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f Department of Animal production, Fishery & Aquaculture, University of Patras, 30200 Messolonghi, Greece
g Decentralized Administration of Macedonia-Thrace, Department of Fisheries and Aquaculture, Kalamaria, GR-551 31 Thessaloniki, Greece
h International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM-Bari), 70010 Valenzano (BA), Italy
i Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy
j CoNISMa, National Inter-University Consortium for Marine Sciences, 00196 Roma, Italy

A R T I C L E I N F O

Keywords:
Invasive species
Trace metals
Biomonitoring
Trophic plasticity
Isotopic niche
δ13C
δ15N

A B S T R A C T

The contribution of non-indigenous species to the transfer of contaminants in invaded food webs represents an
active research area. Here we measured trace metals and CN stable isotopes in five populations of the invasive
Atlantic blue crab Callinectes sapidus and in baseline bivalve species from Spain, Italy and Greece. They were used
to estimate trophic transfer effects and the trophic position and isotopic niche of C. sapidus. Maximum trophic
transfer effects occurred where the crab showed the largest isotopic niches and highest trophic positions;
furthermore, the consistency of trace metal profiles between bivalves and crabs co-varied with the trophic po-
sition of the latters. Omnivory may influence the success of an invasive species, but also limit its effectiveness for
biomonitoring. However, our results indicated that stable isotopes analysis provides a clarifying background
where to cast patterns of contamination of the blue crab as well as of other omnivorous biomonitor species.

1. Introduction

Natural ecosystems are seldom jeopardized by single perturbations;
conversely, the superimposition of multiple biotic and abiotic stressors
is almost the norm, with synergistic and only rarely additive responses
from the biota (Galic et al., 2018; Pirotta et al., 2022). Chemical
pollution and biological invasions are among the anthropogenic threats
(listed in e.g., Salafsky et al., 2008; Gelcich et al., 2014) involved in the
alteration of the functionality of coastal marine ecosystems (Johnston
et al., 2015). Bioinvaders can affect biogeochemical pools and fluxes of

energy and materials (including pollutants), and thereby alter the
structure and functions of ecosystems (Ehrenfeld, 2010; Corrales et al.,
2020). Contaminants such as trace metals can cause impairment of
biological functions even at low concentrations, reducing the abundance
of the most sensitive species while facilitating opportunistic or tolerant
taxa (Johnston and Roberts, 2009; Mayer-Pinto et al., 2010). In addi-
tion, persistent pollutants and xenobiotics can bioaccumulate (i.e. when
their uptake rate by an organism from the environment and/or from the
diet exceeds excretion or elimination rates) or biomagnify (i.e., when
their prey-to-consumer transfer rate exceed the excretion or elimination
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rates of the consumer) along food chains up to top predators, including
economically valuable species (Gray, 2002; Romero-Romero et al.,
2017).

Noticeably, the interaction between bioinvaders and chemical con-
taminants in aquatic environments has been primarily addressed
focusing on the use of invasive species for biomonitoring purposes (e.g.,
Annabi et al., 2018; Mancinelli et al., 2018; Tzafriri-Milo et al., 2019;
Squadrone et al., 2020) and on the role of contaminants in facilitating
invasions (McKenzie et al., 2012; Kenworthy et al., 2018; Osborne and
Poynton, 2019). In contrast, lesser efforts have been made to elucidate
the complex and non-univocal effects of invaders on the mobilization of
contaminants in aquatic food webs (Eagles-Smith et al., 2018; Flood
et al., 2020; see also Schiesari et al., 2018). This is particularly evident
for marine and transitional environments (Boyd et al., 2018; Ostrowski
et al., 2021), while a number of freshwater investigations have provided
contradictory evidence of how the re-wiring of food webs due to single-
or multi-species invasions affects the transfer of contaminants across
trophic levels (DeRoy and MacIsaac, 2020; Barst et al., 2020; Brown
et al., 2022; Rennie et al., 2024 and literature cited).

In the present study, we focused on the Atlantic blue crab Callinectes
sapidus Rathbun 1896 (blue crab hereafter), a portunid brachyuran
originating from the western Atlantic coasts from the Gulf of Maine to
Argentina (Millikin and Williams, 1984; Johnson, 2015; Cesar et al.,
2003). The species was introduced in Europe in 1901 and appeared in
1947 in the Mediterranean Sea (but probably as early as 1935: Nehring,
2011). It is currently included in the list of the 100 most invasive species
(Streftaris and Zenetos, 2006), and recognized as the cause of the
consistent decline of several invertebrate and vertebrate species
(Clavero et al., 2022).

During the last decade, the blue crab has spread almost ubiquitously
in the Black Sea and in the eastern and central Mediterranean Sea, where
it is currently expanding in the west and south of the basin (Mancinelli
et al., 2017b, 2021; Bardelli et al., 2023; Castriota et al., 2024) as well as
in neighbouring freshwater habitats (Scalici et al., 2022). Blue crabs are
benthic feeders (Hines, 2007) and their life history and behavior place
them in direct contact with environmental contaminants via the water
column, sediments, and prey (Reichmuth et al., 2010; Parmar et al.,
2016). Additionally, laboratory studies have repeatedly demonstrated
extensive accumulation of water- and food-borne xenobiotics (Hale,
1988; Mothershead II et al., 1991; Reichmuth et al., 2010; Evans et al.,
2000), and several metal-binding metallothioneins have been identified
in the tissue of blue crabs (Brouwer and Lee, 2007). Hence, the species
has been proposed as a biomonitor species (i.e., a species that, by
accumulating pollutants in its tissues, may be used to assess the
bioavailability of the pollutants themselves in the surrounding habitat;
Rainbow, 1995) in estuaries and other transitional habitats (Weinstein
et al., 1992; Mutlu et al., 2011; Salvat-Leal et al., 2020).

Here we assessed the concentration of 13 trace metals (B, Ba, Cd, Cr,
Cu, Fe, Li, Mn, Ni, Pb, Sr, V, and Zn) in blue crabs from five coastal
systems in Spain, Italy, and Greece. In invaded European waters, most of
the information on trace metal contamination are available mainly for
blue crab populations from the Levantine sector of the Mediterranean
Sea, and for a limited set of trace metals (e.g., Türkmen et al., 2006;
Mutlu et al., 2011; Genc and Yilmaz, 2015; but see Zotti et al., 2016;
Salvat-Leal et al., 2020; El Qoraychy et al., 2023 for recent exceptions).
To provide a first evaluation of the effectiveness of the species for large-
scale biomonitoring in Mediterranean waters, we compared its trace
metal contents with bivalves. Since the early 1970s, bivalves have been
used to monitor coastal ecosystems, as they accumulate inorganic and
organic pollutants and result more informative of environmental
contamination conditions than other non-living matrices (Zuykov et al.,
2013; Beyer et al., 2017). In both native and invaded benthic habitats,
the blue crab is a voracious predator of mussels, clams, and other bi-
valves (Seed, 1980; Micheli, 1997; Seitz et al., 2001; Prado et al., 2020;
Meira et al., 2024), a trophic preference recently testified by the dra-
matic effects observed in Italian lagoons (ARPAV-ISPRA, 2023).

However, the diet of the species is far more diversified and omnivore, as
it can opportunistically include a diverse set of vegetal and animal items
such as plant material, crustaceans including conspecifics, gastropods,
and fish (Hines, 2007; Mancinelli et al., 2017a; Rady et al., 2018;
Kampouris et al., 2019; Prado et al., 2021).

Accordingly, in the present study we tested two alternative scenarios.
The first assumed a direct trophic transfer of trace metals from bivalves
to blue crabs, ultimately reflecting in bioaccumulation or even bio-
magnification phenomena in the latter. Alternatively, we hypothesized
that the omnivory of the crab and thus its opportunistic consumption
together with bivalves of multiple and differently-contaminated animal
and vegetal resources would represent a confounding factor actually
hampering its effectiveness as a biomonitor species.

To verify these hypotheses, along with the concentrations of trace
metals we measured carbon and nitrogen stable isotopes in both
C. sapidus and bivalves. Stable isotope analysis (SIA hereafter) has
gained in the last decades a huge popularity for the study of invaded
marine and coastal food webs (see Mancinelli and Vizzini, 2015 for a
recent review) and, as it consents to relate contaminant concentrations
in consumers to their trophic habits, it has long been acknowledged as a
powerful tool to investigate accumulation and magnification phenom-
ena along food chains (Jardine et al., 2006). In addition, SIA enables for
robust, regional-scale analyses of species' dietary habits (e.g., Man-
cinelli, 2012a; Pethybridge et al., 2018; Figgener et al., 2019; Mancini
et al., 2021, 2022). Specifically, here δ13C and δ15N values of blue crabs
were used to estimate their isotopic niche and, taking bivalves as
baseline species, their trophic position, to verify the occurrence of var-
iations in feeding habits across the five locations and whether they
related with changes in trace metal profiles.

2. Materials and methods

2.1. Study sites

The study was performed in 2016 in five Mediterranean coastal
systems located in Spain, Italy, and Greece and characterized by estab-
lished Callinectes sapidus populations (see Fig. 1 and Table S1 in the
online supplementary material for further details).

In Italy, sampling operations were carried out in the Lesina and
Acquatina lagoons (SE Italy, Fig. 1). The Lesina Lagoon is located on the
northern coast of the Gargano Promontory (41◦52′57.09”N,
15◦26′34.71″E); it is approximately 22 km long and 3.5 to 1.5 km wide
(52 km2 total area), with depths ranging between 0.5 and 1.7 m
(Mancinelli and Rossi, 2001; Spagnoli and Andresini, 2018). Two
channels guarantee continuous water exchanges with the Adriatic Sea,
while perennial and intermittent freshwater inputs occur in the south-
eastern sector of the lagoon. The Acquatina Lagoon is located in the
Salento Peninsula (40◦26′34.50” N, 18◦14′14.16″ E); The water body is
approximately 1.9 km long with a surface area of 0.45 km2; depths range
between 0.5 and 1.7 m (1.2 m average depth; Mancinelli, 2012b;
Pagliara and Mancinelli, 2018). Freshwater inputs are located in the
northward sector of the basin, which is connected with the Adriatic Sea
by a mouth (Fig. 1).

In Spain, samples were collected in a coastal area in the southern
sector of the Valencia Gulf between the towns of Cullera (0◦15′26.29“W,
39◦ 8’6.18”N) and Oliva (0◦ 4′41.29”W, 38◦55′36.24”N; Fig. 1). The
coastal environment is open to the Balearic Sea with a number of river
mouths, and is generally low and sandy (Sospedra et al., 2018). In
Greece, samples were collected in the Pogonitsa Lagoon (NW Greece,
38◦57′53.04”N, 20◦48′52.15″E) and in Loudias Bay (NE Greece,
40◦30′7.36”N, 22◦40′51.33″E; Fig. 1). The Pogonitsa Lagoon is located
on the Ionian Sea in the south-western sector of the Amvrakikos Gulf.
The lagoon has a surface of approximately 0.45 km2, an average depth of
1.2 m, with sandy vegetated bottoms, and it is connected to the Amv-
rakikos Gulf by two channels (Katselis and Koutsikopoulos, 2017).
Loudias Bay is situated in the inner Thermaikos Gulf (northern Aegean
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Sea). The bay is open to the sea (Fig. 1) has a surface of approximately
15 km2 and depths up to 20 m, and receives freshwater inputs from
Aliakmon, Axios, and Loudias rivers (Poulos et al., 2000; Catsiki and
Florou, 2006).

2.2. Sample collection

At each of the five locations 15 to 24 blue crabs were captured using
crab traps or other netting devices in summer 2016 (Table 1; see
Table S1 for additional details). After collection, specimens were
transferred alive to the laboratory in refrigerated containers (4 ◦C),
where they were sexed and had the cephalothorax width (i.e., the dis-
tance between the two outermost lateral spines; CW hereafter) measured
with a caliper to the nearest 1 mm. Subsequently, crabs were euthanized
by thermal shock (− 80 ◦C for 10 min) to avoid artefacts on elemental

and isotopic determinations (Atwood, 2013). After crab collection, 6 to
10 individuals of locally dominant bivalve taxa were collected at each
sampling location by hand (Table 1). Mytilus galloprovincialis was

Fig. 1. The five coastal habitats included in the study. Red crosses in the inserts indicate the sampling locations where Callinectes sapidus and bivalves (i.e. Arcuatula
senhousia for Lesina Lagoon and Mytilus galloprovincialis for the remaining locations; see text and Table 1 for further details) were collected. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Number of bivalve and Callinectes sapidus specimens collected at the five study
locations. Taxonomic information on the bivalve species used as baseline for
chemical analyses are included in parentheses.

Location Bivalves Callinectes sapidus

Lesina 10 (Arcuatula senhousia) 24
Acquatina 8 (Mytilus galloprovincialis) 20
Gandia 6 (Mytilus galloprovincialis) 19
Pogonitsa 6 (Mytilus galloprovincialis) 19
Loudias 6 (Mytilus galloprovincialis) 15
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sampled at all the locations except Lesina Lagoon, where the non-
indigenous Asian date mussel Arcuatula senhousia has recently out-
numbered other native bivalves in the area (Scirocco and Urbano,
2018). Active predation of the selected species by the blue crab was
confirmed by multiple evidences including repeated visual observations
(all locations), analysis of stomach contents (Gandia; Gil Fernández,
2018), and collection of crushed specimens showing unequivocal signs
of predation (Acquatina and Lesina; see Blundon and Kennedy, 1982 for
examples on mytilids).

After collection, bivalves were transferred alive to the laboratory
where they had their shell length measured in mm using a caliper before
being euthanatized as already described.

2.3. Chemical analyses

Glassware and other equipment used to prepare samples for stable
isotope and elemental analyses were preventively kept in diluted ul-
trapure HNO3 65 % for 24h, rinsed with Milli-Q water (Millipore Corp.,
Bedford, MA), and dried under a laminar flow hood.

For each crab, muscle tissues were removed from both claws using a
ceramic scalpel, stored in falcon tubes, and randomly assigned to two
groups. Samples were subsequently oven dried (40 ◦C until constant
weight) and powdered using a mortar and pestle. The first group of
samples was used for carbon (C) and nitrogen (N) total content and
stable isotope analyses. To this end, subsamples of known dry weight
were pressed into Ultra-Pure tin capsules (Costech Analytical Technol-
ogies) and analyzed using an Elemental Analyser connected with an
Isotope Ratio Mass Spectrometer (Thermo Scientific Flash EA 1112 and
IRMS Delta Plus XP). Concentrations of total C and N were reported as g
kg− 1 tissue dry weight. Isotopic values were expressed in conventional δ
notation (as‰) in relation to international standards (PeeDee Belemnite
and atmospheric N2 for C and N, respectively) using the formula

δX =
[(
Rsample

/
Rstandard

)
− 1

]
×103

where X is 13C or 15N and R is the corresponding 13C/12C or 15N/14N
ratio. Analytical precision based on the standard deviation of replicates
of internal standards (International Atomic Energy Agency IAEA-NO-3
for δ15N and IAEA-CH-6 for δ13C) was 0.1 ‰ for both δ13C and δ15N.

The total concentration of the trace metals boron, barium, cadmium,
chromium, copper, iron, lithium, manganese, nickel, lead, strontium,
vanadium, and zinc (for brevity all are subsequently referred to as
“metals”) were determined on the second group of samples by wet
digestion according to Raab et al. (2005). The procedure is described in
detail elsewhere (Zotti et al., 2016); in brief, subsamples of known dry
weight were mixed with 4 ml H2O2 and 6 ml HNO3 at 180 ◦C for ten
minutes using a microwave digestion system (Milestone START D). They
were consequently cooled, diluted with ultrapure water to a final vol-
ume of 25 ml, filtered through Whatman No. 42 filter papers, and
measured for metal contents using an inductively coupled plasma
atomic emission spectrometer (ICP-AES; Thermo Scientific iCap 6000
Series). Results were expressed as mg kg− 1 tissue dry weight; the min-
imum detection limit was 0.001 mg kg− 1 for all metals.

For bivalves, the foot was dissected from each individual, dried,
powdered, and analyzed for trace metals and stable isotopes adopting
procedures identical to those described for C. sapidus tissues.

2.4. Data analysis

Values in the text are expressed as mean ± 1 SE if not otherwise
specified. Morphometric and chemical data were preliminarily checked
for normality (Shapiro-Wilk test) and homoscedasticity (Cochran's C-
test); when necessary, they were square root- or log(x + 1)-transformed
to meet the required assumptions.

We used Non-metric Multidimensional scaling (nMDS) ordination to
explore multivariate patterns of variation in the metal contents of

bivalves and crabs across locations. nMDS plots were produced using
similarity matrices based on Euclidean distances estimated on log(x +

1)-transformed and Z-scaled concentration data. In general, a Type I
(sequential sum of squares) permutational multivariate analysis of
variance (PERMANOVA; Anderson, 2005) with 9999 unrestricted per-
mutation of raw data was subsequently used to verify the effect on metal
contents of the factor “location” (fixed, five levels), and the continuous
covariate “size” as estimated by individual shell lengths in bivalves and
individual cephalothorax widths in crabs. For the latter, the PERMA-
NOVA design included the fixed factor “sex” to check for differences
between males and females. P values for PERMANOVA tests were
calculated using Monte Carlo permutations [P(MC) hereafter]. A Ca-
nonical Analysis of Principal Components (CAP) was further used to
model changes in metal concentrations in individual crabs against their
cephalothorax width across the five locations. Univariate comparisons
were performed using Pearson product-moment correlation analyses
and parametric ANOVAs followed by post-hoc Tukey's HSD tests. Sta-
tistical significance was evaluated at α = 0.05; when tests were reiter-
ated, α values were always adjusted by performing sequential
Benjamini-Hochberg corrections for multiple tests to reduce the risk of
a type-I error (Benjamini and Hochberg, 1995).

Spearman rank correlation coefficients were eventually used to
assess the congruence in metal contents between blue crabs and bi-
valves, as inter-specific comparisons performed using absolute metal
concentrations may result biased by mechanistic, taxon-specific differ-
ences in the bioaccumulation of metals (Rainbow, 2018; McCue et al.,
2020). Furthermore, to perform a general comparison of total metals
content between bivalves and blue crabs at the different sampling lo-
cations we calculated the metal pollution index (MPI) according with
the equation:

MPI = (Cf1 × Cf2… × Cfk)1/k

(Usero et al., 1997) where Cfk= concentration value of the kth metal.
When the measured contents were under the detection limits of the
instrumentation (see previous paragraph), we assumed a concentration
of 0.0005 mg kg− 1. Eventually, trophic transfer factors TTFi were
measured as the ratio of the concentration of each metal i in crabs to that
in bivalves (DeForest et al., 2007). TTFi were not calculated when
metals in bivalves or in crabs were under the detection limits.

Univariate and multivariate procedures identical to those described
for metals were adopted to analyse isotopic data. Noticeably, the ma-
jority of crabs showed C:N ratios <3.5; conversely, bivalves from Lesina
and Acquatina, and to a minor extent from Loudias, had ratios exceeding
3.5 (Table S2, online supplementary material). Lipids are depleted in 13C
compared to proteins and carbohydrates and can significantly bias δ13C
estimations when samples have a lipid content>5 %, corresponding to a
C:N ratio > 3.5 (Post et al., 2007). Hence, here the δ13C of individuals
characterized by a C:N value >3.5 was normalized using the mathe-
matical procedure proposed by Post et al. (2007).

We used individual δ13C and δ15N values of crabs from each location
to measure in ‰2 their isotopic niche in terms of standard ellipse area
(SEA; Jackson et al., 2011). Given the different number of specimens per
location (Table 1) a sample size-corrected version of SEA was calculated
(SEAc hereafter), representing the core (40 %) isotopic niche area and
allowing for robust comparisons across samples of varying numerosity
(Jackson et al., 2011). For the sake of completeness, we also estimated
four additional metrics originally described by Layman et al. (2007), i.e.,
nitrogen range (NR) and carbon range (CR) as indicators of the total ni-
trogen and carbon range exploited by each population, themean distance
to centroid (CD) as a measure of population trophic diversity, the stan-
dard deviation of nearest neighbour distance (SDNND) as an index of
population trophic evenness. SEAc estimations were used for illustrative
purposes; for statistical comparisons we calculated the Bayesian equiv-
alent SEAB of SEAc (Jackson et al., 2011) using 100,000 posterior iter-
ations of SEAc to compute credible intervals. Pairwise comparisons were
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performed by calculating the probability that a population at location i
had a SEAB posterior estimate differing from that calculated at location k
with a probability of at least 95 % (Jackson et al., 2011). Since SEA
estimations are independent from any inter-population difference in the
isotopic baseline, we performed no correction for possible baseline shifts
(e.g., Magioli et al., 2019).

The trophic position of crabs at the five locations (TP hereafter) was
estimated implementing a Bayesian approach comparing the δ13C and
δ15N values of the crabs themselves and those of bivalves, the latter
adopted as isotopic baselines. This approach explicitly takes into
consideration individual variability and propagation of sampling error
(trophic enrichment factors, and measurements of baselines and con-
sumers) in the modelling procedure and posterior estimates of param-
eters (Quezada-Romegialli et al., 2018). Specifically, here we used a
single-baseline model with 5 parallel chains and 100,000 adaptive it-
erations.M. galloprovincialis and A. senhousia are filter feeders with diets
mainly relying on phytoplankton and suspended particulate matter
(Ezgeta-Balić et al., 2014); hence, a trophic position λ = 2 was assumed
for both taxa. Given the omnivorous trophic habits of the blue crab,
calculations were carried out adopting trophic enrichment factors of
0.27 ± 2.44 for δ13C and 2.57 ± 1.72 for δ15N (mean ± 1SD, n = 27 and
65, respectively). They were estimated as the average of published
fractionation factors for aquatic crustaceans (including C. sapidus)
feeding on both vegetal and animal items (Mancinelli and Bardelli,
2022; Mancinelli et al., 2022), and more consistent with other literature
syntheses focused on crustaceans (Vanderklift and Ponsard, 2003;
Mancinelli, 2012a; Carrozzo et al., 2014). Pairwise comparisons on
posterior distributions of TP estimates were carried out as previously
described for isotopic niche metrics.

All statistical procedures were implemented in the R package (R
Development Core Team, 2023). Specifically, nMDS and PERMANOVA
analyses were performed using themetaMDS and and adonis functions of
the vegan library, respectively (Wood and Scheipl, 2020); C. sapidus
isotopic niche metrics were calculated using the package SIBER (Jackson
and Parnell, 2023), while tRophicPosition (Quezada-Romegialli et al.,
2022) was adopted to estimate trophic positions.

3. Results

3.1. Trace metals in bivalves

The mean shell lengths of bivalves collected at each sampling loca-
tion varied between 22.9 and 33.4 mm (Table 2), with significant dif-
ferences in size observed only between Arcuatula senhousia from Lesina
and Mytilus galloprovincialis from Gandia (HSD test after 1-way ANOVA,
P = 0.01; P > 0.05 for the remaining comparisons).

Metal contents showed a marked pattern of spatial variation (Fig. 2;
see Table S3 in the online supplementary material for mean concen-
trations ±1SE), and significant, size-independent differences were
confirmed by PERMANOVA (factor “location”: Pseudo-F4,31 = 16.5, P
(MC) = 0.0001; continuous covariate “size”, Pseudo-F1,31 = 3.3, P =

0.08). Pairwise comparisons testing for inter-site differences were like-
wise significant [maximum P(MC) = 0.03 for the comparison Gandia vs.
Loudias). Similarly remarkable among-location variations were
observed in MPI indices (Fig. 3; 1-way ANOVA, F4,31 = 15.9, P <

0.0001). Lesina showed the highest index (10.8), significantly different
from those characterizing the remaining locations with the exception of
Pogonitsa (HSD test, P = 0.32). Gandia, Pogonitsa, and Acquatina
showed similar (HSD tests, P > 0.05 for all bivariate comparisons) in-
termediate values ranging between 4.1 (Acquatina) and 7.7 (Pogonitsa),
while the MPI estimated for Loudias (0.9 ± 0.1) was significantly lower
than those determined in other locations (Fig. 3; HSD tests, max P =

0.003 for the comparison Loudias vs. Acquatina).
At a single-metal level, significant differences were generally

observed (1-way ANOVAs; P always <0.05); Cd, Fe, Li, Pb, V in
A. senhousia from Lesina and Ba, Cr, Cu, Ni, Zn in M. galloprovincialis

from Pogonitsa showed significantly higher contents than the remaining
locations (HSD tests, P always <0.05; see also Table S3, online supple-
mentary material). M. galloprovincialis from Acquatina showed peak
concentrations only for B and Sr, with Cd and Li contents comparable to
the maximum values observed in A. senhousia from Lesina (HSD tests, P
> 0.05 for both comparisons). In contrast, Loudias generally showed the
lowest metal contents with the exception of Cd, V, and Zn, followed by
Gandia (HSD tests, P always <0.05); noticeably, Ni content was under
the detection limits at both Loudias and Acquatina (Table S3).

3.2. Trace metals in blue crabs

A total of 97 adult crabs were analyzed, 51 females and 46 males
(Table 2). Their carapace widths varied significantly among locations as
well between sexes (2-way ANOVA, interaction factor “location×sex”,
F4,87 = 7.6, P < 0.0001). Males from Acquatina and Pogonitsa were
significantly larger than those from the remaining locations (HSD tests,
P always <0.05), while negligible differences were observed in the size
of females (min P= 0.8 for Lesina vs. Loudias). Furthermore, males from
Gandia were significantly smaller than females (P = 0.001), while
negligible sex-related differences occurred for the remaining locations
(min P = 0.09 for Pogonitsa).

Metal contents in crabs varied significantly among locations [Fig. 2,
Table 3; P(MC) always<0.05 for all pair-wise comparisons; see Table S4
in the online supplementary material for mean concentrations ±1SE].
Since males and females showed no significant differences, the factor
“sex” was not considered further. Conversely, a significant effect for the
interaction term “location×size” was observed (Table 3); a CAP analysis
confirmed a substantial co-variation between crabs' size and metal
contents for all the locations except Pogonitsa (Fig. S1, online supple-
mentary material). Additional univariate analyses showed significant
among-location differences for all metals (1-way ANOVAs: P always
<0.05) with the exception of Sr (F4,92= 1.6, P= 0.18); they were related
with crabs' size only for a negligible number of location/metal combi-
nations (8 out of 65; Table S5, online supplementary material).

Significant location-dependent differences in metal contents were

Table 2
Summary of information on the sex (F= females, M=males), number (in square
brackets), and size (CW = mean carapace width, in mm; SE in round brackets,
range in italics) of Callinectes sapidus specimens collected at the five study lo-
cations. Taxonomic information on the bivalve species used as baseline for
chemical analyses are included (Mg = Mytilus galloprovincialis. As = Arcuatula
senhousia), together with details on the size (SL = shell length, in mm; SE in
round brackets, range in italics) of the specimens.

Location Bivalves Callinectes sapidus

Taxon SL (mm) Sex CW (mm)

Lesina As 22.9 (1.5) 18–32 F [12] 152.2 (6.3) 104–175
M [12] 131.7 (5.3) 102–154
Total 141.9 (4.6)

Acquatina Mg 29.1 (3.1) 18–39 F [10] 153.6 (8.6) 101–183
M [10] 170.2 (4.3) 143–196
Total 161.9 (5.1)

Gandia Mg 33.4 (0.5) 32–35 F [12] 141.8 (9.2) 99–186
M [7] 97.4 (6.9) 70–128
Total 125.5 (8.1)

Pogonitsa Mg 26.7 (1.1) 23–30 F [10] 136.4 (4.7) 122–167
M [9] 172.3 (3.8) 158–192
Total 153.4 (5.2)

Loudias Mg 29.9 (3.1) 19–35 F [7] 132.1 (7.9) 99–153
M [8] 116.9 (9.5) 81–152
Total 124.1 (6.4)
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observed between crabs and bivalves [two-way PERMANOVA with
“location” and “taxon” as fixed factors: interaction factor “loca-
tion×taxon”: Pseudo-F4,131 = 20.8, P(MC) = 0.001; bivariate inter-
specific tests performed within each location: P(MC) always <0.001].
MPI values in crabs differed significantly among the five locations (1-
way ANOVA, F4,92 = 12.1, P < 0.0001). With the exception of Loudias,
their MPI values were generally one order of magnitude lower than bi-
valves (Fig. 3) and showed a significantly different pattern of among-
location variation (Pearson r = 0.13, P = 0.82, d.f. = 3). Acquatina
showed the highest index (2.2 ± 0.1, mean ± 1SE; HSD tests, min P =

0.004 for the comparison Lesina vs. Acquatina); Loudias was charac-
terized by the lowest MPI (0.9 ± 0.1), significantly different from that
estimated for Lesina (Fig. 3B; HSD test, P = 0.04) but not from those

Fig. 2. 3d-nMDS plots based on Euclidean distance similarity matrices of trace
metal concentrations in bivalves (top) and in Callinectes sapidus (bottom) from
the five sampling locations.

Fig. 3. Metal pollution indices (MPI) in bivalves (top) and in Callinectes sapidus
(bottom) from the five sampling locations. The results of post-hoc bivariate
comparisons (Tukey HSD tests) are included; locations showing identical letters
do not differ at P < 0.05. Please note the different scales in each plot.

Table 3
Summary of PERMANOVA results testing for the effects of sex and location as
orthogonal fixed factors and size (carapace width, CW) as a continuous covariate
on Callinectes sapidus trace metal contents and δ13C and δ15N values. Significant
effects are reported in bold.

Trace metals Stable isotopes

Source d.f. Pseudo-F P(MC) Pseudo-F P(MC)

CW (1) 1 5.25 <0.001 1.2 0.09
Location (2) 4 9.22 <0.001 32.08 0.001
Sex (3) 1 1.59 0.14 1.92 0.15
1 × 2 4 1.82 0.01 0.88 0.54
1 × 3 1 0.74 0.61 2.77 0.09
2 × 3 4 1.21 0.21 1.61 0.14
1 × 2 × 3 4 0.87 0.63 0.51 0.86
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characterizing Gandia (1.4 ± 0.2) and Pogonitsa (1.1 ± 0.2; P always
>0.05).

1-way ANOVAs performed at a single-metal level generally
confirmed the lower metal concentrations in crabs as compared with
bivalves, yet several exceptions were represented by Cd at Pogonitsa, Cu
at Lesina, Acquatina, Gandia, and Loudias, Fe at Loudias, and Ni at
Acquatina and Loudias (HSD tests, P always >0.05). Furthermore, while
metal contents in crabs and bivalves from Pogonitsa showed a relatively
low degree of correlation (Spearman ρ = 0.53, P = 0.07, d.f. = 11),
positive relationships with different levels of significance were observed
for the remaining locations (Fig. S2, online supplementary material).

The trophic transfer indices estimated for crabs (Table 4) showed
relatively low values (overall TTF: 1.39 ± 0.38, mean ± SE) and a
pronounced variability, ranging between 0.002 (Mn at Pogonitsa) and
15.8 (Cu at Gandia) with the majority of the indices <1 (72 %). In
general, Cu and Zn were the metals showing the highest TTFs; values>1
were observed also for Cd, Sr, and V and, to a minor extent, for Ba, Fe,
and Mn (Table 4).

3.3. Stable isotope analysis

A PERMANOVA performed on blue crabs δ13C and δ15N values
(Table 5) with “sex” and “location” as orthogonal fixed factors and
“body size” (CW) as a continuous covariate indicated a significant effect
only for the factor “location” (Table 3). Thus, the effects of sex and body
size were not considered in further isotopic analyses.

Bayesian estimations of standard ellipse areas (SEAB) varied among
the study locations independently from the number of analyzed crabs
(Pearson r = − 0.68, P = 0.2, d.f. = 3). SEAB values ranged between
maxima of 13.9 and 11.9 ‰2 determined at Gandia and Loudias,
respectively, to a minimum value of 1.3‰2 determined for Lesina, with
Pogonitsa and Acquatina showing intermediate areas ranging between
6.1 and 6.2 ‰2 (Table 6; see also Fig. S3, online supplementary mate-
rial). Bivariate tests indicated negligible differences in SEAB values be-
tween Gandia and Loudias, as well as between Pogonitsa and Acquatina
(Table 6). With the exclusion of the carbon range CR, other Layman
metrics showed a pattern of variation across the study locations similar
to that verified for SEAB (Table 6; minimum Pearson r = 0.94, P = 0.02,
d.f. = 3 for NR; for CR: r = 0.76, P = 0.13, d.f. = 3).

The trophic position of C. sapidus estimated using the δ13C and δ15N
values of bivalves as baselines (Table 6) showed a remarkable among-
location variability, with mean values ranging between 2.7 (Pogo-
nitsa), indicating omnivorous trophic habits including both animal and
vegetal items, and 4.1 (Loudias), suggesting a diet completely based on
animal prey. Bivariate tests indicated that Gandia and Loudias had
modal TP estimations significantly different from Lesina, the latter in
turn significantly higher than Acquatina and Pogonitsa (Table 6).

Noticeably, for most of the metals the variation of crabs' TTF values
across locations was related with their trophic position; the only ex-
ceptions were Zn and Cd, the latter showing a negative co-variation with
TP values (Fig. 4). Furthermore, a significant positive relationship was
observed between TP estimations and the degree of rank-correlation ρ
between the metals content of crabs and bivalves (Fig. 4; Pearson r =
0.89, P = 0.04, d.f. = 3).

4. Discussion

4.1. Trace metals in bivalves

Independently from the sampling location, the mussel species
included in the present study showed concentrations of hazardous
metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) largely lower than the limits
set by the European Union and the Food and Agriculture Organization
(FAO, 1983; FAO/WHO, 1989; EC, 2006; see Table S6, online supple-
mentary material). Accordingly, a low degree of metal contamination
can be assumed for all the investigated systems. Furthermore, metal
contents showed to vary significantly among locations independently
from the size of the analyzed bivalves. Caution should be taken when
considering these conclusions, as two methodological issues deserve to
be explicitly considered. Firstly, a relatively low number of bivalve
specimens (6 to 10, Table 1) were analyzed from each location. Indeed,
this investigation was not specifically designed as a biomonitoring study
exclusively focused on bivalves, thus requiring large sample sizes
(Daskalakis, 1996; Saavedra et al., 2004a; Saavedra et al., 2009) and
standardized approaches such as transplanting to cope with taxonomic
differences (see further in this section; Cao et al., 2023). Since statistical
analyses indicated for bivalves highly significant inter-location differ-
ences not related with size, we are confident of the robustness of our
results within the specific context of the study; nevertheless, additional
biomonitoring studies are necessarily required to confirm their gener-
ality. Secondly, we used Mytilus galloprovincialis across all the study lo-
cations with the exception of the Lesina Lagoon, where Arcuatula
senhousia was analyzed.

Bivalves show significant inter-specific as well as intra-specific, size-
related differences in the degree of metals accumulation (Saavedra et al.,
2004b; Cai and Wang, 2019; but see Saavedra et al., 2004a). However,
no single species of bivalve can be ubiquitously found, and in large-scale
biomonitoring programs it is often necessary to collect multiple species;
in this case, taxonomically-close species with similar life and trophic
strategies should be chosen (Cao et al., 2023 and literature cited). We
assumed A. senhousia as a surrogate of M. galloprovincialis since they
belong to the same family (Mytilidae) and are epibenthic sessile filter-
feeders (e.g., Inoue and Yamamuro, 2000); studies on coexisting pop-
ulations of the two mussel species provided further evidence for the
assumption, as negligible differences in C and N isotopic values (Feng
et al., 2014) as well as in Hg, Cu, Pb, and Zn contents (Feng et al., 2016)
have been observed. Finally, and most importantly, all the main con-
clusions of this study still holds if the data on Lesina Lagoon are not
considered (see e.g., Fig. 4).

Table 4
Trophic transfer factors (TTF) of metals in Callinectes sapidus calculated for each
study location. Values >1 are reported in bold. For Acquatina, Gandia, and
Loudias the TTF of Ni was not estimated as the metal content in bivalves or
C. sapidus was under the detection limit of the instrumentation.

Metal/location Lesina Acquatina Gandia Pogonitsa Loudias

B 0.08 0.02 0.26 0.09 0.13
Ba 0.06 0.46 1.03 0.01 2.15
Cd 0.35 0.27 0.74 2.63 1.42
Cr 0.02 0.08 0.83 0.01 0.47
Cu 2.41 10.56 15.8 0.92 14.97
Fe 0.01 0.13 0.07 0.02 1.14
Li 0.22 0.18 0.59 0.57 0.97
Mn 0.12 0.05 0.97 <0.01 1.71
Ni 0.03 – – 0.05 –
Pb 0.03 0.23 0.2 0.08 0.33
Sr 0.8 0.31 2.05 0.39 3.67
V 0.3 0.7 1.22 1.51 0.6
Zn 3.37 3.91 2.48 0.52 0.66

Table 5
Mean δ15N and δ13C values (SD in parentheses) of bivalves and Callinectes sapidus
from the five study locations.

Bivalves Callinectes sapidus

Lesina* − 20.68 (0.15) 11.55 (0.17) − 16.82 (0.84) 14.01 (0.54)
Acquatina − 23.01 (0.49) 7.33 (0.47) − 19.74 (2.27) 10.69 (0.87)
Gandia − 21.52 (0.39) 7.03 (0.27) − 22.73 (2.88) 11.68 (1.6)
Pogonitsa − 19.87 (0.44) 7.61 (0.39) − 17.88 (1.49) 9.51 (1.28)
Loudias − 23.15 (0.58) 7.89 (0.21) − 20.73 (1.83) 13.16 (2.26)

* Bivalve species = Arcuatula senhousia; Mytilus galloprovincialis for the
remaining locations.
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4.2. Trace metals in crabs

As for bivalves, metal contents in blue crabs were remarkably lower
than international reference levels for human consumption (Table S6,
online supplementary material). The blue crab represents an emergent
target species as a shellfish product in invaded Mediterranean habitats
(Mancinelli et al., 2017c; Kevrekidis and Antoniadou, 2018; Glamuzina
et al., 2021; Kevrekidis et al., 2023). This is the first large-scale study
providing a comparative assessment of metal contamination in

C. sapidus in Mediterranean waters, and even though additional, year-
long studies are necessary to corroborate our results, they nonetheless
suggest a low ecotoxicological risk for the crab.

Noticeably, our findings indicated that metal contents in crabs varied
significantly across the five locations independently from sex; yet, body
size exerted a significant effect. The actual influence of sex and size on
the accumulation of contaminants in blue crabs remains debated.
Depending on the geographical location and the metals analyzed, past
investigations have highlighted either significant or negligible sex- and
size-related effects (Sastre et al., 1999; Adams and Engel, 2014; Taylor
and Calabrese, 2018; Salvat-Leal et al., 2020). Furthermore, when sig-
nificant relationships occurred between the size of crabs and their
content of a specific metal, they varied from negative to positive
depending on location (e.g., for Pb: Genç and Yilmaz, 2017; Salvat-Leal
et al., 2020). Here we observed a similar ambiguity: while CAP analysis
showed in a multivariate context a generalized co-variation between
size and metals content with the exclusion of Pogonitsa, at a single-metal
scale the effect of crabs' size was limited and showed inconsistent pat-
terns of variation across locations (Table S5, online materials). The
factors governing the variability in metals accumulation in blue crabs
are multiple, including the complex interplay of external inputs with
physicochemical and biogeochemical conditions influencing, in turn,
metal mobilization at a local scale (Taylor and Calabrese, 2018).
Furthermore, differences in the morphometry of the analyzed crabs
(Table 2), may have reflected in location-specific dilution or accumu-
lation effects (Salvat-Leal et al., 2020): molting frequency in blue crab is
inversely related with body size (Millikin and Williams, 1984), and
contaminants sequestration in the exoskeleton during molting is an
important mechanism for eliminating trace metals in brachyurans
(Engel and Brouwer, 1987; Bergey and Weis, 2007).

This study showed a remarkable inconsistency in metals content
between bivalves and crabs across the five investigated locations, with
most metals showing concentrations higher in bivalves than in crabs,
ultimately reflecting in generally low trophic transfer indices. Notice-
ably, the trophic position of C. sapidus varied by approximately one level
among locations, scaling positively with the degree of trophic transfer of
most of metals as well as with the consistency of crabs' metal profiles
with those of bivalves.

Two mutually non-exclusive scenarios can explain these results. The
first assumes an influence of metal contamination on the feeding habits
of the crab. Heavy metals can determine significant behavioral alter-
ations in crustaceans (Perez and Wallace, 2004; Weis et al., 2011). In
particular, increasing habitat contamination was related with blue crabs
showing an impaired predatory behavior, a lower trophic position, and
bioaccumulation patterns more representative of low-level resources (e.
g., aquatic plants or leaf detritus: Reichmuth et al., 2009, 2010). Here, a
behaviorally-mediated trophic effect cannot be excluded, as Reichmuth

Table 6
Posterior Bayesian estimations of standard ellipse areas SEAB (A) and trophic positions (B) of Callinectes sapidus from the five study locations. SEAB estimations are
expressed in‰2. For both metrics, modal values and 95 % confidence intervals are reported; identical letters in parentheses indicate that values do not differ with a
probability of at least 95 %. In (A), for the sake of completeness sample size-corrected standard ellipse areas (SEAc; see also Fig. S3 in the supplementary material C),
nitrogen ranges (NR), carbon ranges (CR), mean distances to centroid (CD), and standard deviations of nearest neighbour distance (SDNND) are included.

Lesina Acquatina Gandia Pogonitsa Loudias

A) Isotopic niche
SEAB (mode) 1.28 6.22(a) 13.89(b) 6.11(a) 11.96(b)
SEAB (95 % CI) 0.88–2.01 3.83–8.53 8.75–18.33 3.63–9.33 8.54–19.03
SEAc 1.4 6.52 15.14 6.32 12.17
NR 2.65 3.24 7.55 5.18 6.57
CR 3.31 8.63 9.22 4.78 6.97
CD 0.85 2.06 2.91 1.77 2.52
SDNND 0.25 0.4 0.78 0.51 0.83

B) Trophic position
Mode 2.92(a) 3.36 3.78(b) 2.67(a) 4.16(b)
95 % CI 2.75–3.21 3.09–3.7 3.41–4.32 2.44–3.09 3.79–4.78

Fig. 4. Trophic position of Callinectes sapidus across the five study locations vs.
metals trophic transfer factors (TTF; see Table 2 for means ±1SE; top) and
Spearman rank correlation coefficients ρ estimating the consistency of metal
profiles in bivalves and in C. sapidus (bottom). See text and Fig. S2 in the online
supplementary material for details.

R. De Giorgi et al.



Marine Pollution Bulletin 206 (2024) 116715

9

et al. (2010) found concentrations of Cr, Cu, and Pb (i.e., 1.1, 15.4, and
0.37 mg kg− 1, respectively) similar to or lower than those observed in
this study (Table S4, online supplementary material). However, a
pivotal yet improbable implication of this scenario is that the five lo-
cations investigated here, notwithstanding their considerable environ-
mental differences (Table S1), offered to the crab similar trophic
conditions in terms of e.g., resource diversity and availability, and that
its trophic position was uniquely determined by behavioral mechanisms
mediated by local contamination levels. A second hypothesis hinges on
omnivory of the crab and how it opportunistically varies in response to
local resource availability. Noticeably, at Acquatina, Lesina, and Pogo-
nitsa crabs had TP values significantly lower than those determined at
Gandia and Loudias. The first three locations are confined lagoons
characterized by the occurrence of submerged vegetation represented by
macroalgae or seagrasses, while Gandia and Loudias are open-sea hab-
itats characterized by benthic environments with low or negligible
vegetation cover (Table S1). Bivalves represent a major component of
the crab's diet, yet conventional gut content analyses and stable isotope
studies clearly confirmed that it feeds on multiple trophic levels, and
that trophic positions may vary substantially depending on season,
location, and ontogenetic stage (Hines, 2007; Mancinelli et al., 2013,
2016, 2017d; Rady et al., 2018; Prado et al., 2021). The occurrence of
living and non-living plant material in the lagoons, together with their
associated assemblages of primary consumers, implies that in these en-
vironments the blue crab may opportunistically feed on low-trophic
level benthic resources characterized by contamination patterns
differing from that of bivalves (among others, see Ghosn et al., 2020 for
an example from a Mediterranean coastal area), ultimately obscuring
any transfer effect. Conversely, in less-vegetated systems under open sea
conditions the lack of primary producers and associated fauna may
induce the blue crab, besides preying on bivalves, to focus on other
animal prey from higher trophic levels and characterized by higher
metal burdens. The generally higher TTF values, coupled with the higher
trophic positions observed in blue crabs from Gandia and Loudias
indirectly support this hypothesis, further confirmed by isotopic niche
analyses. Indeed, compared with the remaining locations, crabs from
Gandia and Loudias showed the largest isotopic niches (SEAB), total
nitrogen and carbon ranges (NR and CR) trophic diversity (CD) and
evenness (SDNND), ultimately indicating a higher intra-specific het-
erogeneity in trophic habits. Resource-related differences in ingestion
and assimilation rates, coupled with variations in uptake and excretion
kinetics of contaminants cannot be excluded, as they may have further
determined the observed differences (Jardine et al., 2006).

5. Conclusions

Regardless from the underlying causative mechanisms, our findings
indicated that the opportunistic omnivory of the blue crab might hinder
its use as a bioindicator, as locations-specific differences in trophic
habits might ultimately reflect on metals content. Noticeably, besides
C. sapidus a number of omnivorous crustaceans have been recommended
for biomonitoring purposes, including other portunids (e.g., Callinectes
danae: Bordon et al., 2016; Portunus segnis: Annabi et al., 2018) the green
crab Carcinus maenas (Ben-Khedher et al., 2014) and the Louisiana
crayfish Procambarus clarkii (Suárez-Serrano et al., 2010; Henriques
et al., 2014). Our results emphasize the urgent need to identify bio-
monitor animal species - in marine as well as in other environments -
after a thorough scrutiny of their trophic habits, as originally suggested
by Rainbow (1995).

In conclusion, invasive omnivores are recognized to exert significant,
hard-to-be predicted threats on ecosystem functions because of their
ability to directly and indirectly impact multiple trophic levels (Shea
and Chesson, 2002; Romanuk et al., 2009; Jackson and Britton, 2014;
Pettitt-Wade et al., 2015; see also Médoc et al., 2018). Our study sug-
gested that they might represent an open issue also in ecotoxicology.
However, we indicated that an advanced assessment of their trophic

habits by stable isotope analysis could help in explaining the patterns of
variation in contamination levels and, ultimately, provide more robust
information for e.g., biomonitoring purposes.
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