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Abstract: This paper introduces a new hybrid DC–DC converter with enhanced voltage gain and syn-
chronized multiple output capabilities, specifically tailored for smart grid applications. The proposed
converter is based on the integration of non-isolated Zeta and Mahafzah converters, comprising a
single controlled switch, two diodes, three inductors, and two coupling capacitors. The primary
objective of this novel hybrid converter is to improve voltage gain as compared to conventional
Zeta and Mahafzah topologies. By achieving higher voltage gain at lower duty cycles, the converter
effectively reduces voltage stress on semiconductor switches and output diodes, thereby enhancing
overall performance and reliability. A comprehensive examination of the hybrid converter’s operating
principle is presented, along with detailed calculations of duty cycle and switching losses. The paper
also explores the converter’s application in smart grids, specifically in the context of renewable energy
systems and electric vehicles. Two distinct scenarios are analyzed to evaluate the converter’s efficacy.
Firstly, the converter is assessed as a DC–DC converter for renewable energy systems, highlighting
its relevance in sustainable energy applications. Secondly, the converter is evaluated as an electric
vehicle adapter, showcasing its potential in the transportation sector. To validate the converter’s
performance, extensive simulations are carried out using MATLAB/SIMULINK with parameters set
at 25 kW, 200 V, and 130 A. The simulation results demonstrate the converter’s ability to efficiently
supply multiple loads with opposing energy flows, making it a promising technology for optimized
grid management and energy distribution. Moreover, the paper investigates the total harmonic
distortion (THD) of the grid current, focusing on its impact in smart grid environments. Notably, the
new hybrid converter topology achieves a THD of 21.11% for the grid current, indicating its ability
to effectively mitigate harmonics and improve power quality. Overall, this research introduces a
cutting-edge hybrid DC–DC converter that enhances voltage gain and synchronizes multiple outputs,
specifically catering to the requirements of smart grid applications. The findings underscore the
converter’s potential to significantly contribute to the advancement of efficient and resilient power
conversion technologies for smart grids, enabling seamless integration of renewable energy systems
and electric vehicles into the grid.

Keywords: hybrid converter; HVDC grid; Zeta converter; Mahafzah converter; THD; EV charger

1. Introduction

Power electronics DC–DC converters find wide-ranging applications in various fields,
including hybrid energy systems (that use two or more renewable energy resources),
hybrid vehicles (that use energy storage systems and fuel energy), aerospace, satellite
technology, and portable electronic devices. Extensive research efforts have been dedicated
to improving the reliability, efficiency, modularity, and cost-effectiveness of these converters.
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The evolution of DC–DC converter topologies has led to the development of versatile
solutions capable of handling multiple applications and output voltage levels. However, as
the demands for advanced power conversion systems continue to grow, it becomes evident
that no single topology can fully meet all the diverse requirements of cost-effectiveness,
reliability, flexibility, efficiency, and modularity.

Hybrid DC–DC converters have emerged as a promising approach to addressing these
challenges effectively. Hybrid DC–DC converters combine multiple converter topologies or
techniques to achieve specific performance objectives. By integrating the advantages of
different converter types, these hybrid solutions can optimize efficiency, voltage regulation,
power density, and other desired characteristics. Extensive investigations and analyses
of various hybrid converter configurations have been conducted and documented in
the literature.

This paper presents a comprehensive overview of different hybrid DC–DC converter
topologies, highlighting their advantages and providing literature reviews for each one.
The goal is to explore the potential of hybrid converters as versatile solutions for power
electronics applications. By identifying the strengths and weaknesses of various hybrid
configurations, researchers and practitioners can better design and implement efficient
power conversion systems tailored to meet the specific requirements of diverse applications.
The insights gained from the literature review will pave the way for the development of
innovative and optimized hybrid DC–DC converters capable of addressing the evolving
needs of modern power electronics technology.

The buck-boost converter offers several distinct advantages in DC–DC power conver-
sion. One of its benefits is the ability to regulate the output voltage efficiently, ensuring
a stable voltage level even when the input voltage fluctuates or is higher or lower than
the desired output. Moreover, its bidirectional operation allows for both step-up and
step-down voltage conversion, offering versatility for a wide range of applications [1].

In [2], the SEPIC-Cuk converter has the ability to provide noninverting voltage con-
version. The output voltage can be either higher or lower than the input voltage. This
flexibility is valuable in applications where the input voltage varies or is unstable. The
converter also features continuous input and output current, enabling it to handle varying
load demands efficiently. Additionally, the SEPIC-Cuk converter’s bidirectional operation
makes it suitable for battery charging applications, where it can efficiently step up or step
down the voltage as needed. The limitation of the SEPIC-Cuk converter is the complexity
of the design.

Ref. [3] introduced flyback-forward converter; this hybrid configuration has the ability
to provide isolated output, making it suitable for applications where galvanic isolation is
necessary to ensure safety and reduce noise interference. The flyback-forward converter
also offers a wide input voltage range and good voltage regulation capabilities, accommo-
dating varying input voltages and providing stable output. Moreover, it can efficiently step
up or step down the voltage, allowing for versatile voltage conversion. Its complex topol-
ogy makes the design and control more challenging compared to individual converters,
potentially leading to higher development costs.

In [4], the full-bridge LLC (LCC) converter is a popular DC–DC converter topology
known for its high efficiency and robust performance. One of its primary advantages is its
ability to achieve zero-voltage switching (ZVS) and zero-current switching (ZCS) during
the switching transitions, reducing switching losses and increasing overall efficiency. This
advantage makes it well-suited for high-power applications, where minimizing power
losses is crucial. The full-bridge LLC converter also provides isolation between the input
and output, ensuring safety and reducing noise interference in sensitive applications. Addi-
tionally, its full-bridge configuration allows bidirectional power flow, making it suitable for
applications where power can flow in both directions, such as in renewable energy systems.
Its complex topology and control requirements can make the design and implementation
more challenging compared to simpler converters, potentially increasing development
costs and time.
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In [5], a newly developed power electronic converter that combines elements of both
the flyback and Cuk converter topologies is introduced. The converter is designed to
provide multiple output voltages with synchronization between the outputs. Combining
flyback and Cuk topologies in a hybrid configuration, allows for the generation of multiple
output voltages while maintaining synchronization between them. The design and control
of the synchronized multiple output DC–DC converter improve the performance of the
converter, including efficiency, voltage regulation, and transient response. This converter
can be applied in various fields, including power supplies, telecommunications, electric
vehicles, and renewable energy systems. It offers a compact and efficient solution for
generating multiple synchronized output voltages from a single input source.

The flyback-SEPIC Converter also offers galvanic isolation between the input and
output, ensuring safety and reducing ground loop issues in sensitive systems. Moreover, it
can achieve continuous input and output current, enabling it to handle fluctuating load
demands efficiently [6]. Different hybrid DC–DC converter topologies based on different
references are presented in Table 1 with their advantages.

Table 1. Different hybrid DC–DC converter topologies.

Literature Review Hybrid DC–DC Converter Topologies Combined Advantages

[1,2,7–10] Buck-Boost Converter Buck, Boost

Voltage step-up and
step-down capability, flexible

voltage conversion, wide
input range

[2,11–14] SEPIC-Cuk Converter SEPIC, Cuk
Wide input voltage range,

galvanic isolation,
continuous currents,

[3,15–18] Flyback-Forward Converter Flyback, forward Bidirectional power flow,
multiple isolated outputs

[4,19–22] Full-Bridge LLC Converter Full-Bridge, LLC High efficiency, high power
density, low EMI

[23–27] Hybrid Multilevel Converter Various multilevel topologies
High voltage, high power,
reduced harmonics, low

switching losses

[5,28,29] Flyback-Cuk Converter Flyback, CuK
High efficiency, high voltage

regulation, improved
transient response

[6,14,30] Flyback-SEPICConverter Flyback, SEPIC
High efficiency, High voltage

regulation, improved
transient response

Main Features Comparison

Hybrid converter Number of Outputs Voltage Gain THD

[5] 2 Vo
Vin

=
∣∣∣ Ns−Np

Np

DM
1−DM

∣∣∣ 27.69%

[6] 2 Vo
Vin

= N2+N1
N1

DM
1−DM

27.26%

Proposed converter 3 Vo3
Vin

= 2DM
1−DM

21.11%

A type of DC–DC power converter called a Zeta converter, see Figure 1, can change
voltage in both step-up and step-down directions. They were created by combining buck
and boost converters, and they have characteristics in common with the cuk converter [31].
Because of their versatility and high efficiency, Zeta converters are utilized in a wide
range of applications, including telecommunications, solar energy harvesting, and battery-
powered systems. One of the key benefits of the Zeta converter is its ability to maintain
consistent input and output currents. These properties have the advantages of lower
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electromagnetic interference (EMI), lower input and output current ripple, and improved
dependability. Additionally, the Zeta converter may provide input-output isolation upon
request, broadening its use.
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In contrast to the conventional Cuk converter, the newly introduced Mahafzah con-
verter [32], depicted in Figure 2, exhibits several notable advantages, including increased
efficiency, a more compact footprint, and reduced semiconductor device currents. While
the essential components of the Cuk converter are retained in the proposed design, they
are arranged in a novel configuration without the need for any additional components.
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A significant advantage of the suggested Mahafzah converter lies in its use of a
coupling capacitor with a substantially lower rated voltage as compared to the Cuk con-
verter. As a result, the coupling capacitor’s size is reduced, leading to a smaller printed
circuit board (PCB) and lowering manufacturing costs. Moreover, this innovative design
choice contributes to decreased semiconductor device currents, enhancing the overall
converter efficiency.

For the evaluation of its efficiency, the converter operates in continuous current mode
(CCM) with a fixed duty cycle and switching frequency, demonstrating its superior perfor-
mance characteristics [31]. By showcasing the efficiency gains and practical benefits, the
Mahafzah converter offers a promising alternative to traditional Cuk converters, making it
an attractive option for various power electronics applications.

This paper proposes a new hybrid converter based on two combined, non-isolated
DC–DC converters. The latter being a Zeta converter with a Mahafzah converter [32]. The
proposed hybrid converter comprises one controlled switch, two diodes, two coupling
capacitors, three inductors, and two low-pass filters. Moreover, the proposed hybrid
converter can supply three different loads, including one with inverted polarity. The
proposed hybrid converter has an improved voltage gain and, therefore, lower voltage
stress across the controlled switch. This voltage stress reduction leads to lower conduction
losses and, thus, higher efficiency.

In this paper, we introduce a comprehensive study aimed at defining a novel converter
design tailored to meet the evolving demands of smart grids. The rapid evolution of
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power systems necessitates adaptable converter solutions capable of seamlessly integrating
with emerging technologies and accommodating diverse operational requirements [33].
Our research addresses this imperative by proposing a new converter design specifically
engineered to enhance compatibility with modern smart grid infrastructures. This design
draws inspiration from a wide array of cutting-edge technologies, including wind, tidal, fuel
cell, and photovoltaic generation, as well as various storage solutions, FACT devices, HVDC
lines, and power-electronics-interfaced loads [34]. By synthesizing insights from these key
components, our study aims to pioneer a converter solution optimized for the dynamic
challenges and opportunities presented by the contemporary energy landscape [35].

This paper presents a significant contribution in the realm of power electronics DC–
DC converters, focusing on the development of a new hybrid converter that combines the
advantages of two non-isolated DC–DC converter topologies: the Zeta converter and the
Mahafzah converter. The primary objective of this research is to design a converter that
can deliver improved voltage gain and synchronized multiple output voltages, making
it particularly suitable for smart grid applications. The contribution of this paper can be
summarized as follows:

➢ Development of a New Hybrid Converter: The paper introduces a novel hybrid DC–
DC converter that integrates elements from both the Zeta converter and the Mahafzah
converter. By combining these converter topologies, the proposed hybrid converter
achieves enhanced voltage gain, contributing to higher efficiency and reduced voltage
stress on the controlled switch.

➢ Improved Efficiency and Performance: Through the integration of the Zeta and
Mahafzah converters, the new hybrid converter offers improved performance charac-
teristics, such as better voltage regulation and transient response. The synchronization
between multiple output voltages ensures seamless operation and optimal power
delivery, making it an attractive solution for various applications.

➢ Multi-Load Capability: The proposed hybrid converter is designed to supply three
different loads, including one with inverted polarity. This flexibility in load handling
expands the converter’s versatility, making it suitable for a wide range of applications.

➢ Architecture and Design Analysis: The paper thoroughly discusses the architecture
and design of the proposed hybrid converter. It includes detailed parameter selection
and loss calculations, providing valuable insights into the converter’s operational
behavior and efficiency.

➢ Application Scenarios: The research presents two different applications of the pro-
posed hybrid converter. The first scenario involves its use as a DC–DC converter,
while the second explores its application as an AC–DC converter. This demonstrates
the converter’s adaptability in diverse energy conversion tasks.

➢ Practical Implementations: The findings of this paper have the potential for practical
implementation in various fields, including power supplies, telecommunications,
electric vehicles, and renewable energy systems. The compact and efficient nature of
the hybrid converter offers a viable solution for generating multiple synchronized
output voltages from a single input source.

In summary, this research contributes to the advancement of hybrid DC–DC converters
for smart grid applications by proposing a new topology that combines the Zeta and
Mahafzah converter principles. The improved voltage gain, synchronized multiple outputs,
and flexible load handling make the proposed hybrid converter an appealing option for
achieving higher efficiency and enhanced performance in power conversion systems. The
practical applications and design insights presented in this paper pave the way for further
developments in the field of power electronics.

The rest of the paper can be summarized as follows: Section 2 discusses the hybrid
converter architecture and proposes the design of the proposed hybrid converter with
the selection of its parameters and its associated loss calculation. Section 3 addresses two
different applications of the proposed hybrid converter. The first one is the use of the
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proposed converter in a DC–DC conversion. The second one is the use of the proposed
hybrid converter in an AC–DC conversion. Section 4 concludes the work.

2. The Proposed Converter

This section addresses the new converter architecture, design, modeling, and simulation.

2.1. The Proposed Converter Architecture

The proposed converter comprises of two different non-isolated DC–DC converter
topologies. The first one is the Zeta converter (Figure 1). The second one is the Mahafzah
converter (Figure 2) [32]. Figure 3 shows the proposed converter. From Figure 3, it can be
seen that the proposed converter has only one common DC power supply Vin, one common
controlled switch M, and one common input inductance Lin. Moreover, the proposed
converter has three separate output terminals (the voltage across the third output is the
sum of Vo1 + Vo2). Two coupling capacitors, Cp1 and Cp2, and two output inductors, Lo1
and Lo2, are used to limit the energy transfer to the output terminals.
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2.2. The Proposed Converter Modeling and Design

The proposed converter has two operating periods during a full switching cycle, Ts.
The proposed converter is operated in continuous conduction mode (CCM). Therefore, the
two sub-periods depend on the switch M status.

• During Ton of M, both Do1 and Do2 are in reverse bias. The inductors’ currents’
directions are shown in Figure 4.

The inductors’ currents are given by:

ILin =
Vin
Lin

t + ILin−min (1)

ILo1 =
Vin−Vcp1 − Vo1

Lo1
t + ILo1−min (2)

ILo2 =
Vin−Vcp2

Lo2
t + IL2−min (3)

where 0 < t < Ton, ILin-min, IL1min and IL2min are the lower limits of the inductor’s currents.
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• During Toff of M, both Do1 and Do2 are conducting. The inductors’ currents’ directions
are shown in Figure 5.
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During this period, the inductors’ currents are given by:

ILin = ILin−max −
(
Vin − VCp1

)
Lin

t (4)

ILo1 = ILo1−max −
Vo1

Lo1
t (5)

ILo2 = IL2−max −
Vo2

Lo2
t (6)

where Ton < t < Ts, Ts = Ton + Toff. ILin−max, IL1−max and IL2−max are the upper limits of the
inductor’s currents.

• To calculate the duty cycle of the proposed converter, each converter has its own duty
cycle, which is given by:

Dzeta =
Vo1

(Vo1 + Vin)
(7)
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and
DMaha f zah =

Vo2

(Vo2 + Vin)
(8)

The proposed converter has a duty cycle that can be calculated when connecting the
common output voltage (Vo3) as follows:

Vo3 = Vo1 + Vo2 (9)

Substituting (7) and (8) in (9) yields:

Vo3 = Vin
DM

1 − DM
+ Vin

DM
1 − DM

(10)

Solving for DM gives:

DM =
Vo1 + Vo2

2Vin + Vo1 + Vo2
(11)

And the voltage gain of the proposed converter is given by:

VG =
Vo3

Vin
=

2DM
1 − DM

(12)

From (12) and Figure 6, it is clearly seen that the proposed converter has a boosting
capability at lower duty cycles. Moreover, it has a higher voltage gain over the duty cycle
range. Therefore, it is able to decrease the conduction losses of the selected switch.
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2.3. Design of the Proposed Hybrid Converter for AC–DC Adapter Applications

As seen in Figure 3, the proposed hybrid converter includes one controlled switch,
two diodes, three decoupled inductors, two coupling capacitors, and two low-pass filters
(shunt filter capacitor with load resistance). The proposed hybrid converter is assumed to
operate in continuous current mode (CCM) for the sake of simplicity. The discussion that
follows demonstrates proper converter parameter selection for CCM operation mode. The
components of the proposed hybrid converter are selected based on the procedure used
in [31,32].

The design parameters are chosen to supply an electric vehicle; the DC output voltage
(motor voltage) is 200 V (output voltage 3, see Figure 3). However, the load’s rated output
is 25 kW. Since the circuit will use an AC RMS line voltage as its input, the average rectified
voltage is determined to be 200 V DC. The switching frequency is set at 20 kHz. All
inductors’ ripple current percentages are set to 20%. In contrast, the output voltage ripple
should not be lower than 10% of the target output voltage. The selected design parameters
and their associated values are shown in Table 2.
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Table 2. Selected parameters of the design.

The Selected Parameters The Calculated Parameters Based on [31,32]

Parameter Value Parameter Value

Pin/Po 25 kW Io3 137 A
Vin-RMS 220 V IL1 240 A

Vo1 100 V IL2 240 A
Vo2 −100 V ILin 480 A
Vo3 200 V Ro1 1 Ω

∆ILin 2 A Ro2 1 Ω
∆IL1 1 A Ro3 1.5 Ω
∆IL2 2 A ILin 7.5 mH

∆VCp1 <10 V L1 3 mH
∆VCp2 <10 V L2 3 mH

Duty Cycle (D) 50% Cp1 200 µF
fs 20 kHz Cp2 200 µF

Co1 1.2 mF
Co2 1.2 mF

Moreover, the proposed converter belongs to the category of DC–DC converters. As
seen in Figure 3, it contains three inductors. The main milestone is the design (size) of these
inductors. The inductor size is inversely proportional to the selected switching frequency.
But increasing the switching frequency will deteriorate the converter efficiency. Therefore,
selecting the switching frequency is a crucial issue.

2.4. Loss Calculations

To calculate the losses in Figure 3, Table 3 can be used. The losses in the proposed
hybrid converter can be divided into three main types [36,37]: conduction loss, switching
loss, and gate loss. In this paper, the passive devices are assumed to be ideal (no associated
losses or the losses there are negligible). Then, the efficiency of the proposed hybrid
converter is given by:

η =
Pout

Pout + Ploss
(13)

where Pout is the output power of the proposed hybrid converter, and Ploss is the total
power loss in the proposed hybrid converter, and it can be calculated using the equations
in Table 3.

Table 3. Calculation of loss components [36,37].

Losses Type Equation Conditions

Losses of Figure 3

Conduction Loss
In M Pcon−M =

Ron−MV2
in

3DR2
s

Ron: MOSFET m on-state resistance
Rs: Series resistance of the current loop

In Do1 or Do2 Pcon−D f =
Vf V2

in
4Vo Rs

Vf: Diode forward voltage

Switching Loss
In M Psw−M = 0.5 fsCoss(0.5Vin + Vo3)

2 Coss: Switch M output capacitance
In Do1 or Do2 Psw−M = 0.5 fsCd(0.5Vin + Vo3)

2 Cd: Diode parasitic capacitance

Control Loss Pg−M = 2QMVM fs
Qg: Switch gate charge

Vg: Voltage needed to charge the gate

Total Loss Pt = Pcond−M + Pcond−Do1 + Pcond−Do2 + Psw−M + Pg−M

3. Simulation Results

To assess the performance and efficacy of the proposed hybrid DC–DC converter, com-
prehensive simulations and experiments were conducted. The hybrid converter, composed
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of a single controlled switch, multiple synchronized output voltages, two diodes, three in-
ductors, and two coupling capacitors, was implemented in MATLAB/SIMULINK R2020a.

The simulations were carried out using parameters set at 25 kW, 200 V, and 130 A to
represent real-world operating conditions. The simulation results demonstrated the signif-
icant improvement in voltage gain achieved by the novel hybrid converter as compared
to conventional Zeta and Mahafzah topologies. The increased voltage gain was achieved
at a lower duty cycle, effectively reducing the voltage stress across the output diodes and
semiconductor switch. Consequently, the conduction losses were minimized, leading to
higher overall efficiency and improved converter performance. The hybrid converter’s op-
erating concept and duty cycle calculations were thoroughly discussed, providing valuable
insights into its behavior and control strategies.

To showcase the versatility and applicability of the proposed hybrid converter, it was
evaluated in two distinct applications:

1. Application in Renewable Energy Systems: The hybrid converter was employed as a
DC–DC converter in a renewable energy system. The results demonstrated its ability
to efficiently convert and manage energy flows from renewable sources, making it a
promising solution for sustainable energy applications.

2. Application as an Electric Vehicle Adapter (AC–DC Converter): The hybrid converter
was tested as an AC–DC converter for electric vehicles. The simulation outcomes
illustrated its capability to deliver reliable and regulated power supply to electric
vehicles, highlighting its potential in the transportation sector.

Furthermore, the simulation results confirmed that the proposed hybrid converter can
simultaneously support two separate loads with opposing energy flows, showcasing its
adaptability and utility in complex power distribution scenarios.

In the context of the second application, the paper provided an analysis of the to-
tal harmonic distortion (THD) for the grid current. The results demonstrated that the
new hybrid converter topology achieved a THD of 21.11% for the grid current. This in-
dicates its effectiveness in mitigating harmonics and improving power quality in smart
grid environments.

Overall, the simulation and experimental study validated the advantages and per-
formance enhancements offered by the proposed hybrid DC–DC converter. Its ability to
achieve higher voltage gain, reduce voltage stress, support multiple loads, and maintain
synchronization between output voltages makes it a promising solution for smart grid
applications, including renewable energy systems and electric vehicles. The outcomes of
this study underscore the potential of the proposed hybrid converter to contribute to the
advancement of power electronics and enhance the efficiency and reliability of modern
power conversion technologies.

3.1. As a DC–DC Converter

The proposed hybrid converter can be used in solar energy systems, as illustrated
in Figure 7. The system comprises PV panels as a power supply, the proposed hybrid
converter, and two power flow directions. As shown in Figure 7, the proposed converter
can supply two different loads simultaneously. The positive energy flow (red arrow)
represents the energy flow to the electrical grid through an inverter and/or transformer. In
contrast to that, the other negative energy flow (green arrow) is used to recharge the energy
storage system.

The two outputs of the proposed hybrid converter are illustrated in Figures 8 and 9.
Figure 8 shows the negative voltage, which is responsible for recharging the energy
storage system.

In contrast to that, Figure 9 depicts the output voltage, which is used to supply the
inverter (red arrow in Figure 7).

The controlled switch M has a drain source voltage, as seen in Figure 10. As illustrated
in Figure 10, the rated switch voltage is around 300 V. In addition to that, the switch current
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is shown in Figure 11. The selected switch must be selected as IGBT because IGBT has high
current capability. The average switch current is about 500 A.
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Moreover, the diode do1 has voltage and current, as shown in Figures 12 and 13,
respectively. The diode must be selected as a silicon diode, which can carry about 250 A.
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On the other hand, the diode do2 voltage and current are shown in Figures 14 and 15,
respectively. Again, the diode 2 average current is about 250 A. From Figure 15, the
diode 2 pulsating current is about 1000 A. This value can be reduced when applying a soft
switching topology.
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The simulation in this paper is applied, and the parameters are used to ensure that the
proposed hybrid converter operates in continuous conduction mode (CCM). This mode of
operation can be clearly seen in the inductors’ (Lin, Lo1, and Lo2) currents, which are illus-
trated in Figures 16–18, respectively. The main inductor, Lin, has a current equal to the sum
of the Lo1 and Lo2 currents. The inductors’ currents have a low current ripple, as discussed
before. In addition to that, the inductors’ voltages are shown in Figures 19–21. The average
inductor voltages are zero, which ensures the stability of the proposed hybrid converter.
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3.2. As an AC–DC Converter

Electric vehicles require an AC–DC converter to recharge their auxiliary systems. This
comprises two stages: First, the AC–DC converter (diode bridge rectifier) is cascaded with
the DC–DC converter. The proposed hybrid converter is employed to regulate the output
voltage. To simulate the AC–DC converter, a full-bridge diode rectifier is connected to the
grid to achieve a positive rectified voltage. After that, the rectified voltage is chopped by
the proposed hybrid converter to achieve the desired output voltages. This application is
shown in Figure 22.
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Figure 22. The proposed hybrid converter in EV adapter applications.

As shown in Figure 23a, the output voltage Vo1 is regulated around 100 V. The other
output voltage, Vo2, is regulated to −100 V, see Figure 23b. Finally, the output voltage, Vo3,
is set to 200 V, see Figure 23c. Since the load is DC load and its value is 1.5 Ω, the load
current is in phase with the load voltage. It provides an approximately 130 A load voltage,
see Figure 24.
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Figure 23. The output voltages of the proposed hybrid converter. (a) the load 1 output voltage. (b) the
load 2 output voltage. (c) the load 3 output voltage.
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The rectified voltage of the grid voltage is seen in Figure 25a. This rectified voltage is
regulated by the proposed hybrid converter. The grid current is affected by the switching
behavior of the grid current. This could disturb the grid current, see the average grid
current in Figure 25b. To estimate the power factor (PF) of the grid current, the following
equation could be used:

PF = Distortion Factor × Displacement Factor (14)
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In this case, the load is a DC load; therefore, the displacement factor is 1 (cos θ = 1).
Thus, the distortion factor is estimated in this case only by calculating:

Distortion Factor (DF) =
Iin,1,rms

Iin,t,rms
(15)

where Iin,1,rms is the fundamental RMS grid current, and Iin,t,rms is the total RMS grid current.
Finally, the total harmonic distortion (THD) is calculated by:

THD =

√
1

DF2 − 1 (16)

The THD of the grid current is illustrated in Figure 26. It can be seen that the THD of
the grid current is about 21.11%. This value is within the IEEE 519 standards [38], but in
future works, it could be possible to further reduce this value because the main contributor
is the third harmonic. To reduce this value, a proper filter design could be the solution.
However, the proposed hybrid converter has a low distortion effect on the electrical grid.
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3.3. Cost Analysis

Figures 1–3 show the main converters in the paper. The next table summarizes the
main components of each converter. As seen in Table 4, the proposed converter has only
one switch compared with the other two converters. However, the proposed converter
has a higher number of components (diodes, inductors, coupling capacitors, and low-
pass filters). Therefore, it has a higher cost compared with other individual converters.
The cost of components differs based on the selected components (electrical and thermal
characteristics), the power range, the manufacturer, and the supplier. Check [39,40].

Table 4. Component comparison.

Component Zeta Converter Mahafzah Converter Proposed Converter

Number of switches 1 1 1
Number of diodes 1 1 2

Number of capacitors 1 1 2
Number of inductors 2 2 3
Output low pass filter 1 1 2

The proposed converter distinguishes itself from conventional designs, such as the
Zeta and Mahafzah converters, by incorporating a higher count of passive components.

These additional passive components play a crucial role in facilitating the smooth
transfer of energy to the load side. Unlike its counterparts, the proposed converter employs
this surplus of passive elements specifically to enhance the efficiency and effectiveness
of energy transmission. It’s noteworthy that, despite the increased number of passive
components, the proposed converter maintains parity with the Zeta and Mahafzah convert-
ers in terms of the passive components involved in energy transfer during each mode of
operation. This ensures that, while the converter benefits from enhanced functionality, it
does not sacrifice the fundamental principles of energy conversion efficiency.

4. Conclusions

In this paper, a new hybrid DC–DC converter based on Mahafzah and Zeta converters
was proposed. The proposed hybrid converter is made up of a single controlled switch,
several synchronized output voltages, two diodes, three inductors, and two coupling
capacitors. In comparison to the Zeta and Mahafzah topologies, the novel converter is able
to double the voltage gain, yielding a higher voltage gain at a lower duty cycle. This benefit
can decrease the voltage stress across the output diodes and semiconductor switches. The
paper presents an extensive discussion about the hybrid converter’s operating concept.
Additionally, the duty cycle was determined. The proposed hybrid converter’s employment
in two distinct applications was presented in the study. The new converter’s first application
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was as a DC–DC converter in a system for renewable energy. The second was using the
new converter as an adaptor (AC–DC converter) for electric vehicles. A simulation at
25 kW, 200 V, and 130 A was performed using MATLAB/SIMULINK to demonstrate the
efficacy of the suggested hybrid converter. The outcomes demonstrated the new converter’s
capacity to support two separate loads with opposing energy flows. In the case of the
second application, the analysis of the total harmonic distortion (THD) for the grid current
was also provided. When using the new hybrid converter topology, a 21.11% THD of the
grid current is attained.
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