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Abstract: This research proposes a data processing pipeline employing Fourier analysis and deep 1

neural networks to replicate the phenomenon of magnetic hysteresis in particular frequency com- 2

ponents derived from experimental data gathered using a newly developed 3D-printed material. 3

The characterization of hysteresis is essential for enhancing material performance and constructing 4

precise models to anticipate material behaviour under diverse operating circumstances, especially 5

in 3D-printed materials where properties can be meticulously regulated to ensure successful appli- 6

cations. The experimental signals were used for training and testing a neural network, exploiting 7

Fourier coefficients to condense signals into the frequency components. This compression extracts 8

fewer parameters and thus reduces and optimises the resources required by the neural network. 9

It also improves the generalisation performance of the model, allowing it to make more accurate 10

predictions on unseen data. This therefore optimises traditional modelling that requires a complete 11

representation of hysteresis loops in the time domain, which must be addressed with the use of 12

complex neural networks and large datasets. The experimental results show lower computational 13

costs during the prediction process and a smaller memory footprint. Furthermore, the proposed 14

model is easily adaptable for the loss estimation in different types of materials and input signals. 15

Keywords: Magnetic hysteresis; Neural Network; Fourier Transform; Additive Manufacturing 16

1. Introduction 17

The building processes of the soft magnetic components for energy conversion sys- 18

tems are under investigation thanks to the new opportunities introduced by the Additive 19

Manufacturing (AM). This young and interesting technology presents some advantages in 20

comparison with the traditional ones, which are, new and higher-performing alloys, waste 21

material reduction, material recycling, and geometries that can be created with greater com- 22

plexity. The intense and diffused studies performed in the last years by many researchers 23

have produced some encouraging results from the industry point of view. For instance, in 24

the alloys for electrical machines and electrical actuators, new FeSi magnetic cores with 25

an increased percentage of silicon have been experimented with significant power loss 26

reduction in the energy conversions [1–4]. Moreover, some prototypes have been realized 27

by means of AM and experimentally characterized to give interesting information about 28

the potentialities and usability. Magnetic cores have been realized experimentally for trans- 29

formers, induction motors, reluctance motors and axial flux motors [5–8]. The potentialities 30

of these kinds of material have not been fully investigated and understood, so they are 31

still object of several research activities. In particular, to further improve this promising 32

technology, accurate and effective numerical tools could be useful to simulate and predict 33

the magnetic behaviour of the components before the printing process. Until now the most 34
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used and widespread approaches are the Preisach model [9], the Jiles-Atherton model [10], 35

the Play model [11] and some others [12]. All these models are phenomenological-based, 36

they are inspired by the hysteresis phenomena of the magnetic materials, and they try 37

to reconstruct the magnetization processes simulating the physics of the magnetism. In 38

recent years, a different approach with a change of paradigm is under investigation, that 39

is the use of Artificial Intelligence (AI). In particular, Artificial Neural Networks (ANNs) 40

are very promising [13–15]. Their architecture and implementation can be completely 41

independent from the physical behaviour of the material under investigation, which is 42

often very complex, intricate and difficult to represent. In this sense, neural networks 43

represent a mathematical tool which purpose is to optimize the relationships between 44

generic inputs and outputs, independently by the nature (physical or not) of the inputs 45

themselves. The ANNs training can be performed using a suitable experimental data set of 46

a specific magnetic component, after that, they can simulate its magnetic behaviour taking 47

into account different patterns of excitations. 48

In this work, we propose an ANN and Fourier analysis combination. This approach 49

can reduce the complexity order of the computational tasks, increasing the precision and 50

effectiveness of the results. This methodology is limited to the prediction of the magnetic 51

processes of a specific component with material composition, shape and dimensions defined 52

a priori. On the other hand, it can generalize the magnetic behaviour of the components to 53

many different operational modes. 54

2. Materials and Experimental Measurements 55

The magnetic component under investigation in this paper is a FeSi toroidal core. This 56

component has been made by means of Laser Powder Bed Fusion (L-PBF). The specific 57

element involved in addition to iron, and the corresponding percentage in weight are Si 58

3.7%, Mn 0.3%, Cr 0.16%, Ni 0.02%, and C 0.01%. Through this technique, the magnetic 59

component is made layer by layer using a specific printing device. The powder of FeSi alloy, 60

which consists of nearly spherical particles with a median diameter of 38 µm, is spread on 61

a flat surface and a suitable laser beam melts the magnetic particles for a specific area. A 62

new layer of powder is spread over the subsequent melting process, and so on until the 63

complete realization of the toroid. The laser power was 350 W, while the scanning velocity 64

was 750 mm/s. The thermal treatment was performed in a graphite chamber vacuum 65

furnace to improve the magnetic properties of the sample after the printing procedure. The 66

annealing temperature was 1200 °C for 60 minutes and the heating rate was 5 °C/min. The 67

toroidal sample obtained as described above is shown in Fig. 1. The inner diameter is 50 68

mm, the outer diameter is 60 mm and a square section of side 5 mm. 69

Figure 1. FeSi toroidal sample made by additive manufacturing using the L-BPF technique.

The magnetic characterization of this component is necessary for the ANN training 70

and subsequent assessment. We used the volt-ampere method that allows the magnetic 71



Version November 25, 2024 submitted to IET 3 of 13

field and magnetic induction measurement for the material under investigation. In the Fig. 72

2 the measurement scheme is represented. 73

Figure 2. Experimental set-up for the magnetic characterization of the toroidal sample made by
additive manufacturing.

Two coils are wounded on the toroidal core, therefore the material is magnetically 74

excited with a superimposed current using the first one, while the corresponding induced 75

voltage is measured on the second one. The magnetic field and the magnetic induction are 76

computed using the equations (1) and (2) 77

H(t) =
Ni(t)

l
(1)

B(t) =
1

NS

∫
v(t)dt (2)

where H(t) is the magnetic field versus time, B(t) is the magnetic induction versus 78

time, N is the number of turns of both primary and secondary winding, S is the area of the 79

sample cross-section, and l is the mean length of the sample. Moreover, a digital feedback 80

control has been implemented to make sinusoidal the magnetic induction waveform as 81

indicated in the reference standard [16]. A dataset consisting of 17 hysteresis cycles was 82

generated through a series of magnetic characterisation measurements. The experimental 83

setup adopted provided the simultaneous acquisition of B(t) and H(t) signals at a sampling 84

rate of 501 Hz. The resulting dataset, which was used for training the neural network, is 85

organised in a matrix of 501 rows and 2 columns, corresponding to the time evolution of 86

the magnetic induction and magnetic field signals, respectively. Fig. 3 offers a comprehen- 87

sive representation of the dataset, highlighting the sinusoidal waveform of the magnetic 88

induction at 1 Hz in the centre. At the two sides, the output signal and a combined rep- 89

resentation of the both signals are displayed respectively, allowing the hysteresis cycles 90

in the B(t)-H(t) plane to be clearly appreciated. The choice of such a low frequency allows 91

the static hysteresis of the material to be analysed, minimising the influence of parasitic 92

phenomena. 93

2.1. Fourier analysis and decomposition 94

Fourier analysis provides a foundational approach for decomposing a signal into its 95

fundamental sinusoidal components. Each component, characterized by distinct frequen- 96

cies, can be analysed individually and then combined to recreate the original signal. In 97

addition, the selective removal of frequency components effectively reduces noise in the 98

reconstructed signal [17]. A periodic function f (x) with period p can be expressed as a 99

Fourier series: 100
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Figure 3. Magnetic field, magnetic induction and the corresponding hysteresis loops measured for
the toroidal sample made by additive manufacturing. The excitation frequency is 1 Hz to neglect the
eddy currents phenomena.

f (x) =
a0

2
+

∞

∑
n=1

(an cos(
nπx

p
) + bn sin(

nπx
p

)) (3)

Where a0 represents the constant term, an and bn are the Fourier coefficients for cosine 101

and sine terms, respectively. The index n ranges from 1 to infinity. These parameters, 102

widely recognized in the literature, are thoroughly discussed in [18–20]. In particular 103

here, the highly efficient Fast Fourier Transform (FFT) algorithm is used to compute the 104

Discrete Fourier Transform (DFT). When compared to conventional techniques, this method 105

significantly lowers computational complexity, making it suitable for high-speed and real- 106

time processing. [18,21,22]. Indeed, DFT is highly effective in breaking down time-domain 107

signals into their individual frequency components, allowing for precise manipulation of 108

specific elements within the frequency spectrum. In Digital Signal Processing (DSP), the 109

DFT takes a time-domain signal as input and outputs its corresponding representation in 110

the frequency domain. Therefore, the DFT was employed to decompose the signal into 111

the frequency domain, deriving the coefficients an and bn from the time-domain signal of 112

B and H. Once the signal coefficients had been obtained, in order to ensure that the data 113

were suitable for neural network input, a preliminary analysis included the standardisation 114

of the coefficient, as recommended by [23]. In particular, StandardScaler [24], a widely 115

used data preprocessing technique that standardizes coefficients by removing the mean 116

and scaling them to unit variance, was applied to all coefficients. This ensures that the 117

transformed data has a mean of 0 and a standard deviation of 1 for each coefficient. Data in 118

this format can thus be more easily manipulated by machine learning algorithms that are 119

sensitive to the scale of the input characteristics. 120

2.2. Proposed neural network architecture 121

ANNs have significantly advanced various scientific and engineering domains. Their 122

application in predicting magnetic behavior [25–28] has demonstrated accurate results, 123

reinforcing their utility in analyzing complex data and enabling the development of novel 124

magnetic materials. 125

Building on these promising findings, this study proposes an ANN architecture to 126

optimize the input-output mapping between the H and B signals, in the frequency domain. 127

The decomposed signal, characterized by its compact representation and essential frequency 128

components, is used to significantly optimise the efficiency of the network by mapping the 129

frequency coefficients of B and H. 130
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The proposed ANN model was implemented in Python using the Keras API, a high- 131

level interface for building neural networks, and TensorFlow, a powerful open-source 132

software library for numerical computation, as the backend. This combination provided a 133

strong and adaptable framework for developing the personalized prediction model. The 134

Sequential API was used to arrange the network, enabling straightforward adjustments to 135

the neural network architecture. This flexibility facilitated the optimization of the network 136

architecture to meet the specific requirements of the task using the described approach. 137

The architecture was tailored to the dimensions of the input and output data, with the 138

number of layers determined through a trial-and-error process to effectively capture the 139

complex relationships between coefficients across various tests [29]. Model performance 140

was evaluated using the loss function on the validation set, which quantified the error 141

between the model’s predictions and the target values during training. 142

The proposed ANN architecture features two hidden layers. The input layer includes 143

two neurons, one for each input coefficient, i.e. the an and bn coefficients of B. These inputs 144

are processed by 20 neurons in the second layer and 30 neurons in the third layer. For these 145

layers, the ReLU (Rectified Linear Unit) activation function was chosen. The ReLU function 146

is particularly effective in mitigating the vanishing gradient problem, thereby facilitating 147

more efficient training of deeper networks [30]. The features are then passed to a single 148

output neuron with a sigmoid activation function, which predicts the selected coefficient. 149

The sigmoid function is selected for its capability to map the output to a range between 150

0 and 1 [31], which is particularly useful for our regression task. To this end, as specified 151

above, the data were appropriately scaled to ensure that they lie within the specified range. 152

The architecture of the neural network is depicted in Fig. 4. 153

Hidden Layer 1 
20 neurons

Input Layer 
2 neurons

Hidden Layer 2 
30 neurons

Output
1 neuron

Figure 4. The architecture of the proposed ANN designed to predict the frequency coefficient of H.

The training process involved varying key hyperparameters, including the learning 154

rate α, the decay rate of the first moment β1, and the decay rate of the second moment β2. 155

The best results were achieved with the following settings: a learning rate of α = 10−2, a 156

first-moment decay rate of β1 = 0.9, and a second-moment decay rate of β2 = 0.999, in 157

line with the practical recommendations outlined in [32]. The model is compiled with the 158

Adam optimizer, an adaptive algorithm selected for its efficiency in adjusting learning 159

rates during training to enhance convergence, proven effective in various neural network 160

applications [33]. We use the mean squared error (MSE) as a loss function. The MSE is 161

appropriate for regression tasks as it penalizes larger errors more than smaller ones, leading 162

to a model that aims to minimize significant deviations between predicted and actual 163

values. The MSE loss function is used to measure the average of the squares of the errors, 164

ensuring that the model focuses on minimizing these errors. 165

The model is trained for 300 epochs, meaning it undergoes 300 complete passes over 166

the entire training dataset. A batch size of 100 is employed, determining the number 167

of samples processed by the network before updating its parameters. This batch size 168
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demonstrated a good balance between memory efficiency and convergence speed for the 169

given dataset and model architecture [34]. 170

The model comprises a total of 2,183 parameters, occupying approximately 8.53 KB of 171

memory. These parameters are divided into Trainable Parameters: 727 (2.84 KB), which are 172

updated during the training process through back-propagation, Non-Trainable Parameters: 173

0 (0.00 KB), indicating that no fixed parameters are used in the model and Optimizer 174

Parameters: 1,456 (5.69 KB), representing additional parameters managed by the optimizer. 175

Additionally, another neural network, referred to as ANN2, was implemented for 176

comparison. Unlike the proposed model, ANN2 lacks the two hidden layers. For a 177

comprehensive analysis, the Support Vector Regressor (SVR) and the Random Forest 178

Regressor (RFR) were also considered. The SVR extends the principles of Support Vector 179

Machines (SVM) to regression problems. It aims to identify a function that predicts the 180

output within a specified tolerance while minimizing error [35]. Instead, the RFR is an 181

ensemble learning algorithm that creates multiple decision trees during training and then 182

combines their predictions to improve accuracy and prevent overfitting. For regression 183

tasks, the output is the average prediction from all trees [36]. These two algorithms were 184

implemented using the default parameters suggested by the Scikit-learn library [24]. 185

In order to maximise the training data available for each iteration, we employed Leave- 186

One-Out Cross-Validation (LOOCV). LOOCV is a special case of k-fold cross-validation 187

where the number of folds k is equal to the number of observations in the dataset (here 188

k=17). In addition, LOOCV ensures that the performance metrics of our model are reliable 189

and not biased by the specific subdivision of the dataset. This approach systematically 190

trains the model on n-1 observations and tests it on the single remaining observation, 191

repeating this process for each observation in the dataset. 192

By implementing LOOCV, we obtain a comprehensive evaluation of the model’s 193

performance across all possible train-test splits. The final performance metric is calculated 194

as the average of the metrics obtained from each iteration, providing a more stable and 195

reliable estimate of the model’s accuracy and error. 196

3. Results 197

The analysis of the dataset, consisting of 17 hysteresis loops, revealed several key in- 198

sights into the impact of complexity reduction in the frequency domain. This phenomenon 199

is exemplified in Fig. 5, which depicts the frequency domain representation of a signal 200

segment obtained through the Fast Fourier Transform (FFT). 201
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Figure 5. Frequency Spectrum Analysis of an input H as example.
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The reduction proved effective in optimizing predictive tasks, and enhancing overall 202

performance by simplifying the input-output of the neural network. 203

The first subplot displays the absolute values of the FFT, where each point’s height 204

represents the amplitude of a specific frequency component present in the signal. The sec- 205

ond subplot shows the actual frequencies associated with each point in the FFT spectrum, 206

aligning the x-axis with the signal’s frequency content. The third subplot combines the 207

information from the previous subplots, plotting the absolute FFT values (amplitudes) on 208

the y-axis against the corresponding frequencies on the x-axis. The fourth subplot focuses 209

on the positive half of the frequency spectrum, displaying only the non-negative frequen- 210

cies and their corresponding amplitudes for a clearer view of the dominant frequency 211

components, as the FFT result is symmetrical for real signals. 212

By expressing the data in the frequency domain, we obtain a significant compression 213

of the data due to the dominance of the first harmonics. Harmonics with amplitudes below 214

a defined threshold were discarded, retaining only frequencies with amplitudes within 98% 215

of the maximum. This phenomenon is illustrated in Fig. 6, which provides a more concise 216

view of the frequency spectrum and the signals obtained through the Fourier transform, 217

focusing only on those with the highest amplitudes.
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Figure 6. The plot displays the frequencies of B and H. Red circles indicate frequencies with ampli-
tudes exceeding a threshold set at 98% below the maximum amplitude. The x-axis represents the
frequency, while the y-axis corresponds to the amplitude. Only frequencies surpassing this threshold
are highlighted for clarity

218

The plot highlights the significant coefficients to be considered. Each red dot is 219

labeled with its corresponding frequency value in Hertz (Hz) and marks the identified peak 220

frequencies. These peaks are determined based on their amplitudes exceeding a threshold 221

set at up to 98% smaller than the maximum amplitude. The x-axis represents the frequency 222

in Hz, while the y-axis denotes the amplitude of each frequency component. 223

Since signal B(t) is sinusoidal (as shown in the central graph of Fig. 3), the only 224

component to be considered is the one related to the first harmonic; consequently, the 225

non-zero coefficients are only those associated with the fundamental harmonic, as indicated 226

by the upper graph in Fig. 6, the possible presence of additional harmonics, even if limited 227

in amplitude, can be discarded as they represent noise resulting from the experimental data 228

acquisition process. The H(t)-signal, on the other hand, exhibits additional harmonics, as 229

shown in the lower graph (Fig. 6). 230

In particular, for the input signal B(t), the fundamental harmonic at 1 Hz is sufficient 231

for accurate signal reconstruction. In the case of the H(t) signal, the even harmonics 232

have amplitudes below the threshold and can therefore be disregarded. The significant 233



Version November 25, 2024 submitted to IET 8 of 13

harmonics are found at frequencies of 1, 3, 5, 7, 9, 11, and 13 Hz. A reconstruction of the 234

signal using the previously identified coefficients is shown in Fig. 7.

0.0 0.2 0.4 0.6 0.8 1.0

50
0

50 Original Signal H

0.0 0.2 0.4 0.6 0.8 1.0

50
0

50 Reconstructed Signal H

0.0 0.2 0.4 0.6 0.8 1.0

50
0

50

Original Signal H
Reconstructed Signal H

Figure 7. Comparison between the original signal ’H’ and its reconstruction using harmonics at
frequencies of 1, 3, 5, 7, 9, 11, and 13 Hz

235

An example of a complete hysteresis loop in Fig. 8.
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50
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50
Original hysteresis cycle

0.75 0.50 0.25 0.00 0.25 0.50 0.75
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50
Reconstructed hysteresis cycle

0.75 0.50 0.25 0.00 0.25 0.50 0.75

50

0

50
Original Signal hysteresis cycle
Reconstructed hysteresis cycle

Figure 8. Comparison between the original signal hysteresis cycle and its reconstruction using the
fundamental harmonics for B and at frequencies of 1, 3, 5, 7, 9, 11, and 13 Hz for H

236

Fig. 9 shows the reconstruction of all signals, considering only the frequencies that 237

exceeded the previously defined threshold. 238

To preserve the only relevant components, the first 13 harmonics were considered, 239

with only the odd components being retained. Consequently, each cycle of the H signal 240

can be faithfully reconstructed using 7 an coefficients for the cosine component and 7 bn 241

coefficients for the sine component, a0 is negligible). So each cycle of H can be faithfully 242

reconstructed with 14 coefficients. The data compression is truly remarkable, considering 243

values from 501 samples to 14 for H and 2 for B. This leads to a strong saving of data, 244

concentrating the information of interest in the amplitudes of the relevant components. 245

Therefore, the proposed model is well-suited for predicting each coefficient of H. By 246

adopting a parallelized approach, the entire signal can be reconstructed, as illustrated in 247

Fig. 10, which illustrates the data processing flowchart leading to the reconstruction of the 248

original data. 249

To enhance the clarity of the results and concentrate on the analysis of losses, we 250

limited our focus to the fundamental harmonic, appropriately compressing the data. Con- 251

sequently, during the supervised learning process, the processing pipeline was designed 252

to intake the coefficients an and bn corresponding to the fundamental harmonic of B and 253

accurately predict the coefficients an and bn associated with the fundamental harmonic 254

of H. This capability is crucial for estimating hysteresis losses in ferromagnetic materials, 255

enabling the optimised design of electromagnetic devices. 256

The results are presented using the Mean Absolute Error (MAE), a metric commonly 257

employed to assess the accuracy of a model’s predictions. Specifically, Table 1 reports the 258
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Figure 9. Experimental data (red) compared to harmonic reconstruction (blue) based on selected
frequencies.
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Figure 10. Flowchart illustrating the data processing pipeline, including decomposition of the signal
into frequency components with the DFT, prediction of H coefficients and subsequent reconstruction
of the original data with the Inverse Discrete Fourier Transform (IDFT).

MAE values evaluating the accuracy of the an model’s predictions for the fundamental 259

harmonic of H(t), while Table 2 presents the MAE values for the bn model’s predictions 260

on the same harmonic, with results shown for each test fold. By leveraging MAE, we 261

quantified the predictive accuracy of the models concerning the fundamental harmonic H(t) 262

within each test fold. The fundamental harmonic was selected as the focus because, in the 263

context of sinusoidal inputs, the fundamental harmonic represents the primary component 264

of interest when analyzing losses. 265

The results obtained show a low error rate in most validation folds, confirming the 266

high accuracy of the model in estimating the amplitude of the fundamental component. 267

Compression of the data, achieved by frequency analysis using the Fourier transform, 268

made it possible to use a greatly simplified model, without compromising the accuracy of 269

the results. The obtained results were compared with those of other models, specifically 270

the previously described ANN2, the RFR, and the SVR. The findings highlighted that the 271
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MAE on coefficient an MAE on coefficient an

Fold Proposed ANN ANN2 SVR RFR

1 0.017 0.116 0.072 0.220
2 0.002 0.130 0.056 0.162
3 0.002 0.105 0.089 0.103
4 0.043 0.086 0.056 0.022
5 0.281 0.556 0.502 0.374
6 0.163 0.161 0.089 0.058
7 0.023 0.014 0.069 0.028
8 0.108 0.030 0.015 0.249
9 0.021 0.176 0.050 0.039
10 0.075 0.041 0.076 0.075
11 0.062 0.461 0.183 0.208
12 0.062 0.006 0.054 0.067
13 0.203 0.172 0.076 0.121
14 0.054 0.237 0.067 0.231
15 0.096 0.223 0.066 0.008
16 0.061 0.103 0.060 0.009
17 0.058 0.038 0.032 0.097

Table 1. MAE evaluate the accuracy of an model’s predictions on a fundamental harmonic of H(t) for
each test fold

MAE on coefficient an MAE on coefficient bn

Fold Proposed ANN ANN2 SVR RFR

1 0.051 0.022 0.064 0.032
2 0.029 0.067 0.041 0.013
3 0.059 0.045 0.001 0.055
4 0.175 0.181 0.109 0.074
5 0.204 0.206 0.141 0.18
6 0.091 0.089 0.037 0.087
7 0.076 0.468 0.064 0.04
8 0.796 0.759 0.755 0.722
9 0.003 0.011 0.028 0.035
10 0.175 0.023 0.0 0.056
11 0.061 0.424 0.24 0.59
12 0.0 0.215 0.069 0.053
13 0.053 0.193 0.091 0.058
14 0.078 0.258 0.07 0.146
15 0.283 0.323 0.401 0.145
16 0.084 0.096 0.056 0.084
17 0.127 0.176 0.123 0.092

Table 2. MAE evaluate the accuracy of bn model’s predictions on a fundamental harmonic of H(t) for
each test fold
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proposed ANN achieved, on average, more accurate results than ANN2. The latter, lacking 272

hidden layers, failed to effectively capture the input-output nonlinearity. A similar trend 273

was observed for the regression algorithms, with both the RFR and the SVR showing higher 274

MAE. 275

These results lay the foundation for efficient loss calculation and open up new perspec- 276

tives for future studies, with the opportunity to use data simulated by the neural network 277

model instead of experimental data in subsequent investigations. 278

4. Discussion 279

This study focused on analyzing static hysteresis loops under varying excitation ampli- 280

tudes, with the primary objective of examining frequency behavior to optimize a specially 281

designed neural network architecture for predicting input-output signals. A detailed spec- 282

tral analysis facilitated the optimization of the model’s structure by emphasizing the first 283

harmonic, which encapsulated the most critical information. This approach enabled signif- 284

icant data compression, as spectral analysis revealed that the most relevant information 285

was concentrated within the first 13 harmonics, with a focus on the first 7 harmonics. This 286

focus allowed for a more balanced representation of input and output data, enhancing 287

the model’s generalizability. Furthermore, the simplified model design mitigated issues 288

related to data sparsity, leading to more reliable and robust predictions. Moreover, by 289

disregarding higher-order harmonics, the model effectively reduced extraneous noise and 290

improves the extraction of significant features. The results were compared with another 291

architecture, called ANN2, characterised by a lower number of levels, which showed a 292

lower performance. Similarly, models such as the RFRs and SVRs were considered, which, 293

although they obtained worse results compared to the proposed model, were able to ob- 294

tain an MAE that was not too high in predicting the value of the harmonic components. 295

These results were largely due to the change in domain, which made the information more 296

manageable for the proposed models. Comparison with traditional models would not 297

have been possible without this transformation, as the inherent complexity of the temporal 298

information to be mapped would have made processing significantly more difficult. More- 299

over, the implementation of cross-validation maximized the utility of the training dataset, 300

enhancing the extraction of relevant features for characterizing magnetic behavior. This 301

strategy, designed to optimize the exploitation of available data while reducing the model’s 302

computational complexity, yielded promising results, paving the way for new applications 303

of neural networks in magnetic material analysis. 304

While the current focus on first harmonic analysis enables accurate loss estimation, 305

it imposes limitations on the full reconstruction of the hysteresis loop. Future work will 306

involve incorporating data with variable frequencies and waveforms to enhance the neural 307

network’s generalization capabilities and provide a more comprehensive description of the 308

underlying physical phenomena. 309

5. Conclusions 310

The present study has carried out an in-depth analysis of the temporal components of 311

B and H, adopting an innovative approach based on the Fourier transform. This method- 312

ological choice proved to be particularly effective in the present case, characterised by 313

a sinusoidal excitation signal, allowing for a significant compression of the data. The 314

numerical results obtained showed a significant reduction in the dimensionality of the 315

problem, with a consequent improvement in the computational efficiency and generability 316

of the ANN model employed. The results obtained are encouraging and suggest that 317

further investigation in this direction could lead to the development of more refined and 318

versatile analysis tools. In particular, the acquisition of a larger and diversified dataset 319

would allow the training of ANN models capable of more accurately predicting magnetic 320

losses at different frequencies and operating conditions. 321

While the current focus on first harmonic analysis enables accurate loss estimation, 322

it imposes limitations on the full reconstruction of the hysteresis loop. Future work will 323
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involve incorporating data with variable frequencies and waveforms to enhance the neural 324

network’s generalization capabilities and provide a more comprehensive description of the 325

underlying physical phenomena. 326
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