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1 
Although Astragalus nebrodensis plays a fundamental ecological role, the variety and abundance of 2 
mycorrhizal fungi associated with this species have never been observed in natural habitats. Our aim 3 
was to observe Arbuscular Mycorrhizal Fungi (AMF) in roots of A. nebrodensis in natural habitats 4 
and to obtain a screening of the fungal diversity occurring in them and in the soil around, considering 5 
the positive influence of mycotrophic shrub species on soil microbiota. A morphological analysis was 6 
performed on A. nebrodensis roots samples from the Madonie Mountains, while metabarcoding 7 
coupled with High-Throughput-Sequencing was carried out in A. nebrodensis roots and in the 8 
associated soil. Observations of A. nebrodensis roots showed typical structures of AMF such as 9 
intraradical vesicles. Sequencing revealed that Ascomycota were the most abundant phylum in both 10 
roots and soil samples, followed by Basidiomycota and Mucoromycota. A. nebrodensis roots host a 11 
fungal community with lower richness as compared to soil and specific taxa were differentially 12 
abundant between roots and soil. The endomycorrhizal symbiosis in A. nebrodensis from natural 13 
habitat is reported for the first time. The fungal diversity between the two matrices (soil vs roots) 14 
suggests the hypothesis of a specialised and well-established root microbiome in A. nebrodensis. The 15 
presence of many fungi associated with A. nebrodensis enables this plant to survive stressful 16 
conditions such as its harsh environment, and confer to this shrub an important ecological role in this 17 
Mediterranean ecosystem. 18 
 19 
 20 
Keywords: fungal diversity, mycorrhizal fungi, soil, ITS, barcoding 21 
 22 
 23 
Introduction 24 
 25 
In the Mediterranean ecosystems, shrublands are among the most characteristic type of vegetation, 26 
widespread in different habitats. Each shrubby species is an important component within its plant 27 
community and plays a specific ecological role. This is due Owing to different factors such as the 28 
physiological, morphological, reproductive, phenological, and regenerative characters, as well as the 29 
inter-intraspecific interactions, each shrubby species represents an important component within the 30 
plant community and play a specific ecological role (Lombardo et al. 2020). Indeed, shrubs play an 31 
important role in the nutrient cycle providing organic matter input to soils. They are able to protect 32 
watersheds from erosion and provide substrate, food, and shelter for organisms (nurse plants), play 33 
an important role in the nutrient cycle providing organic matter input to soils and are able to protect 34 
watersheds from erosion (Bochet et al. 2006). MoreoverThus, shrubs are very important for many 35 
associated species such as mammals, birds, invertebrates, other plants (that favour thanks to their role 36 
of nurse plants), and their distribution also influences the variety and abundance of mycorrhizal fungi, 37 
fundamentals in ecological terms, and nutritional relationships (Kerns and Ohmann 2004). 38 
Astragalus nebrodensis (Guss.) Strobl (Fabaceae) is a thorny perennial shrub endemic to the Madonie 39 
mountains in north Sicily (Peruzzi et al. 2015). Within the Fabaceae, it belongs to the section 40 
Rhacophorus Bunge (Podlech 2008). This section, together with thatas Sect. of Tragacantha DC. and 41 
Sect. Pterophorus Bunge, includes species taxa that form remarkable vegetation types in alpine and 42 
subalpine areas in SW Asia (Pirani et al. 2006) but also other orophytes taxa distributed in the 43 
Mediterranean region, such as A. granatensis Lam. in the Iberian Peninsula and Morocco, A. creticus 44 
Lam. and A. dolinicola Brullo & Giusso endemic to Crete, A. cylleneus Boiss & Heldr. in Greece, A. 45 
rumelicus Bunge in Albania and Greece, A. psilodontius Boiss., A. bethlehemiticus Boiss., and A. 46 
argyrothamnos (Boiss.) Greuter in Lebanon, A. siculus Biv. endemic to Sicily (Mt Etna) (Podlech 47 
2008; Kurtto 2017), A. sirinicus Ten. in the northern, central, and southern Apennines, A. 48 
genargenteus Moris and A. gennarii Bacch. & Brullo endemic to Sardinia (Cogoni et al. 2014; Sau 49 
et al. 2014), A. parnassi subsp. calabricus (Fisch.) Maassoumi, endemic to Calabria (souther Italy) 50 
(Peruzzi et al. 2015).  51 
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A. nebrodensis is an orophyte species with a cushion-like habit, up to 60 cm high, distributed in 52 
different areas of the Madonie mountains (Portella Colla, Mt Quacella, Mt Mufara, Piano Battaglia, 53 
Piana della Canna, Mt San Salvatore, Piano Zucchi, Pizzo Carbonara) (Pignatti et al. 1980; Podlech 54 
1986; Giardina et al. 2007; Schicchi et al. 2013; Pignatti 2017). It is a pioneer species which lives at 55 
an altitude between 1200 and 2000 m a.s.l. in the Supra-Oromediterranean bioclimatic belt 56 
(Lombardo et al. 2020). It haswith numerous adaptations typical of echinophytes orophile of the 57 
Mediterranean (Guarino et al. 2005), which lives at an altitude between 1200 and 2000 m (; Bonanno 58 
and Veneziano 2016) in the Supra-Oromediterranean bioclimatic belt (Lombardo et al. 2020). A. 59 
nebrodensis occurs on stony slopes, in clearings of beech woods or above the limit of forest 60 
vegetation, especially on windy ridges and eroded soils rich in the skeleton, especially carbonates and 61 
flaky clays (Brullo et al. 2005; Pignatti 2017). It is aThis species is characteristic of the pioneer 62 
association Astragaletum nebrodensis (Raimondo et al. 1992; Pignatti 2017) that evolves in the less 63 
disturbed areas towards the Cratagetum laciniatae (Schicchi et al. 2013). Thanks to its morphological 64 
characteristics (spinescence, cushion-like growth form)I, it manages to grow in places with intense 65 
solar radiation, persistent drought, wide-ranging temperatures and strong winds thanks to its 66 
spinescence and cushion-like growth form (Guarino et al. 2005). Its thorns constitute the nucleus for 67 
the condensation of water droplets that flow along the branches and join the rootstock (Pignatti 2011), 68 
and also they represent a protective strategy againstprotect plants from herbivores (Bagella et al. 69 
2019). Moreover, its pulvines play an important ecological role, providing shelter from the strong 70 
wind for some short-cycle herbaceous plants, favouring their germination and letting a slight 71 
accumulation of organic matter (Pignatti et al. 1980; Brullo et al. 2005). Also, various insects take 72 
shelter in the cushions, taking advantage of the internal microclimate, for example the Hemiptera 73 
Aelia rostrata Boheman, 1852 (Pignatti et al. 1980) and the Sicilian endemic Orthoptera Platycleis 74 
concii Galvagni, 1959 (Massa et al. 2001). It has been previously assessed that sSome native plant 75 
species improve the native tree establishment in Mediterranean ecosystems. , Tthe majority of which 76 
these taxa are mycorrhized, could act as “nurse plants'' through their positive impacts on soil abiotic 77 
characteristics and microbiota, especially on mutualistic microorganisms (rhizobia and mycorrhizal 78 
fungi), and sustainably improve the native tree establishment in Mediterranean ecosystems (Manaut 79 
et al. 2011). . Since these mMicrobial associations sustain a vegetation cover in natural habitats, they 80 
represent a key ecological factor (Manaut et al. 2011). In fact, these dual sSymbioses help plants to 81 
face stressful situations, such as drought, nutrient deficiency, and soil disturbance, and increase soil 82 
nitrogen content, organic matter and hydrostable soil aggregates. Since these microbial associations 83 
sustain a vegetation cover in natural habitats, they represent a key ecological factor (Manaut et al. 84 
2011). 85 
Although A. nebrodensis plays a fundamental ecological role, the variety and abundance of 86 
mycorrhizal fungi associated with this species have never been observed in natural habitats. 87 
Mycorrhized roots of A. nebrodensis have only been obtained in nursery, inoculating trap plants either 88 
with soil collected from the natural habitat or with the commercial Rhizophagus irregularis (formerly 89 
Glomus intraradices; Zimbardo et al. 2013). With the same artificial approach, other microbial 90 
symbionts of A. nebrodensis (i.e. nitrogen fixing bacteria belonging to Mesorhizobium spp.) have 91 
been detected by the same authors. Generally, mycorrhization in Astragalus species is reported in 92 
greenhouse-grown plants, as for the endangered species Astragalus applegatei Peck (Barroetavena et 93 
al. 1998), and often it is studied in response to stress, such as arsenic (Yizhu et al. 2020). Some data 94 
are present on the mycorrhization of Astragalus in different natural ecosystems: the study of A. 95 
corrugatus roots from a National Park in Tunisia (Neji et al. 2021), that of A. cfr. arequipensis roots 96 
from the Andes (Schmidt et al. 2008) and that of A. adsurgens Pall. canopy in the Mu Us sandland, 97 
China (Bai et al. 2009).  98 
Arbuscular Mycorrhizal Fungi (AMF) are ubiquitous mutualists of most herbs, grasses but also 99 
several trees and shrubs, hornworts and liverworts (Balestrini and Lumini, 2018). These fungi are 100 
essential members of ecosystems, because they provide inorganic nutrients from the soil to their plant 101 
hosts, obtaining reduced carbon in exchange (Lanfranco et al. 2018). For a long time placed in the 102 
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Glomeromycota phylum (Schüßler et al. 2001), AMF have recently been assigned to the subphylum 103 
Glomeromycotina thanks to an extensive phylogenomics approach, and Mortierellomycotina are 104 
considered their closest relatives (Spatafora et al. 2016). 105 
The aim of this e work contribution was is to observe AMF fungi in roots of A. nebrodensis in natural 106 
habitats and to obtain a screening of the fungal diversity occurring in A. nebrodensis and in the soil 107 
around its roots, considering the positive influence of mycotrophic shrub species on soil microbiota 108 
(Manaut et al. 2011). Metabarcoding studies relying on High-Throughput-Sequencing and targeting 109 
the rDNA Internal Transcribed Spacer (ITS) offer an unprecedented tool to describe fungal 110 
communities (Nilsson et al. 2019a). This approach has recently been applied to describe the 111 
composition of root-associated fungi of A. mongholicus and their relationship with the production of 112 
secondary metabolites in the plant (Li et al. 2021).  113 
In order to observe AMF fungi in roots of A. nebrodensis, a morphological analysis was performed 114 
on roots samples from the Madonie mountains, while the fungal diversity occurring in A. nebrodensis 115 
roots and in the associated soil, was carried out by molecular analysis of soil samples taken near the 116 
corresponding roots. 117 
 118 
 119 
Material and Methods 120 
 121 
Experimental site and sampling 122 
 123 
The research focused on the area of the Madonie Mountains Regional Park (PA, Sicily, Italy) (Fig. 124 
1). Sampling sites were selected according to the following coordinates: 37°51’52.14” N 14° 2’45.41” 125 
E (1477 m a.s.l) for Astragalus nebrodensis. As regards the edaphic and climatic characteristics, the 126 
Madonie Mountains Regional Park is characterized by marly limestone and dolomite associated with 127 
Mesozoic siliceous rock and arenaceous rocks originating mainly brown and lithic soils. The area is 128 
characterized by a mean annual temperature of 12.3 °C and a mean annual precipitation of 824.5 mm.  129 
 130 
 131 
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 132 
 133 
Fig. 1. Sampling sites in the Madonie Regional Park, which is delimited by the red borders. The three symbols indicate 134 
the sampling sites of the roots and the associated soil samples from three plants of Astragalus nebrodensis. 135 
 136 
 137 
 138 
 139 
Samples from two compartments (roots vs soils) were collected in September 2019. Sampling 140 
consisted in digging to the first 5-20 cm and collecting fine feeder roots belonging to Astragalus 141 
nebrodensis, and a portion of soil (~ 1 Kg) surrounding the roots (Berruti et al. 2017). During the 142 
digging, the main root branches have been carefully followed and the young roots were visually 143 
recognized and collected. Three plants of Astragalus nebrodensis were sampled (two root samples 144 
for each plant) together with six soil samples (two under each plant) at the bottom of the plants. The 145 
soil samples (~ 300 mg) were sieved immediately at 2 mm, frozen and stored until molecular analysis. 146 
Root fragments from each plant were washed free of soil, air-dried at room temperature and 147 
immediately used for morphological analyses. The roots (~ 150 g) were stored at −20°C until used 148 
for molecular analyses. 149 
 150 
 151 
 152 
Morphological analysis of roots  153 
 154 
At the end of the vegetative in open field experiments (September 2019), A. nebrodensis roots were 155 
harvested, rid of topsoil, cleaned and stained with 0.1% (w/v) cotton blue in 80% lactic acid overnight, 156 
then destained 3 times with lactic acid for 18 h, cut into 1-cm-long segments and placed on 157 
microscope slides for morphological analysis. Approximately 25 fragments were observed under 158 
light microscope (Fig. 2). 159 
 160 
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 161 
 162 
Molecular analysis of roots and soil 163 
 164 
In order to investigate the total fungal community, the nuclear ribosomal ITS2 region was amplified 165 
using Platinum HS PCR (Thermo Fisher Scientific) from all DNA extracts by means of a semi-nested 166 
PCR approach for root DNA and a direct approach for soil DNA. In the first PCR, the entire ITS 167 
(ITS1-5.8S-ITS2) region was amplified with the generic fungal primer pairs ITS1F-ITS4 (White et 168 
al. 1990; Gardes and Bruns, 1993). 169 
The PCR assay for roots DNA was performed in a total reaction volume of 25 μl consisting of PCR 170 
Buffer 10X (Thermo Fisher Scientific), 0.2 mM dNTPs, 0.3 μM of the primer pair ITS1F/ITS4, 0.6 171 
U of Taq DNA polymerase, 0.1 μg μl−1 bovine serum albumin (BSA) and 1.5 μl of target DNA (~ 5 172 
ng). Amplifications were carried out in 0.2 ml PCR tubes using a Biometra T Gradient thermocycler 173 
in the following steps: initial denaturation of 1 min at 94°C, 30 cycles of 30 s at 94°C, annealing at 174 
51°C for 30 s, elongation at 72 °C for 45s and a final extension of 5 min at 72°C. A negative control 175 
was included in the PCR to check for contamination. Each PCR product was checked on a 1.2 % 176 
agarose gel stained with ethidium bromide (Sigma-Aldrich). Dilutions of PCR products (1:10 and 177 
1:100) were used as template in the semi-nested PCR with the universal forward fITS9 178 
(GAACGCAGCRAAIIGYGA) and reverse ITS4ngs (TCCTSCGCTTATTGATATGC) primers 179 
(Ihrmark et al. 2012; Tedersoo and Smith, 2013, respectively) with overhangs. 180 
The semi-nested PCR was carried out in a total reaction volume of 25 μl containing 2 μl of DNA 181 
(used as undiluted and 1:10), 0.2 mM dNTPs, 0.3 μM of the primers fITS9 and ITS4, 0.6 U of Taq 182 
DNA polymerase, 0.1 μg of bovine serum albumin (BSA). The semi-nested PCR cycling conditions 183 
were: an initial step at 94°C for 5 min, 35 cycles at 94°C for 40 s, 52°C for 30 s, 72°C for 1 min, and 184 
a final extension step of 72°C for 10 min. To obtain enough PCR products to be purified and 185 
sequenced, semi-nested PCR was done in triplicate. 186 
As regards the DNA extracted from the soils, a direct PCR was carried out using PCR buffer 10X 187 
(Thermo Fisher Scientific), 0.1 mM dNTPs, 0.3 μM of the primers fITS9 and ITS4ngs, 0.6 U of Taq 188 
DNA polymerase, 0,2 μl of BSA (Thermo Fisher Scientific) and 2 μl of DNA (used undiluted, 1:10, 189 
1:5), to obtain a final volume of 25 μl. Amplifications were carried out as for seminested PCR for 190 
roots.  191 
All PCR products from both soil and root samples were purified using the Wizard® SV Gel and PCR 192 
Clean-Up System kit (Promega), quantified with a Qubit® 2.0 Fluorometer (Invitrogen, Grand Island, 193 
USA) and then sequenced by IGA Technologies (Udine, Italy) by using Illumina run MiSeq™ with 194 
a paired end strategy (2 × 300 bp, NexteraXT index kit) and adopting a deep sequencing approach 195 
(10 million reads). 196 
 197 
Bioinformatic analysis  198 
 199 
The libraries were initially screened with FastQC (Andrews, 2012) for quality assessment. Cutadapt 200 
v3.4 (Martin, 2011) was used to remove forward and reverse primers, and dada2 v1.18.0 (Callahan 201 
et al. 2016) was used for quality filtering (“filterAndTrim” function with the maxEE(2,5) parameter) 202 
and the resulting reads were discarded if shorter than 165 bp. A total of 1E8 bases was used for 203 
denoising through the “dada” function. The denoised sequences were screened for chimeras with both 204 
de novo and reference-based methods, using DADA2 and the UCHIME2 algorithm (Edgar, 2016) 205 
implemented in VSEARCH v2.17.0 (Rognes et al. 2016), respectively. The UNITE v8.3 fungal ITS 206 
database (Nilsson et al. 2019b) was used as a reference set. ITSx was used to extract the ITS2 portions 207 
of each sequence. The libraries are available in the NCBI database and are included in the bioproject 208 
with code PRJNA861234 (accession numbers from SRX16441362 to SRX16441373). 209 
VSEARCH was then used with the “–cluster-fast” option to cluster the sequences to a 97% similarity 210 
threshold. All the sequences in each OTU were annotated with BLASTn v2.11 (Camacho et al. 2009) 211 



 6 

against the nt database. The scripts found at https://github.com/Joseph7e/Assign-Taxonomy-with-212 
BLAST were used to parse the BLAST results. OTUs where the clustered sequences had divergent 213 
annotations were manually checked, and discarded whether a consensus annotation could not be 214 
reached. OTUs where the clustered sequences had different annotation depth within the same taxon 215 
(e.g. Glomeromycotina, Glomerales, Glomus) were resolved by keeping the highest taxonomic level 216 
(e.g. Glomeromycotina). 217 
The OTU table was imported in R with the phyloseq v3.12 package (McMurdie and Holmes, 2013) 218 
and the counts were normalised using the median sequencing depth. The “subset_taxa” phyloseq 219 
function and the “ggstripchart” function of the ggpubr v0.4.0 package (Kassambara and Kassambara, 220 
2020) were used to produce taxonomy barplots. The core microbiome selection was made according 221 
to Shetty et al. (2017) with the R packages phyloseq and microbiome v1.13.3 (Lahti et al. 2017). 222 
Alpha- and beta-diversity were calculated in phyloseq (The alpha diversity indices were calculated 223 
with non-normalized counts). DESeq2 v1.30.1 (Love et al. 2014) was used to estimate differential 224 
taxa abundance at a p-value threshold of 0.05. Differential abundances trees were drawn with 225 
metacoder v0.3.4 (Foster et al. 2017). In all the abundance ratios, soil abundance was picked as the 226 
numerator. 227 
 228 
 229 
  230 

https://github.com/Joseph7e/Assign-Taxonomy-with-BLAST
https://github.com/Joseph7e/Assign-Taxonomy-with-BLAST
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Results  231 
 232 
AMF morphological observation 233 
 234 
Observations of roots showed that the Astragalus roots were mycorrhized at the level of the cortical 235 
root parenchyma (Fig. 2). Although the arbuscles were not highlighted, other typical structures of 236 
AMF such as intraradical vesicles and extraradical mycelium were instead visualized. 237 
 238 
 239 

 240 
Fig. 2. Presence of vesicles (v) of arbuscular mycorrhizal fungi (AMF) inside roots of Astragalus nebrodensis and 241 
mycelium (m) of unidentified fungi associated with A. nebrodensis collected in Madonie Mountains Regional Park. 242 
 243 
 244 
 245 
Taxonomic overview of the fungal communities 246 
 247 
After filtering and denoising, the dataset contained 4,950 non-duplicated sequences, further clustered 248 
into 702 OTUs (Supplementary Table 1). Overall, Ascomycota were the most abundant phylum in 249 
both roots and soil samples, followed by Basidiomycota and Mucoromycota, while Chitridiomycota 250 
were scarcely represented only in soil samples (Fig. 3a). In both root and soil samples, Ascomycota 251 
(Fig. 3d) had their abundances distributed in nine main classes, with Dothideomycetes being the most 252 
abundant. Basidiomycota were dominated by Agaricomycetes (Fig. 3b), whereas the Mucoromycota 253 
community was dominated by Mortierellomycetes (Fig. 3c), followed by Glomeromycetes.  254 
 255 
 256 
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 257 
 258 
Fig. 3. Overall composition of the fungal community in the Madonie park. (a) Ascomycota had the highest relative 259 
abundance in most of the samples, over Basidiomycota and Mucoromycota (each bar represents a different sample; (b) 260 
The class Agaricomycetes was predominant in Basidiomycota, and Mortierellomycetes (c) in Mucoromycota, while 261 
Ascomycota (d) had a more even class distribution although Dothideomycetes were more abundant. Dots in (b), (c) and 262 
(d) represent samples and are distributed according to the relative abundances of each class (y axis). 263 
 264 
 265 
Core components of the fungal communities 266 
 267 
In order to define the core community of the whole dataset, we picked up taxa that had at least 0.01% 268 
relative abundance in at least 60% of the samples, and summarized their taxonomic affiliation at 269 
family level (Fig. 4). We found that Telephoraceae were present in a large proportion of samples at 270 
different relative abundances thresholds and that unknown families were present at more than 10 % 271 
relative abundance in nearly 100% of samples.  272 
 273 
 274 
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 275 
 276 
 277 
Fig. 4. Abundance and composition of the core fungal community families. Predominance was calculated using relative 278 
abundances, i.e. the abundance of each OTU was divided by the total OTUs abundances in the sample. The figure reports 279 
the fraction of samples (1 = all samples and 0 = no sample) in which a specific family had at least the relative abundance 280 
defined on the x axis. For example, unknown families and Thelephoraceae were present respectively at more than 10 % 281 
relative abundance in nearly 100% of samples, and at ~1.5 % relative abundance in ~ 90% of samples. 282 
 283 
 284 
Alpha-, beta-diversity indices  285 
 286 
We calculated several alpha diversity indices for the root and soil samples, and compared the subsets 287 
statistically (Fig. 5a). All the indices indicated that there were statistically significant differences 288 
between the alpha diversity values in root vs soil samples: roots showed lower richness than soil. We 289 
then used beta diversity indices to better visualize the compositional differences between the soil and 290 
roots fungal community (Fig. 5b). The unweighted UniFrac index (Lozupone and Knight, 2005) did 291 
not lead to a distinct separation between roots and soil samples (Fig. 5b). By contrast, such separation 292 
was visible with the use of a weighted UniFrac index, which further adds abundance data to the 293 
phylogeny-based method (Lozupone and Knight, 2005). This indicates that the differences between 294 
the two matrices (soil vs roots) are mainly driven by highly abundant taxa.  295 
 296 
 297 
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 298 

 299 
 300 
Fig. 5. Alpha and Beta diversity indices. (a) Blue and red dots represent root and soil samples, respectively, and are placed 301 
on the vertical axis based on their alpha diversity values according to specific indices (boxes). Significance values were 302 
calculated with ANOVA, at p < 0.05. (b) UniFrac Beta diversity indices calculated between root and soil samples. 303 
Individual shapes represent samples, and their size is proportional to the sample’s Shannon alpha diversity value. 304 
 305 
 306 
Differential taxa abundance between roots and soil 307 
 308 
We tested whether specific taxa were differentially abundant between roots and soil. The final 309 
comparison returned differentially abundant taxa between roots and soil samples in all the phyla 310 
(Supplementary Table 2). In Ascomycetes most of the taxa were more abundant in soil, with 311 
exception of Exophiala, Plectosphaerella cucumerina, an unidentified taxon in Lasiosphaeriaceae, 312 
Leptosphaeria keissleriella and Tuber (Fig. 6), which were more abundant in roots. Some members 313 
of Pezizales were differentially abundant in the comparison: Hydnobolites was enriched in soil, while 314 
Trichophaea in roots. In Basidiomycetes eight taxa were more abundant in soil while only three 315 
(Inocybe, Sebacina, and an unknown taxon in Thelephoraceae, ectomycorrhizal fungi) in roots 316 
(Supplementary Fig. 1). Also in Mucoromycota differentially abundant taxa were found between root 317 
and soil compartments, and they were prevalently abundant in soil. Mortierella was abundant in soil, 318 
while Podila in roots. Two AMF, Glomus indicum and Entrophospora infrequens, were more 319 
abundant in soil, while Rhizophagus intraradices in roots. In Chitidriomycota only four taxa are 320 
differentially abundant in soil (Rhizophlyctis rosea, Alogomyces tanneri, Powellomyces and an 321 
unknown taxon in Polychytriales) (Supplementary Fig. 3).  322 
 323 
 324 
 325 
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 326 
 327 
 328 
Fig. 6. Differential abundance tree showing over-represented Ascomycota taxa between soil and root samples. Red colour 329 
for nodes and edges indicates over-representation in soil, while blue indicates the opposite. Differential abundance is 330 
expressed here as the ratio of the summed log2 fold changes for each taxon.  331 
 332 
 333 
 334 
Discussion 335 
 336 
AMF morphological observation 337 
 338 
In our study, the presence of endophytic and symbiotic fungi and their colonization of Astragalus 339 
roots were confirmed by observations at a light microscopy. To our knowledge, this is the first report 340 
of AMF colonization in A. nebrodensis, confirming the endomycorrhizal nature of this symbiosis.  341 
 342 
Taxonomic overview of the fungal communities 343 
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 344 
The taxonomic overview of the fungal communities revealed that Ascomycota were dominant in both 345 
roots and soil samples. This is common in different Mediterranean habitats such as those mainly 346 
colonized by shrubs of single species as Helianthemum almeriense (Arenas et al. 2021) or other with 347 
a more heterogeneous landscape comprising natural cork-oak forests, pastures, managed meadow, 348 
vineyards (Orgiazzi et al. 2012), where they are mostly associated with dead plant material. The fact 349 
that Dothideomycetes resulted as the most abundant class is not surprising, considering that this 350 
represents the largest class of Ascomycetes (Hongsanan et al. 2020a). Furthermore, this is the most 351 
ecologically diverse class of fungi, comprising endophytes, epiphytes, saprobes, human and plant 352 
pathogens, lichens, and lichenicolous, nematode trapping and rock-inhabiting taxa (Hongsanan et al. 353 
2020b). Therefore, their presence can be considered a sign of an environment with high functional 354 
heterogeneity. 355 
Basidiomycota were the second phylum for abundance, and resulted dominated by Agaricomycetes, 356 
which was expected, due to the predominance of this class in the phylum (de Mattos-Shipley et al. 357 
2016), and due to the fact that many fungi in this class are ectomycorrhizal (ECM). Mucoromycota, 358 
the third phylum for abundance, were dominated by Mortierellomycetes and Glomeromycetes. Both 359 
taxa contain plant endophytes (even if endophytism is facultative in Mortierellomycetes, and not 360 
common to all species; Liao et al. 2019; Lanfranco et al. 2018). 361 
 362 
 363 
Core components of the fungal communities 364 
 365 
The core taxa, regarded as sustainers of the community function and ecology in a specific habitat 366 
(Shade and Handelsman, 2012), revealed that unknown families were present at more than 10 % 367 
relative abundance in nearly 100% of samples. This result indicates the still little knowledge of fungi 368 
from the Madonie Park, and consequently their poor representativeness in the databases. This fact is 369 
common in places where fungal diversity has been scarcely investigated, such as Madagascar, where 370 
Ghignone et al. (2021) found many unknown fungi with the same approach used in the present work. 371 
 372 
 373 
Alpha-, beta-diversity indices  374 
 375 
According to several alpha diversity indices, A. nebrodensis roots host a fungal community with 376 
lower richness as compared to soil. This indicates that the plant operates a selection on the pool of 377 
soil microbes, compared to soil, confirming the hypothesis of a specialised and well-established root 378 
microbiome. This hypothesis is also supported by the fact that the weighted UniFrac index leads to a 379 
clear separation, between soil and root samples, that is not observed with the unweighted index; since 380 
the weighted index takes into account both taxonomic diversity and taxa abundances, this is a clear 381 
indication that fungal taxa that are poorly represented in soil, are instead abundant in roots, and make 382 
up for the largest proportion of biodiversity in those samples.  383 
 384 
 385 
Differential taxa abundance between roots and soil 386 
 387 
The comparison of the differentially abundant taxa between roots and soil samples revealed that most 388 
of the taxa were more abundant in soil in all the phyla. Among the few fungi which were more 389 
abundant in roots in the Ascomycota, most of them are primarily saprotrophic, inhabiting wood, dung, 390 
soil, and rotting vegetation in temperate forests (Cannon and Kirk, 2007). On the contrary, taxa 391 
belonging to Tuber are well known ectomycorrhizal fungi belonging to Pezizales, appreciated for 392 
their valuable aroma (Mello et al. 2006; Zambonelli et al. 2015).  Other members of Pezizales, 393 
Hydnobolites which was enriched in soil, and Trichophaea in roots, are ectomycorrhizal (Miyauchi 394 
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et al. 2020; Tedersoo and Smith, 2013), suggesting that A. nebrodensis may develop ectomycorrhizal 395 
associations with selected, taxonomycally-related fungal partners. In addition, Trichophaea is placed 396 
in Pyronemataceae, a family whose members are known for their preference of burned grounds (Van 397 
Vooren et al. 2017). Also in this family, there is a taxon as Tricharina (saprotrophic), which was 398 
more abundant in soil. In Basidiomycota, only three taxa were more abundant in roots, Inocybe, 399 
Sebacina, and an unknown taxon in Thelephoraceae. All of these taxa contain ectomycorrhizal fungi 400 
with broad host spectra (Ray and Craven, 2016; Cripps et al. 2019; Miyauchi et al. 2020), which make 401 
them good candidates as Astragalus symbionts. Thelephora spp. were also detected in soil of cork 402 
oak formation in Sardinia by Orgiazzi et al. 2012. However, surprisingly, these authors retrieved them 403 
only with primers pair target ITS1 (ITS1F/ITS2) and not with the couple used for ITS2. This could 404 
demonstrate that primer pairs fITS9/ITS4 outperforms (ITS3/ITS4) to retrieve some fungal taxa 405 
(Ihrmark et al. 2012). 406 
In Mucoromycota Mortierella was abundant in soil, while Podila in roots, confirming the facultative 407 
and specific endophytic behaviour in Mortierellaceae (Bonito et al. 2016) (Supplementary Fig. 2). 408 
Species of Podila are frequently isolated from forest and agricultural soil, in particular P. minutissima 409 
has been isolated from Populus roots (Bonito et al. 2016) and reported as semi-saprotrophic 410 
mycophile (saprotrophically consumes dead fungal tissue) (Rudakov, 1978). Among the 411 
Glomeromycetes, two AMF, Glomus indicum and Entrophospora infrequens, were more abundant 412 
in soil, while Rhizophagus intraradices in roots. Regarding Glomus indicum it should be noted that 413 
it was found, as spores, in the rhizosphere of Euphorbia heterophylla L. which grows naturally in the 414 
coastal sands of Alappuzha in the state of Kerala of southern India and of Lactuca sativa L. cultivated 415 
in Asmara, in Eritrea, in north east Africa. However, the sequence types belonging to the G. indicum 416 
cluster have also been documented from environmental samples mainly in the United States, Estonia 417 
and Australia, suggesting the extensive presence of the species. Also E._infrequens has a worldwide 418 
distribution (Oehl et al. 2011). Rhizophagus intraradices is one of the most detected AMF isolates in 419 
different locations throughout the world, of both stable and disturbed ecosystems (Öpik et al. 2006; 420 
Orgiazzi et al. 2012) and in many host species (Kivlin et al. 2011). This AM fungal species has a 421 
generalist and ruderal lifestyle (disturbance tolerance) as it produces large numbers of spores and 422 
extraradical mycelium (Jansa et al. 2005; Öpik et al. 2006). Our analysis on soil DNA is in agreement 423 
with such behaviour and points out the dominance of this species in plant roots also in Mediterranean 424 
environments (Lumini et al. 2010). In Chitidriomycota only four taxa, Rhizophlyctis rosea, 425 
Alogomyces tanneri, Powellomyces and an unknown taxon in Polychytriales, are differentially 426 
abundant in soil. It is worth noticing that among these fungal taxa, which are saprotrophic, 427 
Rhizophlyctis rosea is a common species in soils (Gleason et al. 2004) and survives stressful 428 
conditions as quiescent structures (Marano et al. 2011).  429 
 430 
From this overview which takes a picture at the sampling time of the differential abundance between 431 
roots and soil, the roots of A. nebrodensis result extensively colonized by many endophytic fungi and 432 
both ecto- and endomycorrhizal fungi.  433 
In the soil surrounding A. nebrodensis, mycorrhizal taxa such as Hebeloma laterinum, Melanogaster, 434 
Lycoperdon, Tomentella and Sebacinaceae are signs of the diversity of plant hosts in the Madonie 435 
Park, that support a diversified fungal community. 436 
The high proportion of ectomycorrhizal Basidiomycota OTUs in this habitat is not surprising, since 437 
this is characterized by shrubs and also tree coverage. The native forest vegetation is mainly 438 
characterized by Fagus sylvatica L. mixed with Acer pseudoplatanus L., Quercus petraea 439 
(Mattuschka) Liebl., llex aquifolium L. Fraxinus ornus L., Crataegus laciniata Ucria, Cytisus 440 
scoparius (L.) Link, Sorbus graeca (Spach) Schauer and Q. ilex. Of considerable interest is also the 441 
presence of relict forest vegetation characterized by Abies nebrodensis (Lojac.) Mattei. 442 
Reafforestation with Pinus nigra J. F. Arnold, Cedrus atlantica (Endl.) Carrière and Cedrus deodara 443 
(D. Don) G. Don are also present in the studied area. 444 
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In conclusion, this investigation on the fungi associated with A. nebrodensis growing in the Madonie 445 
Mountains Regional Park is the first report showing, on one side, AMF colonization of its roots, by 446 
morphological observations, and on the other side, an overview of the total fungal biodiversity 447 
occurring in both A. nebrodensis roots and soil around them, by molecular analysis. The presence of 448 
many fungi associated with A. nebrodensis enables this plant to survive stressful conditions such as 449 
its harsh environment, and confer to this shrub an important ecological role in this Mediterranean 450 
ecosystem. 451 
 452 
 453 
 454 
Legends 455 
 456 
Fig. 1. Sampling sites in the Madonie Regional Park, which is delimited by the red borders. The 457 
three symbols indicate  the sampling sites of the roots and the associated soil samples from three 458 
plants of Astragalus nebrodensis. 459 
 460 
Fig. 2. Presence of vesicles (v) of arbuscular mycorrhizal fungi (AMF) inside roots of Astragalus 461 
nebrodensis and mycelium (m) of unidentified fungi associated with A. nebrodensis collected in 462 
Madonie Mountains Regional Park. 463 
 464 
Fig. 3. Overall composition of the fungal community in the Madonie park. (a) Ascomycota had the 465 
highest relative abundance in most of the samples, over Basidiomycota and Mucoromycota (each bar 466 
represents a different sample; (b) The class Agaricomycetes was predominant in Basidiomycota, and 467 
Mortierellomycetes (c) in Mucoromycota, while Ascomycota (d) had a more even class distribution 468 
although Dothideomycetes were more abundant. Dots in (b), (c) and (d) represent samples and are 469 
distributed according to the relative abundances of each class (y axis). 470 
 471 
Fig. 4. Abundance and composition of the core fungal community families. Predominance was 472 
calculated using relative abundances, i.e. the abundance of each OTU was divided by the total OTUs 473 
abundances in the sample. The figure reports the fraction of samples (1 = all samples and 0 = no 474 
sample) in which a specific family had at least the relative abundance defined on the x axis. For 475 
example, unknown families and Thelephoraceae were present respectively at more than 10 % relative 476 
abundance in nearly 100% of samples, and at ~1.5 % relative abundance in ~ 90% of samples. 477 
 478 
Fig. 5. Alpha and Beta diversity indices. (a) Blue and red dots represent root and soil samples, 479 
respectively, and are placed on the vertical axis based on their alpha diversity values according to 480 
specific indices (boxes). Significance values were calculated with ANOVA, at p < 0.05. (b) UniFrac 481 
Beta diversity indices calculated between root and soil samples. Individual shapes represent samples, 482 
and their size is proportional to the sample’s Shannon alpha diversity value. 483 
 484 
Fig. 6. Differential abundance tree showing over-represented Ascomycota taxa between soil and root 485 
samples. Red colour for nodes and edges indicates over-representation in soil, while blue indicates 486 
the opposite. Differential abundance is expressed here as the ratio of the summed log2 fold changes 487 
for each taxon.  488 
 489 
Supplementary Fig. 1-3: Differential abundance trees showing over-represented taxa between soil 490 
and root samples for Basidiomycota, Mucoromycota and Chytridiomycota, respectively. 491 
 492 
Supplementary Tables 1-2: OTU table with raw counts for each OTU in each sample, and the 493 
related taxonomic annotations; list of differentially abundant taxa. 494 
 495 
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