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1 Introduction

One of the most challenging open problems in String Theory is determining whether it has
metastable de Sitter vacua. An efficient way to construct such vacua is to use an effective
four-dimensional theory that incorporates String-Theory ingredients [2]. However, the
embedding of these ingredients in the full String Theory and their interactions therein are
nontrivial, and have opened a rich debate about the validity of these constructions [3–12].
In parallel to these top-down investigations, there also exist bottom-up arguments and
conjectures suggesting that metastable String-Theory compactifications with a positive
cosmological constant cannot be constructed [13–16].

A way to bypass the complications inherent to the construction of de Sitter solutions
using effective four-dimensional theories and to verify the validity of these conjectures is
to work directly in ten (or eleven) dimensions. Upon restricting to classical contributions
to the ten-dimensional stress-energy tensor, the negative-energy sources required to evade
no-go theorems [17] can be realized in String Theory as orientifold planes. As a first
approximation, one can consider the orientifold planes to be smeared along (some of)
the internal directions. Even if, by definition, orientifold planes sit at fixed loci of some
involution, this approximation may be justified and serve as a guide to the construction of
more complete solutions [18–21].

Solutions with explicitly localized orientifold sources are on much firmer physical
ground, but constructing them is more challenging since it requires solving the field equa-
tions point-wise on the compactification manifold, and not just the integrated (averaged)
version. Furthermore, localized orientifold planes source singular supergravity solutions1

1See [22, section 2] for a recent review of orientifold singularities in supergravity.
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and even when the leading-order divergence of the supergravity fields match those expected
for the orientifold plane, there could still be subleading divergences that may signal deeper
problems.2

Hence, any supergravity solution with singularities coming from localized orientifold
sources has to be understood as a good approximation of a would-be corresponding full-
fledged string-theory solution only away from these singular loci. When supersymmetry is
present there exist other methods to assess the validity of the supergravity approximations,
but for de Sitter solutions these methods do not work.

In [1] and in [22], Córdova, Tomasiello and one of the authors have constructed de Sitter
backgrounds with localized O8 and O8-O6 sources respectively, which have the properties
discussed above. We are going to refer to them as CDLT1 and CDLT2.

The purpose of this paper is to analyze the solutions of [1] in String Theory (CDLT1),
and to see whether they suffer from any instabilities. Despite the relative simplicity of the
CDLT backgrounds, looking for tachyons in the full Kaluza-Klein spectrum is a prohibitive
task, mostly because of the presence of a warp factor with a non-trivial profile.3

As we are going to review in section 2, in this class of solutions the metric takes the
form

ds2
CDLT1 = e2Wds2

dS4 + e−2W (dz2 + e2U2ds2
M2 + e2U3ds2

M3) , (1.1)

where the warp factors W and Ui (as well as the dilaton) depend on the coordinate z
parametrizing a circle and Mi are compact i-dimensional Einstein spaces; at least one
between M2 and M3 must have negative scalar curvature. There is a Z2 symmetry acting
on the circle with the two fixed loci at z = {0, z0}, where two O8 sources are located.
More precisely, a source with the charges of an O8+ plane is at z = 0 and a source with
the charges of an O8− plane is at the other fixed point (see figure 1).4 The existence of
this de Sitter solution crucially depends on the presence of sources with the charges of
these O8± planes, whose negative tension violates the standard energy conditions that are
incompatible with a de Sitter solution [17].

As remarked above, near the orientifold sources the supergravity approximation breaks
down. However, at the source with O8+ (positive) mass and charge, the singularity is
relatively mild: approaching it, all the physical quantities remain finite, with only a finite
discontinuity in their derivative. Hence, this singularity is of the same type one encounters
near normal D8 branes.

This is not the situation for the O8− source, which has negative mass and charge.
Very near this source the solution is both strongly coupled and strongly curved. As we will
review below, the region where the supergravity approximation is not valid anymore can

2This happens for example with anti-D3 branes [5].
3Computations of the full KK spectrum of warped non-supersymmetric AdS compactifications have

only been feasible recently and in very specific situations by applying the techniques of exceptional field
theory [23–27]. We therefore look for instabilities in the open string sector, which can be revealed using
probe D-branes.

4We use the standard convention where an O8−, with negative charge and tension, is the standard
orientifold giving rise to an SO(2n) gauge group on a stack of n D8-branes on top of it, while O8+, with
positive charge and tension equal to that of eight D8-branes, gives rise to an Sp(2n) gauge group.
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be made parametrically small but never made to disappear completely. Furthermore, as
one approaches the O8− plane, the subleading behavior of the supergravity fields5 deviates
from the flat-space one [1, 22, 29], and it is unclear whether they can be trusted at the
supergravity level. Besides these conceptual issues, there are also technical issues with the
numerical solution near the O8− source, which we will discuss in section 3.1. Hence, our
investigation will mostly steer away from the O8− source, and focus on the O8 source with
positive charge and mass, where supergravity is more trustworthy.

We find that at the supergravity level the non-supersymmetric CDLT1 background
with mobile D8-branes suffers from an instability that corresponds to the emission of a
D8-brane from this O8 source. This instability is similar to the brane-jet instability [30] of
non-supersymmetric AdS4 solutions [31, 32], except that the brane does not come out from
behind a horizon but rather from a supergravity singularity. An analogous mechanism is
also responsible for the decay of an infinite class of non-supersymmetric AdS7 solutions, in
which case D6-brane sources polarize into D8-branes, destabilizing the backgrounds [33].

The key question raised by our investigation is whether there is any physics that may
prevent such a D8-brane from emerging from the O8 source with positive charge and mass.
To address this question it is important to point out that there are two possibilities for the
string-theory object corresponding to this source.

The first possibility is that it corresponds to an O8− plane with 16 D8-branes on top. If
this possibility is realized, the CDLT1 background can be thought as just the compactified
version of the very familiar configuration of two O8− planes with 16 D8-branes, that one
obtains by T-dualizing Type-I String Theory. If so, the instability we found corresponds
simply to one of the D8-branes moving away from the O8 source and this indicates that
the CDLT1 solution is unstable when embedded in String Theory.6

The second possibility is that O8 source with positive charge and mass corresponds
to an O8+ plane. If this possibility is realized the CDLT1 background can be thought of
as the compactified version of the O8+-O8− configuration that one obtains by T-dualizing
the Dabholkar-Park background [36–38]. Furthermore, in this realization, it appears rather
unlikely that the O8+ plane could emit a D8 brane, especially because there is no String-
Theory object in which it could decay, at least perturbatively.

Unfortunately supergravity is unable to distinguish between the two interpretations of
the orientifold source with positive charge. Both the O8+ plane and the O8− plane with
16D8 branes have the same charge and tension and all the bulk supergravity fields behave
identically when approaching the two singularities. These two configurations do appear
distinguishable in the full String Theory, taking into account also the open string sector.
It would be interesting to understand if there is any way in which this difference could
manifest itself in the low-energy supergravity description.

5At higher codimension these could be divergent, much like it happens near anti-D3 brane singulari-
ties [28].

6Such instabilities exist also in related models, as mentioned in [1, Footnote 6]. Similar related models
with pairs of Op-planes and mobile Dp-branes have also been studied from an effective field theory point
of view [34]. Some of these models display other forms of perturbative instabilities [35].
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Figure 1. A picture taken from [1] describing the intenrnal topology of the CDLT1 solutions. Here
ls = 1.

The paper is organized as follows. In section 2 we review the CDLT1 solution. In
section 3 we discuss the behavior of a D8 probes in the CDLT1 background: in particular,
we provide the bosonic and fermionic action describing the fluctuations of a stack of k
probes and we comment on its stability when an O8 source is approached. We conclude
in section 4 summarizing the results and suggesting some candidate ways to distinguish
between the two possible O8 singularities.

2 Review of CDLT1 solutions

In this section we review the main properties of the CDLT1 solution [1] which only contain
O8 sources. More details, including the full set of equations of motion and an analysis of
boundary conditions can be found in [22].

The metric of the most general CDLT1 solution is:

ds2
CDLT1 = e2Wds2

dS4 + e−2W (dz2 + e2U2ds2
M2 + e2U3ds2

M3) , (2.1)

where M2(M3) is an Einstein manifold of dimension two(three) and z is a coordinate
parameterizing a circle z ∈ [0, 2z0] with 2z0 ∼ 0. All the functions depend only on the
circle coordinate. The solution has a Romans mass F0 and four-form RR field strength

F0 = ±4
2πls

, F4 = f4e
−6W+3U3−2U2dz ∧ volM3 . (2.2)

Here the two values of F0 correspond to the two halves of the circle (see figure 1), on which
there is a Z2 involution acting as the antipodal identification z ∼ −z. The two fixed points
at z = 0 and z = z0, are two O8-sources.

The integrated Bianchi identities require the total charge in the internal space to
vanish, and thus the two orientifold sources have opposite charge. Similarly, the existence
of a compact solution requires also the total tension to vanish, and so the charges of
these two objects are those of an O8+ plane and an O8− plane. Evaluating the equations
of motion on top of the source with an O8+ plane gives a constraint on the signs of the
curvatures of the various Einstein factors in (2.1). In particular a positive four-dimensional
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cosmological constant (dS) is allowed only if at least one of the internal Einstein spaces
has negative curvature.

There is a discrete rescaling that can be done on the solution (2.1)–(2.2). Flux quan-
tization requires that the integral of F4 be related to an integer, N :

1
(2πls)3

∫
S1×M3

F4 = N. (2.3)

Starting from a solution where (2πls)−3 ∫
S1×M3

F4 = 1, it is possible to generate other
solutions with quantized flux (2.3) by rescaling7

gµν → N1/2gµν , eφ → N−1/4eφ. (2.4)

When the total flux, N , becomes large, the curvature becomes parametrically small, and
the solution is weakly coupled. This rescaling acts on the warp factors in the metric (2.1) as

e2W → N1/2e2W , e2Ui → Ne2Ui , z → N1/2z (2.5)

increasing the size of the circle. The solutions to the full Einstein equations were obtained
numerically, but analytic expansion around the limiting points are available.8

As discussed in the Introduction, near the orientifold sources the solution is generically
singular. Near the source with positive charge the singularity is mild, similar to the one
encounters when approaching D8 branes. However, since the plane with O8− charge has
negative mass and negative charge, the metric and the dilaton behave as

ds2
O8− ≈

1√
r

(
ds2

dS4 + ds2
M2 + ds2

M3

)
+
√
rdr2 , eφ ≈ r−5/4, (2.6)

where r ≡ z0 − z. This behavior is the same as near a source with negative D8 charge and
tension (such as an O8− plane) in flat space or in AdS [40–44]. This can be understood as
the limit a→ 0 of the harmonic function e−4W ≡ H = a+ b |r|, which solves the Einstein
equations for an O8−plane with flat worldvolume. The discontinuity of the first derivative
of this function at r = 0 is sourced by a δ-function source. In our more complicated
solution the warping is not a simple harmonic function anymore, but the same δ-function
is responsible for the same asymptotic behavior near r ∼ 0 [22, section 4.4].

It is worth noticing that there exists a simple subclass obtained by tasking the two
internal Einstein spaces with to have the same (negative) Einstein constant. In these
solutions the warp factors are equal U2 = U3 ≡ U5 and the four-form RR field strength F4
vanishes. The 5 dimensional internal space is Einstein, and the metric of the form

ds2
10 = e2Wds2

dS4 + e−2W (dz2 + e2U5ds2
M5) . (2.7)

3 Probing the CDLT1 backgrounds with D8-branes

In this section we investigate the physics of probe D8-branes in the background (2.1).
7The rescaling constant, c, in [1] is related to N via N = e4c.
8One can construct analytic solutions valid everywhere as a formal expansion in Λ [39].
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3.1 The bosonic and fermionic action

The bosonic action of the D8 branes has a DBI and a Wess-Zumino part. From the
perspective of the worldvolume D8-brane theory the interval position zD8 of a single D8-
brane is U(1) worldvolume scalar field. Besides this scalar field, the worldvolume theory
has a gauge field. For k D8-branes, the gauge group of the worldvolume theory becomes
SU(k) and the action is9

S
(B)
D8 = −τD8

∫
d9ξ e−φ

√
−det(P [g] + λF)± τD8

∫
P [C ∧ eλF ] , (3.1)

where F is the worldvolume field strength and we already assumed the NSNS B-field to
be vanishing. In the previous expression, τD8 = 2π/(2πls)9 is the brane tension while
λ = 2πl2s is the worldvolume gauge coupling. Each function of z can be expanded in Taylor
series around a reference point, z0, and each polynomial term in the series corresponds to a
polynomial interaction of the worldvolume adjoint scalar field, Φ, describing the positions
of the D8 branes:

f(z) =
∞∑
i=0

f
(n)
D8 (z − zD8)n ⇒

∞∑
i=0

f
(n)
D8 λ

nTrΦn with f
(n)
D8 = ∂nz f(z)|zD8 . (3.2)

Neglecting for the moment the contribution of F4, expanding (3.1) at second order in λ

gives:

S
(B)
D8 = −τD8 λ

2 Tr
∫
d9ξ
√
−g(0)

{ 1
λ2 (∆D8 + c9) + 1

λ
(∂z∆D8 + f10)Φ +

+1
2e
−2W∆D8DαΦDαΦ + 1

4∆D8FαβFαβ +

+1
2(∂2

z∆D8 + ∂zf10)Φ2
}

+O(λ3) ,

(3.3)

where we have defined

∆D8 ≡ e3U3+2U2−W−φ , F10 ≡ f10 dz ∧ volD8 = d(c9volD8) , f10 ≡ F0 ∆D8 e
φ−W (3.4)

and g(0) is the metric on AdS4 ×M5 in absence of warping. Observe that worldvolume
indices are raised and lowered with the worldvolume metric gαβ (including the warping
factors) and Dα ≡ ∂α − i[Aα, ·].

It is convenient to use canonically normalized scalar fields, which we can obtain by
defining:

Φ̃ ≡ 1
gYM

Φ , g2
YM ≡

e−3U3−2U2+φ∣∣
zD8

λ2τD8
(3.5)

and to use a normalized worldvolume metric:

(γD8)αβ =
(
e−2W gαβ

) ∣∣
zD8

. (3.6)

9The full gauge group is U(k) but the Abelian U(1) center-of-mass degrees of freedom decouple from the
SU(k) non-Abelian sector.
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Performing the previous redefinitions and renaming for clarity Φ̃ → Φ, the action (3.3)
becomes:

S
(B)
D8 =−Tr

∫
d9ξ
√
−γD8

{
− e

4W FD8
∆D8 gYM

Φ+ 1
2DαΦDαΦ+ 1

4g2
YM
FαβFαβ−

m2
B

2 Φ2
}
, (3.7)

where the worldvolume indices are now raised and lowered using γD8. The parameters FD8
and mB can be identified as the force acting on the stack of brane and as the mass of the
worldvolume bosonic field, and are given by:

m2
B = −e4W∆−1

D8(∂2
z∆D8 + ∂zf10) (3.8)

FD8 = −λτD8 ∆D8(∂z log ∆D8 + F0 e
φ−W ) . (3.9)

Let us stress that the effective Yang-Mills coupling gYM, the boson mass and the force
are finite on the whole interval in the CDLT1 backgrounds. When the four-form is non-
vanishing, one should also take into account the topological term coming from the WZ term:

δS
(B)
D8 = −τD8 λ

2
∫

Tr (C5 ∧ F ∧ F) , (3.10)

where C5 is the potential for the dual six-form F6 = − ? F4 = −f4volM2 ∧ voldS4 .
The fermionic action can be also computed. The details of the computation are given

in appendix A. The final result is:

S
(F )
D8 = 1

2

∫
d9ξ
√
γD8 χ {i γα∇αχ+ mF χ + [Aα, γαχ]− i gYM[Φ, χ]} , (3.11)

where χ is a nine-dimensional adjoint (Majorana) spinor with mass

mF = e2W

2
(
∂z log ∆D8 + eφ−WF0

)
. (3.12)

Observe that the Wess-Zumino coupling in (3.11) exactly equals the Yang-Mills coupling.
In appendix A we also show that the fermionic action is not affected by the presence of the
four-form flux.

3.2 Approaching the singularities

The dynamics of probe D-branes can unveil the presence of pathologies of a given back-
ground. Quite often, such pathologies manifest themselves as perturbative instabilities or
non-perturbative decay channels [30, 45–49].

The orientifold singularities of the CDLT1 solutions can be explored using D8 branes.
First, we observe that, even if the probe approaches a strongly coupled (and curved) region,
the unique coupling entering the bosonic and fermionic action, gYM, remains finite and can
be made arbitrarily small using the rescaling symmetry (2.4)–(2.5), which acts as

gYM →
gYM
N3/2 . (3.13)

– 7 –
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z

FD8
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z

1 x 10-3

2 x 10-3

3 x 10-3

Ftot

FDBI

Figure 2. The left figure (orange) gives the total force on a probe D8, computed as the sum of the
DBI and WZ forces. As z approaches z0 ∼ 52, the force drops and appears to reach a non-vanishing
negative value (dashed), but we believe that this residual result is most likely a numerical artifact
from the cancellation of the two diverging contributions. This can be seen from the right (red)
figure, which gives the ratio between the total force and the gravitational attraction: Ftot

FDBI
. As

explained in the main text, the behavior near z ∼ z0 has to be taken with a grain of salt, since
corrections to the probe action are not negligible in the strongly-coupled region.

However, in order for the actions (3.7)–(3.11) to provide a meaningful effective description
of the D8 worldvolume dynamics, the force FD8 should be vanishing. Evaluating (3.9)
numerically for the CDLT1 background,10 we find the force plotted in figure (2).

From the first plot in figure 2, the total force appears to have a finite value at the O8−
singularity. This would be a qualitative difference with the common behavior observed in
supersymmetric solutions with O8− orientifolds such as [40–44]. This discrepancy arises
despite the fact that the dilaton and the metric have the right behavior at that singularity.
However, while a possible orientifold source can be identified by just looking at the leading
components of the warp factors and the dilaton close to the singularity, the force FD8 has
a strong dependence on subleading components. We thus believe that this result is not
entirely reliable: first, the non-trivial profile of FD8 is the result of a huge cancellation
between the WZ and the DBI (electric and dilato-gravitational) forces acting on the probe,
which diverge close to z = z0 as

Fel, grav ∝
1

(z0 − z)2 for z → z0 (3.14)

where we have used (2.6). As a consequence, it is quite questionable how much the numer-
ical evaluation of FD8 can be trusted in the strongly curved region, where the cancellations
are very large and the numerical noise is important.

Furthermore, even if one could reach an infinite precision in evaluating the D8 action in
the CDLT1 solution, a more severe conceptual problem must be taken into account. While
the divergence of the dilaton as one approaches the O8− could naively seem not to pose a
severe problem as the couplings gYM, m2

B, mF in the effective action remain finite on the
10The analysis is qualitatively the same also for the particular solution (2.7) where the four-form flux is

vanishing.
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whole interval, we have to remember that the DBI and WZ actions are only the first terms
in a more general expansion in powers of gs ≈ eφ. In the usual supergravity regime, the
higher-genus contributions can be neglected and (3.1) provides a good approximation, but
in a strongly coupled region such corrections cannot be considered sub-leading and become
relevant. Therefore, we cannot rely on the usual effective probe action. This is exactly
the situation close to the O8− singularity, and thus the full force FD8 should be computed
using the full genus expansion that we do not have at our disposal.

There is however a silver lining. In supersymmetric solutions (such as [40–44]), one
can invoke supersymmetry protection and obtain correct physics using the DBI+WZ ap-
proximation well beyond its validity regime. Furthermore, for anti-D3 branes in the KS
solution [50], the loop corrections to the probe potential end up canceling to all loops,
giving a flat potential despite the fact that supersymmetry is broken [51]. It is possible
that this cancelation is related to the field content of the underlying theory, which is the
same as that of the maximally supersymmetric theory [52]. A similar phenomenon might
make the DBI+WZ approximation of the D8 brane action describe the physics correctly
even in the strongly-coupling regime.

On the other hand, we have a much better control in the region close to the orientifold
source with a positive charge, z = 0. The singularity is of exactly the (much milder) type
one encounters near D8 branes: it manifests as discontinuities of the derivatives of physical
quantities, the dilaton is finite and can be made arbitrarily small if N � 1. The asymptotic
behavior of the total force FD8 close to O8+ source is the following:

FD8 = α z3 +O(z4) , (3.15)

with α a constant. The probe D8 feels no force next to the O8+ source, which one can
attribute to the fact that in flat space they preserve the same supersymmetries. However,
the D8 branes are immediately repelled if an infinitesimal displacement occurs. Hence, the
probe D8-branes are actually unstable, and their worldvolume scalar parameterizing their
distance away from the O8+ source is tachyonic.

As we explained in the Introduction, the key question is whether this probe D8 brane
tachyon signals an instability of the background or is just an interesting tangential feature
of the solution. This hinges on the interpretation of the orientifold source with positive
D8 charge as an O8− plane with 16 D8 branes on top, or as an O8+ plane. We know that
in flat un-warped space both a configuration with an O8− plane and an O8+ plane, and a
configuration with two O8− planes and 16 mobile D8 branes are consistent. The former is
the T-dual of the Type I’ Dabholkar-Park configuration [36–38] and is dual to M-theory on
the Klein bottle. The latter is the T-dual of vanilla Type I String Theory. Furthermore, in
the supergravity regime it appears impossible to distinguish between an O8+ and an O8−
plane with 16 D8 branes on top.

Our analysis indicates that if the orientifold source with positive charge corresponds
to an O8− plane with 16 D8 branes, the solution is tachyonic, and the tachyon corresponds
to the D8 branes moving away from this source. Given the fact that the solution has two
O8− planes, it is clear that the end point of this tachyonic instability will involve a Z2
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symmetric configuration, most likely the flat-space solution where half the D8 branes are
on one of the O8− planes and the other half is on the other. On the other hand, if the
orientifold source with positive charge corresponds to an O8+ plane, it does not appear
possible for this plane to perturbatively emit D8 branes, and hence the instability of the
D8 brane probes we found does not correspond to an instability if the solution.

4 Discussion

In this note we have investigated the orientifold singularities of the CDLT1 de Sitter solu-
tions using probe D8-branes. Starting from the usual DBI + WZ action, we computed the
bosonic and fermionic action describing the fluctuations of a stack of k D8-branes sitting at
some reference point zD8. We observed that this action, despite its finiteness everywhere,
becomes harder to trust when the stack of D8 branes approaches the singularity caused
by vanishing warp factor near the O8− source. Accessing this region, where the action
becomes strongly coupled, requires some alternative effective description that would be
interesting to construct in the future.

On the other hand, D8-branes are good probes close to the orientifold source with
positive D8 charge, where the singularity is milder: in particular, the dilaton can be made
arbitrarily small by increasing the units of four-form flux. The position of the D8 stack
is tachyonic, and this would signal an instability of the de Sitter CDLT1 solution if the
orientifold source with positive D8 charge had the possibility to emit D8 branes.

Since the orientifold source with positive D8 charge can correspond either to an O8+
plane or to an O8− with 16 D8 branes on top, and since these two possibilities cannot be
distinguished using just the supergravity solution, our work leaves open two possibilities.

• Either the CDLT1 solutions are sourced by two O8− planes, one of which has 16D8
branes on top. This solution is unstable.

• Or the CDLT1 solutions are sourced by an O8− and an O8+ plane. This solution
does not have any mobile D8 brane, and hence the probe D8 brane instability does
not affect it.

There are several ways one can try to break the tie between these possibilities. The
first is to understand if there is any inconsistency upon turning on a finite worldvolume
cosmological constant, in either the O8± configuration or in the 2O8−+16 D8 configuration.
The second is to understand whether other probe branes can help distinguish between the
two configurations. A preliminary exploration of the action of other types of probe branes
in the CDLT1 solution gives interesting physics, but unfortunately does not help us solve
our conundrum. We present some of these results in appendix B

The third is to understand whether an O8+ plane may be related by dualities to an
O8− plane with 16 D8 branes. These two objects have the same charge, and there exist
other known situations where orientifold planes with stuck D-branes are related to other
orientifold planes with the same total charge. One such example is an O3+ plane, which by
Seiberg-type dualities can be related to an O3− plane with a stuck D3-brane [53, 54]. If such
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a duality relation exists between the O8+ and the O8− plane with 16 D8, the emission of a
D8 brane from a O8−+16 D8 configuration would correspond to a non-perturbative tachy-
onic instability of the O8−-O8+ configuration, which would be fascinating to figure out.

Given the importance of orientifold planes in the construction of explicit de Sitter
backgrounds of String Theory, it is crucial to understand in detail the physics of these
objects. Hence another natural extension of the present work would be to investigate the
richer class of CDLT2 backgrounds, where the presence O6− planes avoids the introduction
of singular O8− sources.
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A The fermionic action

The fermionic action of D8 branes in flux backgrounds can be computed evaluating the
action proposed in [55] on the CDLT1 backgrounds.

Its general form is:11

S
(F )
Dp = τDp

2 λ2
∫
dp+1ξ e−φ

√
−det(P [g] + F)

{
θ+
[
(M−1)αβΓ(P )

α ∇̆β − E (1)
]
θ++ (A.1)

−θ+ Γ̆−1
D8

[
(M−1)αβΓ(P )

β Ξα − E (2)
]
θ+
}
.

Let us explain the meaning of the various quantities in (A.1): first this action is already
κ-fixed, in such a way that only one chiral component of the type IIA ten-dimensional
Majorana spinor Θ supergravity is kept: in particular, we choose a κ-fixing such that θ+ =
1
2(1+Γ(10))Θ, with Γ(10) the ten-dimensional chirality matrix. The action is written in terms
of the matrixMαβ = P [g]αβ+λFαβ while the pullback of the Γ-matrices is denoted by Γ(P )

α .
The worldvolume coordinates are labeled by the indices α , β , . . . , while the ten-

dimensional space-time coordinates are labeled by the indices A,B, . . . For a D8 brane,
the other quantities in (A.1) are:

∇̆β = ∂βx
A∇A , Ξα = −1

8e
φF0 Γ(P )

α , (A.2)

E(1) = 1
2ΓA∂Aφ , E(2) = −5

8e
φF0 . (A.3)

11In our conventions, θ = iθtΓ0.
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If we denote the 10d vielbein with EAA , the non-trivial components of the spin connection
Ω are:

Ωα
β = ωαβ , Ωα

z = eW∂z(Eα) , (A.4)

where ωαβ is nothing but the worldvolume spin connection in the absence of warping. As
a consequence, ∇z = ∂z and:

∇α = ∂α + 1
4ωα

β γΓβ γ + 1
2Ωα

β zΓαΓz = ∇(0)
α + 1

2e
W∂z(Γα)Γz , (A.5)

where ∇(0) is the covariant derivative with ω as spin connection. At the lowest order in λ,
we can use the following approximations:

Mαβ = gαβ +O(λ) , ∇̆α = ∇α +O(λ) , (A.6)

Γ(P )
α = Γα +O(λ) , Γ(0)

D8 = ΓzΓ(10) +O(λ) . (A.7)

We can now evaluate (A.1) for a single D8 brane to the lowest order in λ, obtaining the
following Abelian action:

S
(F )
D8 = τD8

2 λ2
∫
d9ξ
√
g(0) ∆D8 θ+

[
Γα∇α + 1

2
(
eWΓα∂zΓα − eW∂zφ − eφF0

)
Γz
]
θ+

(A.8)
Following [56], the non-Abelian action can be obtained promoting the fermion, θ, to an
adjoint (Majorana) fermion and performing the usual covariantization ∂α → ∂α− i[Aα, ·] +
O(λ), introducing the additional coupling of the form Γα[Aα, ·]; consistency with T-duality
requires an additional companion term of the form Γz[Φ, ·]. The final result is:

S
(F )
D8 = τD8

2 λ2
∫
d9ξ
√
g(0)∆D8 θ+

{
Γα∇αθ+ + 1

2
(
eW∂z log ∆D8 + eφF0

)
Γzθ++

− i[Aα,Γαθ+]− ie−W [Φ,Γzθ+]
} (A.9)

We can now introduce a smart choice of Γ-matrices that make manifest the 9 + 1 splitting
of the ten-dimensional space:

Γα = γα ⊗ σ2 , Γz = I⊗ σ1 , (A.10)

where γα are 9-dimensional purely-imaginary γ-matrices with Minkowskian signature.12

With these conventions, the 10d chirality matrix can be written as:

Γ10 = Γ0 . . . Γ9 = I⊗ σ3 , (A.11)

where we used the fact that the 9-dimensional γ-matrices can be chosen such that γ0 . . . γ8 =
i I; in this basis. Hence, a chiral Majorana spinor can be decomposed as

θ+ = χ⊗
(

1
0

)
, (A.12)

12A way to construct them, for instance, is to start from 7-dimensional Euclidean γ-matrices, that can
be chosen to be purely imaginary. Then, one can construct γi = γ

(7)
i ⊗ σ3 , γ8 = I ⊗ σ2 , γ0 = I ⊗ (iσ1).
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where χ is a 9d Majorana spinor. Using such decomposition of the spinors, it is straight-
forward to show that the following relations hold:

θ Γα θ = i χ γα χ , θ Γz θ = χχ , (A.13)

where, as before, χ = iχtγ0 . As we did for the bosonic action, it is best to normalize
the fermions and in particular to rescale the spinor χ by a factor 1

λ
√
τD8

e(φ−8W )/2. The
canonically normalized action is then:

S
(F )
D8 = 1

2

∫
d9ξ
√
γD8 χ {i γα∇αχ+ mFχ + [Aα, γαχ]− i gYM[Φ, χ]} . (A.14)

where the fermion mass is defined as:

mF ≡
e2W

2
(
∂z log ∆D8 + eφ−WF0

)
. (A.15)

Finally, let us comment about a possible contribution coming from the four-form flux. In
fact, the fermionic action in principle contains a Lagrangian term of the form:

δSF4 = τD8
2 λ2

∫
d9ξ e−φ

√
−detP [g] e

φ

8 θ+Γz[Γα /F 4Γα − /F 4] , (A.16)

where /F 4 = 1
4!FmnpqΓmnpq. We recall that in the CDLT1 backgrounds the four-form flux

has the form (2.2), and define for simplicity f̃4 ≡ f4e
−6W+3λ3−2λ2 . It is easy to see that:

θ+Γz[Γα /F 4Γα − /F 4]θ+ = f̃4 θ+Γz[ΓαΓz /volM3Γα − Γz /volM3 ]
= f̃4 θ+[3 /volM3 − /volM3 ]θ+ = 2 θ+ /volM3θ+

(A.17)

However, this combination vanishes for a ten-dimensional chiral spinor, given the symmetry
properties of the Γ-matrices. This establishes that the non-trivial four-form flux does not
affect our computation at the lowest order in λ.

B Probe D0-branes

Besides the action of probe D8 branes, it is instructive to see whether other probe D-branes
have interesting physics in the CDLT1 solution. The most interesting are D0 branes, whose
action in this background naively contains only a DBI term: −τD0

∫
e−φ
√
−g00. However,

in the presence of D8 branes (and O8 planes as well), these D0 branes come with F1 strings
attached. One way to see this is from imposing tadpole cancelation in the presence of a
Romans mass [57] but this does not indicate which D8 branes the F1 strings terminate
on. A simpler way is to realize that in a region with no Romans mass, D0 branes have
no strings attached, but passing them through n0 D8 branes creates n0 F1 strings via the
Hanany-Witten effect [58].

Hence, the complete action describing D0 branes in our solution is:

SF0
D0 = SD0 + F0 SF1 = −τD0

∫
dt e−φ

√
−g00 − n0 τF1

∫
γ
dtdξ

√
−detP [g] , (B.1)

– 13 –
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0.4 0.8 1.2
z

VD0

Figure 3. − The D0-brane potential, VD0. It can be seen numerically that the unstable equilibrium
point only exists when F4 6= 0 and that it gets closer to z0 as N grows.

where we already assumed that the NS potential is vanishing in the background, we denoted
the temporal direction by t and we defined n0 ≡ 2πls F0. The surface γ is such that
the string extends between the D0 brane and a D8 brane (or an O8 plane) sourcing the
Romans mass. Let us call zD0 the position of the D0 brane along the interval: the tadpole
cancellation requires the presence of n0 attached strings ending on the orientifold plane
located at z = z0. In a configuration of minimal energy, it is natural to expect that the
attached string extends only along the interval transverse to the O8 planes, so that the
action (B.1) can be written as:

SF0
D0 = −τD0

∫
dt
(
eW (zD0)−φ(zD0) + F0(z0 − zD0)

)
, (B.2)

where we used the fact that τF1 = τD0/(2πls) and that detP [g] = g00 gzz = −1 on the
CDLT1 background. The integrand in equation (B.2) can be thought as the interval-
dependent potential VD0 felt by the D0 branes with (F1) strings attached. We plot this
potential in figure 3. It is interesting to observe that the D0 branes are stable on both
orientifold planes, and also have an unstable equilibrium point.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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