then AH B K = AH�K = ⊥, (�H B K |H∨K ) = (B K |K ) = (B|K ). Therefore formula (25) be-
comes

μP [(A|H) 
 (B|K )] = P (A|H)P (B|K ).

Assertion 7. We observe that

(A|H∨K ) = (AH ∨ A�H K |H ∨ K ) = (AH|H ∨ K ) � (A�H K )|H ∨ K ) =
= ((A|H) 
 (H|H ∨ K )) � (A�H K )|H ∨ K ),

and hence (�A|H) 
 (A|H ∨ K ) = (�A|H) 
 (A�H K |H ∨ K ). Then, from Assertion 6 it follows that

μP [(�A|H) 
 (A|H ∨ K )] = μP [(�A|H) 
 (A�H K |H ∨ K )] = P (�A|H)P (A�H K |H ∨ K ). �
We now move to the disjunction operation of conditionals. In the next result we give a suitable representation of the 

disjunction of two conditionals (A|H) � (B|K ), similar to the one for the conjunction provided in Theorem 7, that will allow 
us later in Theorem 11 to give an operational formulation for the probability of the disjunction of two conditionals.
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Theorem 10. For any conditional events A|H, B|K ∈ C(A) it holds that

(A|H) � (B|K ) = [(AH∨B K |H∨K )] � [(A|H) 
 (�H �B K |H∨K )] � [(B|K ) 
 (�AH�K |H∨K )]. (39)

Proof. We observe that

(A|H) � (B|K ) = [(A|H) 
 (B|K )] � [(�A|H) 
 (B|K )] � [(A|H) 
 (�B|K )]
where, by recalling Theorem 7,

(A|H) 
 (B|K ) = [(AH B K |H∨K )] � [(A|H) 
 (�H B K |H∨K )] � [(B|K ) 
 (AH�K |H∨K )],
(�A|H) 
 (B|K ) = [(�AH B K |H∨K )] � [(�A|H) 
 (�H B K |H∨K )] � [(B|K ) 
 (�AH�K |H∨K )],

and

(A|H) 
 (�B|K ) = [(AH�B K |H∨K )] � [(A|H) 
 (�H �B K |H∨K )] � [(�B|K ) 
 (AH�K |H∨K )].
By observing that

(A|H) 
 (�H B K |H∨K )] � (�A|H) 
 (�H B K |H∨K )] = �H B K |H∨K ,

(B|K ) 
 (AH�K |H∨K )] � (�B|K ) 
 (AH�K |H∨K )] = AH�K |H∨K ,

and

(AH B K |H∨K )] � (�AH B K |H∨K ) � (AH�B K |H∨K ) � (�H B K |H∨K ) � (AH�K |H∨K ) = (AH∨B K )|H∨K ),

it follows that (39) is satisfied. �
In the next result we obtain the probability of the disjunction (A|H) � (B|K ).

Theorem 11. Given an algebra A and a conditional probability P on A × A′ , let μP be the canonical extension to C(A). For any 
conditional events A|H, B|K ∈ C(A) it holds that

μP [(A|H) � (B|K )] = P (AH∨B K |(H∨K )) + P (A|H)P (�H �B K |H∨K ) + P (B|K )P (�AH�K |H∨K ). (40)

Proof. By suitably applying Corollary 2, Assertion 6, it holds that

μP [(A|H) 
 (�H �B K |H∨K )] = P (A|H)P (�H �B K |H∨K )

and

μP [(B|K ) 
 (�AH�K |H∨K )] = P (B|K )P (�AH�K |H∨K ).

Then, by recalling (39) it holds that

μP [(A|H) � (B|K ) = μP (AH∨B K |H∨K ) + μP [(A|H) 
 (�H �B K |H∨K )] + μP [(B|K ) 
 (�AH�K |H∨K )] =
= P (AH∨B K |(H∨K )) + P (A|H)P (�H �B K |H∨K ) + P (B|K )P (�AH�K |H∨K ),

that is, (40) is satisfied. �
We observe that (40) coincides with the prevision of the disjunction of two conditional events D = (A|H) ∨ (B|K ), 

obtained in the framework of conditional random quantities in [21], where

D= (AH ∨ B K |H∨K ) + P (A|H) (�H �B K |H∨K ) + P (B|K ) (�AH�K |H∨K ). (41)

We also observe that De Morgan Laws are satisfied in C(A), therefore, μP [(A|H) � (B|K )] = μP [(�A|H) 
 (�B|K )] and 
μP [(A|H) 
 (B|K )] = μP [(�A|H) � (�B|K )] in agreement with formulas (25) and (40). Based on (34) and (41), as μP [(A|H) 

(B|K )] = P (C) and μP [(A|H) � (B|K )] = P (D), by recalling the prevision sum rule P (D) = P (A|H) + P (B|K ) − P (C) ob-
tained in [19,21], it holds that

μP [(A|H) � (B|K )] = P (A|H) + P (B|K ) − μP [(A|H) 
 (B|K )]. (42)

Indeed,

μP [(A|H) � (B|K )] = P (A|H) + μP [(�A|H) 
 (B|K )] = P (A|H) + μP (B|K ) − μP [(A|H) 
 (B|K )].
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7. Algebraic and probabilistic entailment with conditionals and nonmonotonic reasoning

In this section we first consider an entailment relation |= among conditionals of a conditional algebra C(A) defined in 
terms of the lattice order in C(A). We show that this algebraic definition can be probabilistically characterised by means 
of canonical extensions as a generalisation of Adams’ p-entailment. Then we show that these two equivalent entailments 
induce a nonmonotonic consequence relation on the algebra of plain events A satisfying the well-known rules of the system 
P and we discuss the Rational Monotony rule. The underlying algebraic nature of |= allows us to provide simple algebraic 
proofs based on results given in the paper, like the decomposition property of the conjunction of Theorem 7.

Let us say that an atom ω ∈ C(A) satisfies a compound t when ω � t . We also say that t is satisfiable if t �= ⊥, i.e. if 
there exists ω ∈ C(A) such that ω � t . Then, it is clear that for every atom ω and every compound t , either ω satisfies t
or ω satisfies �t . In particular, if t = (A|H), then either ω satisfies (A|H), or falsifies it (i.e. it satisfies (�A|H)). This reflects 
the fact that, by construction, conditionals are Boolean objects in conditional algebras C(A). But this is compatible with the 
3-valued nature of basic conditionals when viewed from the original algebra of (plain) events A. Indeed, for every atom α
of A, exactly one of the following three conditions holds: either α � AH , or α � �AH , or α � �H , that respectively correspond 
to the cases in which either α satisfies (A|H), or α falsifies (A|H), or α makes (A|H) undefined or void.

Definition 4. Given any set of (compound) conditionals F ⊆ C(A), we say that F is consistent if 
{s|s ∈ F } is satisfiable, 
that is, if 
{s|s ∈ F } �= ⊥.

We define a consequence relation between sets of conditionals and conditionals from a conditional algebra C(A) by 
means of the order relation �.

Definition 5. Let F ∪{t} ⊆ C(A) be a set of (compound) conditionals, with F consistent. Then we say that t is a consequence 
of F , written F |= t , whenever 
{s|s ∈ F } � t .

Note that, by definition, F |= t holds iff every atom of C(A) which is below every compound conditional of F is also 
below t . Hence, if F is not consistent, then F |= t trivially holds.

The consequence relation |= among (compound) conditionals can also be characterized in probabilistic terms.

Proposition 4. For any set of (compound) conditionals F ∪ {t} ⊆ C(A), with F consistent, it holds that F |= t iff, for all conditional 
probability P , μP (
{r|r ∈ F }) � μP (t).

Proof. By letting s = 
{r|r ∈ F }, it amounts to prove that s � t iff μP (s) � μP (t) for any conditional probability P . From 
consistency of F it holds that s > ⊥. The left-to-right direction is direct. For the converse direction, suppose ⊥ < s � t . Then 
there is an atom ω ∈ C(A) such that ω � s but ω � t . By Lemma 1, μPω is such that μPω (s) = 1 while μPω (t) = 0. �

As an immediate consequence of this proposition and its proof, in the following result we have a stronger version of the 
previous result, that in fact shows that |= coincides with a generalised form of Adams’ p-entailment for (basic) conditionals 
[1]. In the following we will say that a conditional probability P is a p-model of a (compound) conditional s when μP (s) = 1, 
and we will say that a set F of (compound) conditionals p-entails another (compound) conditional t , written F �p t , when 
every conditional probability P that is a p-model of all conditionals s ∈ F is a p-model of t as well.

Definition 6. For any set of (compound) conditionals F ∪ {t} ⊆ C(A), with F consistent, we say that F p-entails t , written 
F �p t , when every p-model of F is a p-model of t as well.

Lemma 2. For any set of consistent (compound) conditionals F ⊆ C(A), it holds that

F �p 
{s|s ∈ F }. (43)

Proof. Let P be a p-model of F , that is μP (s) = 1 for all s ∈ F . If P were not a p-model of 
{s|s ∈ F , that is μP (
{s|s ∈
F ) < 1, then there would exist an atom ω of C(A) such that ω � 
{s|s ∈ F } and μP (ω) > 0. Moreover, there would exist 
s ∈ F such that ω � s and hence μP (s) < 1 contradicting the assumption. �
Proposition 5. For any set of (compound) conditionals F ∪ {t} ⊆ C(A), it holds that F |= t iff F �p t.

Proof. (=⇒). If F |= t , then by Proposition 4, μP (
{s|s ∈ F ) � μP (t) for every P . Then, from (43) for every p-model P of 
F it holds that μP (
{s|s ∈ F ) = 1 and hence μP (t) = 1. Thus F �p t .
(⇐=). Assume that F �p t . If t were not a consequence of F , then there would exist an atom ω of C(A) such that 
ω � 
{s|s ∈ F } and ω � t . Then, from Lemma 1, it would be μPω (
{s|s ∈ F ) = 1 and μPω (t) = 0. Moreover, as μPω (
{s|s ∈
22
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F ) � μPω (s) for all s ∈ F , it would follow that μPω (s) = 1 for all s ∈ F , with μPω (t ) = 0. Thus, Pω would be a p-model of 
F , but not a p-model of t , which contradicts the assumption. �

Now we turn to some properties of the entailment |= related to core properties of the well-known System P for non-
monotonic inference relations.

Proposition 6. The following inferences for |= hold:

(i) {(A|H), (B|H)} |= (AB|H) (related to And)
(ii) {(A|H), (B|AH)} |= (B|H) (related to Cut)

(iii) {(A|H), (A|K )} |= (A|H∨K ) (related to Or)
(iv) {(A|H), (B|H)} |= (B|AH) (related to CM)
(v) {(A|H∨K ), (�A|H)} |= (A|K ) (related to the Or rule)

Proof. (i) It directly follows from the definition of C(A).
(ii) We have (A|H) 
 (B|AH) = (AH |H) 
 (AB H |AH) = (AB H |H) � (B|H), where in the second equality we have applied 

condition (C5), and thus (ii) is satisfied.
(iii) By (24) we get: (A|H) 
 (A|K ) = (AH K |H∨K ) � ((A|H) 
 (A�H K |H∨K )) � ((A|K ) 
 (AH�K |H∨K )) � (AH K |H∨K ) �

(A�H K |H∨K ) � (AH�K |H∨K ), but each of the three disjuntcs is less or equal than (A|H∨K ), hence (A|H) 
 (A|K ) �
(A|H∨K ).

(iv) In this case, we have (A|H) 
 (B|H) = (AB|H) = (AB H |H), but by the property (C5), (AB H |H) = (AB H |AH) 
 (AH |H) �
(AB H |AH) = (B|AH), and hence (A|H) 
 (B|H) � (B|AH).

(v) Applying (24), we get: (A|H∨K ) 
 (�A|H) =
= (A(H∨K )�AH |H∨K ) � [(A|H∨K ) 
 (�H �K �AH |H∨K )] � [(�A|H) 
 (A(H∨K )�H |H∨K )] =
= ⊥ � ⊥ � [(�A|H) 
 (AK �H|H∨K )] � (AK �H |H∨K ) = (AK �H|K ) 
 (K |H∨K ) � (AK �H|K ) � (A|K ). �

Note that the property (iv) above can be equivalently expressed under the form

(vi) (A|H) |= (�B|H) � (A|B H),

since, obviously (A|H) � (�B|H) � (A|B H) iff (A|H) 
 (B|H) � (A|B H).
Now, each set of (compound) conditionals defines a nonmonotonic consequence relation on the algebra of events A.

Definition 7. Let F be a consistent set of (compound) conditionals. Then we define the consequence relation | ∼F ⊆ 2A × A
on events from A as follows:

{B1, . . . , Bn} |∼F A if F |= (A|B1...Bn).

Equivalently, by Corollary 5, {B1, . . . , Bn} | ∼F A if F �p (A|B1...Bn), that is, if P (A|B1, .., Bn) = 1 for every conditional prob-
ability P model of F . Hence | ∼F is in fact the p-entailment relative to F .

Theorem 12. The consequence relation | ∼F satisfies the core properties of System P:

• Reflexivity: A | ∼F A
• And: if H | ∼F A and H | ∼F B then H | ∼F AB
• Cut: if H | ∼F A and AH | ∼F B then H | ∼F B
• Or: if H | ∼F A and K | ∼F A then H∨K | ∼F A
• CM: if H | ∼F A and H | ∼F B then B H | ∼F A

Moreover it satisfies the following additional property related to disjunction:

• Orm: if H∨K | ∼F A and H | ∼F �A then K | ∼F A

Proof. Reflexivity trivially holds, and the rest of properties directly follow from properties (i)-(vi) in Proposition 6. �
As a consequence, | ∼F is a preferential consequence relation in the sense of [31]. We recall that a probabilistic analysis 

of System P inference rules has been given, in the setting of coherence, in [17]; moreover, the p-validity of such rules has 
been verified in [22].

It has been shown elsewhere, see e.g. [14], that the Rational Monotony rule
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• RM: H | ≈ A and H | �≈�B then B H | ≈ A,

or its equivalent disjunctive variant

• dRM: H | ≈ A then H | ≈�B or B H | ≈ A,

for entailments | ≈ similar to | ∼F is not valid. In fact RM or dRM is not valid in general for | ∼F , unless the set F consists of 
only one atom of C(A), since in such a case H | �F �B is equivalent to H | ∼F B and then RM becomes just CM. The following 
is a counter-example of the validity of the rule already in the case that F is a disjunction of two atoms of C(A).

Example 5. Consider an algebra A of events, three (uncertain) logically independent events A, B and H , and the subalgebra 
B generated by the partition {α1, α2, α3, α4, α5} of A, where

α1 = AB H, α2 = A�B H, α3 = �AB H, α4 = �A �B H, and α5 = �H
Further, consider the following two conditionals of C(B):

ω1 = (α1|�) and ω23 = (α2|�) 
 (α3|�α2),

and let F = {ω1 � ω23}. Then we can check that:

1) ω1 = (AB H |�) � (AB H |H) � (A|H), ω1 � (B|H) and hence ω1 � (�B|H); similarly ω1 � A|B H ;
2) ω23 � (α2|�) = (A�B H |�) � (A�B H |H) � (A|H); similarly ω23 � �B|H ;
3) ω23 � (α3|�α2) = (�AB H |�A∨B∨�H) � (�AB H |B H) = (�A|B H), hence ω23 � (A|B H).

Therefore, we have ω1 � ω23 � (A|H), ω1 � ω23 � (�B|H) and ω1 � ω23 � (A|B H). In other words, F |= (A|H), F �|= (�B|H)

and F �|= (A|B H), or equivalently

H |∼F A, H |�F �B, and B H |�F A.

Thus, we have shown a counter-example of the validity of the RM rule for the consequence relation | ∼F .

However, a weaker probabilistic formulation of the dRM rule, called dWRM (for disjunctive Weak Rational Monotony) 
[2,40]) holds, in accordance with [17,18].

Proposition 7. For any events A, B, H ∈ A with B H �= ⊥ and for any conditional probability P on A ×A′ , the following rule

• dWRM: if P (A|H) = 1, then either P (�B|H) = 1 or P (A|B H) = 1

holds.

Proof. By (vi) of Proposition 6, it holds that (A|H) |= (�B|H) � (A|B H), and therefore, for any P , P (A|H) = μP (A|H) �
μP ((�B|H) � (A|B H)). Now, by Assertion 6 of Corollary 2, we have that μP ((�B|H) 
 (A|B H)) = P (�B|H)P (A|B H). Therefore, 
since for any s, t ∈ C(A) it holds that μP (s � t) = μP (s) +μP (t) −μP (s 
 t), we have the following decomposition expression:

μP ((�B|H) � (A|B H)) = μP (�B|H) + μP (A|B H) − μP (�B|H)μP (A|B H) = P (�B|H) + P (A|B H) − P (�B|H)P (A|B H),

and thus, μP ((�B|H) � (A|B H)) = 1 iff P (�B|H) = 1 or P (A|B H) = 1. Indeed, for every x, y, it holds that

x + y − xy = 1 ⇐⇒ (1 − x)(1 − y) = 0 ⇐⇒ x = 1, or y = 1. (44)

�
In the following remark, we deepen some probabilistic aspects of the RM and dWRM rules

Remark 7. We first examine the RM and dWRM rules in the light of Example 5; let F = {ω1 � ω23}, and let ω′ and ω′′
be two atoms such that ω′ � ω1 and ω′′ � ω23, and consider the associated conditional probabilities Pω′ and Pω′′ . Then, 
clearly, μPω′ (ω1) = 1 and μPω′′ (ω23) = 1. Now let P = Pω′ or P = Pω′′ . It holds that

P (A|H) = μP (ω1 � ω23) = 1 , P (�B|H) = μP (ω23), P (A|B H) = μP (ω1).

Of course F �p A|H . Moreover, as Pω′ is a p-model of F but not of �B|H , then F �p �B|H . Similarly, as Pω′′ is a p-model of 
F but not of A|B H , then F �p A|B H . Thus, F �p A|H , F �p �B|H , and F �p A|B H , that is RM rule is not valid.
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Concerning dWRM rule we observe that: (i) if μP (ω1) = 1 then P (A|H) = 1, P (�B|H) = 0, and P (A|B H) = 1; (ii) if 
μP (ω23) = 1 then P (A|H) = 1, P (�B|H) = 1, and P (A|B H) = 0. Both cases (i) and (ii) are in agreement with dWRM rule. 
Notice that there are no conditional probabilities P such that μP (ω1 � ω23) = 1, with 0 < μP (ω1) = a < 1. Indeed, in this 
case it would be P (A|H) = 1, P (�B|H) = 1 − a, P (A|B H) = a, with 0 < a < 1. But, as shown in Example 4, the assessment 
P (A|H) = 1, P (�B|H) = 1 − a, P (A|B H) = a is coherent if and only if a = 0 or a = 1.

We conclude by providing some further probabilistic details about the validity of the dWRM rule and the non-validity of 
the RM rule. First of all, observe that the dWRM rule can be equivalently written as ([18, Equation (3)]):

• if P (A|H) = 1 and P (�B|H) < 1, then P (A|B H) = 1.

Let be given any set of (compound) conditionals F and the conditional events A|H, �B|H, A|B H . We denote by (P, x, y, z)
a coherent probability assessment on F ∪ {A|H, �B|H, A|B H}, where P is a probability assessment on F (possibly P is 
the restriction on F of some μP ), with x = P (A|H), y = P (�B|H), and z = P (A|B H). We recall that ([17]) the probability 
assessment (x, y, z) on {A|H, �B|H, A|B H} is coherent for every (x, y) ∈ [0, 1]2 and z′ � z � z′′ , where

z′ =
{ x−y

1−y , if x > y,

0, if x � y,
z′′ =

{ x
1−y , if x + y < 1,

1, if x + y � 1.
(45)

We observe that when x = 1 and y < 0 it holds that z = 1; when x = 1 and y = 1 it holds that z ∈ [0, 1].
Now, let us further assume that F is consistent and such that

(i) H |∼F A, (ii) H |�F �B, (iii) B H |�F A,

whose existence is ensured by Example 5. In what follows we denote by P1 the assessment on F such that P1(t) = 1 for 
all t ∈ F . Then, the following assertions are valid:

(a) from the condition (i), the assessment (P1, x) on F ∪ {A|H} is coherent only if x = 1;

(b) the imprecise assessment (P1, 1, 0 � y � 1, 0 � z � 1) is g-coherent, that is there exist (at least) two values y, z such 
that the assessment (P1, 1, y, z) on F ∪ {A|H, �B|H, A|B H} is coherent;

(c) from the conditions (i) and (ii) there exists a value y∗ < 1 such that the assessment (P1, 1, y∗) on F ∪ {A|H, �B|H}
is coherent; then, by dWRM rule, the assessment (P1, 1, y∗, z), is coherent only if z = 1;

(d) if the assessment (P1, 1, 1) on F ∪ {A|H, �B|H} is coherent, then the assessment (P1, 1, 1, 0 � z � 1) is g-coherent.
Therefore, as shown by the previous assertions, if we assess P1 on F , we can only derive that x = 1 while we can infer 

on the value of z only once the value of y is also specified.

We end this section with an example related to the failure of the transitive property for the consequence relation | ∼F .

Example 6. Consider three (uncertain) logically independent events A, B and C in an algebra A of events. Let B be the 
subalgebra generated by the partition {α1, α2, α3, α4, α5, α6, α7} of A, where

α1 = ABC , α2 = AB�C , α3 = A�BC , α4 = A�B �C , α5 = �ABC , α6 = �AB�C , α7 = �A �B .

Further, consider the following conjoined conditional of C(B):

ω52 = α5 
 (α2|�α5) = �ABC 
 (AB�C |(�A∨�B∨C)),

and let F = {ω52}. Then we can check that:

1) ω52 � (C |B), ω52 � (B|A) and hence ω52 � (C |B) 
 (B|A);
2) ω52 � (�C |A) and hence ω52 � (C |A).

Therefore, {C |B, B|A} is consistent and we have ω52 � (C |B), ω52 � (B|A), but ω52 � (C |A). In other words, F |= (C |B), 
F |= (B|A) and F �|= (C |A), or equivalently

B |∼F C, A |∼F B, and A |�F C .

Thus, we have shown a counter-example of the validity of the transitivity rule for the consequence relation | ∼F . Moreover, 
we observe that
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{C |B, B|A, (A|A∨B)} |= C |A

or equivalently that

{C |B, B|A} |= (C |A) � (�A|A∨B). (46)

Indeed, by applying (24),

(C |B) 
 (B|A) 
 (A|A∨B) =
= [(ABC |A ∨ B) � (C |B) 
 (�B AB|A∨B) � (B|A) 
 (�ABC |A∨B)] 
 (A|A ∨ B) =
= (ABC |A∨B) � ⊥ � ⊥ = (ABC |A∨B) = (BC |A) 
 (A|A∨B) � (BC |A) � (C |A).

Then, we obtain a weaker version of transitivity (see [22]):

if B | ∼F C , A | ∼F B and A∨B | ∼F B , then A | ∼F C .

Finally, we can verify the following probabilistic version of weak transitivity

“if P (C |B) = 1 and P (B|A) = 1, then either P (C |A) = 1, or P (�A|A ∨ B) = 1”,

or equivalently (see [18])

“if P (C |B) = 1, P (B|A) = 1, and P (A|A ∨ B) > 0, then P (C |A) = 1”.

Indeed, as A�A = ⊥ and A � A ∨ B , from Assertion 6 of Corollary 2 it holds that

μP ((C |A) 
 (�A|A∨B)) = P (C |A)P (�A|A∨B).

Then, based on (42)

μP ((C |A) � (�A|A∨B)) = P (C |A) + P (�A|A∨B) − P (C |A)P (�A|A∨B).

Moreover, by recalling (44), μP ((C |A) � (�A|A∨B)) = 1 iff P (C |A) = 1 or P (�A|A∨B) = 1. Thus, if P (C |B) = P (B|A) = 1, then 
by Lemma 2 μP ((C |B) 
 (B|A)) = 1. Finally, from (46), μP [(C |A) � (�A|A ∨ B)] = 1 and hence P (C |A) = 1, or P (�A|A ∨ B) = 1.
Notice that the implication

P (C |B) = P (B|A) = 1 =⇒ μP [(C |B) 
 (B|A)] = 1

also follows by observing that μP [(C |B) 
 (B|A)] � max{P (C |B) + P (B|A) − 1, 0}. More in general, given two conditional 
events A|H and B|K , the Fréchet-Hoeffding bounds for μP are satisfied, that is

max{μP (A|H) + μP (B|K ) − 1,0} � μP [(A|H) 
 (B|K )] � min{μP (A|H),μP (B|K )}, (47)

or equivalently

max{P (A|H) + P (B|K ) − 1,0} � μP [(A|H) 
 (B|K )] � min{P (A|H), P (B|K )}. (48)

Indeed, as (A|H) 
 (B|K ) � (A|H) and (A|H) 
 (B|K ) � (B|K ), the rightmost inequality in (47) is satisfied. Moreover, 
μP ([(A|H) 
 (B|K )] � 0 and, from (42),

μP ([(A|H) 
 (B|K )]) = P (A|H) + P (B|K ) − μP [(A|H) � (B|K )] � P (A|H) + P (B|K ) − 1,

because μP [(A|H) � (B|K )] � 1. Thus, the leftmost inequality in (47) is satisfied. The inequalities in (48) are in agreement 
with the approach given in [21] where the conjunction is defined as the conditional random quantity (A|H) ∧ (B|K ) recalled 
in (34).

8. Conclusions and future work

In this paper we have advanced the study of conditionals in the setting of the Boolean algebras of conditionals as 
proposed in [14]. More precisely, after a first analysis on the lattice order of our algebras and the known Goodman and 
Nguyen order relation, we have considered the canonical extension μP of a conditional probability P on A × A′ to the 
Boolean algebra of conditionals C(A). Our first main result establishes that for every basic conditional (A|H), P (A|H) =
μP (A|H) and hence the conditional probability P coincides with the restriction of μP to basic conditionals.
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In turn we get an operational computation of the probability of a conjunction and a disjunction of conditionals, in 
agreement with previous approaches in the literature, in particular with the one developed by Gilio and Sanfilippo by 
formalising conditionals as random quantities [21].

Finally, we have discussed relations of our approach with nonmonotonic reasoning. First we have introduced a (mono-
tonic) entailment relation among conditionals defined in terms of the lattice order of C(A) and then we have examined a 
nonmonotonic consequence relation on the algebra A, which satisfies the well-known rules of the system P. Moreover, we 
have discussed the Rational Monotony and the disjunctive Weak Rational Monotony rules.

As for future work, an aspect to be deepened concerns the notion of iterated conditional, say (B|K )|(A|H), and its 
probability in the realm of Boolean algebras of conditionals. Indeed, if we define μP ((B|K )|(A|H)) =def

μP (A|H)
(B|K ))
μP (A|H)

, then, 
under the hypothesis P (A|H) > 0, it holds that

μP ((B|K )|(A|H)) = P (AH B K |(H∨K )) + P (A|H)P (�H B K |(H∨K )) + P (B|K )P (�K AH|(H∨K ))

P (A|H)
, (49)

which is the prevision of the iterated conditional (B|K )|(A|H) obtained in the setting of coherence in [19, Section 6] (see 
also [7]). Under the further assumption P (H∨K ) > 0, formula (49) coincides with the result given in [29, Thm. 3]. For some 
applications of iterated conditionals see e.g. [37,38].

Encouraged by the above obtained results, we also plan to deepen into the relationship between the approach based on 
Boolean algebras of conditionals, together with canonical extensions of conditional probabilities on events, and the approach 
based on interpreting compound and iterated conditionals as random quantities, see [13] for promising first results.
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Appendix A. Proof of Theorem 3

Theorem 3. For each atom ω′
j1··· jn−2

∈ at(C(B)), the following holds:

μP (ω′
j1··· jn−2

) = μP ((β j1 |�) 
 (β j2 |�β j1) 
 · · · 
 (β jn−2 |�β j1 · · · �β jn−3)) =
= P (β j1 |�)P (β j2 |�β j1) · · · P (β jn−2 |�β j1 · · · �β jn−3) =
= μP ′(ω′

j1··· jn−2
).

(17)

Proof. We first examine the simple case where β jn−1 = βi = αi∨αi+1, and β jh = αth , h = 1, . . .n − 2, where (t1, . . . , tn−2) is 
a permutation of (1, . . . , i − 1, i + 2, . . . , n}. In this case, we have:

ω′
j1··· jn−2

= (β j1 |�) 
 (β j2 |�β j1) 
 · · · 
 (β jn−2 |�β j1 · · · �β jn−3) =
= (αt1 |�) 
 (αt2 |�αt1) 
 · · · 
 (αtn−2 |�αt1 · · ·�αtn−3) = ωt1···tn−2 .

Then, by recalling (13),

μP (ω′
j1··· jn−2

) = μP (ωt1···tn−2) = P (αt1 |�)P (αt2 |�αt1) · · · P (αtn−2 |�αt1 · · ·�αtn−3) =
= P (β j1 |�)P (β j2 |�β j1) · · · P (β jn−2 |�β j1 · · · �β jn−3) = μP ′(ω′

j1··· jn−2
).

We now consider the case where β jn−1 �= βi . Without loss of generality, we prove (17) when ( j1, . . . , jn−1) = (1, . . . , n − 1)

and hence βn−1 �= βi , so that i ∈ {1, . . . , n − 2}. By recalling (15) it holds that

(βi |βi∨· · ·∨βn−1) = (αi∨αi+1|αi∨· · ·∨αn) = (αi |αi∨· · ·∨αn) � (αi+1|αi∨· · ·∨αn).
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By defining

rk···n−1 = (αk|αk∨· · ·∨αn) 
 · · · 
 (αn−1|αn−1∨αn), for k = 1, . . . ,n − 1,

it holds that r1···n−1 = ω1···n−1 = ω1···k−1 
 rk···n−1, k = 2, . . . , n − 1. Moreover

ω1···n−1 = ω1···k−1 
 (αk|αk∨· · ·∨αn) 
 rk+1···n−1, k = 2 . . .n − 2. (A.1)

Then,

ω′
12···n−2 = (β1|�) 
 · · · 
 (βn−2|�β1 ∧ · · · ∧ �βn−3) =

= (α1|�) 
 · · · 
 (αi−1|αi−1∨· · ·∨αn) 
 (αi∨αi+1|αi∨· · ·∨αn)


 (αi+2|αi+2∨· · ·∨αn) 
 · · · 
 (αn−1|αn−1∨αn) =

= ω1···i−1 
 (αi∨αi+1|αi∨· · ·∨αn) 
 ri+2···n−1 =
= [(ω1···i−1 
 (αi|αi∨· · ·∨αn)) � (ω1···i−1 
 (αi+1|αi∨· · ·∨αn))] 
 ri+2···n−1 =
= [ω1···i 
 ri+2···n−1] � [ω1···i−1i+1 
 ri+2···n−1] =
= W1···i , i+2···n−1 � W1···i−1 i+1 , i+2···n−1,

(A.2)

where

W1···i , i+2···n−1 = ω1···i 
 ri+2···n−1, W1···i−1 i+1 , i+2···n−1 = ω1···i−1i+1 
 ri+2···n−1.

Notice that, when i = 1, the symbol ω1···i−1 disappears; moreover the symbols ω1···i and ω1···i−1i+1 coincide with ω1 = α1|�
and ω2 = α2|�, respectively. From (A.1), it holds that

W1···i , i+2···n−1 
 (αi+1|αi+1∨· · ·∨αn) = ω1···i 
 (αi+1|αi+1∨· · ·∨αn) 
 ri+2···n−1 = ω1···n−1,

and

W1···i−1 i+1 , i+2···n−1 
 (αi |αi∨αi+2∨· · ·∨αn) = ω1···i−1i+1 
 (αi |αi∨αi+2∨· · ·∨αn) 
 ri+2···n−1 = ω1···i−1i+1ii+2···n.

We now first examine the term W1···i , i+2···n−1 = ω1···i 
 ri+2···n−1. By applying (C5) with A = αi+2, B = αi+2∨· · ·∨αn , and 
C = αi+1∨· · ·∨αn , it holds that (B|C) 
 (A|B) = (A|B) 
 (B|C) = A|C , that is

(αi+2∨· · ·∨αn|αi+1∨· · ·∨αn) 
 (αi+2|αi+2∨· · ·∨αn) = (αi+2|αi+1∨· · ·∨αn). (A.3)

Then, by using (A.1) and (A.3), it follows that

W1···i , i+2···n−1 = ω1···i 
 ri+2···n−1 = ω1···i 
 ri+2···n−1 
 (αi+1∨· · ·∨αn|αi+1∨· · ·∨αn) =
= [ω1···i 
 (αi+1|αi+1∨· · ·∨αn) 
 ri+2···n−1] � [ω1···i 
 (αi+2∨· · ·∨αn|αi+1∨· · ·∨αn) 
 ri+2···n−1] =
= ω1···n−1 � ω1···i 
 (αi+2∨· · ·∨αn|αi+1∨· · ·∨αn) 
 (αi+2|αi+2∨· · ·∨αn) 
 ri+3···n−1 =
= ω1···n−1 � ω1···i 
 (αi+2|αi+1∨· · ·∨αn) 
 ri+3···n−1 = ω1···n−1 � ω1···ii+2 
 ri+3···n−1.

Then, we obtain

W1···i , i+2···n−1 = ω1···i 
 ri+2···n−1 = ω1···n−1 � W1···i i+2 , i+3···n−1, (A.4)

where W1···i i+2 , i+3···n−1 = ω1···ii+2 
 ri+3···n−1. Concerning W1···i i+2 , i+3···n−1, we observe that

W1···i i+2 , i+3···n−1 = ω1···ii+2 
 ri+3···n−1 =
= ω1···ii+2 
 (αi+1∨αi+3∨· · ·∨αn|αi+1∨αi+3∨· · ·∨αn) 
 ri+3···n−1 = ω1···i i+2 i+1 i+3···n−1�
�[ω1···i i+2 
 (αi+3∨· · ·∨αn|αi+1∨αi+3∨· · ·∨αn) 
 (αi+3|αi+3∨· · ·∨αn) 
 ri+4···n−1] =
= ω1···i i+2 i+1 i+3···n−1 � [ω1···i i+2 
 (αi+3|αi+1∨αi+3∨· · ·∨αn) 
 ri+4···n−1] =
= ω1···i i+2 i+1 i+3···n−1 � [ω1···i i+2 i+3 
 ri+4···n−1] = ω1···i i+2 i+1 i+3···n−1 � W1···i i+2 i+3 i+4···n−1,

where W1···i i+2 i+3 , i+4···n−1 = ω1···ii+2i+3 
 ri+4···n−1. Then, by iteration, we obtain

W1···i , i+2···n−1 = ω1···n−1 � W1···i i+2 , i+3···n−1 = ω1···n−1 � ω1···i i+2 i+1 i+3···n−1 � W1···i i+2 i+3 , i+4···n−1 =
= · · · = ω � ω � · · · � ω � W ,

(A.5)

1···n−1 1···i i+2 i+1 i+3···n−1 1···i i+2 ···n−2 i+1 n−1 1···i i+2···n−1
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where W1···i i+2···n−1 = ω1···i i+2 ···n−1 = ω1···i i+2 ···n−1i+1 � ω1···i i+2 ···n−1n .
Notice that (A.5) has been obtained by exploiting (A.4) and the relation

W1···i i+2···i+k , i+k+1···n−1 = ω1···i i+2···i+k i+1 i+k+1···n−1 � W1···i i+2···i+k+1 , i+k+2···n−1, k = 2, . . . ,n − i − 2, (A.6)

which, for k = n − i − 2, becomes W1···i i+2···n−2 ,n−1 = ω1···i i+2 ···n−2 i+1 n−1 � W1···i i+2···n−1. Thus,

W1···i , i+2···n−1 = ω1···n−1 � ω1···i i+2 i+1 i+3···n−1 � · · · � ω1···i i+2 ···n−2 i+1 n−1 � ω1···i i+2 ···n−1. (A.7)

We recall, from (13), that μP (ωi1...ik ) = P (αi1)P (αi2 |αi2∨· · ·∨αin ) · · · P (αik |αik ∨· · ·∨αin ); then

μP (W1···i i+2···n−1) = μP (ω1···i i+2 ···n−1) =
= P (α1) · · · P (αi|αi∨· · ·∨αn)P (αi+2|αi+1∨αi+2∨· · ·∨αn) · · · P (αn−1|αi+1∨αn−1∨αn) =
= P (ω1···i i+2 ···n−2)P (αn−1|αi+1∨αn−1∨αn).

Moreover, as

W1···i i+2···n−2,n−1 = ω1···i i+2···n−2 i+1 n−1 � W1···i i+2···n−1,

it holds that

μP (W1···i i+2···n−2,n−1) = μP (ω1···i i+2···n−2 i+1 n−1) + μP (W1···i i+2···n−1) =
= μP (ω1···i i+2 ···n−2)[P (αi+1|αi+1∨αn−1∨αn)P (αn−1|αn−1∨αn) + P (αn−1|αi+1∨αn−1∨αn)].

(A.8)

By applying (16), with A = αn−1, B = αn−1∨αn , and C = αi+1∨αn−1∨αn , as �BC |C = �B|C , it holds that

P (αi+1|αi+1∨αn−1∨αn)P (αn−1|αn−1∨αn) + P (αn−1|αi+1∨αn−1∨αn) = P (�BC |C)P (A|B) + P (A|C) =
= P (�B|C)P (A|B) + P (A|C) = P (A|B) = P (αn−1|αn−1∨αn).

Therefore

μP (W1···i i+2···n−2,n−1) = μP (ω1···i i+2 ···n−2)P (αn−1|αn−1∨αn). (A.9)

Now, as W1···i i+2···n−3,n−2n−1 = ω1···i i+2···n−3 i+1 n−2n−1 � W1···i i+2···n−2,n−1, by taking into account (A.9) it holds that

μP (W1···i i+2···n−3,n−2n−1) = μP (ω1···i i+2···n−3 i+1 n−2n−1) + μP (W1···i i+2···n−2,n−1) =
= μP (ω1···i i+2···n−3 i+1 n−2n−1) + μP (ω1···i i+2 ···n−2)P (αn−1|αn−1∨αn) =
= μP (ω1···i i+2···n−3 i+1 n−2n−1) + μP (ω1···i i+2 ···n−3)P (αn−2|αi+1∨αn−2∨αn−1∨αn)P (αn−1|αn−1∨αn) =
= μP (ω1···i i+2 ···n−3)[P (αi+1|αi+1∨αn−2∨αn−1∨αn)P (αn−2|αn−2∨αn−1∨αn)+
+P (αn−2|αi+1∨αn−2∨αn−1∨αn)]P (αn−1|αn−1∨αn).

By applying (16), with A = αn−2, B = αn−2∨αn−1∨αn , and C = αi+1∨αn−2∨αn−1∨αn , it holds that

P (αi+1|αi+1∨αn−2∨αn−1∨αn)P (αn−2|αn−2∨αn−1∨αn) + P (αn−2|αi+1∨αn−2∨αn−1∨αn) =
= P (αn−2|αn−2∨αn−1∨αn).

Then,

μP (W1···i i+2···n−3,n−2n−1) = μP (ω1···i i+2 ···n−3)P (αn−2|αn−2∨αn−1∨αn)P (αn−1|αn−1∨αn).

By iterating the previous reasoning, for every k = 2, . . . , n − i − 2 it holds that

μP (W1···i i+2···i+k , i+k+1···n−1) = μP (ω1···i i+2···i+k)P (αi+k+1|αi+k+1∨· · ·∨αn) · · · P (αn−1|αn−1∨αn).

In particular, for k = 2, one has

μP (W1···i i+2, i+3···n−1) = μP (ω1···i i+2)P (αi+3|αi+3∨· · ·∨αn) · · · P (αn−1|αn−1∨αn) =
= μP (ω1···i)P (αi+2|αi+1∨αi+2∨· · ·∨αn) · · · P (αn−1|αn−1∨αn).

Then, by recalling (A.4), we obtain

μP (W1···i , i+2···n−1) = μP (ω1···n−1) + μP (W1···i i+2 , i+3···n−1) =
= μP (ω1···i)[P (αi+1|αi+1∨αi+2∨· · ·∨αn)P (αi+2|αi+2∨· · ·∨αn) + P (αi+2|αi+1∨αi+2∨· · ·∨αn)]·
·P (α |α ∨· · ·∨α ) · · · P (α |α ∨α )

(A.10)
i+3 i+3 n n−1 n−1 n
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By applying (16), with A = αi+2, B = αi+2∨· · ·∨αn , and C = αi+1∨αi+2∨· · ·∨αn , it holds that

P (αi+1|αi+1∨αi+2∨· · ·∨αn)P (αi+2|αi+2∨· · ·∨αn) + P (αi+2|αi+1∨αi+2∨· · ·∨αn) =
= P (αi+2|αi+2∨· · ·∨αn).

Then, (A.10) becomes

μP (W1···i , i+2···n−1) = μP (ω1···i)P (αi+2|αi+2∨· · ·∨αn)P (αi+3|αi+3∨· · ·∨αn) · · · P (αn−1|αn−1∨αn) =
= P (α1|�) · · · P (αi |αi∨αn)P (αi+2|αi+2∨· · ·∨αn)P (αi+3|αi+3∨· · ·∨αn) · · · P (αn−1|αn−1∨αn) ,

(A.11)

which shows that the factorization property of μP holds for W1···i , i+2···n−1.
We now examine the term W1···i−1 i+1 , i+2···n−1 introduced in (A.2). By applying a similar reasoning as from (A.3) to (A.11), 
the term W1···i−1 i+1 , i+2···n−1 can be represented as

W1···i−1 i+1 , i+2···n−1 = ω1···i−1 i+1 i i+2···n−1 � ω1···i−1 i+1i+2 i i+3···n−1 � · · ·
· · · � ω1···i−1 i+1 ···n−2 i n−1 � ω1···i−1 i+1 ···n−1,

(A.12)

and the factorization property is satisfied, that is

μP (W1···i−1 i+1 , i+2···n−1) =
= μP [(α1|�) 
 . . . 
 (αi−1|αi−1∨ . . .∨αn) 
 (αi+1|αi+1∨ . . .∨αn) 
 . . . 
 (αn−1|αn−1∨αn)] =
= P (α1|�) · · · P (αi−1|αi−1∨ . . .∨αn)P (αi+1|αi∨ . . .∨αn) · · · P (αn−1|αn−1∨αn).

(A.13)

Finally, concerning (A.2), from (A.11) and (A.13) we obtain

μP (ω′
12···n−2) = μP (W1···i , i+2···n−1) + μP (W1···i−1 i+1 , i+2···n−1) =

= P (α1|�) · · · P (αi−1|αi−1∨· · ·∨αn) · [P (αi |αi∨· · ·∨αn) + P (αi+1|αi∨· · ·∨αn)]·
· P (αi+2|αi+2∨· · ·∨αn) · · · P (αn−1|αn−1∨αn) =

= P (α1|�) · · · P (αi−1|αi−1∨· · ·∨αn) · P (αi∨αi+1|αi∨· · ·∨αn)·
· P (αi+2|αi+2∨· · ·∨αn) · · · P (αn−1|αn−1∨αn) =

= P (β1|�) · · · P (βi|�β1 ∧ · · · ∧ �βi−1) · · · P (βn−2|�β1 ∧ · · · ∧ �βn−3) = μP ′(ω′
12···n−2),

(A.14)

which shows that (17) holds for the sequence ( j1, . . . , jn−2) = (1, . . . , n − 2), with i ∈ {1, . . . , n − 2}. �
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