
����������
�������

Citation: Karavidas, I.; Ntatsi, G.;

Vougeleka, V.; Karkanis, A.; Ntanasi,

T.; Saitanis, C.; Agathokleous, E.;

Ropokis, A.; Sabatino, L.; Tran, F.;

et al. Agronomic Practices to Increase

the Yield and Quality of Common

Bean (Phaseolus vulgaris L.): A

Systematic Review. Agronomy 2022,

12, 271. https://doi.org/10.3390/

agronomy12020271

Academic Editor: Daniel Real

Received: 23 December 2021

Accepted: 19 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Systematic Review

Agronomic Practices to Increase the Yield and Quality of
Common Bean (Phaseolus vulgaris L.): A Systematic Review
Ioannis Karavidas 1,†, Georgia Ntatsi 1,*,† , Vasiliki Vougeleka 2 , Anestis Karkanis 3,* , Theodora Ntanasi 1,
Costas Saitanis 2 , Evgenios Agathokleous 4 , Andreas Ropokis 1, Leo Sabatino 5 , Fanny Tran 6,
Pietro P. M. Iannetta 6 and Dimitrios Savvas 1

1 Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens,
Iera Odos 75, 11855 Athens, Greece; karavidas@aua.gr (I.K.); ntanasi@aua.gr (T.N.); ropokis@aua.gr (A.R.);
dsavvas@aua.gr (D.S.)

2 Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of
Athens, Iera Odos 75, 11855 Athens, Greece; vvasiliki@aua.gr (V.V.); saitanis@aua.gr (C.S.)

3 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street,
38446 Volos, Greece

4 School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST),
Nanjing 210044, China; evgenios@nuist.edu.cn

5 Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), University of Palermo, Viale delle Scienze,
Ed. 5, 90128 Palermo, Italy; leo.sabatino@unipa.it

6 Ecological Sciences, James Hutton Institute, Dundee DD2 5DA, UK; Fanny.Tran@hutton.ac.uk (F.T.);
Pete.Iannetta@hutton.ac.uk (P.P.M.I.)

* Correspondence: ntatsi@aua.gr (G.N.); akarkanis@uth.gr (A.K.); Tel.: +30-210-529-4532 (G.N.);
+30-24210-93135 (A.K.)

† These authors contributed equally to this work.

Abstract: Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption
worldwide and an important source of vegetable protein, minerals, antioxidants, and bioactive com-
pounds. The N2-fixation capacity of this crop reduces its demand for synthetic N fertilizer application
to increase yield and quality. Fertilization, yield, and quality of common bean may be optimised
by several other agronomic practices such as irrigation, rhizobia application, sowing density, etc.
Taking this into consideration, a systematic review integrated with a bibliometric analysis of several
agronomic practices that increase common bean yield and quality was conducted, based on the
literature published during 1971–2021. A total of 250 publications were found dealing with breeding
(n = 61), sowing density and season (n = 14), irrigation (n = 36), fertilization (n = 27), intercropping
(n = 12), soilless culture (n = 5), tillage (n = 7), rhizobia application (n = 36), biostimulant/biofertilizer
application (n = 21), disease management (n = 15), pest management (n = 2) and weed management
(n = 14). The leading research production sites were Asia and South America, whereas from the
Australian continent, only four papers were identified as relevant. The keyword co-occurrence
network analyses revealed that the main topics addressed in relation to common bean yield in the sci-
entific literature related to that of “pod”, “grain”, “growth”, “cultivar” and “genotype”, followed by
“soil”, “nitrogen”, “inoculation”, “rhizobia”, “environment”, and “irrigation”. Limited international
collaboration among scientists was found, and most reported research was from Brazil. Moreover,
there is a complete lack in interdisciplinary interactions. Breeding for increased yield and selection
of genotypes adapted to semi-arid environmental conditions combined with the suitable sowing
densities are important agronomic practices affecting productivity of common bean. Application of
fertilizers and irrigation practices adjusted to the needs of the plants according to the developmental
stage and selection of the appropriate tillage system are also of high importance to increase common
bean yield and yield qualities. Reducing N-fertilization via improved N-fixation through rhizobia
inoculation and/or biostimulants application appeared as a main consideration to optimise crop
performance and sustainable management of this crop. Disease and weed management practices
appear neglected areas of research attention, including integrated pest management.
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1. Introduction

Climate change related stresses, such as drought, salinity, soil compaction and heat,
along with environmental pollution related stresses, limit the world’s crop yield and yield
qualities, thereby leading to major socioeconomic and food insecurity [1]. Considering an
estimated global population of 10.4 billion by 2067, with Asia and Africa accounting for
81% of this growth [2] and the global food demand projections for this future [3], effective
measures to increase crop production need to be adopted quickly. By developing efficient
resource use and sustainable agronomic practices for crop-fertilization, irrigation and
protection, a significant reduction in the demand for synthetic chemical fertilizers, fresh
water and chemical pesticides in agriculture could be achieved without compromising yield
and quality [4]. Bio-based agronomic practices for primary production, offering a more-
positive impact on ecologically functions and economical sustainability, could also serve
as excellent strategies towards achieving the United Nations Sustainable Development
Goals (UN SDGs), i.e., limiting malnutrition and achieving food security [2]. Such practices
can preserve natural resources, natural functions, and reduce crop management costs
in agriculture.

Intercropping, organic agriculture and minimum- to no-tillage management are some
of the most important sustainable agronomic practices, with applications that resulted in
increased soil biodiversity and improved soil structure and health [5]. Moreover, reduced
tillage demands a drastic decrease in the use and size of farm machinery and fuel, with
consequent reduction in Greenhouse Gas (GHG) Emissions and management costs [6].
Irrigation management, especially during flowering or reproduction, is also crucial for
crop productivity and quality in most parts of the world [7–10]. Introduction of high
yielding cultivars with superior product qualities and increased tolerance to biotic and
abiotic stresses, as well as application or/and encouragement of beneficial microorganisms
(e.g., bacteria, algae, fungi) with the potential to increase nutrient and water uptake without
compromising environment functions should also be considered as viable sustainable
agronomic practices to improve plant performance and productivity [11,12]. Application
of soil-borne biocontrol agents (e.g., Trichoderma, Beauveria, Bacillus, Pseudomonas) may also
help ensure plant protection against several diseases. Consequently, the use of chemical
pesticides is significantly reduced, with potential benefits for beneficial microbes and the
environment [13,14].

Soilless culture (hydroponics) is becoming increasingly important in protected cul-
tivation systems, both in modern high-tech glasshouses, but also in simple greenhouse
constructions. Soilless culture has the potential to improve yield and product quality due
to better control of the conditions which prevail in the root environment [15]. Besides, legal
restrictions in the application of soil fumigants and pesticides to combat soil-borne diseases
makes soilless culture even more important for food security.

Common bean (Phaseolus vulgaris L.), as a grain legume, enriches the soil via biological ni-
trogen fixation (BNF), through the symbiosis with bacteria, such as the Rhizobium leguminosarum
bv. phaseoli [16] thereby reducing the need to apply nitrogen (N) fertilizers. The BNF capacity of
this legume crop depends on the genotype, the rhizobia strain, the growth climatic conditions,
and the amount of the additional synthetic N fertilizer applied [17,18]. Given the low BNF
capacity of this crop in comparison to other legume crops such as soybean and faba bean [19],
the identification of cultivars exhibiting high BNF capacity is of high importance.

Common bean is also characterized by seed and pod high protein content [20]. This
nutritional provision is allied to high levels of essential minerals, vitamins, fibers, antiox-
idants, and polyphenols—as just some of the nutritional components provided through
common bean (and immature pod) consumption [21]. However, non-nutritional factors,
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such as phytic acid, lectins and saponins have also been found in the pods and dry seeds of
this crop [22].

Here we highlight the results of a systematic review conducted to answer the following
question: which agronomic practices increase the yield and quality of common bean
(Phaseolus vulgaris L.)? To address our research question, the protocol defined four PICO
(population, intervention, comparator, and outcome) elements, which were used to review
the research published over the last fifty years (1971–2021). The relevant literature was
assessed following the already peer-reviewed and published protocol which was developed
according to the Preferred Reporting Items for Systematic Review and Meta-Analysis
(PRISMA) guidelines [23]. A full bibliometric analysis of the relevant literature was then
carried out to identify the main research foci, and their efficacy, to increase common bean
yield and yield qualities.

2. Methods
2.1. Literature Research

All databases described in the original protocol were queried. However, during the
implementation of the protocol, only two bibliographic databases (ISI Web of Science™ and
Scopus™) were used to identify studies related to the agronomic practices that increase
the yield and yield qualities of common beans (Phaseolus vulgaris L.). This was ascribed
to the fact that by searching in all the other databases that were described in the initial
protocol, we could not identify any paper that was not already included in either Web of
Science and/or Scopus. The studies were reported in English by peer-reviewed journals
in the period between 1971 and 2021 (inclusive). The search of academic databases was
performed on 20 November 2021. The strings combined with Boolean operators used as
“topic words” are provided in Table 1. Each term was used to address each PICO element
of the research question as described in Table 2 of the published protocol [23]. The terms
used for the Population element were “common bean” or “Phaseolus vulgaris”.

Table 1. Search scientific terms applied to the selected databases in terms of the agronomic practices.
A wildcard (*) was used to enable the inclusion of multiple word endings.

Agronomic Practice Topic Words

Breeding genetic * or genotype * or landrace * or breed *

Sowing density and season sowing date or plant density or sowing rate or sowing season

Irrigation drought or water stress or deficit irrigation or irrigation or salinity or saline or salt
stress or irrigation quality or water quality

Fertilization organic or conventional or fertilizer or inorganic or nutrition or nitrogen or
potassium or phosphorus

Intercropping intercrop *

Soilless culture hydroponic * or soilless or floating or nft or nutrient solution or vertical

Tillage Till *

Rhizobia application rhizob * or inocul *

Biostimulant/biofertilizer application
arbuscular mycorrhizal fungi or PGPR or azospirillum or plant growth-promot *
or rhizobacteria or alga * or amino or biostimulant * or fulvi * or humi * or pgpb

or biofertili *

Disease management Fung * or biotic or virus or pathogen or bacter * or disease

Pest management Insect *or pest * or acari *

Weed management Weed * or herbicide *
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Table 2. Studies reporting results from two or three agronomic practices. The
√

denotes the duplicates
studies and * denotes the one triplicate study.
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Breeding
√ √ √

Sowing density and season
√ √

Irrigation
√ √

Fertilization
√ √ √ √

Intercropping
√ √ √

Soilless culture

Tillage
√

Rhizobia application
√ √ √ √

*
√

*

Biostimulant/biofertilizer
application

√ √ √
* *

√

Disease management
√

* *

Pest
management

√

Weed management
√

2.2. Inclusion and Exclusion Criteria

We included studies conducted under open-field and greenhouse conditions. All
included studies reported on approaches that influenced crop yield (pods and dry seeds)
and yield quality parameters (protein, amino acids, carbohydrates, essential minerals,
vitamins, antioxidants, carotenoids, phenolics).

2.3. Screening

The papers from which the yield and quality data were extracted were accepted follow-
ing the procedure described in the published protocol [23]. Mendeley online bibliographic
management software (www.mendeley.com, last accessed on 22 December 2021) was used
for the removal of duplicates. All the publications included in this review study are given
in the Supplementary Materials (Excel File S1).

2.4. Bibliometric and Concept Network Analysis

The full records of Scopus and Web of Science databases were exported to Microsoft
Excel 2016 (Microsoft Corporation, Redmond, WA, USA) for further analysis. The final
database consisted of 228 articles (see Section 3.1) with a wide range of variables such
as publication year, title, abstract, authors and co-authors institutions and affiliations
countries. A network analysis was performed to identify research collaboration patterns,
analyse the leading countries in the research topic and discover the research trends based

www.mendeley.com
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on the frequency of terms in titles and abstracts. This analysis was conducted through the
VOSviewer software (version 1.6.15; Leiden University, Leiden, The Netherlands) that is
widely used for bibliometric analyses [24].

3. Results
3.1. Subsection

The screening process of this systematic review is schematically presented in Figure 1. We
ultimately identified and screened 1030 sources of literature (after removal of 404 duplicates or
nonjournal papers), of which 250 were subsequently selected and analysed. However, during
the screening process for duplicates among the different treatments, 21 studies reporting
results from more than one treatment were identified and were therefore considered as one;
thus, the sum of the publications appearing in the 12 treatments (250) is greater than the total
number of publications included in the systematic review (228).
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Figure 1. Flow chart of the screening and selection process followed for the inclusion of the studies
in the systematic review. Where n denotes the number of studies results for each treatment. * Some
studies reported results from more than one treatment and therefore the sum of the publications
appearing in the 12 treatments (250) is greater than the total number of publications assessed in the
study (228).
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Twelve main treatments (practices) were identified to have been applied in the selected
papers: breeding (Treatment A; n = 61), sowing density and season (Treatment B; n = 14),
irrigation (Treatment C; n = 36), fertilization (Treatment D; n = 27), intercropping (Treatment
E; n = 12), soilless culture (Treatment F; n = 5), tillage (Treatment G; n = 7), rhizobia appli-
cation (Treatment H; n = 36), biostimulant/biofertilizer application (Treatment I; n = 21),
disease management (Treatment J; n = 15), pest management (Treatment K; n = 2), and
weed management (Treatment L; n = 14). The number of studies reporting investigations of
each group of treatments is shown in Figure 1, whereas the percentages of each intervention
reported across the relevant studies are shown in Figure 2.
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Figure 2. The percentage (%) of the studies of the twelve main agronomic practices that were
identified during the screening and included in the systematic review.

Twenty (20) studies assessed the impact of two agronomic practices, and one study
assessed three practices. The duplicates were breeding plus disease management (1); breed-
ing plus intercropping (1); breeding plus sowing density and season (1); sowing density and
season plus irrigation (1); fertilization plus rhizobia application (2); fertilization plus pest
management (1); fertilization plus biostimulants/biofertilizers application (1); rhizobia plus
biostimulants/biofertilizers application (6); rhizobia application plus tillage (1); rhizobia
application plus disease management (1); intercropping plus rhizobia application (1); inter-
cropping plus biostimulants/biofertilizers application (1); intercropping plus weed man-
agement (1); irrigation plus fertilization (1); and the triplicate biostimulants/biofertilizer
application plus rhizobia application plus diseases management (Table 2).

3.1.1. Breeding for Increased Yield and Quality

The literature search on Scopus and Web of Science returned 111 different articles.
Fourteen (14) of these articles were excluded because, although the abstract was written in
English, the main body of the article was written in Portuguese or Spanish. Then, six (6)
more articles were excluded because they were either review articles (3), conference papers
(1), or book chapters (2). Moreover, according to the protocol, 30 articles were excluded
because screening of the abstract revealed that they were irrelevant to breeding or/and
they did not report information on yield. Finally, 61 articles were included in this review
(Excel Files S1 and S2).

3.1.2. Sowing Density and Season

Thirty-six (36) articles were found based on the title search in the Scopus and Web
of Science literature databases, of which eleven (11) were excluded as duplicates, two (2)
of them were written in Portuguese and Spanish language, three (3) were either notes or
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meeting abstracts, and one (1) article concerned pot experiment. After full-text screening,
two (2) articles were rejected as the data were expressed as interaction with different
irrigation management. Additionally, three (3) studies were further excluded because the
impact of either sowing density or season was not well documented (Excel Files S1 and S2).
Of the 14 accepted articles, eight (8) were related to the sowing rates and five (5) to the
sowing season, and one (1) referring to both.

3.1.3. Irrigation

The initial screening process based on the title identified 84 articles dealing with the
effect of irrigation regimes on yield and quality of common beans. However, the final
number of accepted articles was 33 because 51 of them were excluded because 20 were
considered irrelevant, as most of them were focused on improving the drought tolerance of
common bean (breeding programs, biostimulants application, etc.); 13 were not accessible,
7 were written in a language other than English, 5 were conference reports, 2 were dealing
with the common bean canning process, and 4 reported unclear results (where the effect of
different irrigation managements was either not well documented or was expressed only
as interactions with other applied factors) (Excel Files S1 and S2).

From the total of the articles included in the study, 18 of them examined the effects
of different total irrigation-evaporation levels, 9 studied the effects of deficit irrigation at
different growth stages and 5 involved different irrigation intervals. Finally, 29 articles
studied the impact of different irrigation managements on seed-grain yield, 4 on green pod
yield, and 5 on quality of either fresh pods or grains.

In terms of irrigation quality, the initial search yielded 11 articles; however, only 3 met
the criteria of this topic. A further three documents were not considered because two of
them were not accessible, and one document did not evidently indicate the influence of
salt stress on common bean productivity. Five more articles were also excluded as the
individual common bean crops were established at saline or contaminated soil, and thus
did not report on the quality of the irrigated water. Eventually, all the included studies
concerned common bean cultivated only for fresh pod production.

3.1.4. Fertilization

The screening process applied to both databases returned 161 documents, of which
only 27 articles were selected for this review study. Among the excluded documents,
17 were written in languages other than English, 23 were either not accessible or not found
and 8 were either review or conference paper or notes. Additionally, 68 articles were also
excluded as they were irrelevant to the fertigation managements that benefit the yield
and the quality of common beans. Finally, 18 articles that study the responses of plants
productivity under N-P-K deficit conditions were not considered (Excel Files S1 and S2).
Concerning the accepted articles, 7, 19 and 5 articles were focused on the effect of different
fertigation managements on fresh pod yield, seed-grain yield, and quality of either fresh
pods or grains (respectively).

3.1.5. Intercropping

The initial search returned 24 documents, half of which were selected for further
reviewing. In addition, 12 studies were excluded because 2 were not written in English lan-
guage, 2 were not found and 2 were not in a suitable document type (Excel Files S1 and S2).
In addition, six articles focusing on intervention impact intercropped common bean, fo-
cused on the nonlegume crop productivity, i.e., the common bean crop having a supportive
contribution, and so were also excluded. Among the included articles, all studies concerned
common beans cultivated for production of grains, while only one (1) involved quality
parameters. Most studies (6) assessed different common bean cultivars as a management
option to enhance productivity under intercropping (as a mixture).
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3.1.6. Soilless Culture

The screening process identified 40 documents; however, only 5 of them met the
acceptance criteria. Thirty-five studies were excluded because they were either considered
irrelevant (21), were not accessible (4), were written in language other than English (4) or
were not journal articles (6). In addition, eight studies that did not report yield or yield
quality parameters, and in three studies, plants were not grown under soilless cultivation
systems (Excel Files S1 and S2).

3.1.7. Tillage

The initial search for relevant articles returned thirty-four (34) articles. Sixteen (16) of
these articles written in languages other than English (i.e., Portuguese or Spanish) were
excluded. Then, during the full text screening, eleven (11) articles were excluded because
they were not related to the effects of tillage on common bean yield and/or quality but
examined the impact of other cultural practices on common bean yield usually under
no-tillage system (Excel Files S1 and S2). The review at the full text level revealed that the
tillage systems that were examined in the included studies were conventional tillage (n = 5),
deep tillage (n = 1), minimum tillage (n = 1) or no tillage (n = 6).

3.1.8. Rhizobia Application

The initial search for relevant articles returned fifty-three (53) possibilities. Five (5) of
these articles were written in languages other than English (i.e., Spanish or Portuguese),
and so were excluded. One (1) article was also excluded because it was a conference
abstract. Then, during the full text screening, ten (10) studies were excluded because they
were conducted in pots, or the control (non-inoculated) treatment was missing or not
relevant. One (1) more article was excluded because the full text could not be accessed
(Excel Files S1 and S2). It is also noted that the common bean yield impacts of Rhizobium
strains co-inoculated with plant growth promoting rhizobacteria (PGPR) were examined in
twelve articles published between 2008 and 2021.

3.1.9. Biostimulant/Biofertilizer Application

The results of the search on Scopus and Web of Science returned forty-eight (48)
published articles, on screening these twenty (20) were duplicates, and four (4) articles were
not written in English, and so were excluded. Then, one article was excluded because it was
a conference paper. One (1) article was excluded because screening of the abstract revealed
it was irrelevant. Therefore, twenty-two (22) articles were accepted (Excel Files S1 and S2).
The most studied practices were the applied bioagents PGPRs (n = 9) and humic acids
(n = 4). The more recent studies also assessed the impact of amino acid application.

3.1.10. Diseases Management

Thirty-one (31) papers were identified through the screening process four (4) were
written in Portuguese and so were excluded. During abstract screening and full text screen-
ing, six (6) and two (2) articles, respectively, were excluded because they were not relevant
to the research question. Three (3) articles were also excluded because they were conference
abstracts (published in scientific journals), while one (1) more study was excluded because
it was conducted in pots (Excel Files S1 and S2). In the selected articles, the effects of several
pathogens [including, Rhizoctonia solani J.G. Kühn 1858 (n = 3), Macrophomina phaseolina
(Tassi) Goid. (1947) (n = 1), Fusarium oxysporum Schlecht. emend. Snyder and Hansen
(n = 1), Fusarium solani (Mart.) Sacc. (1881) (n = 2), Ascochyta phaseolorum Sacc. (1878) (syn:
Phoma exigua var. exigua) (n = 1), Isariosis griseola Sacc. (n = 1), Pseudomonas syringae pv.
syringae (Van Hall, 1904) (n = 1), Xanthomonas campestris pv. phaseoli (Smith 1897) Dye 1978
(n = 3), Colletotrichum lindemuthianum (Sacc. And Magnus) Briosi and Cavara, (1889) (n = 2),
Pseudocercospora griseola (Sacc.) Crous and U. Braun 2006 (n = 3), bean common mosaic
virus (BCMV; n = 1), bean golden mosaic virus (BGMV; n = 1)] and fungicides on the yield
and/or quality of common bean were examined.
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3.1.11. Pest Management

During the title screening stage, five (5) papers were selected. One (1) of these articles
written in Portuguese was excluded, while during the abstract or full text screening, two
(2) studies were excluded because they were not relevant to pest management, or they
were conducted in pots (Excel Files S1 and S2). In the selected studies conducted in
Africa, the effects of insects such as the bean leaf beetle (Ootheca bennigseni Weise), the bean
flower thrips (Taeniothrips sjostedti Trybom), the legume pod borer (Maruca testulalis Geyer),
the cotton bollworm (Heliothis armigera Hübner, 1808) (n = 1), and the black bean aphid
(Aphis fabae Scopoli, 1763) (n = 1) on the yield of common bean were examined.

3.1.12. Weed Management

During the title screening process, twenty (20) articles were selected. Five (5) of
these articles, written in languages other than English (i.e., Spanish or Portuguese), were
excluded. During the abstract screening, one (1) more article was excluded because it was
not relevant to the topic of this article (Excel Files S1 and S2). The reviewing at the full text
level revealed that the weed control methods examined in the selected twelve studies were
chemical weed control (n = 5), planting pattern (n = 3), hand hoeing (n = 2), mechanical
weeding (n = 2), intercropping (n = 2), planting date (n = 2), mulching (n = 1), irrigation
level (n = 1), solarisation (n = 1), and AMF (arbuscular mycorrhizal fungi) inoculation
(n = 1) (some of the methods can be found in more than one of the selected papers).

3.2. Evolution Articles over the Years

The publication annually of scientific publications relevant to the research question is
shown in Figure 3, highlighting that research interest for this crop has gained popularity
in the last decade. Indeed, 65% of the research papers included in this review were pub-
lished between 2011 and 2021, reaching a peak of 33 publications in 2020, which clearly
demonstrates the increasing interest of scientists in this area of research and development
for common bean. The increase in open-access publishing, which accelerates the advance-
ment of scientific knowledge by making it freely accessible to all the stakeholders, helped
towards this direction.
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3.3. Geographical Distribution of Articles

The identified research was concentrated in Asia (65 articles, 28.5%), followed by
South America (54 articles, 23.7%), Africa (50 articles, 21.9%), North America (29 articles,
12.7%) Europe (26 articles, 11.4%) and Oceania (4 articles 1.8%) (Figure 4).
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Oceania, semi-arid land and desert region offered relatively few (2%) accessible pub-
lished papers on this research area, and of the four (4) studies conducted, three (3) were
associated with irrigation (published in 1988, 1999 and 2000, respectively) and one (1) with
sowing density (published in 1971). Within Europe and North America, the most popular
treatments related to breeding trials. A comparison among the different continents revealed
that the highest number of publications featured fertilization, biostimulant/biofertilizers
and weed management from Asia, while South America focused more on breeding, disease
management and tillage, and North America focused on intercropping. Soilless culture
seems to gain popularity in Europe, compared to the other continents. Breeding, irri-
gation, and rhizobia application are the categories that can be found in all continents
except for Oceania where only irrigation and sowing density and season had been assessed
(Figure S1).

The leading research country addressing the research question was Brazil. Out of the
228 papers included in the study, 44 originated from Brazil, 23 from Iran and 18 from India,
followed by Turkey, Ethiopia, Mexico, and USA with 15, 15, 10 and 9 papers, respectively
(Figure 5).

3.4. Network Analysis Subsection
3.4.1. Term Analysis

A network analysis was performed to identify trends in scientific research as revealed
from the publications used for the systematic review. The analysis using VoSviewer was
performed on the text from titles and abstracts. Terms that did not contribute to the
analysis, i.e., the words “experiment”, “selection”, “interaction”, etc. were discarded and
terms with the same meaning were combined, e.g., the terms “pod yield” and “pod”. The
frequency threshold (the minimum number of occurrences) of a term to be incorporated
in the graphic analysis was set to 10. This threshold was met by 39 terms out of the total

Showeet.com
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number of 5590 terms counted in the reviewed publications. The top-10 terms with the
highest frequencies were “yield” (206 occurrences), “pod” (83), “grain” (80), “growth” (86),
“cultivar” (63), “genotype” (49), “soil” (44), “quality” (43), “N” (40) and “inoculation” (40).
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The VOSviewer software presented the interactions of the 37 most relevant terms
grouped in four clusters (Figure 6A). The larger the circle, the more frequently it occurred.
The shorter and/or thicker the line indicates high co-occurrence of interconnected terms.
The analysis of the clusters formed by the terms in titles and abstracts allowed the classifi-
cation of the different groups. The red cluster consists of 12 terms and is linked to yield.
The main keywords of this cluster are “growth”, “soil”, “N”, “inoculation”, “rhizobia”,
“phosphorus”, “dry weight”, and “PGPR”. The green cluster is linked to the cultivar
topic, which is reflected in the main keywords: “genotype”, “population”, “region” and,
“environment”. The main term of the blue cluster is “pod”. Terms that belong to the blue
cluster are “plant height”, “irrigation”, “drought”, “harvest index”, “flowering”, and “pod
length”. The yellow cluster is linked to quality, which is reflected in the main keywords,
namely “grain”, “quality”, “protein”, “variety”, “intercropping” and “maize”.
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The size of the circle indicates the frequency of the term appearance. The connection of the terms
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high co-occurrence of the interconnected terms. (A) Network visualization of terms co-occurrence
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practices that increase yield and quality of common bean, coloured by year.

Classifying the most frequent terms in the title and abstract according to the year of
article publications indicated that these terms were primarily used in articles published
from the years 2010 to 2014 (Figure 6B). From this analysis, we could see that the terms
related to “genotype”, “quality”, “PGPR”, “disease”, “stability”, “Brazil” and “water”
appear after 2013. On the contrary, the terms “cultivar” and “pod” appeared before 2011.

3.4.2. Authors and Countries Network Analysis

To examine the author collaboration networks of this systemic review, the threshold
minimum number of publications for an author to be included in the graphic analysis
was set to two. This threshold was met by 87 authors of the 847 who appeared in the
publications included in the systematic review. The illustrated network revealed 18 clusters
of collaborative author schemes and 16 clusters with no collaboration with other research
groups (Figure 7A). The largest collaboration cluster (coloured red) consists of nine authors.
The main author of the red cluster is L.C. Melo with eight articles, followed by H.S. Pereira
with seven articles. The second cluster (coloured in green) is formed by seven authors,
and it is closely related with the yellow cluster through the authors S. Nkalubo and C.
Mukankusi. In the green and yellow clusters, no central author is identified.

When the author collaboration networks were arranged by the year of article publi-
cation, the teams of Mukankusi and Gepts and Javanmard and Morshedloo had the most
recent publications (Figure 7B). The publications of the most productive authors go back to
2000. Further author collaboration networks arrangement by the number of citations from
each published paper indicated that the team with J.D. Kelley as the lead author had the
most cited articles (Figure 7C).
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Figure 7. Network map produced by VOSviewer with the collaborations and the number of docu-
ments of the authors with more than 2 documents in the 228 publications included in the systematic
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common bean coloured by the publication year, or (C) coloured by the citations received.

The network of collaboration of affiliating countries for all authors that participate
with more than 3 publications in the 228 articles included in the systematic review was
illustrated by VOSviewer. Of the 103 countries that participated in the published articles,
24 participated with more than 3 publications, and only 3 countries were not connected to
each other (Figure 8A). The illustrated network consists of five clusters coloured blue, green,
red, purple, and yellow (Figure 8A). Countries belonging to the same cluster have common
publications. Moreover, the most productive countries in terms of co-authored publications
are Brazil and the United States, both belonging to the purple cluster. The United States
are also collaborating with other countries, such as Mexico, India, Colombia, and Ethiopia.
On the contrary, there are scientists, such as from the United Kingdom or Canada, that
collaborate with other teams from only one country (Iran and Australia, respectively).

Classifying the affiliating countries for all authors according to the year of article
publications, indicated that South Africa, Brazil, India, and Iran participate with more
recent studies compared to the United States, Colombia and Mexico (Figure 8B). Further
affiliating countries’ networks arrangement by the number of citations from each published
paper indicated that the citation of a paper is strongly correlated with the publication
year, with the oldest publications receiving more citations than those published after 2014
(Figure 8C).
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4. Discussion
4.1. Screening and Bibliometric Analysis

To identify the agronomic practices that affect common bean yield and yield qualities,
a systematic review was performed. Integrating this review with bibliometric analysis,
we found gaps in (a) the research on the different agronomic practices applied and (b)
scientists’ networks around the globe. The analysis of the terms in titles and abstracts
indicated that the scientific community is interested in the topic related to common bean
yield, growth and rhizobia, genotypes, environment, and yield qualities. Over the last
50 years, the research was primarily focused on these topics because of the top 39 terms in
the 5590 used in 228 articles, these ten (yield, grain, growth, cultivar, genotype, soil, quality,
N, and inoculation) registered the highest co-occurrence frequency. Though common bean
is a legume which is cultivated worldwide mainly for dry seeds [25], nowadays growers
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also produce crops for their fresh pods for food consumption due their high nutritional
value [26].

More recently, due to rising need for more sustainable and healthy diets, the scientific
community is trying to increase productivity by using either (a) common bean genotypes of
increased tolerance to biotic stresses [11,26] and/or (b) by applying PGPRs which increase
plant tolerance to biotic stress, enhance plant nutrient uptake, and increase soil fertility [12].
This is also evident in this review because the recent scientific interest is focused on geno-
types, yield stability, quality in terms of protein content, disease management, biostimulant
application, and irrigation.

The results of this review revealed that the identified research is concentrated in Asia,
South America, and Africa because these three continents together represent 75% of the
published research papers. This is because grain legumes are the major source of protein
for human consumption in many countries in these three continents [25]. However, the
high variation in several growth and yield characteristics of common bean constitutes it as
a crop with the ability to be cultivated in a wide range of cropping systems and diverse
environments around the globe, and especially in countries characterized by a hot and
arid climate or at risk of irrigation water deficit (e.g., Brazil, Iran, India, Turkey, Ethiopia,
Mexico, and USA). Many of the studies in these countries were related to the evaluation of
fertilization, biostimulant/biofertilizer application, weed management, breeding, disease
management, tillage, and intercropping. Soilless culture seems to gain popularity in Europe,
compared to the other continents. A detailed description of the impact of these agronomic
practices on common bean yield and quality attributes is given below.

The bibliometric analysis of the authors through their number of publications and
impact on the scientific community shows that the teams consist of only a small number
of individuals, which are not connected. This highlights the necessity to develop a global
research network for knowledge exchange of agronomic practices that aim to increase the
yield and stability of common bean. Interestingly, the most cited author has recent publi-
cations, which shows that the impact of the newly applied techniques is increasing. The
strong increase in the number of studies after 2010 may also be ascribed to the increasing
levels of funding for legumes in the last decade. Moreover, the declaration by FAO of the
year 2016 as the International Year of Pulses (IYP) might have also helped towards increas-
ing public awareness of the essential foundation legumes provide to deliver food security
due to their capacity to deliver nutrient-dense and environmentally sustainable food.

4.2. Breeding for Increased Yield and Quality

Common bean is considered one of the most diverse crops with varying growth
habits, heights, pods, seeds, etc. [27]. Thus, breeding can take advantage of this rich
genetic pool to increase yield and yield qualities of this crop. Mesoamerica and the Andes
(and their subdivisions) are two distinct regions of origin and domestication for common
bean [28]. The independent and parallel domestication resulted in separate gene pools [29].
Beans of Andean origin are less productive compared to the Mesoamerican cultivars when
cultivated in warm, tropical environments [27]. However, a significant yield increase
could be achieved through crosses between gene pools [30]. Yield in P. vulgaris L. may be
characterised by three components: pods per plant, seeds per pod, and seed weight. All
of which should be maximized for optimum yields. In common bean breeding, the most
important attributes for high yield are pod numbers and/or seed per pod, followed by
stress tolerance. As a result, breeding programs aim to identify yield-promoting genes
and combine them with those governing tolerance to different environmental stresses.
Furthermore, Corte et al. [31] studied the correlations of seed morphology (length, width,
thickness) with yield and concluded that higher grain yield was produced by shorter seeds.

The first step of breeding programs is to evaluate the existing genetic pools and
create a baseline from well-performing and disease-resistant genotypes. Genetic resource
evaluation aiming to select high-yielding, resistant germplasm has been addressed by
many authors [32–43]. These evaluations revealed that the number of pods per plant were
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negatively correlated with the days to flowering [28]. Other authors showed that pod yield
per plant was significantly and positively correlated with the number of pods per plant
(0.833, p = 0.01), flower (r = 0.376 or 0.379, p = 0.01) and pod set (r = 0.360 or 0.363, p = 0.01)
per inflorescence, plant height (r = 0.291 or 0.293, p = 0.05), number of leaves per plant
(r = 0.277 or 0.285, p = 0.05), and leaf area (r = 0.50, p < 0.05) [44,45]. According to Zilio
et al. [46], when the common bean cycle length is reduced, a yield increase can be achieved.
Crossing a determinate and an indeterminate P. vulgaris genotype may also increase due to
increased number of seeds per pod and pods per plant [27]. The above findings are critical
for future population development and the selection of higher yielding common bean lines.
Genotype and environment interactions have been thoroughly examined, aiming to identify
cultivars of high adaptability and yield stability [47–52]. Among others, Bulyaba et al. [53]
reported that seed yield and weight is influenced by the location x variety interaction.
Specifically, the highest yield (4402 kg ha−1) was recorded in Michigan and was 23 to 81%
higher than other locations. Nicolleto et al. [49] revealed the positive impact of high altitude
on the nutritional quality of common bean, strongly linking this effect with the common
bean genotype as well. Growing common bean in greenhouse can be a possible solution to
overcome the impact of the environment and increase yield and quality, as proposed by
Meena et al. [54].

The screening of article titles revealed 17 studies from Brazilian Institutes, which is the
largest consumer and third-highest producer-country of common beans worldwide [43].
In Brazil, the breeding strategies for high yielding common bean cultivars development
resulted in significant yield gain of around 0.7% a year [11] or a mean of 37.81 kg ha−1

year−1 [55]. Recently, Zeffa et al. [56] quantified the genetic progress on seed yield and N
use efficiency of carioca bean cultivars, using Bayesian statistics to predict breeding value.
This approach also resulted in genetic progress for seed yield under high and low N inputs.
The United States also shows a great interest in common bean breeding [39,53,57,58]. In
Turkey, an increase in common bean yield has been observed during the last decades due
to breeding programs that considered the impact of the environment [59–62]. Moreover,
365 genotypes and landraces from Central Africa were also evaluated, revealing a high
level of genetic diversity of this crop, and pointing out the differences in the nutritional
quality of several landraces in terms of seed iron and zinc concentration [63]. Twenty (20)
P. vulgaris landraces of South Africa were also studied [64] and the variation in the pod
characteristics (number, length and width) was determined. The traits revealed vigorously
growing and high yielding varieties for future breeding programs in South Africa. The taller
landraces from KwaZulu-Natal province showed the highest pod and seed yield. In Greece,
seven (7) common bean genotypes were evaluated in two (2) field experiments for two
years [38]. The number of pods per square meter was calculated and found to vary from
72.74 to 247.05. The analysis indicated two cultivars, namely Lida and Mirsini, as superior
genotypes that combine stability, high yield (237.8 and 239.2 g m−2), short cooking time
(29.0 and 30.3 min) and high protein content (24.51 and 24.79%). The experiments showed
that the number of pods was highly associated with seed yield and could be proposed as
an indirect selection criterion for increasing yield. The shoot total-N and the number of
nodules per plant can also be considered as indirect criteria for such selection [65,66]. It is
also worth noting that characteristics related to the consumer market such as hydration
capacity, cooking time, shape, size and percentage of grain husk of common bean genotypes
must also be taken into consideration [67,68].

High-yielding combinations may also be identified by using either more-traditional
crossbreeding methods [57,69–71], or more-recently, molecular markers [41,72,73] or even
near-infrared spectroscopy (NIRS) [74]. Molecular marker assisted breeding efforts of
Raatz et al. [75] characterised 708 bean varieties, landraces, and breeding lines using Single
Nucleotide Polymorphism genotyping markers. The development of such data serves as
an important reference guide for scientists and can speed up the delivery of outputs from
breeding programs and boost downstream research and development.
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4.3. Sowing Density and Season

Plant density is also a key factor that significantly affects yield and yield qualities
of common bean. High plant densities can result in increased grain yield due to the
sub-branches that grow at the lower part. A crucial factor for maximum yield is the
determination of the life history stages of early flowering and pod formation [76]. This is
because full light interception by the crop must be reached before the onset of this stage.
For common bean, when the density was set to 28.8 plants m−2, the light interception
was optimum (95%), just after the onset of flowering [76]. However, the genetic potential
for pod formation can be obscured by the competition for space and nutrients that high
density causes [77]. In the study of Musana et al. [78], where common bean plants were
grown under four different plant densities (20, 25, 30, and 35 × 104 plants ha−1), grain
yield was restricted at the two higher plant densities. The above study is in agreement
with the reports of Mahdi Babaeian [79] and Kouam and Tsague-Zanfack [80] where higher
plant densities restricted yield components, and therefore final grain yield. However, the
response of common bean to sowing density is cultivar-dependent and closely related to
dry matter distribution, growth rate, radiation use efficiency, and harvest index [81]. In
terms of crude protein concentration in the seed, no effect of plant density was found [82,83].
On the other hand, pod protein and N, phosphorus (P) and potassium (K) concentrations
increased under low planting densities [84] due to low competition for water and nutrients.

Sowing season may also affect yield due to the temperature and rainfall that prevail
at critical developmental stages, specifically flowering and pod-filling. For higher grain
yield of spring–summer cultivation of common bean, the optimum period for sowing is
from early to mid-May [85–87]. Being a C3-cycle plant, cultivation in high temperature
environments results in decreased photosynthesis, mainly due to increased respiration
and photorespiration. In summer (June–August), the seed yield decreases as the sowing
is delayed [71]. Mahdi Babaeian [79] studied two sowing dates one on 2nd June and
one on 14th June noticing that sowing on 2nd June increased the seed yield by 9.17%
compared to the sowing on 14th June, while the yield components were also higher in
the first sowing date. This can be ascribed to the fact that night and/or day temperatures
above 25 and 30 ◦C, respectively, may adversely affect flower buds and pod formation [86]
thereby resulting in decreased grain yield. For autumn–winter cultivation of common bean
in a tropical climate zone, the suitable time for sowing is the middle to end of October [88].

4.4. Irrigation

Limited irrigation regimes have various effects on both yield and quality of common
bean, cultivated for either its fresh pods or dry seed (Table 3). In the rainfed-only cropping
systems which are widely adopted in semi-arid and tropical regions, common bean pro-
ductivity can be severely restricted to levels which are 50% below what could be achieved
without water deficit [89–92]. The harmful effects of water deficit on grain yield were also
reported in several other studies [82,93–98], where reduced irrigation also lowered yield
and yield components. Additionally, limited water availability (i.e., soil moisture levels)
due to high levels of evaporation also negatively impacts yield components [10], fresh
pod [7,9] or grain yields [8,99]. The detrimental effects of prolonged water deficit stress
were also recorded in the studies of Dapaah et al. [100,101] and Love et al. [102], where
common bean plants were exposed to no irrigation during the whole cultivation period.
Conversely, excess application of water, i.e., to levels above the plant requirement, also
limits yield [95] and introduces favourable conditions for disease proliferation, such as that
of white mould [103].

In addition to the quantity of water that is applied by irrigation, irrigation interval
also plays a major role in common bean productivity because more frequent applications of
water can benefit grain yield considerably [104–106]. For example, a high frequency of low
volume applications can maintain available soil water above 60% in a 0.60 m depth root
zone, thus boosting productivity [103]. Hosseini and Shahrokhnia [107] recommended eight
(8) days as the optimum time interval because more frequent irrigation failed to benefit
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yield and so presented water resource use inefficiency. Conversely, Okasha et al. [108]
identified that water supplied every five days restricted the pod number of common bean.
The optimum volume and rates will therefore be specific to the prevailing environmental
conditions including climate, soil type, crop variety, and irrigation water qualities.

In contrast to the above studies, where the crops were permanently exposed to limited
water supply throughout the growing season, other authors focused on the responses
of common bean to deficit irrigation at different developmental stages to identify the
most resource use efficient irrigation regimes for yield. According to the studies of San-
tos et al. [109], González de Mejía et al. [110], Boutraa and Sanders [111] and Mathobo
et al. [112], water deficit stress induced during reproductive stages including flowering
and pod-filling significantly reduced common bean grain yield. Mouhouche et al. [113]
proposed that the flowering to fruit setting stage is the most susceptible to drought, where
limited water supply restricted grain yield due to the reduction in pod number and seed
number per pods—compared to seed filling and maturation phases that appeared to be
less sensitive. Contrary to the above findings, Acosta Gallegos and Kohashi Shibata [114]
stated that drought during reproductive stage, specifically flowering is responsible for
further limitations in grain yield due to the restriction of seed size. By comparison, drought
induced at vegetative-growth stage reduced only the pod number. Drought during early
growth stages did not substantially affect the grain production of common bean in the
studies of Simsek et al. [115] and Peña-Cabriales and Castellanos [116].

Unlike productivity, the impact of different irrigation managements on yield qualities
is not commonly documented. According to Smith et al. [89], the limited supply in rainfed
common bean systems enhanced N, amino acid, and sugar content of grain. On the other
hand, Silva et al. [98] supported that limited irrigation levels restrict the quality of common
bean grains by decreasing micronutrient, lipid, carbohydrates, and ash content. Moreover,
deficit irrigation can benefit the seed crude protein content [82,98,110]. According to Silva
et al. [98], water stress restricts the seed size but not the N translocation to the seeds,
resulting in nitrogen accumulation in pods and thus greater protein content. González
de Mejía et al. [110] ascribed the higher seed protein levels under deficit irrigation to
the increased de novo synthesis of drought proteins. Contrary to these reports, Sejal K.
Parmar et al. [96] supported that the adequate water supply benefits crop N-utilization and
therefore the seed crude protein.

High drought stress and water salinity levels also negatively affect common bean
productivity as both cause a significant osmotic stress for the crop, and concomitantly
significantly restrict fresh pod yield [117–119] despite the greater protein content and
antioxidant capacity of those pods [117].

Table 3. A summary of the impact on common bean yield of varying irrigation regimes and intervals
applied to different crop life history stages. The ND denotes nondefined. The ↓ denotes the decrease
in crop yield and the ↑ denotes the increase in crop yield.

Treatments
Yield Components

References
Pod Yield Seed Yield Pod

Nitrogen
Number

Seeds/Pod
100 Seed
Weight

Irrigation
regimes

rainfed

ND ↓ ND ND ND [89]
ND ↓ ND ND ND [90]
ND ↓ ↓ ↓ ↓ [91]
ND ↓ ND ND ND [92]

deficit
irrigation

ND ↓ ND ND ↓ [98]
ND ↓ ND ND ↓ [93]
ND ↓ ND ND ND [94]
ND ↓ ↓ ↓ ↓ [95]
ND ↓ ↓ ↓ ↓ [82]
ND ↓ ND ND ND [96]
ND ↓ ND ND ND [97]
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Table 3. Cont.

Treatments
Yield Components

References
Pod Yield Seed Yield Pod

Nitrogen
Number

Seeds/Pod
100 Seed
Weight

deficit
evaporation

ND ↓ ↓ ND ND [8]
ND ↓ ↓ – – [99]
ND – – ↓ ↓ [10]
↓ ND ND ND ND [9]

deficit soil
moisture ↓ ND ↓ ND ND [7]

Irrigation impact
on different

growth stages

flowering ND ↓ ↓ ND ND [109]

flowering/
pod filling

ND ↓/↓ ↓/↓ – – [111]
ND ↓/↓ ↓/↓ ↓/↓ ↓/↓ [112]

bud to pod
filling ND ↓ ↓ ND ND [113]

reproductive
stage ND ↓ ND ND ND [110]

vegetive/
reproductive

−/↓ ND −/↓ −/↓ ND [115]
ND −/↓ ND ND ND [116]

vegetive/
flowering/

reproductive
ND ↓/↓/↓ ↓/↓/↓ –/↓/↓ –/–/↓ [114]

Different
irrigation
intervals

5, 7, 9 d ND ↓ (9d) ↑ (7d) ↓ (9d) ↓ (9d) [108]

6, 12, 18 d ND ↓ (d > 6) ↓ (d > 6) ↓ (d > 6) ↓ (d > 6) [104]

4, 8, 12 d ND ↓ (12d) ↓(12d) ↓ (12d) – [107]

7, 14 d ND ↓ ↓ ↓ – [106]

4.5. Fertilization

High productivity of common bean mainly relies on external N inputs due to its poor
BNF capacity. The productivity of common bean crops appeared compromised in organic
cultivation systems [118,120], where the timing of N supply is remarkably challenging
because the mineralisation rates of organic manures is weather- and soil-dependent. In con-
trast, no significant variations in yield of common bean were found in organic or inorganic
fertigation managements in the studies of Uyanoz [121], Karunji et al. [122], and Magalhaes
et al. [123]. Karunji et al. [122] reported that the effects of organic fertilizers on soils and
plants are detectable in a long run because the differences in yield were significant in the
second and third season of cultivation. The soil properties should be taken into account
prior to crop establishment and application of a specific fertilization scheme. According
to Magalhaes et al. [123], the different farming systems (organic vs. conventional) do not
influence the yield when the crop is established in infertile soil with good crop-nutritional
provisions. Application of more-complex organic or naturally occurring N source alterna-
tives to chemical fertilizers, which improve soil fertility, function, and resilience, should
also be considered as a restorative fertilization management practice. For example, the
application of farmyard manure (FYM) equivalent to 75 to 100% of recommended nitrogen
increased yield of common bean compared to solo NPK fertilizers [124] due to the beneficial
effects of organic manure which included improved crop growth and (so) nodulation (BNF).
Moreover, Fernández-Luqueño et al. [125] supported that application of organic waste
products (e.g., vermicompost and wastewater sludge) increased yield of bean plants by
20.7 to 37.8% compared to those fertilized with urea due to improved physicochemical
characteristics of soils and/or increased the nutrient bioavailability. Additionally, according
to Etminani et al. [126], the organically amended soils indirectly enhance the productivity
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of common bean by decreasing the weed pressure. Eventually, the productivity of crops
fertilized with organic or inorganic amendments is largely dependent on the prevailing
environmental conditions or pedoclimate because in the study of Kawaka et al. [127], com-
mon bean crops responded differently to the above fertigation regimes under short and
long rainy seasons.

Mixed or integrated regimes comprising organic and inorganic fertigation schemes
are also advocated as adept fertigation regimes, which can optimize common bean yield
with fewer environmental burdens. The study of Kumar et al. [128] applied an organic–
inorganic (1:3) fertilizer using FYM without limiting yield relative to the 100% inorganic
treatment. Furthermore, additional inputs of FYM to standard inorganic inputs increased
the yield by 30%. Similarly, Sharma et al. [129] observed that grain yield with application of
vermicompost + 75% N was equal to that of recommended application of N, thus reducing
mineral fertilizer application by 25%. Such mixtures take a diversity of forms and may
comprise NPK + vermicompost + crop residues [130] or moderate P inputs + manure
+ biofertilizers [131,132]. Moreover, Saikia et al. [133] reported the positive effect of the
application of Rhizobium, Azotobacter and Azospirillum on organic fertilizers through the im-
provement of soil microbial and enzymatic activities. Da Silva et al. [134] reported that the
application of organomineral fertilizer (from biosolids) significantly increased yield when
combined with 50% recommended dose of inorganic N, compared to control-crop treat-
ments comprising 100% rates of organomineral, or inorganic fertilizers. Musse et al. [135]
also highlighted that greater pod yield was obtained by bioslurry amendments under
limited N inputs. D’Amico-Damião [136] also found that the straw of maize intercropped
with crotalaria enhanced yield and crude protein of common bean grains; however, the
agronomic efficiency of this system is higher under limited rates of mineral N supply. All
such integrated approaches may be considered as a low cost and efficient strategy for
sustainable production of common bean.

Considering the different N managements of conventional cropping systems, Patel
et al. [137] advocated the application of a 50% mineral N rate at cropping establishment and
the remaining 50% at the crop-branching stage as efficient means to optimize grain yield
and benefit–cost ratio. Garcia et al. [138] indicated that split application of N enhanced
the seed yield of common bean compared to a single/broadcast application. According to
Suárez et al. [139], the response of common bean to N supply is also genotype-dependent
and mainly ascribed to the increased photosynthetic N use efficiency (PNUE) and the ability
to partition photosynthates to grain. However, N additions may not affect common bean
yield where the soil fertility is already high prior to crop establishment [140]. Moreover,
Ovacikli et al. [141] concluded that calcium ammonium nitrate, as N source, indirectly
benefits yield compared to ammonium nitrate because it encourages PGPR including
indigenous rhizobia. In addition, its application in alkaline soil did not restrict crop yield by
increasing soil pH due to the Ca inputs. Abebe et al. [142] recommended a combined P plus
N amendment comprising 67 kg P2O2 ha−1 and 27 kg N ha−1 = as an optimum fertigation
scheme for high common bean yields under good soil moisture conditions, where better
utilization of the fertilizer is achieved. Carvalho et al. [143] concluded that the ideal P:K
ratio requires more detailed investigation. Additionally, Bildirici et al. [144] recorded a
positive correlation between P inputs and crude protein content of grains. However, excess
application of P may restrict Zn uptake, thus compromising common bean yield.

Da Silva et al. [145] also reported that foliar application of N, using urea as N source,
enhanced yield and N translocation in seeds compared to soil-targeted application. Benefi-
cial effects of foliar application were also observed in the study of Aslani et al. [146] where
the plants were treated with different organic-chelate fertilizers. In particular, the foliar
application of the organic-chelate products benefited yield, soluble solids, vitamin C, and
protein content of fresh common bean pods compared to the plant that were treated with
standard soil NPK regime—sprayed either with macro- and micro-nutrient mixtures or not.
Finally, Khaber et al. [147] introduced the foliar application of nano-potassium fertilizer as
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a sustainable fertigation management that optimizes yield and quality of common bean
fresh pods.

4.6. Intercropping

Most of the accepted studies implemented heritability and genetic correlation of
yield components as tools to optimize the productivity of common bean in intercropping
systems. In particular, Balcha [148] recommended grain yield and pod number per plant
as the selection criteria to enhance productivity of common bean in both sole and maize
intercrop systems, highlighting also the genotypes DAB243 and DAB245 as a breeding
material for both systems. Similar interactions among genotypes of common bean and
cultivation systems was reported by Zimmermann et al. [149].

Common bean grain yield is higher in monoculture system compared to those which
are intercropped [150]. According to Atuahene-Amankwa and Michaels [32], intercrop
resulted in 32% grain yield reduction compared to sole crop, while Zimmerman et al. [151]
reported significantly higher 100-seed weight for monocropped common bean. This is as-
cribed to the more controlled environment offered by monoculture systems, and conversely
the higher interspecific competition of intercropping. Additionally, Santalla et al. [152]
recorded a reduction in seed crude protein when common bean is intercropped with field
maize. On the other hand, a yield advantage was found when common bean was inter-
cropped with potato (1:1), compared to the respective monoculture and that the N level
applied to common bean can be reduced to 50% without impairing NPK balance in the
soil. The above intercropping scheme also provided greater net returns and benefit–cost
ratio [153]. Similarly, management practices such as the use of willow as windbreak [154]
and humic acid [150] and rhizobia [155] applications can benefit the yield of intercropped
common bean.

Concerning the different plant densities, Abd El-Gai et al. [156] recommended the
density of one (1) tomato to three (3) common bean plants as an ideal pattern because
the increased bean density benefits the total yield of common bean plants without risking
tomato production. This pattern was also the most efficient, in terms of common bean
productivity, in the study of Sadeghi et al. [157] where common bean was intercropped with
safflower, and the efficiency of this system was higher despite weed pressure. Summarizing,
both studies revealed that increased population of common bean did not have a pernicious
impact on its intercropped partner. This statement is also supported by Raey et al. [158],
where a common bean was intercropped with potato as common bean yield was influenced
by potato co-crop density due to interspecific interactions, while the productivity of potato
was mainly affected by its own plant density (intraspecific interactions).

4.7. Soilless Culture

The dependence of common bean on external N inputs was also recorded in soilless
cultivation systems by Kontropoulou et al. [159,160]. Here, N-free or deficit N supply
greatly restricted yield of common bean. According to the same authors, inoculation with
rhizobia mitigated the adverse effects of limited fertilizer-N conditions; however, the N
requirements of the plants for an efficient soilless cropping system were not substantially
compensated by rhizobia addition. To benefit from rhizobia inoculation, Kontopoulou
et al. [159] also suggested an adequate supply of mineral N during the first three to five
weeks of cropping, and a continuous supply of some NO3 throughout the common bean
cropping period in soilless culture.

Apart from N nutrition, Bildirici [161] supported that co-administration of Zn and Cu
supply also helps optimise common bean production, compared to separate administration
of these micronutrients. In addition, Da Silva et al. [162] recommended 12 different common
bean genotypes for high yielding hydroponic common bean with less phosphorous (P)
inputs. Azariz et al. [163] found that lead (Pb)-contaminated organic substrates do not
restrict yield and yield qualities in terms of Pb accumulation in pod because this element
was mainly accumulated in roots.
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However, the relatively few research articles reported provide only limited evidence
to direct farming practices that optimize the yield and qualities of common bean in soilless
culture. This may be ascribed to the fact that in the countries where common bean is the
predominant crop, such as India, Brazil and several African countries, hydroponics systems
are not widely adopted for cultural and/or socioeconomic reasons. Therefore, soilless
common bean production should be served as a research and socio-economic development
focused arena for future food and environmental security efforts.

4.8. Tillage

According to Sangakkara [164], soil compaction reduces common bean yield, whereas
soil tillage favours root branching and increased yield. In field experiments carried out
in Brazil, Costa-Coelho et al. [165] reported that common bean seed yield was higher
(627–1067 kg ha−1) in conventional tillage (years 2005/16 and 2006/07) compared to no
tillage (218–290 kg ha−1), or minimum tillage (219–540 kg ha−1). The same researchers ob-
served that the severity of web blight (Thanatephorus cucumeris) was reduced by 30% under
the no-tillage (NT) system. This reduction may be due to grass straw remaining on the soil
surface in the no-tillage, which prevented the basidiospores spread of this pathogen via
tillage. In contrast, de Toledo-Souza et al. [166] reported increased severity of Fusarium wilt
(Fusarium oxysporum f. sp. phaseoli) and lower seed yield (1251–1821 kg ha−1) under the
NT system. In another study conducted in Spain, Mulas et al. [167] reported that the
inoculation with Rhizobium leguminosarum (strain LCS0306) increased common bean yield
in conventional tillage (CT) but had no impact in the NT system. In contrast to previous
studies, in a rain-fed cropping system, Alguacil et al. [168] recorded the greatest yield (440
kg ha−1) in the no-tillage system in comparison to that in the CT system (mouldboard
ploughing). According to these researchers, the higher yield in the no-tillage system may
be due to the greater roots colonization by arbuscular mycorrhizal fungi (AMF). Similarly,
Fatumah et al. [169] observed that seed yield of common bean crop was approximately
45% higher in NT, and stubble-mulching tillage systems compared to CT and grain water
use efficiency was about 56–83% higher under these two tillage systems compared to the
CT system. The age of a no-tillage system is also an important factor, and in experiments
conducted in Brazil over 23 years of an established NT system, Soratto et al. [170] observed
that both seed yield (1786 kg ha−1) and crude protein content (226 g kg−1) were higher
compared to a newly established NT.

4.9. Rhizobia Application

Rhizobium inoculation of legumes and concomitantly the nodulation and BNF potential
offered is strain-genotype-dependent (Table 4) [18,167]. Da Silva et al. [145] showed that
inoculation with Rhizobium (strains CM-05 and UMR-1899) increased BNF of common
bean (to 70 kg ha−1) and elevation of 55% compared to the non-inoculated plants. Koskey
et al. [171] also reported that native rhizobia isolates can be used to enhance seed yield
of common bean. Rhizobium tropici is widely used for common bean inoculation due
to the positive impact on seed yield [132,172]. Similarly, R. leguminosarum bv. phaseoli
strain LCS0306A application resulted in yield increase by 26.56% [16]. Contrary to this,
Lucrecia et al. [173], Buttery et al. [174], Crespo et al. [175] and Karasu et al. [176] found
that inoculation with Rhizobium had no significant effects on common bean yield. Similarly,
Massa et al. [18], examined fifteen Rhizobium strains and no impact on seed yield was
found. This may have been due to the low BNF ability of the examined Rhizobium strains,
or prevailing environmental conditions (more than adequate soil N levels). The same
experiments, however, indicated that the inoculation with the (already mentioned strain)
PhVyNOD3 of R. leguminosarum increased seed protein content by 9% compared to non-
inoculated treatment. A solution to overcome the problem of rhizobia populations, which
are ineffective or inadequate in terms of BNF ability, is to identify efficient, competitive,
and well-adapted rhizobial strains in different edaphoclimatic zones [177]. Bean breeding
can also be an excellent tool towards identifying such strains [178].
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Inoculation of common bean seeds with Rhizobium strains can have a cumulative effect
with N fertilization and crop yield. According to Barros et al. [17], inoculation with R. tropici
(strain SEMIA 4080) and N fertilization (20 kg ha−1 at sowing and 40 kg ha−1 at 25 days
after emergence (DAE)) resulted in higher yield by 19.82–31.25% compared to that in the N
fertilization treatment (20 kg ha−1 at sowing and 40 kg ha−1 at 25 DAE) without Rhizobium
inoculation. In addition, Argaw and Muleta [179] reported that when the population of
rhizobia in the soil is high, nodulation and BNF is improved, and therefore, the amount of
applied N can be reduced.

Seed co-inoculation with Rhizobium strains and PGPRs can also be considered an
agronomic practice that positively affects growth and yield of common bean. According to
Pastor-Bueis et al. [16], co-inoculation of Rhizobium strain and Pseudomonas brassicacearum
subsp. neoaurantiaca strain RVPB2-2 or the type strain of Azotobacter chroococcum Beijerinck
1901 (ATCC 9043T) increased seed yield by 37 and 28%, respectively, compared to the
control treatment. Co-inoculation also of Rhizobium etli (strains CNPAF512 and 6bIII) and
Azospirillum brasilense (strain Sp245) increased yield of the genotype DOR364 by 8–29%
compared to single Rhizobium inoculation [180]. Last but not least, Filipini et al. [181] and
Steiner et al. [182] found that co-inoculation of seeds with R. tropici and A. brasilense resulted
in significantly higher yields too.

Table 4. Effects of Rhizobium species and plant growth promoting bacteria (PGPB) on common bean
yield and protein content.

Bacterial Species Strain Yield Increase (%) Protein Increase (%) References

Rhizobium leguminosarum bv.
phaseoli

LCS0306 26.56 - [16]

L-125 6.04–66.12 - [183]

L-125, L-78 34.55–42.49 - [184]

6.35 20.32 [185]

CO5 no impact - [173]

HB-429 or GT-9 30.56–33.59 - [186]

Rhizobium leguminosarum
PhVyNOD3 - 9 [18]

vicea −10.90 (yield
reduction) 9.75 [187]

Rhizobium leguminosarum
bv. phaseoli + Bacillus subtilis

(OSU-142) + Bacillus
megaterium (M-3)

OSU-142: B. subtilis
M-3: B. megaterium 6.18 23.13 [185]

Rhizobium phaseoli

HAMBI3570 15.26–78.12 - [188]

3644 and 3622 30.86–68.94 [189]

- 21.56 - [190]

- no impact [176]

- no impact [175]

Rhizobium phaseoli
+

Pseudomonas fluorescens

Rb-133
+

P-93
13.90–54.20 - [191,192]

Rhizobium etli HAMBI3556 12.50–79.50 - [188]

Rhizobium phaseoli,
Azotobacter vinelandii,

Pseudomonas putida, Pantoea
agglomerans, Pseudomonas
koreensis, P. vancouverensis

- 9.08 0.87 [193]



Agronomy 2022, 12, 271 25 of 39

Table 4. Cont.

Bacterial Species Strain Yield Increase (%) Protein Increase (%) References

Rhizobium tropici

CIAT 899
no impact - [194]

9.06 - [17]

37.57–43.77 - [195]

SEMIA 4077, SEMIA
4080, and SEMIA 4088 11.05–16.62 - [182]

SEMIA 4080 7.36–20.70 - [196]

Rhizobium pisi
Pseudomonas monteilii R40982 41–59% (common bean

genotype BAT-477) - [197]

Rhizobium sp.

CIAT isolates 384, 274,
and 632 61.11–70.12 - [198]

B1 26.55 - [14]

Rb-133 9.38–23.50 8.97–21.93 [199]

Rhizobium sp. CIAT isolates 384, 274,
and 632

19.94–70.18 (common
bean intercropping

with Sorghum bicolor)
[155]

4.10. Biostimulant/Biofertilizer Application

Biostimulants are products that contain microbial and/or chemical compounds (i.e.,
bacteria, fungus, algae, proteins, or amino acids, humic, or fulvic acids) that stimulate
plant nutrition processes independently of the product’s nutrient content and promote
plant growth or protection via improving (for example) nutrient uptake, yield quality traits,
plus biotic and abiotic stress tolerance [200]. The application of humic acid improved
nodulation by 18% and significantly increased common bean seed yield compared to the
control [150]. Humic acid combined with phosphate rock (29.3% P2O5) and phosphate-
solubilizing Bacillus pumilus C2 resulted in increased seed yield [201]. Common bean
yield increase can also be obtained by humic acid application combined with zinc and
chitosan [202] due to increased nutrient uptake and improved translocation of assimilates
from source to sink tissues.

Biostimulant products may also contain AMF [203]. The most commonly used AMF
is the Glomeromycota phylum, which acts as a photosynthetic activator [204]. Promising
results were also recorded as a function of AMF application to alleviate drought stress [205].
Moreover, in the same study, the nutritional value and chemical composition of pods and
seeds was positively affected by the AMF too, although this benefit was dependent on the
irrigation regime and harvesting time of pods and seeds.

Seaweed extracts of brown algae, e.g., of the species Ascophyllum nodosum, and
Ecklonia maxima have also been proven to increase yield and quality in terms of protein,
polyphenols, and flavonoids [206] mainly due to the increased provision of proteins,
enzymes, amino acids, phytohormones, vitamins, macro- and micro-elements, polysac-
charides and -phenols. Increased dietary fibre content in bean seeds has also been found
to result from the application of seaweed extracts and amino acids [20] Considering the
biostimulant application method for seaweed extracts, it was found that they should be
administered in the form of double spraying, with solutions having high concentration.
In terms of amino acids (AAs), foliar application is considered the most effective means
of administration, due to the increased tissue-permeation and concomitantly deeper nu-
trient penetration through the cuticle layer. Moreira and Moraes [207] showed that the
productivity of common bean was significantly influenced by the AAs application dose,
with the highest seed yield obtained at estimated concentration in 0.0094% of the product
in foliar sprays. According to the same authors, the best developmental stage for AAs
application is early flowering. The increases in the rates resulted in increased foliar N and
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zinc concentrations and decreased sulfur concentration. Furthermore, Tabesh et al. [208]
used zinc-amino acid chelates (zinc-histidine and zinc methionine) in comparison with
zinc-sulphate for seed priming (to improve germination and seedling establishment) and
foliar application. Seed priming with these zinc sources was more effective than the foliar
application in increasing yield.

According to Rezaei-Chiyaneha et al. [193] PGPR application increased seed yield
(by 25%), root nodule number and dry weight, while Kumar et al. [209] showed that the
combined application of silicon fertilizer (10 g kg−1 soil) and PGPR (4.5 × 107 cfu/g)
maximized pod yield/plant (68 g) and antioxidant indicators such as SOD (120 µ/mg) and
CAT (84 µ/mg) in saline soil. The positive yield effects are also confirmed by various other
PGPR studies [191,192,199], although the mechanisms underpinning these positive impacts
are not understood. Despite this, the underpinning mechanisms are hypothesised with the
production of (a) indole acetic acid which promotes energy production in nodules [199],
(b) phytoalexins and flavonoids which relate to plant protection mechanisms and root
development [14], (c) insoluble nutrient mobilization which enhance plant uptake [209]
and (d) pathogens inhibitors [203].

4.11. Disease Management

Several diseases have the potential to cause severe damage on common bean crops.
The screening process revealed useful information about the effects of diseases and fungi-
cides on yield and/or yield qualities of common bean crops. In a recent study conducted
in East-Central Africa, Bruno et al. [210] observed that the severity of diseases caused by
Psuedocercospra griseola (angular leaf spot), Xanthomonas campestris pv. phaseoli (common
bacterial blight), and Colletotrichum linemuthianum (anthracnose), was negatively corre-
lated with the grain yield of common bean. Similar results are also reported by Mongi
et al. [211]. The latter found that angular leaf spot resulted in yield loss ranging between 6
to 61% in unsprayed plots, while in the plots sprayed with the fungicide azoxystrobin +
difenoconazole the yield loss was lower. Gutiérrez-Moreno et al. [212], studied the effect
of inoculating common bean seeds with four different Trichoderma strains and found that
disease severity was strain-dependent. Moreover, some common bean varieties (e.g., BRS
Notável) are reported to present diseases resistance (e.g., anthracnose), whilst maintaining
high productivity [213].

Root rot pathogens can also cause severe damage to this crop, and Naseri et al. [214]
reported that the infections (e.g., of F. solani, R. solani, F. oxyspporum) reduced the pods
number/plant and seeds number/plant by 3.3/67% and 3.8/76%, respectively, depending
on disease severity. Recently, El-Mohamedy et al. [215] observed that the application of chi-
tosan, humic acid and salicylic acid (plant resistance inducers) decreased the disease sever-
ity of F. solani and R. solani in common bean plants, and increased the pod yield by 8–13%.
Moreover, treatment of seeds with beneficial microorganisms (e.g., Trichoderma viride, PGPR-
1, and Rhizobium strain B1) caused a reduction in R. solani disease severity, while the crop
yield was increased by 10 to 29% compared to that in the control treatment [14].

The fungicides application also contributes significantly to increasing common bean
yield. Rodríguez and Meléndez [216] reported that the application of fungicides benomy,
mancozeb and chloratholonil decreased the A. phaseolorum severity by 20–36%, while the
yield of cv. Bonita was increased by 49–58%. In another study, Ellis et al. [217] reported
that the application of fungicides (benomy, oxycarboxin) increased 1000-seed weight by
22–24%. In a recent study, da Silveira Cardillo et al. [194] reported that seed treatment with
fungicides (e.g., difenoconazole, fludioxonyl + metalaxyl-M, captan) did not affect the root
nodulation and the seed yield of common bean.

Common bacterial blight (CBB), caused by the bacterium Xanthomonas campestris pv.
phaseoli, is an important common bean disease. In a recent study, Boersma et al. [218]
reported that the CBB disease decreased seed weight by 2–5% on susceptible varieties
of common bean. Similarly, Tefera [219] found that the seed yield loss increased as the
common bacterial blight disease severity increased. Bacterial brown spot (BBS) caused by



Agronomy 2022, 12, 271 27 of 39

the bacterium Pseudomonas syringae pv. syringae causes significant yield loss in common
bean crop. Salequa et al. [42] found that the genotypes of this crop differ in disease severity
caused by P. syringae with the highest grain yield (1.8 t ha−1) being recorded in the genotype
G08 showing the lowest disease severity (22%). In addition, the yield in the genotype G14
with the highest disease severity (53%) was lower by 19% compared to that of G08 genotype.

It is also important to mention that several viruses significantly affect the bean yield
and quality. Sarrafi and Ecochard [220] reported that bean common mosaic virus (BCMV)
reduced seed yield and seed weight by 15–41% and 4–11%, respectively, depending on
common bean variety. Bean golden mosaic virus (BGMV) is also a pathogen that can cause
significant yield loss in common bean. Souza et al. [221] reported that seed yield of the
resistant CNFCT 16205 line was 18% higher than that in the susceptible variety Pérola.

4.12. Pest Management

Only two papers assessed the impact of pests on common bean yield. According to
Karel and Mghogho [222], beetle (Ootheca bennigseni Weise) and flower thrips (Taeniothrips
sjostedti Trybom) incidence increased in non-pesticide-treated plots. Similarly, flower and
pod damage caused by Maruca testulalis Geyer and Heliothis armigera Hübner were higher
in non-pesticide-treated plots. However, spraying with the pesticide lindane resulted in
significantly higher seed yield compared to the nontreated plants. In addition, organic
fertilization increased Aphis fabae infestation by 17–50%, though common bean yield was
not negatively impacted [122], thereby indicating the possible crop-protectant capacity of
organic soil fertility amendments.

4.13. Weed Management

To achieve high yields in common bean crop, weed control is important because
crop–weed competition can result in production losses ranging from 12 to 80% [223–226]
and a deterioration in yield qualities too [227]. Not all weeds are equally perncious to yield;
nevertheless, the broad-leaved weed species Amaranthus retroflexus L., Chenopodium album
L. (Amaranthaceae), Portulaca oleracea L. (Portulacaceae), Datura stramonium L. (Solanaceae),
Convolvulus arvensis L. (Convolvulaceae), the sedge species Cyperus esculentus L., Cyperus
rotundus L. (Cyperaceae), and the grass weeds Cynodon dactylon (L.) Pers., Sorghum halepense
(L.) Pers., Echinochloa crus-galli (L.) Beauv., Eleusine indica (L.) Gaertn., Setaria viridis (L.) P.
Beauv., Digitaria sanguinalis (L.) Scop. (Poaceae) are commonly found in regions where com-
mon bean crop is cultivated [157,224,225,228–230]. Chemical control is the most popular
method for weed management in common bean, with trifluralin, bentazon, pendimethalin,
fomesafen, fluazifop-P-butyl, and quizalofop-p-ethyl being among the most common
herbicides used [224,230–232].

According to Singh et al. [230], pendimethalin and quizalofop-p-ethyl significantly
reduced weed biomass and density, while pendimethalin provided high efficacy against
C. album L. resulting in 72% seed yield increase above untreated (control) crops [223].
Several other methods are applied for weed management in common beans and Dusabu-
muremyi et al. [233] reported that planting common bean in narrow rows (45 cm × 20 cm
or 30 cm × 30 cm) increased seed yield by 7–27% in comparison to wide row planting
(60 cm × 15 cm). This increase in seed yield is due to the reduction of weed biomass by
12–68%. With narrow-row spacing common bean plants cover the soil surface earlier than
that in wide-row planting, i.e., the narrow-row approach serving as means of pre-emptive
exclusion of weed growth from the life cycle onset. In another study, Jamali and Amin-
panah [228] also reported that planting pattern of 40 cm (distance between rows) × 20 cm
(distance of plants in the row) followed by two-hand-hoeing (weeding) at 20 and 45 DAS
resulted in high pod yield in common bean crop. Sowing date can also affect the impact of
weed density upon common bean yield. In a study conducted in East Africa, Byiringiro
et al. [234] reported that the early sowing resulted in (a) an increase in common bean seed
yield and (b) a decrease in weed density compared to delay sowing date.
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Hand-hoeing (weeding) is a valuable and effective method for controlling weeds in
this crop [223,225], though it is labour intensive. In a study conducted in India, Srivastana
et al. [223] found that weed control by two-hand-hoeing at 30 and 60 DAS increased seed
yield by 71%. Early weed control is also very important in achieving high yield. da Costa
et al. [224] reported that one-hand-hoeing at V4 + 3 (stems with three nodes and trifoliate
leaves) increased yield by 40% compared to untreated control.

Mechanical weeding between rows is considered common practice for this crop, but the
effects on yield maintenance are lower than that of chemical control [232]. Moreover, inter-
cropping is a cultural method used to increase the competitive ability of common bean, and
Sadeghi and Sasanfar [157] examined the impact of different safflower (Carthamus tinctorius
L.) and common bean intercropping patterns on yield of both crops. The results of this
study revealed that when the common bean is cultivated as the main crop, the S1B3 treat-
ment (one row of safflower and six rows of common bean) under weedy conditions was
the best intercropping pattern to limit the negative effects of weeds on common bean seed
yield. Another method that can be used for maintaining seed yield under weed pressure
is soil solarization. Soil solarization is a nonchemical means of pest and weed control
which involves the soil being covered, often a transparent polyethylene sheet, to trap solar
energy. The extreme environmental conditions under the sheet, and at the soil surface,
being the pest and weed limiting factors. According to Ngadze et al. [229], soil solarisation
for eight weeks with clear plastic to control weed proliferation and resulted in an increase
in common bean seed yield by 83%, compared to the untreated control. Mulching has also
been examined as a weed management practice for common bean, and Rahman et al. [235]
reported that in Senna siamea leaf mulch, the common bean yield was increased by almost
5% compared to rice straw mulch, while the weed dry biomass was decreased by 54%.

5. Conclusions

This systematic review identified twelve agronomic practices that affect common
bean yield and product quality by analysing the production methods reported in the
scientific peer-reviewed literature over the last 50 years. The increase in the number of
studies published after 2010 may be ascribed to the increased funding for research projects
on legumes due to the drive for more sustainable and healthy diets, demand for plant-
proteins as food (as opposed to feed—common beans are rarely used as a feedstock), and as
encouraged by the declaration of 2016 as the International Year of Pulses (IYP) by the FAO.

Most of the research was carried out in Asia, South America and Africa, who have a
long cultural history of common bean consumption, but whose productivity is threatened
because these countries are also characterized by a hot and arid climate with a high
risk of experiencing (irrigation) water deficit conditions. These countries include, for
example, Brazil, Iran, India, Turkey, Ethiopia, Mexico, and parts of the USA. The lack of
international collaboration points to the necessity to establish global research networks
that will include different scientists worldwide. This could be used as a call for more
coordination at political levels to have more effective and coordinated international research
effort to optimise common bean yield potential in an environmentally sensitive and socially
equitable manner.

The analysis also revealed increased reporting of common bean breeding and the
identification of trait associations between, for example, seed and pod yields with flowering
time and plant height. Genotype and environment interactions must also be considered in
common bean breeding, aiming to identify yield-promoting genes and combine them with
those governing tolerance to different environmental stresses and synthetic nitrogen use.

The choice of the sowing season and density were also shown as important for com-
mon bean performance. Both have been shown as cultivar dependent, and therefore the
importance of selecting genotypes adapted to semi-arid environmental conditions, com-
bined with the suitable sowing densities, should be priorities for common bean producers.
Most efficient fertigation schemes are comprised of the integration of both organic and inor-
ganic amendments—particularly animal manure application during basal dressing because
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these promote common bean nodulation, BNF, and improve the physical and chemical
soil characteristics, especially in semi-arid environments. The precise timing supply of
nutrients through inorganic fertilization at different plant developmental stages also helps
ensure nutrient requirements are met in a resource use efficient manner, especially for
crops of large-scale industrialised or intensive production systems where highest yields are
expected. Although, it is stressed that the most environmentally- and/or resource-sensitive
fertigation management to optimise crop yields must be balanced in a complementary
fashion with the local environmental conditions and soil properties where the crop will be
established. As far as soilless culture is concerned, more research is required to identify
specific fertigation schemes that optimize yield and yield qualities of common bean.

Because Phaseolus vulgaris sp. is susceptible to both osmotic (water) and saline (ionic)
stresses, and high yields could only be achieved under levels of irrigation water at the
best quantities and qualities. Under water limiting conditions, elevating the soil moisture
levels during early flowering and pod filling stages could mitigate the adverse impact on
common bean yield.

To optimize the productivity of intercropped common bean, high importance should
be given to the density of the plant that common bean is intercropped with. In addition, the
integrated fertigation management regimes recommended for common bean monocrops
could be adopted to enhance the productivity of intercropped common bean. In addition,
selection of the appropriate tillage system is also important for optimising common bean
yield, and conservation (i.e., no- and minimum-) tillage practices where crop residues are
maintained in field to serve as ‘mulches’ may also result in increased yield, reduced pest
and weed incidence, while also optimising soil functions, including better maintenance of
crop-available moisture levels.

Even though Rhizobium inoculation of common bean and concomitantly BNF ability is
strain-dependent, this agronomic practice can reduce the need to apply synthetic (mineral)
N fertilizers to this crop, and without compromising yield. Co-inoculation of rhizobia with
PGPRs may also contribute to yield maintenance under reduced synthetic fertilizer use. In
addition, biostimulants such as humic acids, seaweed extracts, AMF, and amino acids have
also been tested in common bean. Their impact on yield and qualities including quantities
and/or composition of those of proteins, enzymes, amino acids, phytohormones, vitamins,
macro- and micro-elements, polysaccharides, and polyphenols. Benefits may also extend
to increasing crop nutrient- and water-uptake and improved biotic- and abiotic-stress
tolerance. The use of such biologicals and biostimulants facilitates a very large market
interest and value because they are often perceived as ‘natural solutions’ to enable more
environmentally friendly and resource-use-efficient production. Nevertheless, the very
wide range of potential PGPRs, and so their even greater number of combinations, must
be considered and tested carefully—including with respect to the method and timing if of
applications.

Disease severity in common bean caused by pathogens can be controlled by the use
of specific fungicides. Equally, application of beneficial microorganisms (e.g., Trichoderma
and Rhizobium) and plant resistance inducers (e.g., chitosan, humic acid and salicylic
acid) can also be effective measures against pathogens (e.g., anthracnose and root rot).
Selection of common bean varieties resistant to anthracnose, common bacterial blight and
bacterial brown spot should also be considered to avoid seed yield loss. In terms of weed
management, and besides chemical control, narrow planting, sowing date, hand-hoeing,
intercropping, soil solarization and mulching can all protect yield of common bean by
levels of 4 to 80% compared to untreated controls. Additionally, reports of (integrated)
pest management practices for common bean are scarce, with only one report on the use of
organic soil amendments application and few on chemical control.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy12020271/s1. Excel file S1: Database of the results of the research. Excel File
S2: The exclusion process followed for each treatment, where the columns indicate the exclusion
criteria: (a) The topic (treatment/practice) for the search and selection of papers was conducted.
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(b) The Initial number of articles found based on the title search in the Scopus and Web of Science
literature databases. (c) The number of articles secluded because were either not found or not
accessible. (d) The number of articles excluded because they were written in a language other than
English. (e) The number of review or gray literature (Notes, abstracts or reports of conferences or
other meetings) articles. (f) The number of articles excluded because they concerned investigation
with plants cultivated in pots (not field experiments). (g) The number of articles that were excluded
because it was clear from the abstract or from the full texts that they did not report results relevant
to the treatment under consideration. (h) The number of articles reporting unclear or not well
documented results. (i) The number of articles that did not reported results on yield in relation to the
treatment under consideration. (j) The total number of excluded articles for any of the mentioned
exclusion criteria (columns (c) to (i)). (k) The number of the articles finally selected and included
in the review study related to the Treatment under consideration. Figure S1. The percentage (%) of
publications per continent for each of the twelve categories of agronomic practices.
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