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Abstract—This paper proposes a space-vector dynamic model
of the Synchronous Reluctance Motor (SynRM) including both
self-saturation, cross-saturation effects, and iron losses. The model
is expressed in state form, where the magnetizing current has
been selected as a state variable. The proposed dynamic model
is based on an original function between the stator flux and the
magnetizing current components, improving a previously developed
magnetic model. Additionally, the proposed model includes, besides
the magnetic saturation, also iron losses. The proposed model
requires 11 coefficients, among which 6 describe the self-saturation
on both axes and 5 describe the cross-saturation. This paper presents
also, from one side a technique for the estimation of the parameters
of the magnetic model, and from the other side a purposely developed
methodology for measuring the iron losses resistance as well as its
variation with the speed and stator current amplitude. The proposed
parameter estimation technique has been tested in both numerical
simulation and experimentally on a suitably developed test set-up
and the proposed model has been thus validated experimentally

Index Terms—Synchronous Reluctance Motor (SynRM), space-
vector dynamic model, magnetic model, iron losses, parameters’
estimation

I. INTRODUCTION

IN the last years, Synchronous Reluctance Motors (SynRMs)
have proved to be a good alternative to both Induction Motors

(IMs) and Permanent Magnet Synchronous Motors (PMSMs)
[2]–[4] thanks to their features of simplicity, robustness, and
cheapness. On the one hand, they do not present rotor joule losses,
as in the IM case, on the other hand, they do not require expensive
permanent magnets on the rotor, as in the PMSM case. Moreover,
they offer overload capability and high dynamical performance
[5]–[7].

As for the SynRM controllability and related dynamical per-
formance, it is highly dependent on its proper dynamic modeling.
From this point of view, the proper representation of the magnetic
behavior of the machine, including both self and cross-saturation,
is crucial. The definition of the flux versus current characteristics
(or the current versus flux ones) of the magnetic model and the
identification of the related parameters have been addressed in
the scientific literature [8]–[14].

As for the dynamic model of the SynRM, [15] treats it in
terms of its space-vector state formulation with two approaches,
assuming either the stator flux or the stator current components
as state variables. It also makes an interesting review of the
approaches adopted in the scientific literature. If stator currents
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are assumed as state variables, usually the analytical expressions
of the corresponding inductances versus current are provided,
derived from the expression of the flux versus current (initially
constant and then linearly decreasing). In particular, [16] models
the inductance as a piecewise function, while [17] improves it by
including the cross-saturation effect, [18] models the inductance
by employing polynomials whose 13 coefficients are estimated by
least-squares (LS), and finally [19] models the inductance through
rational functions requiring 16 coefficients, but presenting the
significant drawback of not fulfilling the reciprocity conditions.

More recently, [20], [21] have proposed flux versus current
functions based on exponentials. As a further improvement,
[22] has proposed a more accurate representation of the cross
saturation phenomenon in particular for very low and very high
values of the magnetizing current. In detail, the model proposed
in [22] is based on hyperbolic functions. In the very recent past,
[13] has proposed a physically motivated analytical non-linear
flux versus current functions permitting consideration of both self
and cross saturation. The model in [13] correctly guarantees the
reciprocity conditions to be respected. As for the self-saturation
phenomenon, it proposes a combination of the tanh(·) and a
linear function. From this point of view, the approach in [13]
is the same already proposed by the authors in [22]. As for the
cross-saturation phenomenon, the approach in [13] is only slightly
different from that proposed by the authors in [22]. The specific
differences are highlighted in Sec. II-D.

If the stator flux is assumed as a state variable, an inductance
versus flux function is typically provided, derived from the current
versus flux function. In particular, [23] models the current versus
flux as a power function and consequently deduces the inductance
versus flux function, even if the cross-saturation effect has not
been considered. Likewise, [24] models the inductance utilizing
an arctangent function depending on 3 coefficients, with the
advantage that the coefficients are physically meaningful and
therefore the fitting procedure is easier, but with the same disad-
vantage as [23] since the cross-saturation is neglected. In contrast
to these works, [15] proposes a current versus flux augmented
power function, so that the cross-saturation can be taken into
account, and depending on 9 coefficients: since this approach is
based on the current versus flux expression, its coefficients present
a less physical meaning.

Finally, [11] addresses a current versus flux approach, where
the bivariate approach is introduced to take into account the cross
saturation. An effective strategy for determining the polynomial
coefficients is proposed as well.

As for the techniques for the magnetic characterization of
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the SynRM, most of them require the SynRM drive to work
at a constant speed, which results in the need for a speed-
controlled prime mover drive with 4-quadrant features [25].
Other identification techniques are based either on acceleration
tests [26] or on large-signal high-frequency injection at stand-
still [27]: both methods are hardly adoptable when the drive
cannot be mechanically disconnected from the load. Recently, two
interesting solutions have been proposed for SynRM identification
with stand-still tests, without the need for locking the rotor [28],
[29].

Besides the magnetic saturation, another aspect to be accounted
for in modeling SynRMs are the iron losses, which may have a
significant effect on the current angles adopted for some control
strategies [30]–[37]. As a matter of fact, iron losses cause a phase
displacement between the magnetizing and stator currents space
vectors, and cause a reduction of the producible electromagnetic
torque. Not many papers in the scientific literature treat the
inclusion of iron losses in the dynamic model of SynRMs. Besides
writing the dynamic voltage equation of the motor, none of these
papers, however, express the dynamic model in state form, which
is particularly useful for control applications.

This paper tries to fill in these gaps in scientific literature.
More specifically, it improves the magnetic model of the SynRM,
proposing a more accurate mathematical representation. The mag-
netic model in [20], [21] has been improved here to better describe
the cross saturation phenomenon in the low stator currents region.
Moreover, a further improvement of [20], [21] is that the pro-
posed cross saturation model respects the physical condition for
which the cross saturation inductance is positive when the stator
current components present opposite signs and viceversa [38].
Additionally, as an original contribution and further improvement
to [22], the iron losses have been included in the model and
the complete state representation of the model including both the
magnetic saturation and the iron losses has been developed. Such
a theoretical contribution, to the best of the authors’ knowledge, is
not present in the scientific literature. Finally, this paper proposes
a technique for the estimation of the set of parameters of the
proposed model. The proposed parameter estimation technique
has been tested in both numerical simulation and experimentally
on a suitably developed test set-up. The proposed dynamic model
has been finally validated experimentally on a suitably devised
test set-up.

This paper is an upgrade and an improvement of [39].

II. THE DYNAMIC MODEL CONSIDERING MAGNETIC
SATURATION AND IRON LOSSES

Iron losses in SynRMs occur on both the stator and the rotor.
The losses in the stator are similar to those in a conventional
induction-machine stator. The rotor would ideally have zero
losses since the mmf (magnetomotive force) wave rotates at
the same angular speed as the rotor. In real motors, however,
the rotor can be subjected to high-frequency flux changes as
the rotor axial laminations interact with the stator teeth. If the
stator is badly designed (i.e., with wide teeth openings) such
losses may be considerable [30]. Moreover, space harmonics of
the mmf combined with time harmonics of the supply voltage
cause further iron losses in the rotor. A very accurate space-
vector circuital model of the SynRM including iron losses has
been presented in [36], shown in Fig. 1. This complete scheme
considers three resistances matrices accounting for the iron losses,

Fig. 1: Complete space-vector circuital model of the SynRM
including iron losses

called R1, R2, and R3. As clearly explained in [36], these
three resistance matrices are subjected to three different voltage
vectors, respectively dΨs/dt + jωrΨs, dΨs/dt and jωrΨ. R1

accounts for the major contribution of iron losses. R2 represents
the transient iron losses. It is reasonable to assume that R1 is a
symmetric matrix, while R2 is an asymmetric one. In the case
of a transverse-laminated rotor R2x < R2y is generally true;
on the contrary, for an axially laminated rotor, R2x > R2y is
valid, because of eddy currents due to (transient) y-axis excitation,
which are not impeded by lamination. Stator harmonics and the
slotted structure cause additional losses in the rotor. Since these
losses depend on speed, they can be accounted for by the R3

matrix. This issue has been specifically treated in [37] for an
axially laminated rotor. In that case, R3x = R2y was assumed,
while R3y and R2x were neglected. As clearly stated in [36],
and largely assumed in the scientific literature, steady-state stator
harmonics, and slotting can be neglected, R3 → ∞, as well
as transient iron losses, R2 → ∞, leading to the simplified
space-vector circuit in Fig. 2 with a unique resistance matrix R0

that, for the above-cited reasons, can be assumed symmetrical
and therefore indicated as a scalar in Fig. 2. Such scalar has
been further assumed constant, after the characterization of the
SynRM under test (see Fig. 10). For the above explanations, the
dynamic model of the SynRM will be developed starting from
the simplified electric circuit in Fig. 2.

In Fig. 2, Ls and L′
s are respectively the static and dynamic sta-

tor inductances matrices, depending on the direct and quadrature
components of the magnetizing current imx, imy and are defined
in the following subsection. From Fig. 2 it is clear that, because
of the iron losses, the magnetizing current does not coincide with
the stator current, in both amplitude and phase, which strongly
influences the control action.

A. Magnetic model of the SynRM including cross-saturation
As for the magnetic characteristics of the SynRM, the follow-

ing functions are proposed, which consider both the self and
cross-saturation effects and describe the relationships between
the direct and quadrature components of the stator fluxes and
the corresponding components of the magnetizing currents in
the synchronous reference frame. The stator flux direct x and
quadrature y components have been defined as follows:

Ψsx = 2α1

(
1

1 + e−β1imx
− 1

2

)
+ η1imx +∆Ψsx

Ψsy = 2α2

(
1

1 + e−β2imy
− 1

2

)
+ η2imy +∆Ψsy

(1)
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Fig. 2: Simplified space-vector circuital model of the SynRM
including iron losses

The first terms of (1) are the self-saturation terms, composed
of an exponential term plus a linear one. The self-saturation
phenomenon on each axis is described by 3 parameters, namely
α1,2, β1,2, and η1,2.

The cross-saturation flux terms have been derived starting from
the following co-energy variation function, whose definition is
one of the original contributions of this paper:

∆W ′ = f (imx) g (imy) =

= γ
1

1 + e

(
− imx−µ1 sgn(imx)

σ1
sgn(imx)

)
1

1 + e

(
− imy−µ2 sgn(imy)

σ2
sgn(imy)

) =

= γ
1

1 + e−iX

1

1 + e−iY
(2)

where:

iX =
imx − µ1 sgn (imx)

σ1
sgn (imx)

iY =
imy − µ2 sgn (imy)

σ2
sgn (imy)

From which the cross saturation flux variation terms can be
computed as:

∆Ψsx =
d∆W ′

dimx
= − γ

σ1

sgn (imx)(
e

iX
2 + e−

iX
2

)2

1

1 + e−iY

∆Ψsy =
d∆W ′

dimy
= − γ

σ2

sgn (imy)(
e

iY
2 + e−

iY
2

)2

1

1 + e−iX

(3)

The cross saturation phenomenon is described by 5 parameters:
γ, σ1, σ2, µ1, µ2. The above mathematical formulation has been
conceived by analyzing Fig. 2 in [8]. This last figure shows that
Ψsx reduces for increasing values of the current isy . Moreover,
for a given value of isx, the amount of reduction of Ψsx depends
on the absolute value of isy , being independent of its sign. The
higher the absolute value of isy , the higher the flux reduction
on the x-axis. In addition, the same figure shows that the flux
variation on the x-axis is null for zero value of isx, very small
for high values of isx, while it presents a maximum for a certain
intermediate range of isx. These considerations suggest that the
flux variation on the x-axis should be weighted with a function
of isx presenting a bell shape.

Since the nonlinear inductor should not generate or dissipate
electrical energy, the reciprocity condition must be satisfied

[15], [29], and the cross-saturation dynamic inductance can be
coherently defined as:

L′
sxy =

d∆Ψsx

dimy
=

d∆Ψsy

dimx
=

= − γ

σ1σ2

sgn (imx)(
e

iX
2 + e−

iX
2

)2

sgn (imy)(
e

iY
2 + e−

iY
2

)2 (4)

The analysis of (4) further shows that, independently from the
numerical values of the parameters, the signs requirements de-
scribed in [38] are satisfied. Finally, the self-saturation dynamic
inductances on the direct and quadrature axis can be defined as:

L′
sx =

dΨsx

dimx
= η1 + 2α1β1 +

1(
e

β1imx
2 + e−

β1imx
2

)2+

+
γ

σ2
1

e
iX
2 − e−

iX
2(

e
iX
2 + e−

iX
2

)3

1

1 + e−iY
(5)

L′
sy =

dΨsy

dimy
= η2 + 2α2β2 +

1(
e

β2imy
2 + e−

β2imy
2

)2+

+
γ

σ2
2

e
iY
2 − e−

iY
2(

e
iY
2 + e−

iY
2

)3

1

1 + e−iX
(6)

As for the static inductances, they are straightforwardly defined
as:

Lsx =
Ψsx

imx
= 2α1

1

imx

(
1

1 + e−β1imx
− 1

2

)
+ η1+

− γ

σ1

1

imx

sgn (imx)(
e

iX
2 + e−

iX
2

)2

1

1 + e−iY
(7)

Lsy =
Ψsy

imy
= 2α2

1

imy

(
1

1 + e−β2imy
− 1

2

)
+ η2+

− γ

σ2

1

imy

sgn (imy)(
e

iY
2 + e−

iY
2

)2

1

1 + e−iX
(8)

The analysis of the vector electric circuit in Fig. 2 shows that,
if the iron losses are taken into consideration, the stator current
is not a state variable anymore. The state variable is, under this
assumption, the magnetizing current vector.

B. State Formulation of the Dynamic Model
Considering the voltage equation and the Kirchhoff current

equation in the node, the motor equations can be written as a
function of the stator flux space vector Ψs:

dΨs

dt
= −

(
RsR0

Rs +R0
L−1
s + jpωr

)
Ψs +

R0

Rs +R0
us (9)

If the magnetizing current im is chosen as state variable, then,
after some manipulations with the matrix algebra, the following
matrix equations can be written:

dimx

dt
=L′

s
−1

(
−
(

RsR0

Rs+R0
+JωrLs

)
im+

R0

Rs+R0
us

)
(10a)

is =
R0

Rs +R0
im +

1

Rs +R0
us (10b)
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Fig. 3: Block diagram of the SynRM including iron losses

(10) represent the state representation of the space-vector model
of the SynRM, assuming the magnetizing current as state variable,
in the form:

dx

dt
= Ax+Bu

y = Cx+Du

where x is the state vector, u is the input vector, y is the output
vector and the remaining matrices are:

A = −L′
s
−1

(
RsR0

Rs +R0
+ JωrLs

)
B = L′

s
−1 R0

Rs +R0

C =
R0

Rs +R0

D =
1

Rs +R0

(11)

where:

L′
s
−1

=
1

L′
sxL

′
sy − L′

sxy
2

[
L′
sy −L′

sxy

−L′
sxy L′

sx

]
(12)

The analysis of (10) highlights that the magnetizing current is
the state of the system, and depends on the stator voltage. The
output of the system, that is the stator current vector, is a linear
combination of the magnetizing current (state) and stator voltage
(input). If R0 tends to infinite, is = im and (10 a) coincides with
the model in [21]. Fig. 3 shows the block diagram of the proposed
dynamic model (10).

C. Derivation of the Electromagnetic Torque
The expression of the electromagnetic torque can be found

starting from the input-output instantaneous power balance:

P =
3

2
uT
s is.

Exploiting the voltage equation of the electric circuit in Fig. 2,
the instantaneous active power becomes:

P =
3

2
Rsi

T
s is +

3

2
(JωrLsim)

T
is +

3

2

(
L′
s

dim
dt

)T

is (13)

Given that is = im + i0, it follows:

P =
3

2
Rsi

T
s is︸ ︷︷ ︸

ohmic losses

+
3

2
(JωrLsim)

T
im︸ ︷︷ ︸

mech. power

+

+
3

2
(JωrLsim)

T
i0︸ ︷︷ ︸

iron losses

+
3

2

(
L′
s

dim
dt

)T

i0︸ ︷︷ ︸
trans. iron losses

(14)

Fig. 4: Electromagnetic torque produced by the SynRM as a
function of the state im

since:

3

2

(
L′
s

dim
dt

)T

im = 0

Eq. (14) states that the instantaneous input power is balanced by
the stator ohmic losses, by the iron losses, by the transient iron
losses and finally by the produced output mechanical power. The
net electromagnetic torque produced by the SynRM can be finally
found as a function of the state im:

te = 3/2 [JLsim]
T
im = 3/2(Lsx − Lsy)imximy (15)

It can be noted that the net electromagnetic torque depends on
the vector product between the stator flux and the magnetizing
current, the angle between the two depends only on the saliency
ratio of the machine. The torque reduction caused by the iron
losses can be finally found as a function of the state im:

tFe =
3

2
[JLsim]

T
i0 =

3

2

ωr

R0
[JLsim]

T
JLsim =

=
3

2

ωr

R0

(
L2
sxi

2
mx + L2

syi
2
my

)
(16)

It can be noted that the torque reduction increases for decreasing
values of R0, as expected; if R0 tends to infinity, the torque
loss due to the iron losses tends to zero. The torque loss is also
proportional to the supply frequency and the square of the flux
(and correspondingly to the square of the magnetizing current),
coherently with the well-known Steinmetz expression.

Fig. 4 shows the surface describing the electromagnetic torque
te as a function of the direct and quadrature components of the
magnetizing current imx, imy , obtained based on (15), where the
static inductances Lsx, Lsy are themselves functions of the mag-
netizing current components according to (7), (8) (see Fig.s 16,
17). The surface is related to the SynRM under test, whose rated
data are given in Tab. I, and whose magnetic model parameters
have been experimentally identified according to the method in
[20] and shown in Tab. II. It can be observed that the surface is
highly nonlinear, first because it depends on the product of the
two components of the magnetizing current, and second because
it depends also on the product of the static inductances, both non-
linearly variable with the magnetizing current components. The
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Fig. 5: Torque reduction caused by the iron losses as a function
of the state im

Fig. 6: Photograph of the Experimental Set-up

electromagnetic torque increases with the increase of both imx,
imy , being positive when they present the same sign. In particular,
while the variation of te with imy does not present saturation
effects, according to the poorly saturable magnetic circuit on the
quadrature axis, the variation of te with imx present a remarkable
saturation effect, coherently with the highly saturable magnetic
circuit on the direct axis. Fig. 5 shows the surface describing
the loss of torque caused by the iron losses versus the direct
and quadrature components of the magnetizing current imx, imy ,
obtained based on (16). Since the loss of torque caused by the
iron losses depends also on the motor speed, the surface has been
plotted for 2 values of motor speed, respectively 20 rad/s and
100 rad/s. It can be observed that the loss of torque has always
the same sign, independently from the signs of imx, imy and it
increases with both of them, as expected. It increases, however,
strongly with imx and far less with imy , due to the dependence
on the square of the static inductances (Lsy ≪ Lsx). Finally, the
higher the motor speed is, the higher the loss of torque is, as
expected. The surfaces in Fig.s 4 and 5 have been obtained after
the parametrization of the SynRM under test, shown in Fig. 6.

TABLE I: Rated data of the SynRM

rated power (kW ) 2.2
rated voltage (V ) 380
rated frequency (Hz) 50
pole-pairs 2
rated speed (rpm) 1500
rated current (ARMS) 5.5
rated torque (Nm) 14

TABLE II: Identified model parameters

model parameter value
α1 1.2139
β1 0.4848
η1 0.0111
α2 0.3609
β2 0.4033
η2 0.0042
γ 0.1565
µ1 2.1612
σ1 0.6221
µ2 3.3430
σ2 0.9706
R0 1330

D. Comparison with other analytical magnetic models

The proposed magnetic model is in the framework of the flux
vs current approaches. It represents an evolution of a previous
contribution of the authors [22], with which it shares the physical
underlying analysis. All the comparative considerations related to
[22] are therefore valid also regarding the approach proposed in
this paper. Besides the contributions [16]–[19], already cited in the
introduction, a specific comment should be made on the approach
presented in [13], that is the most recent and one of the most
complete approaches. [13] focuses on the magnetic modelization
of both IPMSMs and SynRMs. It specifically proposes physically
motivated analytical non-linear flux versus current functions that
permit consideration of both self and cross-saturation. As for
the self-saturation phenomenon, it proposes a combination of
the tanh(·) and a linear function. From this point of view, the
approach in [13] is the same already proposed by the authors in
[22]. As for the cross-saturation phenomenon, the approach in
[13] is only slightly different from that proposed by the authors
in [22]. Both these approaches respect the reciprocity conditions.
In detail, the underlying physical conditions exploited for the def-
inition of the covariance energy variation function are the same.
The first difference lies in the function describing the variation of
the flux with the stator current component on the same axis for a
given value of current on the other axis (Ψsx = f(isx, isy)|isy=k):
compare (19) and (20) in [13] with second terms of (5) in [22]. In
[13] the adopted function is based on the difference between two
tanh(·) and linear functions, both centered at zero current. In [22]
the adopted function is a 1/ cosh(·) centered on a predetermined
value of current. Such two waveforms both present a bell-like
shape, the first one asymmetric, the second symmetric. Both
functions, if properly parametrized, can represent the same kind
of data. As for the function describing the variation of the flux
with the stator current component on the other axis for a given
current value on the same axis (Ψsx = f(isx, isy)|isx=k), there
are major differences between the approaches in [13] and [22].
[13] proposes a quadratic and a log(cosh(·)) function, centered
at zero current, while [22] proposes a tanh(·) function, centered
at a predefined value of the current and weighted with a sgn(·)
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function to account for the same variation of the flux with
different signs of the load. The main difference between the two
approaches is that, while [13] considers an unlimited reduction
of the flux with the load current, [22] considers a saturation
of such effect above certain values of the load current (due to
the tanh(·)). The approach proposed in this paper is based on a
combination of exponential functions, presenting the same kind
of waveforms of [22]. From this point of view, as cited above, the
considerations written about the approach in [22] are valid also for
the approach proposed here. [13] proposes also a second function
describing the cross-saturation effect. Such an approach is based
on the combination of exponentials of the type 1− e(·)

2

. Such an
approach presents a saturation phenomenon of the flux variation
with the load current, that is analogous to that proposed by the
authors in [22], and therefore to the approach proposed here. The
approach adopted in [13] for the analytical representation of the
magnetic model is just slightly different from that in [22] and that
in the proposed paper. In general, however, the proposed approach
improves [13] in the fact that it proposes a state representation
of the model, useful for control purposes, as well as in the fact
that it includes iron losses.

III. IDENTIFICATION OF IRON LOSSES RESISTANCE R0

Among the off-line measurement/estimation techniques of the
iron losses resistance, the approaches in [31], [33], [34] have to
be cited. [33] proposes a classic measurement method of the iron
losses resistance requiring precise measurement of the mechanical
losses of the drive system. [34] shows the results of an off-
line measurement of the iron losses resistance, but it does not
describe the adopted methodology. The methodology proposed in
this paper is inspired by that in [31], improving it in the fact that
it does not require the recognition of the condition of zero torque
(difficult to be measured), while it is based on the recognition
of the orthogonality condition between the back emf and the
stator current space vectors. [32], on the contrary, proposed a
numerical method for estimating off-line the iron losses based on
FEA (Finite Element Analysis).

A specific methodology has been devised for identifying the
resistance R0 (see Fig. 2) responsible for the iron losses of the
SynRM, as well as its variation with the motor speed ω (pω = ωr

the supply frequency) and stator flux amplitude |Ψs|. To this
aim, the PMSM drive mechanically coupled to the SynRM (see
Sec. V) has been suitably exploited. In particular, the speed
of the PMSM drive has been closed-loop controlled adopting
a classic field-oriented control (FOC) technique. As the typical
hierarchy of the nested control loops of electric drives, a torque
loop is present inside the speed one, whose reference is the
output of the speed controller. The actual torque produced by
the PMSM is therefore a measured quantity of the system. Given
a constant speed reference to the PMSM drive, the stator current
of the SynRM drive has been closed-loop controlled in the rotor
reference frame. A constant current reference on the direct (x)
axis has been given to the drive, with the direct (x) axis initially
lying in the direction of minimum reluctance. Once the current
has tracked its set-point, the synchronous reference frame adopted
for current control (x − y) has been rotated by a certain angle
∆θ so that stator current space-vector becomes orthogonal to the
motor back emf space vector es. To this aim, the angle of the
back emf es with respect to the axis of minimum reluctance x
has been previously detected. This condition ensures that, in this

Fig. 7: Space-vector diagram of the system for measuring R0

Fig. 8: Iron losses versus speed and stator current amplitude
surface

new reference frame (x′ − y′), the stator flux space vector Ψs

lies in the direction of the stator current is, being Ψs orthogonal
to es. Since the iron losses current i0 is in phase with es, it
implies that is = imx′ and i0 = −imy′ . The corresponding space-
vector diagram describing this working condition is sketched in
Fig. 7. In these working conditions, the quadrature magnetization
current imy′ assuming a negative value, exactly compensate for
the iron losses current i0 thus generating a net resistant torque
equal to the loss of torque caused by the iron losses. In such
working conditions, the SynRM absorbs active power only for
compensating the stator joule losses. The PMSM drive, on the
contrary, must generate a torque compensating for the mechanical
friction and the iron losses torques.

Starting from the above considerations, a complete mapping of
the system has been made. The speed of the SynRM has been
modified, step by step in a wide range, acting on the PMSM
drive speed reference. At each speed value, the amplitude of
the SynRM stator current has been modified in a wide range
according to the above-described procedure. At each working
point, the mechanical friction losses ∆Pfr have been measured
as the product between the torque and speed of the PMSM
drive, under the conditions in which the SynRM is not supplied.
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Fig. 9: Stator flux amplitude versus speed and stator current
amplitude surface

Fig. 10: Iron losses resistance versus speed and stator current
amplitude surface

Analogously, the sum between the mechanical friction losses and
the iron losses ∆Pmeas = ∆Pfr + ∆PFe have been measured
as the product between the torque and speed of the PMSM drive,
under the conditions in which the SynRM is supplied as above
described. Fig. 11 shows the scheme adopted for the measurement
of the iron losses resistance R0, where the control actions on
the PMSM and SynRM drives are highlighted. The iron losses
have been obtained as the difference between the last two. Fig. 8
shows the iron losses versus speed and stator current amplitude

Fig. 11: Scheme adopted for the measurement of R0

surface, as experimentally obtained on the test set-up described in
Sec. V. As a final result of this identification process, Fig. 9 shows
the corresponding stator flux amplitude versus speed and stator
current amplitude surface. In this case, the stator flux amplitude
has been measured as:

|Ψs| =
|es|
ωr

=
|us −Rsis|

ωr

so the measurement does not suffer from any error in the
knowledge of the magnetic characteristic of the machine. Finally,
Fig. 10 shows the corresponding iron losses resistance versus
speed and stator current amplitude surface, obtained as:

R0 =
3

2

|es|2

∆PFe

It can be observed that the iron losses increase with the speed
almost with a quadratic law, while it increases less than quadrat-
ically with the current. This is due to the saturation of the iron
core for increasing values of the stator current amplitude. This is
confirmed by the stator flux amplitude surface. On the contrary,
the R0 surface shows, for the SynRM under test, a very limited
variation with both the speed and the stator current amplitude,
that justifies the assumption of constant value of R0 in Fig. 2.

IV. EFFECT OF MAGNETIC SATURATION AND IRON LOSSES ON
MTPA AND MTPV TECHNIQUES

As for the specific effect of magnetic saturation on the MTPA,
the authors have proposed an analytical formulation of the MTPA
considering magnetic saturation in [40]. This technique exploits
a simplified magnetic model to retrieve an analytical formulation
of the MTPA. In [40] is clearly shown that, because of the
effect of the magnetic saturation, the function relating the direct
and quadrature stator current references (isx,ref = f(isy,ref ))
presents a saturation.

As for the specific effect of iron losses on the MTPA, to the
best of the authors’ knowledge, the scientific literature does not
present many contributions. In particular, [34] shows that if iron
losses have to be accounted for in the formulation of the MTPA,
the reference value of the direct component of the stator current
must be slightly increased for a given value of the load torque
(or for a given value of the stator current amplitude), as visible in
Fig.s 6 and 7 from [34]. This result is confirmed also in the master
thesis [41] from Politecnico di Torino, Italy (see Fig.s 3.13a and
13b in [41]) and by [35] showing that the stator current angle
reference increases because of the presence of the iron losses
(see (9) in [35]). This effect is to be expected, given that the iron
losses cause a slight decrease of the generable electromagnetic
torque.

As for the specific effect of the saturation and iron losses on
the MTPV, [42] stresses clearly that the voltage angle command
of MTPV is fixed at 45° and that if the drive is operated out of
this 45° boundary, the control system becomes unstable because
the pull-out torque condition is reached. It stresses also that
although saturation has a strong effect on the MTPA of SynRM,
it does not have a significant effect on the MTPV. In [42] there
is no analysis of the effect of iron losses on MTPV operation.
[43] treats the MTPV from the point of view of the current
angle command, and shows the constant current angle to be
maintained in MTPV depending on the ratio between the direct
and quadrature inductance, assumed constant (see (1) in [43]).
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Fig. 12: Ψsx = f1 (isx, isy)

The effect of magnetic saturation on the MTPV current angle is
shown based on FEA analysis. Also in [42] there is no analysis
of the effect of iron losses on MTPV operation. In [30] it is
explicitly emphasized that the field-weakening range is decreased
by saturation and iron-loss effects.

V. EXPERIMENTAL SETUP

The proposed model has been validated experimentally by
adopting a suitably developed test set-up with the SynRM motor
model ABB 3GAL092543-BSB, whose rated values are shown in
Tab. I. The SynRM is mechanically coupled to a torque-controlled
permanent magnet synchronous motor (PMSM) drive working
as an active load. The SynRM is supplied by a Voltage Source
Inverter (VSI) with insulated gate bipolar transistor (IGBT)
modules, model Semikron SMK 50 GB 123, driven by a space-
vector Pulse Width Modulation technique (SV-PWM) with PWM
frequency set to 5 kHz. Fig. 6 shows the photo of the SynRM
drive test set-up.

VI. EXPERIMENTAL VALIDATION OF THE PROPOSED MODEL

A. Parameters estimation of the magnetic model

As for the estimation of the set of parameters of the magnetic
model in Sec. II-B, the methodology adopted in [20] has been
exploited here: it is based on three standstill tests. The readers
can refer to [20] for a specific description of the identification
technique. Tab. II summarises the final values of the parameters,
as obtained at the end of the identification process. The method-
ology is based on the minimization of the flux error. The obtained
final value of the mean square error obtained at the end of the
identification process is 0.034 Wb, (on a rated flux of 1 Wb).

As a final result of the overall identification process, including
both the self and cross-saturation characterizations, Fig.s 12
and 13 show the surfaces describing the functions Ψsx =
f1(imx, imy), and Ψsy = f2(imx, imy), respectively the exper-
imental measurements (black circles) and the surfaces describing
the interpolating functions in (1). It can be observed that the inter-
polating functions well match the experimental points, witnessing
the correctness of the identification process.

As for the self-inductances, Fig.s 14, 15, 16, and 15
show respectively the dynamic self-inductance surfaces L′

sx =
h1(imx, imy), and L′

sy = h2(imx, imy) as well as the static
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Fig. 13: Ψsy = f2 (isx, isy)
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Fig. 14: Self-saturation inductance L′
sx vs imx, imy
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Fig. 15: Self-saturation inductance L′
sy vs imx, imy
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Fig. 16: Cross-saturation inductance Lsx vs imx, imy
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Fig. 17: Self-saturation inductance Lsy vs imx, imy

self-inductance surfaces Lsx = g1(imx, imy), and Lsy =
g2(imx, imy). Such surfaces describe respectively, the interpolat-
ing functions in (5)-(6) and in (7)-(8).

As for the dynamic self-inductances, such figures clearly show
that L′

sx varies mainly with imx, while it is only moderately
influenced by imy , as expected. In particular, L′

sx decreases with
imx as soon as magnetic saturation occurs. The effect of imy on
L′
sx is more visible for lower values of imx, when the machine

is not still fully saturated, while it becomes hardly observable as
soon as the machine is fully saturated. The higher the value of
imy (in absolute terms), the higher such effect is confirming the
reduction of the dynamic self-inductance for increasing values
of the load. Above some values of imx, the magnetic circuit
is already so saturated that the load has a minimum impact,
independently of the amplitude of imy . L′

sy presents a shape
similar to that of L′

sx, excepted that it presents a more observable
dependence on imx. The same considerations could be made for
the static self-inductances, which present a shape similar to that
of the dynamic inductances, being slightly smoother.

As for the cross-saturation phenomenon, Fig.s 18, 19 and
20 show the surfaces of respectively the co-energy variation
∆W ′ = gc(imx, imy) representing (2), the flux variation caused
by the cross-saturation on the x-axis ∆Ψsx = ∆f1 (imx, imy)
representing the second part of (1), and the cross-saturation
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Fig. 18: Co-energy variation ∆W ′ vs imx, imy
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Fig. 19: ∆Ψsx = ∆f1 (imx, imy) due to the cross-saturation
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Fig. 20: Cross-saturation inductance L′
sxy vs imx, imy
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Fig. 21: Percent efficiency η vs load torque Tl

dynamic inductance L′
sxy = fc(imx, imy) representing (4), as

obtained at the end of the identification process. The co-energy
variation surface presents a null value for null values of both
imx, imy , and increases in amplitude maintaining a positive sign
as soon as any current increases in absolute terms, as expected
given the physical meaning of this variable. The flux variation
on the x-axis due to the cross-saturation firstly increases with
imx, and then decreases with it, following the sign of imx. On
the contrary, it always increases with imy (load), maintaining the
same sign independently from the sign of imy , as expected based
on the physics of the phenomenon. As for the dynamic cross-
inductance, it can be noted that there are specific current ranges
in which it is non-null, with maxima values obtained for specific
values of imx, imy while elsewhere it is close to zero because of
the full saturation of the magnetic circuit. Additionally, the cross-
saturation dynamic inductance presents a negative sign when
the current components present equal signs, while it presents a
positive sign when the current components present opposite signs,
according to the analysis in [38].

B. Experimental validation
To experimentally validate the proposed model, since iron

losses play a role in the overall machine losses, the steady-
state percent efficiency has been chosen as the variable to be
investigated. To this aim, the efficiency of the SynRM under
test has been measured, according to the variation of the load
and the speed. The efficiency has been measured directly: the
output power has been measured as the product between the
load torque (well known since it is the command provided to the
industrial torque-controlled PMSM drive working as active load)
and measured speed. The input active power has been measured
based on the reference values of the stator voltages and the
stator currents, according to P = 3/2uT

s is. The SynRM drive
has been controlled with a classic rotor-oriented control (ROC)
and operated under the MTPA strategy developed in [40]. The
experimental measurements have been then compared with the
corresponding simulation results obtained in 2 different scenarios:
1) the proposed model (considering both magnetic saturation and
iron losses), 2) the model considering only magnetic saturation
while neglecting iron losses [22].

Fig. 21 shows the percent efficiency versus the load torque,
obtained for a constant working speed of 100 rad/s. It can be
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Fig. 22: Percent efficiency η vs current vector amplitude |is|
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Fig. 23: Total losses ∆P vs rotating speed ωr

observed that the efficiency increases with the load in a wide
load range, as expected, being null for the null load torque.
Above the load torque of about 9Nm, the efficiency starts slightly
decreasing. It can be noted that the efficiency curve simulated
with the proposed model, accounting also for the iron losses,
better matches the experimental one with respect to the model
not accounting for the iron losses [22], as expected. In particular,
the proposed model very well estimates the efficiency for low and
medium loads, while small estimation errors occur at very high
loads, due to physical phenomena not accounted for by the model
(space harmonics of the mmf combined with time harmonics of
the voltage supply etc.). Fig. 22 shows the percent efficiency
versus the amplitude of the stator current space-vector, obtained
for a constant working speed of 100 rad/s. It can be observed
that the shape of such a curve is analogous to the efficiency vs
load curve. It presents a null value for a nonnull value of the stator
current (no load condition with the machine magnetized). Even
in this case, the efficiency curve simulated with the proposed
model, accounting also for the iron losses, better matches the
experimental one with respect to the model not accounting for
them [22]. Finally, Fig. 23 shows the overall electric losses of
the SynRM versus its speed, obtained for a constant stator current
amplitude of 5A. This figure shows that, for a given stator current
amplitude (given joule losses), the overall electric losses increase
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with the rotor speed with almost quadratic law. This is to be
expected, being the iron losses responsible for the variation of
the electric losses with the speed, and varying themselves with
the supply frequency with almost quadratic law. Conforming to
the efficiency results, the curve simulated with the proposed
model, accounting also for the iron losses, better matches the
experimental one with respect to the model not accounting for
the iron losses [22], as expected. All the above results permit
to properly validate the proposed model and highlight its higher
accuracy in describing the energetic behavior of the SynRM.

VII. CONCLUSIONS

This paper proposes a space-vector dynamic model of the
Synchronous Reluctance Motor (SynRM) including both self-
saturation, cross-saturation effects, and iron losses expressed in
state form, where the magnetizing current has been selected as
a state variable. The proposed dynamic model is based on an
original function between the stator flux and the magnetizing
current components, improving a previously developed magnetic
model. It is noteworthy that the proposed model includes not
only magnetic saturation but also iron losses. The static and
dynamic inductance expressions have been analytically developed
so that the reciprocity condition for the cross-saturation can be
satisfied. A suitably developed identification technique has been
employed for the estimation of the parameters of the magnetic
model, including the resistance describing the iron losses. The
proposed parameter estimation technique has been successfully
assessed in numerical simulations as well as experimentally on a
suitably developed test set-up.
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