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Identical quantum subsystems can possess a property which does not have any classical counter-
part: indistinguishability. As a long-debated phenomenon, identical particles’ indistinguishability
has been shown to be at the heart of various fundamental physical results. When concerned with
the spatial degree of freedom, identical constituents can be made indistinguishable by overlapping
their spatial wave functions via appropriately defined spatial deformations. By the laws of quantum
mechanics, any measurement designed to resolve a quantity which depends on the spatial degree of
freedom only and performed on the regions of overlap is not able to assign the measured outcome to
one specific particle within the system. The result is an entangled state where the measured prop-
erty is shared between the identical constituents. In this work, we present a coherent formalization
of the concept of deformation in a general N -particle scenario, together with a suitable measure
of the degree of indistinguishability. We highlight the basic differences with nonidentical particles
scenarios and discuss the inherent role of spatial deformations as entanglement activators within the
spatially localized operations and classical communication operational framework.

I. INTRODUCTION: IDENTITY AND
INDISTINGUISHABILITY

In physics, particles are said to be identical if their in-
trinsic physical properties, such as mass, electric charge,
and (total) spin, are the same [1, 2]. This is the case,
for example, of subatomic particles such as electrons,
photons, quarks, of atomic nuclei, and of atoms and
molecules themselves. Particles identity is a cornerstone
of both classical and quantum physics which provides
the core of the inductive approach to the investigation
of Nature’s fundamental laws: the assumption that all
the electrons in the universe possess the same electric
charge, mass, spin, etc., allows to conclude that some
fundamental properties extrapolated from the behaviour
of a sample of electrons observed in a laboratory also hold
for all the other electrons in the universe.

Despite being frequently used as synonyms, particles
identity is not the same as particles indistinguishability.
Being a purely quantum phenomenon, the latter is more
strictly related to the concept of individual addressabil-
ity [3, 4]. Identical particles can indeed still be distin-
guished one from the other when their extrinsic prop-
erties, such as their position or the projection of their
angular momentum along an axis, are different. This is
clear in the classical world where two physical systems,
even when microscopic and identical, always occupy dis-
tinct positions in space at a fixed time, thus always be-
ing potentially individually addressed by following their
trajectory [2]. On the contrary, this is not always true
in quantum mechanics, where the wave-like and prob-
abilistic description of physical systems allows different
particles wave functions to be spatially overlapped, thus
having a nonzero probability of simultaneously occupying
the same region of space. When this situation occurs, any

measurement of quantities depending only on the parti-
cles position performed on the region of overlap does not
allow the observer to understand to which specific parti-
cle the measured outcome belongs to. This is the case,
for example, of two synchronized photon sources A and B
emitting single photons impinging, with a certain proba-
bility, on a restricted detecting spatial region. If a single
photon detector in that region clicks, we now have no
way of knowing from which source the detected photon
is coming from: in this situation, we say that there is no
which-way information and the interested particles are
said to be indistinguishable [1, 4].

The difference between identity and indistinguishabil-
ity is particularly evident in the everyday experience. It
is indeed this difference which allows one to relate ob-
served results to specific samples in an experiment: for
example, we can talk about the characterization of a spe-
cific laser source carried out in a laboratory in Buenos
Aires only because the photons emitted by such a source
are very well distinguishable (not spatially overlapped, in
this case) from the ones emitted by a neon sign in Tokyo,
despite all the photons being identical [3, 5–7]. Still, the
laser must be very well isolated from other light sources
to be sure that the characterized device is the laser and
not a street lamp nearby. Thus, differently from parti-
cle identity, particle indistinguishability depends on the
variable degrees of freedom involved. As a crucial conse-
quence, indistinguishability is a meaningful concept only
when related to the discrimination capability of the mea-
surement device employed to probe those degrees of free-
dom.

To better clarify this point, let us recover the above
mentioned example of two synchronized single photon
emitters and let us now assume that source A is known to
emit photons with horizontal polarization, while source
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B produces only vertically polarized ones. Furthermore,
let us suppose that the polarization is not changed by
the dynamics. If the single photon detector placed on
the region of spatial overlap is designed to discriminate
also the photon polarization, we now have a way to un-
derstand whether the origin of the particle causing the
click is source A or B. In other words, the two photons
can now be individually addressed and are not indistin-
guishable anymore despite being identical and spatially
overlapped. Similarly, if we now further assume the po-
larization of the two photons to be the same, we could
employ a measurement device capable of detecting their
energy to discriminate among them. Even the emission
time can be used to discriminate between the two parti-
cles if we know one source to emit before the other. Fi-
nally, the number of detectors can be set to distinguish
the two particles, too. For example, let us consider that
a photon emitted from source A can only reach regions
L and C while a photon emitted from source B can im-
pinge only on C and R, with L, C, and R distinct: a
single-photon detector placed in region C would be un-
able to distinguish the two particles, while the addition
of a second detector on L would be enough to reconstruct
the origin of every click.

Summing up, particles are always assumed, often im-
plicitly, to be (or not to be) indistinguishable to the eyes
of the employed measurement devices, while they are uni-
versally identical or nonidentical. From the experimental
point of view, the actual generation of indistinguishable
photons is actually a hard operation of fine tuning and
synchronization. From now on, we will always implicitly
refer to spatial indistinguishability when not otherwise
specified, i.e. to the indistinguishability of particles spa-
tially overlapped in relation to detectors for which no
which-way information exists.

In this paper we characterize the degree of indistin-
guishability in a general N -particle quantum system.
This is achieved by formalizing and extending the idea
of deformation operations. Firstly introduced in Ref. [8]
and later exploited in Refs. [9, 10] in the particular sce-
nario of bipartite systems, deformations provide a mathe-
matical framework suitable to describe the manipulation
of identical constituents when particles’ indistinguisha-
bility is involved. They account for processes where in-
distinguishability is generated starting from identical, yet
distinguishable particles, and vice versa. Remarkably,
they play a fundamental role in devising a coherent ex-
tension of the traditional local operations and classical
communication (LOCC) framework to systems of indis-
tinguishable constituents, whereas the latter fails due to
resorting on particles’ individuality. After a short sum-
mary of the no-label approach to identical particles [4, 11]
in Section II, we introduce, formalize, and generalize
deformations in Section III. In Section IV, we retrieve
the definition of an entropic measure of spatial indis-
tinguishability firstly introduced in Ref. [12], extending
it to the multipartite scenario and to a general amount
of degrees of freedom. Finally, in Section V, we review

and employ the spatially localized operation and classical
communication (sLOCC) operational framework, which
highlights the importance of spatial deformations as a
fundamental tool for the manipulation of identical con-
stituents in many practical applications, as confirmed by
recent experiments.

II. THE NO-LABEL FORMALISM

As is well known, particles living in a 3-dimensional
space can be divided into two macro groups: bosons,
with integer spin, and fermions, with semi-integer spin.
According to the symmetrization postulate, the global
state describing an ensemble of identical bosons must
remain the same when the role of any pair of particles
is exchanged: bosonic states are symmetric under par-
ticles swapping. On the contrary, fermionic states are
ruled to be anti-symmetric under analogous particles ex-
change [7]. The existence of such a postulate is at the
heart of the Pauli exclusion principle and sets the ground
for fundamental results in modern physics, from models
to analyze Bose-Einstein condensates to the description
of the behaviour of neutron stars.
To deal with these conditions, the standard approach

to identical particles assigns unphysical (unobservable)
labels to each constituent, ensuring that the global state
exhibits the correct symmetry when any two labels are
switched [1]. For example, let us consider two non-
entangled particles with spatial wave functions ψ1, ψ2.
If the two particles are nonidentical, their global state
is simply given by the tensor product |Ψ(2)⟩ = |ψ1⟩A ⊗
|ψ2⟩B , where the labels A and B encompass all the other
physical degrees of freedom as well as the properties
which makes the two constituents different. Differently,
if the two particles are identical and indistinguishable,
labels A and B becomes simply fictitious names with-
out any physical meaning and the global state must be
written as [7]

|Ψ(2)⟩ = 1√
2
(|ψ1⟩A ⊗ |ψ2⟩B + η |ψ2⟩A ⊗ |ψ1⟩B) , (1)

in order to satisfy the symmetrization postulate, where
η = 1 for bosons and η = −1 for fermions.
The approach leading to Eq. (1), despite being the

most frequently used even in didactic textbooks, is know
to be affected by some formal problems [6, 13]. For exam-
ple, the necessity to symmetrize/antisymmetrize states
by hand as in Eq. (1) leads to the emergence of fictitious
entanglement when this is evaluated using standard tools
such as the von Neumann entropy of the reduced density
matrix. This is tackled by adopting ad hoc treatments
to probe the existence of quantum correlations among
identical particles systems. In addition, such methods
require to treat bosons and fermions differently. In or-
der to overcome these problems, a plethora of alternative
approaches to deal with identical particles has been pro-
posed over time [3, 4, 11, 13–27].
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Among these methods, the no-label approach recog-
nizes the origin of the problem in the unphysical labels
A and B appearing in Eq. (1), removing them from the
formalism [4, 11]. In this way, global states are simply
given by a list of the single particle states: considering
once again the example of two constituents with single
spatial wave functions ψ1 and ψ2, the global state is writ-
ten as |Ψ(2)⟩ := |ψ1, ψ2⟩. If the two particles are distin-
guishable, e.g. not spatially overlapped, the global state
is still a product state. Nonetheless, when they are not
perfectly distinguishable, the global state cannot be writ-
ten as a tensor product anymore: |Ψ(2)⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩.
Similarly, the global Hilbert space H(2) is generally not
the tensor product of the single particle Hilbert spaces

H(1)
1 and H(1)

2 : H(2) ̸= H(1)
1 ⊗ H(1)

2 . The generalization
to the N -particle scenario is straightforward, with the
global state |Ψ(N)⟩ := |ψ1, ψ2, . . . , ψN ⟩ generally satisfy-
ing |Ψ(N)⟩ ≠ |ψ1⟩⊗|ψ2⟩⊗· · ·⊗ |ψN ⟩. For a more exhaus-
tive review of how the most common two-particle states
are written within the no-label approach, compared to
their expressions in the standard approach with fictitious
labels, see the table in Fig. 1.

Given the two-particle state |ψ1, ψ2⟩, the cornerstone
of the no-label approach is provided by the definition of
the probability amplitude related to finding the system in
the state |φ1, φ2⟩, which takes into account the eventual
indistinguishability of the constituents. According to the
meaning of indistinguishability discussed in Section I, the
impossibility to discriminate between the two particles
should reasonably lead to both of them contributing with
their probability amplitude of being found in φ1 and φ2.
Thus, we define

⟨φ1, φ2|ψ1, ψ2⟩ := ⟨φ1|ψ1⟩ ⟨φ2|ψ2⟩+ η ⟨φ1|ψ2⟩ ⟨φ2|ψ1⟩ .
(2)

Remarkably, this definition directly encodes the statis-
tical exchange phase η: within the no-label approach,
the statistical information about the identical particles
nature is encoded in the transition amplitudes, rather
than in the symmetrization of the quantum state. Some
important characteristics of the formalism can be di-
rectly derived from (2): comparing ⟨φ1, φ2|ψ1, ψ2⟩ with
⟨φ1, φ2|ψ2, ψ1⟩, it follows that

|ψ2, ψ1⟩ = η |ψ1, ψ2⟩ (3)

(see the note at the bottom of Fig. 1). Furthermore,
state |ψ1, ψ2⟩ is not, in general, normalized: indeed, it
can be easily checked that (assuming the single particle
wave functions ψ1, ψ2 to be properly normalized)

⟨ψ1, ψ2|ψ1, ψ2⟩ = 1 + η |⟨ψ1|ψ2⟩|2 := C2
+, (4)

implying that the correctly normalized two particle state
is

|Ψ(2)⟩N = |ψ1, ψ2⟩ /C+. (5)

Notice that, when the spatial overlap is null (i.e. dis-
tinguishable particles), ⟨ψ1|ψ2⟩ = 0 and the normal-
ized two particle state simply reduces to |Ψ(2)⟩N =
|ψ1, ψ2⟩. Eq. (2), Eq. (3), and Eq. (5) can be easily
extended to the general N -particle scenario: given the
states |ψ1, ψ2, . . . , ψN ⟩ and |φ1, φ2, . . . , φN ⟩, the related
N -particle probability amplitude is given by

⟨φ1, φ2, . . . , φN |ψ1, ψ2, . . . , ψN ⟩ =
∑
α⃗

ηPα⃗ ⟨φ1|ψα1
⟩ ⟨φ2|ψα2

⟩ . . . ⟨φN |ψαN
⟩ , (6)

where α⃗ = (α1, α2, . . . , αN ) is any arbitrary permutation
of (1, 2, . . . , N), while Pα⃗ is the parity of the permutation.
Under particle swapping, the N -particle state behaves as

|ψα1 , ψα2 , . . . , ψαN
⟩ = ηPα⃗ |ψ1, ψ2, . . . , ψN ⟩ , (7)

while the properly normalized state is simply given by

|Ψ(N)⟩N = |ψ1, . . . , ψN ⟩ /
√
⟨ψ1, . . . , ψN |ψ1, . . . , ψN ⟩.

(8)
Notice that, if all the single particle wave functions
are non-overlapping and individually normalized (distin-
guishable scenario), from Eq. (6) we have

⟨ψ1, . . . , ψN |ψ1, . . . , ψN ⟩ = ⟨ψ1|ψ1⟩ . . . ⟨ψN |ψN ⟩ = 1 (9)

and |Ψ(N)⟩N = |ψ1, ψ2, . . . , ψN ⟩.

When dealing with distinguishable particles, it is pos-
sible to resort to the local operations and classical com-
munication framework to manipulate, quantify, and com-
pare entanglement [28]. Here, local refers to the concept
of particle locality and to the possibility of acting on the
single constituents individually. Thus, such an approach
is not applicable to systems of indistinguishable particles,
where no individual constituent can be defined. In such
a situation, one can instead rely on operations which are
localized in space, rather than on single elements, leading
to the spatially localized operations and classical commu-
nication (sLOCC) framework discussed further in Sec-
tion V [27, 29]. Within this scenario, the action of a sin-

gle particle operator O
(1)
X localized on the spatial region

X on the multipartite state |Ψ(N)⟩ is defined, according
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STANDARD APPROACH NO-LABEL APPROACH

NONIDENTICAL

IDENTICAL

NONIDENTICAL

IDENTICAL

NONIDENTICAL

IDENTICAL

NONIDENTICAL

IDENTICAL

              This does not hold for the spatial and the pseudospin parts separately:                  In the standard approach, 

              Pseudospin known means that there is certainty about which pseudospin is associated to which spatial wave function; pseudospin unknown means that there is no such a certainty.

STANDARD VERSUS NO-LABEL APPROACH CONVERSION TABLE FOR  TWO-PARTICLE STATES

NOTES: for global states of identical particles in the no-label approach, it holds that

DIFFERENT PSEUDOSPIN.

PSEUDOSPIN KNOWN

DIFFERENT PSEUDOSPIN.

PSEUDOSPIN UNKNOWN 

(MAXIMALLY ENTANGLED 

STATE)

SAME PSEUDOSPIN.

PSEUDOSPIN KNOWN

SAME PSEUDOSPIN.

PSEUDOSPIN UNKNOWN 

(MAXIMALLY ENTANGLED 

STATE)

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜏⟩𝐵

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜏⟩𝐵 + 𝜂 |𝜓2𝜏⟩𝐴 |𝜓1𝜎⟩𝐵

|Ψ〉 = (|𝜓1〉𝐴 𝜓2⟩𝐵 ⊗ 𝜎⟩𝐴 𝜏⟩𝐵 ± 𝜏⟩𝐴 𝜎⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜏⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜎⟩𝐵

|Ψ〉 = (|𝜓1〉𝐴 𝜓2⟩𝐵 ± 𝜂 |𝜓2〉𝐴 |𝜓1⟩𝐵 ⊗ 𝜎⟩𝐴 𝜏⟩𝐵 ± 𝜏⟩𝐴 𝜎⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜏⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜎⟩𝐵 + 𝜂 (|𝜓2𝜏⟩𝐴 𝜓1𝜎⟩𝐵 ± |𝜓2𝜎⟩𝐴 𝜓1𝜏⟩𝐵)

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜎⟩𝐵

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜎⟩𝐵 + 𝜂 |ψ2𝜎⟩𝐴 |𝜓1𝜎⟩𝐵

|Ψ〉 = (|𝜓1⟩𝐴 𝜓2⟩𝐵 ⊗ 𝜎⟩𝐴 𝜎⟩𝐵 ± 𝜏⟩𝐴 𝜏⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜎⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜏⟩𝐵

|Ψ〉 = (|𝜓1⟩𝐴 𝜓2⟩𝐵 + 𝜂 |𝜓2⟩𝐴 |𝜓1⟩𝐵 ⊗ 𝜎⟩𝐴 𝜎⟩𝐵 ± 𝜏⟩𝐴 𝜏⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜎⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜏⟩𝐵 + 𝜂 (|𝜓2𝜎⟩𝐴 𝜓1𝜎⟩𝐵 ± |𝜓2𝜏⟩𝐴 𝜓1𝜏⟩𝐵)

|Ψ〉 = |𝜓1𝜎, 𝜓2 𝜏⟩ = 𝜓1𝜎 ⊗ |𝜓2𝜏⟩

|Ψ〉 = |𝜓1𝜎,𝜓2 𝜏⟩

Ψ = 𝜓1𝜎,𝜓2𝜏 ± 𝜓1𝜏, 𝜓2𝜎

= 𝜓1, 𝜓2 ⊗ |𝜎, 𝜏⟩±

Ψ = 𝜓1𝜎, 𝜓2𝜏 ± 𝜓1𝜏, 𝜓2𝜎

= |𝜓1, 𝜓2⟩±𝜂 ⊗ |𝜎, 𝜏⟩±

Ψ = 𝜓1𝜎,𝜓2, 𝜎 = 𝜓1𝜎 ⊗ |𝜓2𝜎⟩

Ψ = 𝜓1𝜎,𝜓2𝜎
= 𝜓1𝜎 ⊗ |𝜓2𝜎⟩ if distinguishable, ≠ 𝜓1𝜎 ⊗ |𝜓2𝜎⟩ if not 

Ψ = 𝜓1𝜎,𝜓2𝜎 ± 𝜓1𝜏, 𝜓2𝜏

= 𝜓1, 𝜓2 ⊗ ( 𝜎, 𝜎 ± |𝜏, 𝜏⟩)

Ψ = 𝜓1𝜎, 𝜓2𝜎 ± 𝜓1𝜏, 𝜓2𝜏

= 𝜓1, 𝜓2 𝜂 ⊗ ( 𝜎, 𝜎 ± |𝜏, 𝜏⟩)

|𝜓1, 𝜓2⟩±𝜂 ⊗ |𝜎, 𝜏⟩± ≠ (𝜂 |𝜓2, 𝜓1⟩±𝜂) ⊗ |𝜎, 𝜏⟩± ≠ |𝜓1, 𝜓2⟩±𝜂 ⊗ 𝜂 𝜏, 𝜎⟩± .

𝜓1𝜎, 𝜓2𝜏 = 𝜂 |𝜓2𝜏, 𝜓2𝜎⟩.

𝝈 ≠ 𝝉

= 𝜓1𝜎 ⊗ |𝜓2𝜏⟩ if distinguishable, ≠ 𝜓1𝜎 ⊗ |𝜓2𝜏⟩ if not

⋅ 𝐴 ⋅ 𝐵≡ ⋅ 𝐴 ⊗ ⋅ 𝐵.

FIG. 1. Conversion table for two-particle states between the standard formalism and the no-label approach. ψ1 and ψ2 are the
two single particle spatial wave functions, while σ and τ (σ ̸= τ) are the pseudospin projection along a preferred axis. Notation
is reported for both nonidentical and identical particles states: for the first ones, labels used in the standard approach have
a physical meaning, identifying physical, measurable properties; for the latter, no physical meaning can be assigned to labels
when the described particles are indistinguishable. The no-label approach overcomes this problem by avoiding to resort on
labels. The reported structures of states of identical particles is preserved when exchanging the roles of the spatial (external)
and pseudospin (internal) degrees of freedom. Normalization coefficients are omitted to avoid cluttering.

to the no-label approach, as

O
(1)
X |Ψ(N)⟩ :=

∑
i

|⟨X|ψi⟩| |ψ1, . . . , O
(1)
X ψi, . . . , ψN ⟩ ,

(10)
where the presence of at least one constituent in the re-
gion X is assumed [8]. Remarkably, the operational ne-
cessity of focusing on a specific region of space rather
than on individual particles is reflected, in Eq. (10), by
the sum being weighted by the probability amplitudes
associated to each particle being in the region X. Notice
that, when the region X is wide enough to enclose the
whole spatial distribution of |Ψ(N)⟩, Eq. (10) reduces to

O
(1)
X |Ψ(N)⟩ :=

∑
i

|ψ1, . . . , O
(1)
X ψi, . . . , ψN ⟩ , (11)

which is the usual single-particle operation acting on a
state of N identical particles.

III. DEFORMATIONS

In this Section, we discuss and formalize the concept
of deformation, a tool of particular importance when ap-
plied to systems of identical particles.
In contrast to global unitary transformations where all

the elements of a multipartite state are modified in the
same way, deformations consist in transformations act-
ing differently, but still unitarily, on each particle, thus
changing the relative relations among the constituents.
Given an N -partite state |Ψ(N)⟩ = |ψ1, ψ2, . . . , ψN ⟩ of
either distinguishable or indistinguishable particles, the

action of the deformation D
(N)

a⃗,X⃗
is defined, within the no-

label approach, as
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D
(N)

a⃗,X⃗
|Ψ(N)⟩ : =

(
U

(1)
a1,X1

⊗ U
(1)
a2,X2

⊗ · · · ⊗ U
(1)
aN ,XN

)
|Ψ(N)⟩

=
∑
α⃗

|⟨X1|ψα1⟩ ⟨X2|ψα2⟩ . . . ⟨XN |ψαN
⟩| ηPα⃗ |U (1)

a1,X1
ψα1 , U

(1)
a2,X2

ψα2 , . . . , U
(1)
aN ,XN

ψN ⟩ .
(12)

Here, the elements aj in a⃗ = (a1, a2, . . . , aN ) identify the
type of transformation represented by the single parti-

cle unitary operator U
(1)
aj ,Xj

and encode the set of pa-

rameters required to determine it, while Xj ∈ X⃗ =
(X1, X2, . . . , XN ) denotes its region of action. α⃗ and Pα⃗

are as in Eq. (6). In general, for a deformation aj ̸= ai
for j ̸= i. Eq. (12) holds when each operator acts on at
least one particle, i.e. ∃ α⃗ : ∀ i ∃ j : ⟨Xi|ψαj

⟩ ≠ 0.

We define the deformation operator to be linear, that
is

D
(N)

a⃗,X⃗
|λ1Ψ(N)

1 + λ2Ψ
(N)
2 ⟩ = λ1D

(N)

a⃗,X⃗
|Ψ(N)

1 ⟩+ λ2D
(N)

a⃗,X⃗
|Ψ(N)

2 ⟩ , ∀λ1, λ2 ∈ C. (13)

The probability amplitudes weighting the sum in Eq. (12)
account, as in (10), for the spatially localized approach
required when the constituents are indistinguishable.
When they are distinguishable, either being identical or
nonidentical, we can individually address each of them
within the traditional LOCC framework and drop the
subscript X, so that Eq. (12) becomes

D
(N)
a⃗ |Ψ(N)⟩ = |U (1)

a1
ψ1, U

(1)
a2
ψ2, . . . , U

(1)
aN
ψN ⟩ . (14)

Moreover, deformations are unitary when dealing with
nonidentical particles. Indeed, in this case we are sure
that the constituents are left distinguishable by the de-
formation. Thus, the right hand side of Eq. (14) reduces
in this case to a tensor product, namely

D
(N)
a⃗ |Ψ(N)⟩ = |U (1)

a1
ψ1⟩⊗|U (1)

a2
ψ2⟩⊗· · ·⊗|U (1)

aN
ψN ⟩ . (15)

Hence, one has

⟨D(N)
a⃗ Ψ(N)|D(N)

a⃗ Ψ(N)⟩ = ⟨U (1)
a1
ψ1|U (1)

a1
ψ1⟩ ⟨U (1)

a2
ψ2|U (1)

a2
ψ2⟩ . . . ⟨U (1)

aN
ψN |U (1)

aN
ψN ⟩

= ⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψN |ψN ⟩ ,

which implies ⟨Ψ(N)|
[
D

(N)
a⃗

]†
D

(N)
a⃗ |Ψ(N)⟩ =

⟨Ψ(N)|Ψ(N)⟩, finally leading to[
D

(N)
a⃗

]†
D

(N)
a⃗ = 11. (16)

Remarkably, this is in general not true anymore for iden-
tical constituents, not even when initially distinguish-
able. From the physical point of view, this is so because
the deformation can change the relative spatial overlap of

particles, thus leading to the emergence of indistinguisha-
bility manifested in the cross-inner products appearing in
the right hand side of Eq. (6). In order to explicitly show
this, let us consider the scenario of N = 2 distinguishable
but identical particles for simplicity. Before applying the
deformation, from Eq. (9) we have

⟨Ψ(2)|Ψ(2)⟩ = ⟨ψ1, ψ2|ψ1, ψ2⟩ = ⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩ .

After the deformation, instead, from Eq. (6) it holds that

⟨D(2)
a⃗ Ψ(2)|D(2)

a⃗ Ψ(2)⟩ = ⟨U (1)
a1
ψ1, U

(1)
a2
ψ2|U (1)

a1
ψ1, U

(1)
a2
ψ2⟩

= ⟨U (1)
a1
ψ1|U (1)

a1
ψ1⟩ ⟨U (1)

a2
ψ2|U (1)

a2
ψ2⟩+ η |⟨U (1)

a1
ψ1|U (1)

a2
ψ2⟩|2

= ⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩+ η |⟨ψ1|
[
U (1)
a1

]†
U (1)
a2

|ψ2⟩|2.

Since, in general, [U
(1)
i ]†U

(1)
j ̸= 0, it follows that

⟨Ψ(2)|
[
D

(2)
a⃗

]†
D

(2)
a⃗ |Ψ(2)⟩ ≠ ⟨Ψ(2)|Ψ(2)⟩ ⇒

[
D

(2)
a⃗

]†
D

(2)
a⃗ ̸= 11.
(17)

We thus conclude that deformations are unitary when
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applied to nonidentical particles and, in general, non-
unitary for identical ones. The latter situation is
schematically represented in Figure 2(top), where we de-
pict an example of deformation acting on three identi-
cal, nonetheless distinguishable, particles leading to the
generation of spatial indistinguishability, thus being non-
unitary. In Figure 2(bottom), instead, we report a picto-
rial representation of the particular scenario where three
identical, distinguishable particles are manipulated via a
deformation which does not generate indistinguishability,
thus retaining unitarity.

Clearly, when normalization is important, states of in-
distinguishable particles obtained by a deformation can
be straightforwardly normalized: given a system of N
identical particles in a general mixed state ρ, the nor-
malized state after the deformation is

ρN =
DρD†

Tr [D†Dρ]
, (18)

where we omit superscripts and subscripts of the defor-
mation operator for simplicity.

IV. ENTROPIC MEASURE OF
INDISTINGUISHABILITY

As we shall discuss in the next Section, spatial indis-
tinguishability provides an important quantum resource
which can be accessed within the sLOCC operational
framework for different goals. Within this picture, defor-
mations generating indistinguishability from previously
distinguishable constituents provide the key tool to ac-
tivate such resources. In order to quantitatively demon-
strate this, we need a way to quantify indistinguishabil-
ity. To this aim, we now introduce en entropic measure
of generalized indistinguishability, of which spatial indis-
tinguishability is derived as a particular case.

Let us consider a general N -particle state |Ψ(N)⟩ =
|ψ1, ψ2, . . . , ψN ⟩; here, each ψj encodes both the single
particle spatial wave function χj and all the other rel-
evant degrees of freedom given by the eigenvalues of a
complete set of commuting observables and gathered in
a vector σ⃗j , so that |ψj⟩ = |χj σ⃗j⟩. We now identify
N distinct regions of space S1, S2, . . . , SN where we set
N single particle detectors, corresponding to the non-
overlapping spatial modes |S1⟩ , |S2⟩ , . . . , |SN ⟩. In gen-
eral, the detectors will be sensible to the spatial position
of particles (by construction) and to a subset α⃗ of the de-
grees of freedom encoded in σ⃗, while being unable to de-

tect the remaining β⃗ (where σ⃗j = α⃗j ∪ β⃗j ∀ j = 1, . . . , N).
For example, each detector could be capable of detecting
the energy of a particle impinging on the spatial region
where it is set, without having access to its spin. A sin-
gle particle detection performed in the region Sk giving
as outcomes the set of values α⃗k is thus described by the

projection operator Π
(1)
k =

∑
β⃗ |Sk α⃗k β⃗⟩ ⟨Sk α⃗k β⃗|, while

the probability of such an outcome when detecting a par-

ticle whose state is |ψj⟩ = |χj α⃗j β⃗j⟩ is given by

Pk,j = ⟨ψj |Π(1)
k |ψj⟩ =

∑
β⃗

|⟨Sk α⃗k β⃗|ψj⟩|2

= |⟨Sk|χj⟩ ⟨α⃗k|α⃗j⟩|2.
(19)

Since the spatial regions Sk are distinct, a global simul-
taneous detection of the multipartite state giving as out-
comes α⃗1 for the particle in the region S1, α⃗2 for the
one in S2, and so on, is described by the action of the
N -particle projection operator

Π
(N)
{Sk,α⃗k} =

N⊗
k=1

Π
(1)
k . (20)

We now introduce the joint probability related to the
projective measurement in Eq. (20) of detecting in the
region S1 the particle whose state is |ψj1⟩, in the region
S2 the one whose state is |ψj2⟩, and so on, that is

P j1,...,jN
{Sk,α⃗k} =

N∏
k=1

Pk,jk . (21)

With respect to the projective measurement in Eq. (20),
we define the degree of indistinguishability of the N -
particle state as

I{Sk,α⃗k} = −
N∑

j1,...,jN=1
j1 ̸=... ̸=jN

P j1,...,jN
{Sk,α⃗k}

Z
log2

P j1,...,jN
{Sk,α⃗k}

Z
, (22)

where we have indicated the partition function

Z =

N∑
j1,...,jN=1
j1 ̸=...̸=jN

P j1,...,jN
{Sk,α⃗k} . (23)

When all the particles are spatially separated, there is
at most only one non-null joint probability contributing
to Eq. (22). In particular, if they are perfectly localized
on one region each and the values of their accessible de-
grees of freedom are {α⃗k}Nk=1, such a probability is equal
to 1 and I reaches its minimum I{Sk,α⃗k} = 0: particles
are perfectly distinguishable with respect to the measure-
ment given by Eq. (20). On the contrary, if all the con-
stituents are equally distributed over all the N spatial
regions and possess the same values α⃗1 = α⃗2 = · · · =
α⃗N , then all the joint probabilities contribute equally to
Eq. (22): we have maximally indistinguishable particles
and I takes its maximum value I{Sk,α⃗k} = log2N !.
In what follows, we shall be interested in the scenario

where the detectors are only sensible to the spatial de-
gree of freedom. This situation is derived from the above
described picture by setting α⃗ = {∅}, so that Eq. (22)
reduces to a measure of the degree of spatial indistin-
guishability (see Section V).
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Non-unitary

deformation

X1 X2 X3 X1 X2 X3

X4

X1 X2 X3

Unitary

deformation

X1
X2

X3 X4

X’2 ⊂ X2

FIG. 2. Top. Example of non-unitary deformation of three identical and initially distinguishable particles. The particle
localized in region X1 undergoes a spin rotation, while the ones in regions X2 and X3 get spatially overlapped over region X4,
where spatial indistinguishability is generated. Bottom. Example of unitary deformation of three identical and distinguishable
particles. The particle localized in region X1 undergoes a spin rotation, the one in region X2 sees a unitary restriction of its wave
function support to a region X ′

2 ⊂ X2, while the particle in region X3 gets spatially translated to X4. No indistinguishability
is generated by the process.

V. ACCESSING QUANTUM
INDISTINGUISHABILITY RESOURCES: THE

SLOCC OPERATIONAL FRAMEWORK

As discussed in Section II, indistinguishable particles
cannot be addressed with the traditional LOCC frame-
work, since this relies on the possibility to individually
manipulate, and thus distinguish, the single constituents.
From an operational point of view, we thus resort to the
sLOCC framework to access the quantum properties of
an indistinguishable particles state [27, 29].

For simplicity, we present the sLOCC framework
within the simple scenario of two identical qubits with
opposite pseudospin, initially distinguishable and local-
ized in the distinct spatial regions A and B. Following
the original formulation [27], we take the bipartite system
to be in the initial state |Ψ⟩AB = |A ↑, B ↓⟩. Notice that

|Ψ⟩AB is normalized, since ⟨A|B⟩ = 0. Applying the no-
tions introduced in Section III, we proceed by deforming
such a state to make the two single particle wave func-
tions spatially overlap over two distinct regions L and R
corresponding to the normalized spatial modes |L⟩ , |R⟩.
This amount to performing the transformation

|Ψ⟩AB = |A ↑, B ↓⟩ D−→ |Ψ⟩D = |ψ1 ↑, ψ2 ↓⟩ , (24)

where |ψ1⟩ = l |L⟩+r |R⟩ and |ψ2⟩ = l′ |L⟩+r′ |R⟩. Here,
the complex coefficients l, l′, r, r′ determine the different
probabilities of finding each particle in each region and
satisfy the relation |l|2 + |r|2 = |l′|2 + |r′|2 = 1. Follow-
ing what discussed in Section I we highlight that, despite
being spatially indistinguishable, the two qubits in state
|Ψ⟩D can still be discriminated by a device capable of
detecting their spin direction, which has been left un-
changed by the deformation. Finally, the deformation
has left the state normalized: indeed, it holds that

D
⟨Ψ|Ψ⟩D =

(
⟨ψ1|ψ1⟩ ⟨↑ | ↑⟩

)(
⟨ψ2|ψ2⟩ ⟨↓ | ↓⟩

)
+ η |⟨ψ1|ψ2⟩ ⟨↑ | ↓⟩|2 = 1.
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We now set two single-particle detectors on L and R re-
spectively and perform a coincidence measurement, pre-
serving the state if both of them detect a particle and dis-
carding it otherwise. Crucially, the detectors are unable
to access the spin direction, so that the two qubits are ef-
fectively indistinguishable to their eyes. Thus, this part
of the process amounts to a postselected measurement
where state |Ψ⟩D is projected on the subspace spanned
by the basis

BLR = {|L ↑, R ↑⟩ , |L ↑, R ↓⟩ , |L ↓, R ↑⟩ , |L ↓, R ↓⟩}
(25)

via the corresponding projection operator

ΠLR =
∑

σ,τ=↑,↓

|Lσ,Rτ⟩ ⟨Lσ,Rτ | . (26)

After the proper normalization, the resulting state is
given by

|Ψ⟩LR =
ΠLR |Ψ⟩D√

D
⟨Ψ|ΠLR|Ψ⟩D

=
lr′ |L ↑, R ↓⟩+ η l′r |L ↓, R ↑⟩√

|lr′|2 + |l′r|2
, (27)

postselected with probability

PLR =
D
⟨Ψ|ΠLR|Ψ⟩D = |lr′|2 + |l′r|2. (28)

Notice that the two qubits in the final state |Ψ⟩LR of
Eq. (27) are distinguishable, since one of them is now
localized in region L while the other in region R.
The first aspect that emerges from Eq. (27) is that

the final state |Ψ⟩LR is an entangled state, provided
l, l′, r, r′ ̸= 0. Since the initial state was non-entangled,
we thus conclude that the sLOCC protocol can be used
to generate entanglement [27, 29]. Remarkably, the su-
perposition of states |L ↑, R ↓⟩ and |L ↓, R ↑⟩ is a direct
consequence of the impossibility for the two detectors to
understand which one of the two qubits they have de-
tected, namely if the one with spin ↑ generated in A or
the one with spin ↓ generated in B. In other words,
the origin of the quantum correlations in the sLOCC-
generated state of Eq. (27) is the no-which-way informa-
tion discussed in Section I deriving from the achieved
spatial indistinguishability. For this reason, we say that
deformations leading to indistinguishability activate en-
tanglement, while the sLOCC measurement allows to ac-
cess it. To further stress this point, we remark that |Ψ⟩LR
is non-entangled whenever at least one among l, l′, r, r′ is
null; indeed, this amounts to the scenario where (at least)
one of the qubits is perfectly localized either on L or on
R, so that the coincidence click required by the sLOCC
measurement allows to precisely track the origin of bothe
the particles. This is the situation occurring, e.g., when
no deformation is performed, so that l = r′ = 1 and
l′ = r = 0: particles remain distinguishable and no en-
tanglement is generated.

From Eq. (22) with α⃗ = {∅}, N = 2, and S1 = L, S2 =
R, the amount of spatial indistinguishability obtained

with the deformation can be properly quantified by the
entropic measure introduced in Section IV [12]

ILR = −|l|2 |r′|2

Z
log2

|l|2 |r′|2

Z
− |l′|2 |r|2

Z
log2

|l′|2 |r|2

Z
,

(29)
where Z = |l|2 |r′|2 + |l′|2 |r|2. Such a quantity takes
into account the no-which-way information, taking the
minimum value I = 0 when no overlap is present (l =
1, r′ = 1 or l′ = 1, r = 1: distinguishable particles) and
the maximum one I = 1 when the overlap is maximum
(l = l′ = r = r′ = 1/

√
2: maximally indistinguishable

particles).
The role of indistinguishability as a resource for quan-

tum technologies within the sLOCC framework has been
investigated by several recent experiments. Remarkably,
in Ref. [29] the authors have experimentally implemented
the deformation+sLOCC protocol with two photons ini-
tially prepared in the state |Ψ⟩AB. They have performed
quantum teleportation with the final state of Eq. (27),
thus showing that the achieved entanglement is physical.
Furthermore, by directly accessing the value of l, l′, r, r′

they fixed l = r = 1/
√
2 to make I a function of just one

parameter and showed that the amount of quantum cor-
relations present in the state produced by the sLOCC pro-
tocol, as quantified by the entanglement of formation [30],
is proportional to the degree of spatial indistinguishability
achieved. In particular, when I = 1 we see from Eq. (27)
that the sLOCC process generates the maximally entan-
gled state |Ψ⟩max

LR = (|L ↑, R ↓⟩+ η |L ↓, R ↑⟩)/
√
2.

In Refs. [8–10, 12] the authors considered the more
realistic scenario where the deformation+sLOCC proto-
col is applied to two qubits in the presence of noise.
Considering the maximally entangled Bell singlet state
|1−⟩ := (|A ↑, B ↓⟩− |A ↓, B ↑⟩)/

√
2 as initial state, they

analyzed the entanglement of formation of the system
undergoing the detrimental action of two independent
and localized noisy environments, both of the same type
and modelled as phase damping channels, depolarizing
channels, and amplitude damping channels. Noise has
been considered acting before the deformation, when
the particles are still distinguishable [9, 12], after it,
when the qubits are indistinguishable to the eyes of the
environments[8], and in both situations altogether [10].
For general values of l, l′, r, r′, the deformation is now
found to generate a mixed state ρD which the sLOCC
projection transforms into (extending Eq. (27) to mixed
states)

ρLR =
Π̂LR ρD Π̂LR

Tr
[
Π̂LR ρD

] , (30)

with postselection probability

PLR = Tr
[
Π̂LR ρD

]
. (31)

Remarkably, the process is found to lead to a restoration
of the final quantum correlations present in ρLR with re-
spect to the ones characterizing the state immediately
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before the generation of the spatial indistinguishability.
Furthermore, the amount of entanglement restored re-
sults to be proportional to the degree of spatial indis-
tinguishability achieved. In particular, when I = 1 the
deformation+sLOCC protocol is found to completely re-
generate the maximally entangled initial state |1−⟩ no
matter how long the interaction time has been. Thus,
the sLOCC operational framework can be used to restore,
partially or even completely, the amount of quantum cor-
relations present in an initially entangled state spoiled by
the detrimental interaction with noisy environments.

Another relevant element emerging from the sLOCC-
prepared state, as can be noticed from Eq. (27), is the
factor η := eiθ encoding the exchange phase θ, with
θ = 0 for bosons and θ = π for fermions being at the
core of the symmetrization postulate discussed in Sec-
tion II. Although many decades have passed after the first
formulation of the postulate, a first direct experimen-
tal measurement of the bosonic exchange phase has been
only recently achieved with two photons in an all-optical
setup [31]. This is mainly due to the difficulty in design-
ing a setup manually generating a superposition between
a reference state and its physically permuted one, from
which later extrapolating the relative exchange phase via
interferometry. Thanks to its reliance on spatial indistin-
guishability, the sLOCC process allows to avoid such a
difficulty by letting θ naturally emerge. Exploiting this
effect, in Refs. [32, 33] the authors designed and exper-
imentally implemented an optical setup capable of di-
rectly measuring the exchange phase of two photons by
applying interferometry to the sLOCC-produced state of
Eq. (27). Remarkably, the introduced theoretical setup
is general and could be suitably adapted to directly mea-
sure the exchange phase of even fermions and anyons.

Finally, spatial indistinguishability of identical parti-
cles undergoing the sLOCC measurement has been shown
to provide a useful resource of quantum coherence yield-
ing an advantage in quantum metrology [34, 35], whereas
the endurance of quantum coherence within systems of
indistinguishable particles in non-dissipative noisy quan-
tum networks was demonstrated in Ref. [36].

It is interesting to highlight the connection between
the deformation+sLOCC operational framework and the
entanglement extraction protocol [25]. In the latter, a
single-mode state of indistinguishable particles is split-
ted over distinct modes. The resulting particle number
distribution is then measured along such modes, posts-
electing only those states which respect a desired par-
tition. Being the resulting modes distinct, this allows
to access the entanglement between groups of identical
particles whose accessibility was previously ruled out by
their single-mode indistinguishability. In relation to this
framework, the mode splitting operation is a particular
case of deformation acting on already indistinguishable
particles. Furthermore, deformations such as mode merg-

ing operations can be seen themselves as the prepara-
tion step required to achieve the entanglement extraction
single-mode starting point. Furthermore, the particles
distribution postselected measurement and the sLOCC
projection are clearly related, since they both make quan-
tum correlations accessible by making an indistinguish-
able state distinguishable. Nonetheless, while entangle-
ment extraction focuses on the splitting of an already in-
distinguishable state to show that quantum correlations
inaccessible within identical systems are actually physi-
cally meaningful and constitute useful resources in their
own right [18, 25], the sLOCC process presents itself as an
alternative operational framework where indistinguisha-
bility is generated over previously arranged detection re-
gions with the goal of generating, restoring, and/or ma-
nipulating entanglement in actual practical applications.

VI. CONCLUSION

In conclusion, we have discussed and elucidated the
distinction between the concepts of particle identity and
particle indistinguishability in quantum mechanics. We
have presented a concise review of the no-label approach
as a suitable tool to deal with indistinguishable con-
stituents, as introduced in Ref. [4] and further deepened
in Refs [8, 11]. We have introduced a coherent formal-
ization of deformations acting on either distinguishable
or indistinguishable multipartite states, providing an ex-
tension of the indistinguishability entropic measure intro-
duced in Ref. [8] to the general N -partite scenario. We
have highlighted the relevance of deformations as opera-
tions exploitable to activate quantum correlations to be
later accessed within the sLOCC operational framework.
Finally, we have briefly discussed the relations between
the sLOCC protocol and the entanglement extraction one
as operational frameworks.

Given the results presented in this work, we believe
that deformations, together with the sLOCC operational
framework, have the potential to become a useful tech-
nique for many real-world applications exploiting quan-
tum technologies. Indeed, identical particles constitute
the main building blocks of platforms such as quantum
networks, quantum computers, and quantum measure-
ment systems. For instance, spatial indistinguishability
of identical constituents generated by properly tuned de-
formations could be exploited to shield from noise the
fundamental quantum correlation properties required for
quantum cryptographic protocols, or the coherence of
qubits used to run quantum algorithms. Furthermore,
the entanglement-restoration characteristics of the pre-
sented techniques could be further investigated to pre-
serve the super-sensitivity of states carrying information
in quantum sensing and metrology protocols.
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