
Citation: Ingrassia, E.; Nasello, C.;

Ciraolo, G. Hydrodynamic Modelling

in a Mediterranean Coastal

Lagoon—The Case of the Stagnone

Lagoon, Marsala. Water 2024, 16, 2602.

https://doi.org/10.3390/w16182602

Academic Editors: Anargiros I. Delis

and Aly Seadawy

Received: 2 July 2024

Revised: 5 September 2024

Accepted: 6 September 2024

Published: 14 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Hydrodynamic Modelling in a Mediterranean Coastal
Lagoon—The Case of the Stagnone Lagoon, Marsala
Emanuele Ingrassia 1,2,* , Carmelo Nasello 1,2 and Giuseppe Ciraolo 1,2

1 Department of Engineering (DI), University of Palermo, Viale delle Scienze, Building 8, 90128 Palermo, Italy;
carmelo.nasello@unipa.it (C.N.); giuseppe.ciraolo@unipa.it (G.C.)

2 CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy
* Correspondence: emanuele.ingrassia02@unipa.it

Abstract: Coastal lagoons are important wetland sites for migratory species and the local flora and
fauna population. The Stagnone Lagoon is a coastal lagoon located on the west edge of Sicily between
the towns of Marsala and Trapani. The area is characterized by salt-harvesting plants and several
archaeological sites and is affected by microtidal excursion. Two mouths allow exchange with the
open sea: one smaller and shallower in the north and one larger and deeper in the south. This study
aims to understand the lagoon’s hydrodynamics, in terms of circulation and involved forces. The
circulation process appears to be dominated mainly by tide excursions and wind forces. Wind velocity,
water levels, and water velocity were recorded during different field campaigns in order to obtain a
benchmark value. The hydrodynamic circulation has been studied with a 2DH (two-dimensional in
the horizontal plane) unstructured mesh model, calibrated with data collected during the 2006 field
campaign and validated with the data of the 2007 campaign. Rapid changes in averaged velocity
have been found both in Vx and Vy components, showing the strong dependence on seiches. This
study tries to identify the main factor that domains the evolution of the water circulation. Sensitivity
analyses were conducted to estimate the correct energy transfer between the forcing factors and
dissipating ones. A Gauckler–Strickler roughness coefficient between 20 and 25 m1/3/s is found
to be the most representative in the lagoon. To enhance the knowledge of this peculiar lagoon, the
MIKE 21 model has been used, reproducing all the external factors involved in the circulation process.
Nash–Sutcliffe coefficient of efficiency (NSE) values up to 0.92 and 0.79 are reached with a Gauckler–
Strickler coefficient equal to 20 m1/3/s related to water depth and the Vy velocity component. The
Vx velocity component NSE has never been satisfying, showing the limits of the 2D approach in
reproducing the currents induced by local morphological peculiarities. Comparing the NSE value
of water depth, there is a loss of up to 70% in model predictivity capability between the southern
and the northern lagoon areas. This study aims to support the local decision-makers to improve the
management of the lagoon itself.

Keywords: lagoon hydrodynamics; numerical modelling; ecology; wind tide; coastal lagoon; shallow
water; wind stress; drag coefficient

1. Introduction

Coastal lagoons are widely studied environments. Despite this, several issues are still
open and require further research. It is also impossible not to take into account their effect
on natural life and socio-economical systems [1].

Although different forcing factors are involved in the system, some phenomena appear
to have a higher impact than others. As proposed by [2,3], in order to understand the
hydrodynamic behaviour of shallow lagoons, it is mandatory to simulate the currents inside
lagoons affected mainly by wind and tidal forces [4]. Moreover, as reported by [5], tides
are the dominant force in this kind of basin, also shaping the morphology. The important
role of wind on lagoon water level variations has been recognized by [6] in the Marano and
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Grado Lagoon, and in the Barre and Vaccarès Lagoons by [3]. The influence of strong wind
in semi-enclosed basins introduces non-linear and resonant effects [7].

Due to the small bathymetric scale that usually characterizes shallow lagoons, these
systems are highly vulnerable to anthropogenic effects as well as mean sea level variations,
eutrophication, and other effects, including those related to climate change [8].

The presence of Posidonia oceanica seagrass, as with other vegetation, inside a basin
like the Stagnone Lagoon, influences the velocity field as proved by [9]. The effects of
submerged seagrass have been also deeply studied by [10,11] as well as [12].

The Stagnone is a coastal wetland located between the towns of Marsala and Trapani,
on the west coast of Sicily, in front of the Egadi Archipelago. It is characterized by ar-
chaeological sites, such as the Phoenician Mothia Island, and an historical and intensive
salt-harvesting site. The extent of the lagoon is about 20 km2, and all the islands are part of
the Natura 2000 Site Management Plan called “Saline di Trapani e Marsala”.

The Stagnone Lagoon can be classified as a “restricted lagoon”, parallel to the shoreline,
with two inlets connected with the sea in accordance with [13], affected by microtidal
excursion [14].

The aim of this study is to perform numerical simulations to increase the knowl-
edge about the hydrodynamic circulation of the Stagnone using MIKE21 software
(https://www.dhigroup.com/technologies/mikepoweredbydhi/mike-21-3) with a two-
dimensional (2DH) schematization of the lagoon. MIKE 21 can be considered state-of-the-
art software and has never been used in this lagoon basin [15].

2. Materials and Methods
2.1. Study Area

The Stagnone is a coastal lagoon confined by Isola Grande Island, and the main water
exchanges with the open sea occur through two different inlet mouths (Figure 1).
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Figure 1. Study area.

The north mouth is 400 m wide, and it is characterized by shallow water, with an
average depth of 0.30 m. The south mouth is circa 2900 m wide with a depth of about
1.0–1.50 m.

In the north mouth, water exchange is reduced by the progressive sediment deposition
and strong accumulation of dead seagrass leaves coming from the near sea region. This

https://www.dhigroup.com/technologies/mikepoweredbydhi/mike-21-3
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also produces an increase in the characteristic residence time of the particles inside the
Stagnone, developing high water temperatures and salinity during the summer. For this
reason, the ecological balance of the lagoon is seriously at risk, and a 10 m wide and 1 m
deep channel was dredged on the west side of the north mouth inlet to increase water
exchange and to allow the transit of small vessels. Because of effects of seasonal freshwater
are negligible [4], the hydrodynamic mixing is predominantly influenced by sea-related
phenomena and wind.

Inside the lagoon, the mean water depth is less than one metre (circa 0.95 m), with
a decreasing depth going northward. From a hydrodynamic point of view, the Stagnone
can be divided into two different parts: the southern part (from the south mouth to Motia
Island) is characterized by deeper water, and the northern part, on the other hand, is
shallower with a water depth lower than 0.90 m and elevated residence times.

In the southern part, the water elevation is strongly dependent on the offshore regions
entering from the south mouth [2]. In the northern part, the effects produced by secondary
phenomena are dominant, following what was found in [7].

As demonstrated by [2], Posidonia oceanica is the main biotic component in the Stagnone.
It covers the central part of the lagoon area with atoll patterns (10–20 m in diameter) and
reef formation (1–2 m wide). Where hydrodynamic conditions and sediment composition
worsen for P. oceanica, the seagrass meadow is partially replaced by Cymodocea nodosa and
Caulerpa prolifera [4].

A bathymetric survey was performed in 1999 and shows very shallow waters in the
northern area of the lagoon, with an increasing depth moving southward. A sketch of the
bathymetry is reported in Figure 2b, where it is possible to appreciate the deeper water in
the southern region and shallower waters in the middle–north area.

The submerged vegetation produces a loss of energy due to plant-induced forcing
acting on the fluid, resulting in smaller wave heights [16]. It is important t12o underline, as
found by [12,17], that since in the northern part of the lagoon the water is shallower, the
relative submergence of the vegetation is higher, inducing a higher damping effect for the
hydrodynamic circulation.

2.2. Numerical Model

As already mentioned, coastal basins such as the Stagnone are mainly characterized
by tidal and wind forces. A state-of-the-art 2DH model has been used, simulating the water
depth changes and the horizontal velocity components.

The model used is the MIKE 21 Flow Model (MIKE21 HD). This is a hydrodynamic
model that is a general numerical modelling system for the simulation of water depths
and velocities in coastal areas. The Reynolds-Averaged Navier–Stokes (RANS) and con-
tinuity equations are solved, and the model simulates unsteady two-dimensional flow
in one-layer (vertically homogeneous) fluids. This module has been applied in a large
number of studies related to coastal lagoons [18–20]. For further information, refer to the
official documentation (DHI suite https://www.mikepoweredbydhi.com, accessed on 5
September 2023).

An unstructured mesh, composed of 15,172 nodes and 25,812 triangular elements, has
been created, imposing a finer extent of mesh elements in peculiar lagoon areas such as
the inner islands and the northern dredged channel. The element dimensions span from
3000 m2 to 0.1834 m2, representing, respectively, the flatter and more homogeneous zones
and the more morphologically complex shallow shores. To avoid numerical inaccuracy, the
mesh size has been drastically reduced where local singularity was present.

Two boundary conditions were placed in the north mouth (NM) and in the south
mouth (SM), imposing the recorded water depth (Figure 2a).

https://www.mikepoweredbydhi.com
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To reach the best set-up, different conditions have been tested. A calibration related to
the bed roughness has been conducted to represent the friction induced by the presence
of vegetation; for this purpose, the Chezy coefficient has been expressed in terms of the
Gauckler–Strickler coefficient Ks. It was possible to attribute a friction coefficient value to
represent the presence of Posidonia oceanica, Caulerpa prolifera, and Cymodocea nodosa.

One other calibration parameter was the wind friction factor value f, used to linearize
the drag effect of the wind blowing over the water surface. This coefficient is difficult
to calculate and depends on the geometry of the water body, the fetch available, and the
intensity of the wind itself.

In this case, the wind friction factor was considered independent of wind velocity
intensity.

Finally, the last parameter used to calibrate the model is the horizontal eddy viscosity
factor, calculated using a constant eddy formulation or the Smagorinsky formulation [21].
The effective shear stresses in the momentum equations contain momentum fluxes due
to turbulence and enter the equation through the τxx and τyy variables. This parameter
takes into account the damping factors of short-wavelength oscillations and is responsible
for representing sub-grid-scale effects. This horizontal viscosity is a function of the partial
derivative of flux variation along the x and y directions, like the ∂

∂x (hτxx) term of the
following equation, thus being more relevant in those areas where velocity divergence
between mesh elements is higher. For deeper information about the numerical solution, it
is suggested to consult the MIKE 21 scientific documentation.

In the MIKE21 numerical model, the previous parameters enter in the momentum
equilibrium equation, reported below for the x direction.
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∂t

+
∂
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p2

h
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where:

• pa = atmospheric pressure [kg/m/s2];
• p, q = flux density in the x and y direction, respectively [m3/s/m];
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• g = gravity acceleration [m/s2];
• h = water depth [m];
• ζ = surface elevation [m];
• C = Chezy resistance [m1/2/s];
• ρw = water density [kg/m3];
• τxx , τyy = components of effective shear stress;
• Ω = Coriolis parameter [s−1];
• f = wind friction factor;
• W, Wx = wind speed and x component [m/s].

The simulations have been conducted with a timestep of 5 s, using a soft start to avoid
a simulation shock caused by the initial condition. In fact, the simulation period starts two
days before the recorded data in both cases. The machine in which the simulations were
run is equipped with a 12th Gen Intel(R) Core (TM) i7-12700K with a velocity of 3.60 GHz
and a RAM of 16.0 GB. The simulation time is about 120 min.

To compare the output generated by the model to the measured values, the Nash–
Sutcliffe coefficient of efficiency (NSE) has been used to estimate the goodness of fit of the
simulation.

The NSE is calculated by the following formula:

NSE = 1 − ΣT
t=1(OBSi − SIMi)

2

ΣT
t=1

(
OBSi − OBSi

)2

where OBSi is the value recorded at the ith timestep, SIMi is the simulated value in the
same timestep, and OBS is the average of the recorded value.

The NSE can vary from 1 to −∞ and reaches values equal to 1 when the model matches
the observed value in every timestep considered.

Higher values of NSE, close to 1, mean a better set-up of the model, which indicates
the simulation is a better indicator.

To produce the time series comparison, MIKE Zero Time Series Comparator was used,
which is a post-processing tool that facilitates the comparison of recorded and simulated
time series by computing performance measures and producing relevant comparison plots.

Other statistics like RMSE, R2, and scatter plots can be found in Appendix A. All the
analyses were performed with a MATLAB built-in package (https://www.mathworks.
com/products/matlab-online.html).

2.3. Field Data

The model has been used referring to two different field campaigns, using different
measuring instruments. The first field campaign occurred during the first week of July
2006, and the other one during the last week of July 2007. During both, the free-surface
level in the southern mouth (SM) was obtained through a pressure sensor (Valeport 808
EM). The pressure was recorded every 2 min (Table 1). The water elevation at the northern
mouth (NM) was registered using a float-operated shaft encoder (Ott Thalimedes), located
in a box connected to the dredged channel of the north mouth, as reported in Figure 3. The
sea level was measured every minute, while the mean value was recorded every 5 min
(Table 1).

The water velocity was measured in three stations inside the lagoon. In the stations
Adv and Vec, two ultrasound current meters of Nortek (Adv and Vector) were deployed
(Figure 3). By means of these velocimeters, it is possible to acquire the three-dimensional
velocity components with a sampling rate of up to 25 Hz. The measured velocity refers to a
single point, with a sampling volume diameter of about 10 mm.

The third current meter is the Val (Valeport 808 EM), which is an electromagnetic
velocimeter, with a minimum sampling rate of 2 s (0.5 Hz). In the Vector and Valeport, a
pressure sensor measures the level oscillation of the free surface.

https://www.mathworks.com/products/matlab-online.html
https://www.mathworks.com/products/matlab-online.html
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Velocity measurements were placed at 65% of the mean water depth, counting from
the bottom, in order to take into account the influence of the submerged vegetation’s ability
to damp the water velocity inside the canopy [22]. To retrieve representative values of the
velocity profile in all directions, we suppose that the vertical velocity profile above the
canopy follows a logarithmic profile, as found by [23].

Table 1. Instruments characteristics.

Instruments Characteristics and Acquiring Period

Station Instrument Measure Period (s) Mean Water
Depth (m) Starting Time Ending Time

South Mouth (SM) Valeport 808 EM Pressure 120 0.60 04/07/2006 4:17
23/07/2007 17:54

09/07/2006 7:45
27/07/2007 12:12

Vec 06
Vector

Aanderaa

Pressure
Velocity

Wind

60
60
60

1.30 05/07/2006 10:05 09/07/2006 7:00

Adv 06 Nortek ADV Velocity 5 1.25 08/07/2006 8:43 09/07/2006 00:00

Val 06 Valeport 808 EM Pressure
Velocity

20
20 1.25 04/07/2006 14:45 09/07/2006 8:22

North Mouth (NM) Ott Thalimedes Level 300 0.60 Always recording

Vec 07 Vector Pressure
Velocity

10
10 1.50 23/07/2007 18:35 27/07/2007 11:00

Adv 07 Nortek ADV
LSI Lastem

Velocity
Wind

10
5 1.30 24/07/2007 11:04 27/07/2007 00:41

Val 07 Valeport 808 EM Pressure
Velocity

20
20 1.00 24/07/2007 08:16 27/07/2007 10:19
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The wind stations (Aanderaa Instruments for the 2006 campaign and LSI Lastem for
the 2007 one) were both located 3 m above sea level.

The locations of the recording stations deployed during the 2006 and 2007 campaigns
are shown in Figure 3.

A short measurement sketch (20 s) by Adv_07 at 20 Hz shows the characteristic orbital
motion due to the wind waves [24] (Figure 4). The period of these oscillations is about one
second (like the wind waves), and in this temporal frame, the velocity Vy can range from
+0.12 m/s to −0.04 m/s (Figure 4b; Vy is positive northward).
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In the 2DH numerical model, these sinusoidal velocities are not reproduced since only
the averaged velocities are simulated. Then, the recorded oscillations were filtered using a
digital low-pass filter (Butterworth filter) to erase the wave-induced velocity effects.

In the 20 s sketch reported in Figure 4b, the filtered velocity Vy was nearly +0.04 m/s.
This means that in the Adv_07 station, the mean current flows northward, in accordance
with the entering tide in the lagoon from the south mouth.

It is also possible to observe that the component Vx is oscillating around zero during
the recording time (Figure 4c) so that the mean flow in the east–west direction is almost
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insignificant with respect to the Vy mean motion. In addition, the Vz vertical velocities are
oscillating around zero (Figure 4a).

Now, we consider the water depth h and the horizontal velocities Vy and Vx recorded
for 24 h at the station Vec_07, located near the south mouth, with a frequency of 1 Hz
(Figure 5). The variability in the raw data (blue line) is due to the orbital motion of wind
waves. Then, a digital filtration of the wind waves is performed (magenta line).
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Primarily, a long period of sinusoidal behaviour related to the tide oscillations is
clearly recognizable. When the water depth h is decreasing, then the water velocity Vy is
negative, i.e., the tide leaves the Stagnone towards the south. When the water depth h is
increasing, then the water velocity Vy is positive, i.e., the tide enters the Stagnone from
the north.

A secondary phenomenon recorded by the instruments is the seiches, with a period
lower than one hour. During a seiche oscillation of the level, the water velocity accelerates
and decelerates. In fact, in less than one hour, during a seiche period on 24 July at 02:00, it
is possible to appreciate that the filtered velocities Vy, recorded by Vec_07, decelerate from
+0.05 m/s to 0.00 m/s, then return to +0.04 m/s (Figure 5b). Seiches are typical lagoon
or semi-enclosed basin phenomena. External forces generate a local elevation of the free
surface, which is reflected within the basin. Seiches characterize the whole lagoon basin; in
fact, they can be observed in all field measurements.

The water depth measured in the first week of July 2006 at the north and south mouths
shows first the 12 h period of the tide signal and second the presence of seiches (Figure 6).
These unfiltered water levels will be imposed as boundary conditions in the north mouth
(NM) and in the south mouth (SM) to force each simulation to introduce a tide-induced
effect. In these stations, no velocity data were collected, so only the tidal effect was imposed
along the boundary conditions. In fact, these two station were placed in strategic points
of the area in order to collect both diurnal and semi-diurnal tidal effects and the peculiar
phenomena of the induced seiches. The two mouths are 7 km apart from each other, and
the tidal signal is sometimes slightly shifted. The north mouth signal, in fact, appears
to be more affected by seiches and strong winds, which induce, respectively, a higher
noise along the signal and a more rapid decrease in water depth in correspondence with
northward-directed wind. Both boundary conditions are set constant along the boundary
as the measurement is considered representative of tide effect along the boundary.
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During the 2006 field campaign, wind data were collected at the Anderaa station,
placed at 3 m above the mean sea level in the same location as Vec_06, but in 2007, the station
used was LSI (as reported in Table 1), and it was placed in correspondence with Adv_07.
The wind forcing has been implemented in the model imposing a spatial homogeneous
value, with a constant friction factor, as discussed below.

3. Results and Discussion
3.1. Calibration with 2006 Data

Initially, the Gauckler–Strickler coefficient Ks = 20 m1/3/s was set as constant in the
whole area, and the wind friction factor coefficient was set as f = 0.0010, similarly to the
value found by [25], who used f = 0.0014 for W < 10 m/s, and as it was recognized as more
reasonable for running the model. The default coefficient suggested by MIKE21 (f = 0.0026)
returns values strongly conflicting with the recorded ones. Finally, the effects of the eddy
viscosity parameter did not modify the lagoon behaviour when imposed as a constant eddy
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formulation, starting from ν = 0.0 m2/s, until values of ν = 1.2 m2/s. By default, MIKE21
suggests a constant value of ν = 0.002. Furthermore, for eddy viscosity, the Smagorinsky
formulation was imposed, with a range of specific k coefficients from k = 0.25 to k = 1.00
following [21], but no change in simulated water level and velocities was detected. It was
then decided to neglect the simulation of the eddy viscosity.

The numerical model can reproduce the dominant effects of winds and tides, as can
be seen in the following figures where it is possible to appreciate the comparisons between
the recorded and the simulated evolution of target variables in all the stations.

In Figure 7, it is possible to compare the evolution of water elevation and the Vy and
Vx velocity components recorded in Vec_06.
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Starting from the comparisons between recorded and simulated time series for Vec_06,
it is possible to appreciate that the general hydrodynamic behaviour of the lagoon is
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replicated even if some difficulties are present. Although the simulated water depth
evolution is in accordance with the recorded ones, the Vy velocity component is sometimes
in antiphase with the recorded values, as at midnight of 6 July, when the recorded velocities
were northward (positive values), but the simulated ones are southward (negative values)
(Figure 7b). The worst agreement was found considering the Vx velocity component,
especially during the night of 8 July (Figure 7c). These rates of accordance can be estimated
from Appendix A (Table A1), where RMSE and R2 are reported.

Even if Adv_06 had technical problems related to a battery failure during the 2006
campaign, it is possible to appreciate that the general behaviour is replicated, especially for
the Vy velocity component (Figure 8a). The Vx component has a bad agreement during
the night of 9 July (Figure 8b), when a strong acceleration recorded in the velocities, due to
seiches, is not reproduced by the simulation.
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Finally, in Figure 9, it is possible to appreciate the evolution of the simulated and
recorded water level values, as well as the Vy and Vx velocity components of Val_06, in
the northern part of the lagoon. In some moments, the simulated water depth anticipates
the recorded one. The range of the simulated Vy is lower with respect to the recorded
values. This is particularly the case on the night of 8 July, when the simulated Vy is close
zero, but the recorded values reached −0.03 m/s southwards and +0.04 m/s northwards.
At 9:00 a.m. of 5 July, the recorded Vy is positive (northward), while the simulated Vy is
negative (southward) (Figure 9b).
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Looking at global simulation, the hydrodynamic circulation inside the lagoon follows
peculiar pattern strongly related to tide and wind variability, as shown in the figure below
representing a tidal cycle between 6 and 7 of July 2006. The evolution and the complexity
of the hydrodynamic circulation inside the lagoon is represented in Figure 10. The north
mouth appears to work as a funnel with strong differences between the two velocity
components due to the Venturi effect. It is possible to observe how the outgoing flux
corresponds to the ebb tide phase, as on 7 July 2007 at 12:00 p.m. (Figure 10d).
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be caused by wind blowing and site morphology (Figure 11c). As shown in the north 
mouth, even in this case, the flux corresponds to the ebb tide phase (Figure 11f). 

Figure 10. Graphical maps of hydrodynamic circulation. A whole tidal cycle is reported. A strong
Venturi effect can be observed in when the flow is outgoing (a,b,d), caused by the falling tide. A
modest eddy is simulated in (c). Is also possible to appreciate (d–f) the tide evolution with 6 h period.

The south mouth is characterized by a higher hydrodynamic circulation and complex-
ity. Wider width and deeper water allow the fluid to develop velocities where there is a
combination of the tide and large eddy effects (Figure 11a). Large eddies could be caused
by wind blowing and site morphology (Figure 11c). As shown in the north mouth, even in
this case, the flux corresponds to the ebb tide phase (Figure 11f).
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Figure 11. Hydrodynamic circulation in the lagoon’s southern region. Is possible to appreciate how
the circulation follows the tides (a,c,f). Lower hydrodynamism is simulated in the coastal part of the
lagoon (b,d). Is possible to appreciate the 6 h tide evolution (e,f).

Comparing the simulations against the recorded data, the NSE parameter is used to
compare the prediction capability of different model set-ups. The predictivity capacity
is dependent on the differences between the recorded time series and the simulated one.
Starting from the comparisons of the simulations showed above, for the two stations Vec_06
and Adv_06 in the centre of the lagoon, it was possible to obtain, in Vec06 for the water
depth, a value of NSE = 0.77, and for the Vy and Vx velocity components, respectively,
NSE = 0.13 and NSE = −2.63 (Table 2). In Adv_06, we found NSE = 0.67 and NSE = −18.37
for the Vy and Vx velocity components, respectively, considering the longest recording
period between the 8th at 08:46 a.m. and the 9th at midnight, as can be seen in Figure 8.
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Table 2. Summary of the NSE value for the simulation with Ks = 20 m1/3/s, reproducing the 2006
campaign.

NSE h—Depth Vy Velocity Vx Velocity

Vec_06 0.77 0.13 −2.63

Adv_06 0.67 −18.37

Val_06 0.50 −0.62 −3.37

In Val_06, the northernmost station, the obtained values are NSE = 0.50, NSE = −0.62,
and NSE = −3.37 for water depth, Vy, and Vx variables, respectively (Table 2). The positive
values of NSE for water depth mean that the model acceptably reproduces the water level
oscillation. The positive values of NSE for the velocity in the north–south components
are acceptable from the south mouth up to the centre of the lagoon. The simulated Vy is
not acceptable in the northern part of the lagoon (NSE < 0 in Val_06, Table 2). Finally, the
simulated east–west component Vx is not acceptable (NSE < 0 in all the three stations).

To increase the model reliability, different values of bed roughness Ks were tested:
from 20 m1/3/s to 35 m1/3/s. The NSE values for the water depth are always positive
(0.42 < NSE < 0.79) for the Vec_06 and Val_06 stations (Figure 12a). For the Vy velocity,
the NSE is positive (0.13 < NS < 0.67) in the Vec_06 and Adv_06 stations. But in Val_06,
the furthest station from the southern mouth, the NSE for the Vy velocity is negative
under almost any tested roughness condition, probably because the simulation does not
adequately predict the velocities in the northern part of the lagoon (Figure 12b). For the
Vx component, the NSE is always negative in the three stations for the different roughness
values tested (Figure 12c).
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Figure 12. NSE values obtained by the comparison of Vec_06 (a), Adv_06 (b), Val_06 (c), and simulated
ones, depending on bed roughness. All the Ks values are in m1/3/s.

It is possible to underline how the predictive ability of the model varies in different
lagoon areas, appearing to be better close to the Vec_06 and Adv_06 location, the stations
closer to the south mouth and close to the southern boundary input.

The Val_06 station velocities, referring to the area in the northern part of the lagoon,
appears to be the worst described by the model, probably due to the presence of damping
effects caused by leafy vegetation.

The lowest NSE values are recorded by the northernmost station, where the ratio
between vegetation height and water depth is lower than the southern area. The damping
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effect of the vegetation in hydrodynamics is well known [26]. The flow over a vegetated bed
is characterized by friction velocities depending mainly on the Reynolds number, canopy
density, and canopy height [27].

From the comparison of the NSE values for level and velocity, it was possible to figure
out the behaviour of the model in response to changes in the bottom roughness. In fact, the
simulation with the smallest Gauckler–Strickler coefficients returns, generally, the highest
values of NSE. Considering the magnitude of the variation in terms of NSE, a constant Ks

equal to 20 m
1
3

s appears to represent the behaviour of the lagoon.

To estimate the influence of wind forces, considering a homogeneous Ks = 20 m
1
3

s ,
several simulations with different values of the wind friction factor f have been run.

It is possible to observe how the wind is important in the simulations. For example,
when f = 0, the NSE’s values for Vy (Figure 13b) remain around zero, showing a poor relia-
bility of the model if wind is neglected. A wind friction coefficient close to f = 0.001–0.002
returns modelled values closer to the recorded ones, as shown on Figure 13.
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Figure 13. NSE values obtained by the comparison of Vec_06 (a), Adv_06 (b), and Val_06 (c) recorded
values and simulated ones, depending on the friction factor f.

Different eddy viscosity values were tested, and the Smagorinsky formulation was
also tested. But no significant effects are reported in the simulation values due to the
changes in the eddy viscosity parameter, showing the negligible effect that this parameter
plays in this context, probably because the velocity divergence between mesh element
is irrelevant.

In lagoon areas such as the Stagnone, more attention must be given to parameters
such as the wind friction factors and the bed roughness.

3.2. Validation with 2007 Data

After the calibration with 2006 data, a validation process was conducted for the 2007
campaign. Starting from the optimum set-up model found during the calibration, the
simulation of the 2007 field campaign was tested using the following parameters: Strickler

Ks = 20 m
1
3

s and wind friction factor f = 0.0020, neglecting the eddy viscosity term.
Again, instrumentation was deployed in the most representative areas of the lagoon,

and the following time series show the model attempts replicating the behaviour of the
lagoon. Starting from the south side, the times series will be described below.

Starting from Vec_07, the closest station to the south mouth, it is possible to underline
a better evolution, with respect to 2006 data, of the water depth and Vy velocities. The
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results show NSE = 0.92 for water depth and NSE = 0.72 for Vy. The Vx components remain
badly simulated, resulting in an NSE = −0.32 for Vx, and the seiches are poorly replicated
as well (Figure 14).
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Figure 14. Behaviour of simulated variables (water level, Vy, and Vx velocity components, respectively,
in (a–c)) against the recorded data of Vec_07.

Moving to the centre of the lagoon, in the ADV_07 station, there is some agreement
between the simulated values of Vy and the recorded values; NSE = 0.50 for Vy. For the
Vx component, there is disagreement; the filtered recorded Vx is generally negative, while
the simulated values are generally lower than the recorded ones. In fact, NSE = −10.57
(Figure 15). These rates of accordance between recorded and simulated data can also be
estimated from Appendix A (Table A1), where RMSE and R2 are reported.
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related to horizontal velocities northward and eastward, (a) and (b) respectively.

The northernmost measurement was recorded in Val_07, and from the time series
reported in Figure 16, it is possible to see how the simulation had some difficulty replicating
the considered variables. The simulated water depth anticipates the recorded one; then,
the NSE = 0.28 approaches zero. For the Vy velocity component, the simulation fails in
replicating the recorded values simulating generally negative velocities and missing the
tidal accelerations and decelerations; NSE = −6.27 for Vy. The Vx velocity component is
poorly replicated, mismatching all the hydrodynamic phenomena; NSE = −47.21.

Seiches depend on the combination of the intensity and direction of wind blowing,
morphology, and the penetration of another lagoon’s external seiches. These phenomena
can induce fluid to move even in antiphase with the wind direction, as can be seen in
Figure 16, where the recorded and the simulated Vy velocities and wind vector are reported.

At 20:00 on 25 July and at 18:00 on 26 July, the recorded Vy velocity component was
about +0.08 m/s, while the simulated one was 7–0.03 m/s; at the same time, the wind was
directed southward with a speed of 8 m/s. This is probably because during the day, the
tidal movement from the south mouth was predominant over the effect of the wind. The
model appears not to replicate this phenomenon, and this affects its predictivity capacity,
generating lower values of NSE. It seems that the main effect of the wind is to create
wind waves, rather than generating motion in the north–south direction. In fact, when the
wind is absent, the unfiltered water level and velocity Vy do not show noise in the signal.
Meanwhile, the wind blows the unfiltered water level, and Vy velocity shows the effect of
the orbital motion due to the wind wave (Figure 16). The flow in the north–south direction
is mainly due to the tidal motion from the south mouth. In this area, the model seems to
account greater importance to wind-induced effects to the motion field, underestimating
the effect produced by tidal variations.
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The comparison between the 2006 and 2007 simulations shows a better model fit with
a constant value of bed roughness between Ks = 20 and 25 m

1
3 /s, which can be attributed to

the high presence of vegetation.
A sensitivity analysis with 2007 data has been conducted to underline the dependence

of the bed friction factor. The NSE values for the simulation with a constant value of
Ks = 20 m

1
3 /s are reported in Table 3, and a general comparison is summarized in Figure 17.

Table 3. Summary of the NSE value for the simulation with Ks = 20 m1/3/s, reproducing the 2007
campaign.

NSE h—Depth Vy Velocity Vx Velocity

Vec_07 0.92 0.72 −0.32

Adv_07 0.50 −10.57

Val_07 0.28 −6.27 −47.21
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Figure 17. NSE values obtained by the comparison of Vec_07 (a), Adv_07 (b), Val_07 (c), and simulated
ones, depending on bed roughness. All the Ks values are in m1/3/s.

From this analysis, it is possible to figure out how the model’s predictivity capacity
decreases in the northern part of the lagoon. In fact, at the northernmost measurement
station, the NSE values are lowest, (Val_06 and Val_07) compared with the ADV and Vector
located at centre and south of the lagoon. The reason of the lack of model predictivity
capacity in the northernmost areas can be attributed to a lower ratio between vegetation
height and water depth in the northern area with respect to the southern area. The condition
of low submergence produces an additional resistance factor as a function of the leaf height,
density, and flexibility of the vegetation species. In fact, where the water depth and
vegetation height are comparable (emergent or slightly submerged), as in coastal lagoons,
the velocity profile does not follow a logarithmic law at all, showing a low linear increase
in the depth occupied by the vegetation and a major increase above the leaf, towards the
top [28]. The macro-roughness effects are appreciable even in water depth evolution [29].
This effect is emphasized in the northern area of the Stagnone Lagoon.



Water 2024, 16, 2602 21 of 25

4. Conclusions

The aim of this study is to increase the knowledge about hydrodynamic circulation in
Mediterranean coastal lagoons like the Stagnone, testing the predictivity capacity of a 2DH
model like MIKE21. These types of model work by averaging the vertical velocity along
the depth, and, for this reason, using field vertical punctual measurement as a benchmark,
the velocity’s NSE cannot be expected to be high. Moreover, focusing on the recorded
values of the Vx component of velocity, it is possible to underline how this component is
in a range around zero, and this confirms the predominant importance of the velocity’s
Vy component.

The sensitivity analysis conducted has been crucial to understanding the lagoon
behaviour, since the presence of the vegetation induced a complex estimation of the bed
friction factor; in fact, Posidonia oceanica and Cymodocea nodosa leaves induce a particular
roughness in the lagoon bed. Moreover, in the northern area, where there is a lower ratio
between vegetation height and water depth with respect to the southern area, the vegetation
leaves work differently on the hydrodynamics. Several values of roughness coefficient
have been tested, establishing the optimum as Ks = 20–25 m

1
3 /s for the 2006 field campaign,

confirmed by the simulation of the 2007 field campaign. The rate of accordance between
recorded and simulated values can be estimated by reading Table A1 in Appendix A, where
RMSE and R2 are reported.

The wind friction factor has been also investigated. All the variables show a depen-
dence on the interaction between the air and the water surface; in fact, the simulation
without the wind force returns lower NSE values. A general agreement between the simu-
lated and recorded values can be found using a constant value of wind friction factor equal
to f = 0.001–0.002. But in the northern area, at different times, the simulated water velocities
are directed towards the south, with the wind, while the recorded ones are directed towards
the north, with the rising tide from the south mouth.

The eddy viscosity coefficient does not appear to play a valuable role in the hydrody-
namic circulation. For the different tested values, there is no appreciable effect on simulated
water level and velocities.

Finally, focusing on the variation in the simulated water depth time series, as well as
the Vy and Vx velocity components, it is necessary to underline that the model reproduces
the seiches phenomena with difficulty.

In the northern areas, the hydrodynamism of the Stagnone Lagoon is poorly described
by the model, and the wind effect is overestimated. Due to the presence of relative high
vegetation in the northern area, the motion field is strongly dominated by tides as reg-
istered by in situ data. The presence of vegetation in the form of long leaves induces a
strong damping effect that cannot be explicated by a common bed roughness coefficient.
Nevertheless, the model produces more reliable values in areas closer to the south mouth,
as the NSE for water depth and the Vy velocity component suggest. In the southern area,
the 2DH model looks more capable of replicating the variability in the water depth and
water velocity. Moving northward, the model predictivity becomes more difficult. This
implies that all the NSE values are higher when they refer to stations deployed closer to the
south mouth.

The Vx velocity component looks poorly replicated, in all cases returning NSE not
acceptable, always with negative values.

This study shows how the lagoon circulation is affected by some problems and the
dependence on tide and wind regime. Finally, seiches also play a key role in the lagoon
circulation, as well as more complex bed roughness effects.

The Stagnone Lagoon is a vulnerable environment with morphological complexity;
the circulation is dominated by external forces recorded in two different field campaigns.
The global behaviour has been replicated by the MIKE 21 hydrodynamic model with
an unstructured mesh, showing the strong dependence of Mediterranean lagoons on
the wind, tide, and the inducted seiches forces. A possible improvement could be the
implementation of different roughness values, considering higher values of energy loss
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where the submergence is lower, and vegetation leaves are higher. This could be coupled
with a high-definition vegetation map detected, for example, by remote sensors and UAVs.
Implementing a “roughness map” could be a valuable improvement that could allow
the model to replicate the hydrodynamic circulation in the northern area. Moreover, the
2DH model showed low precision in representing the hydrodynamics induced by local
morphology in very shallow water, and this is probably due to a bathymetric accuracy and
mesh resolution in shore regions. In fact, the NSE related to the Vx velocity component is
expected to increase with more domain morphological details.
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Appendix A

Statistics of 2006 and 2007 Simulation Efficiency

During the calibration and validation processes, different statistics have been calcu-
lated in order to track the efficiency of the simulation modelling.

In Table A1, all the statistics are reported, showing the efficiency of the simulations.

Table A1. Statistics of all variables in all simulations conduced against recorded values.

Water Level Vx Velocity Component Vy Velocity Component

Station RMSE R2 SI RMSE R2 SI RMSE R2 SI

Vec_06 0.02 0.88 1.01 0.01 0.39 −6.26 0.01 0.35 5.07

Val_06 0.03 0.74 −3048.96 0.00 0.09 −2.22 0.01 0.07 1.77

Adv_06 - - - 0.00 0.10 0.63 0.02 0.00 −1.78

Adv_07 - - - 0.00 0.02 −0.35 0.02 0.59 −7.69

Val_07 0.03 0.57 −129.00 0.00 0.04 −0.34 0.02 0.00 1.25

Vec_07 0.01 0.96 −1.64 0.02 0.21 4.9 0.02 0.77 −10.64

Below, in Figure A1, are reported all the scatter plots showing the simulated data
against the recorded data on the recording stations. The plots reported are related to the
simulations with a positive and reasonable NSE value.
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