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ABSTRACT 

In the digital era, technology is continually evolving, with enormous advancements in 

automation enabling more efficient and cost-effective maintenance management. Digital 

technologies are converging and advancing in tandem with industries, resulting in significant 

progress in maintenance management. The traditionally human-managed preventive 

maintenance strategy is outclassed with predictive maintenance, something that represents a 

wonderful opportunity to significantly improve system maintenance planning, particularly for 

more complex systems with a significant monetary value. However, predictive maintenance 

methods face numerous substantial challenges in terms of their application, as they necessitate 

the use of contemporary tracking technologies, the development of robust data-gathering 

systems, and the execution of a variety of intricate procedures.  

Considering the significance of maintenance management in industries, the primary motivation 

for this research work is to investigate existing practices and propose new methodologies 

capable of providing practical implications that may be useful in contributing to this field of 

study in terms of predicting failures, efficiency, and cost optimization. The present work is 

organized through three chapters, representing the main areas of study: 1) overview on 

maintenance management, 2) decision-making models supporting predictive maintenance, and 

3) digital transformation in maintenance management. The objectives of research linked to the 

defined chapters are; 1) to study current practices of predictive maintenance and its applications 

in industry to identify its capability to predict and control equipment failures of complex 

systems; 2) to investigate various Multi-Criteria Decision-Making  (MCDM) methods and their 

applications so as to develop an integrated predictive maintenance decision-making 

methodology for complex systems in industry 4.0; 3) to study the digital transformation of 

maintenance management and critical factors of digitalization, as well as uncertainty in the 

decision-making process for maintenance management in industry 4.0. 

In achieving the objectives of this research, a mixed methodology, i.e., qualitative and 

quantitative research, is carried out on the basis of an extensive literature study. A literature 

review of predictive maintenance, its industrial applications along with its limitations is 

developed to identify the shortcomings in existing approaches. Various MCDM methodologies 

have been studied as well to investigate their effects on maintenance management and a plethora 

of real-world cases have been developed to offer practical managerial insights. 

  



II 
 

SOMMARIO 

Nell'era digitale, la tecnologia è in continua evoluzione, con enormi progressi nell'automazione 

che consentono una gestione della manutenzione più efficiente ed economica. Le tecnologie 

digitali stanno convergendo e avanzando insieme alle industrie, determinando progressi 

significativi nella gestione della manutenzione. La tradizionale strategia di manutenzione 

preventiva gestita dall'uomo lascia progressivamente spazio alla manutenzione predittiva, che 

rappresenta un’ottima opportunità per migliorare significativamente la pianificazione della 

manutenzione del sistema, in particolare per i sistemi più complessi e dal significativo valore 

monetario. Tuttavia, l’implementazione di tecniche di manutenzione predittiva si trova ad 

affrontare una serie di sfide sostanziali, essendo richiesti l’utilizzo di tecnologie di tracciamento 

moderne, lo sviluppo di solidi sistemi di raccolta dati e l'esecuzione di una varietà di procedure 

complesse.  

Considerando il ruolo chiave della gestione della manutenzione nelle industrie, la motivazione 

principale di questo lavoro di ricerca consiste nell’indagare le pratiche esistenti e proporre 

nuove metodologie in grado di fornire implicazioni pratiche che possono essere utili nel 

contribuire a questo campo di studio in termini di previsione dei guasti, efficienza e 

ottimizzazione dei costi. Il presente lavoro di tesi è organizzato in tre capitoli, che rappresentano 

le principali aree di studio: 1) panoramica sulla gestione della manutenzione, 2) modelli 

decisionali a supporto della manutenzione predittiva, 3) trasformazione digitale nella gestione 

della manutenzione. Gli obiettivi di ricerca relativi ai menzionati capitoli sono: 1) studiare le 

attuali pratiche di manutenzione predittiva e le sue applicazioni nell'industria per identificare la 

sua capacità di prevedere e controllare i guasti delle apparecchiature di sistemi complessi; 2) 

studiare vari metodi di decisione multi-criterio (MCDM) e le loro applicazioni in modo da 

sviluppare una metodologia decisionale di manutenzione predittiva integrata per sistemi 

complessi nell'industria 4.0; 3) studiare la trasformazione digitale della gestione della 

manutenzione e i fattori critici della digitalizzazione, nonché l'incertezza nel processo 

decisionale per la gestione della manutenzione nell'industria 4.0. 

Questi obiettivi di ricerca vengono perseguiti attraverso una metodologia mista, ovvero sia 

qualitativa e sia quantitativa, basata su un ampio studio della letteratura. È stata sviluppata una 

revisione della letteratura sulla manutenzione predittiva e le sue applicazioni industriali insieme 

ai suoi limiti per identificare le carenze negli approcci esistenti. Sono state inoltre studiate varie 

metodologie MCDM per analizzarne gli effetti nella gestione della manutenzione ed è stata 

sviluppata una pletora di casi reali per offrire spunti gestionali pratici.  
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Motivation  

There is still a lot of ambiguity in maintenance management when it comes to the terminology 

used for different forms of maintenance in industries. Not just does this apply to operation and 

production management, but also to the related studies. Such a lack of standardization can 

represent a barrier to the establishment of a standard definition because of the wrong concepts 

or diffusion of the accepted labels for the different forms of maintenance, which are not 

necessarily well or completely described or understood, rather being assumed as local or 

specific habits. Neologisms are typically developed from foreign language translations, author 

definitions of specific names, and special circumstances. Even if definitions may vary, careful 

standardization is necessary to provide a clear notion supporting maintenance decision-makers 

towards the selection of the best type of maintenance for a component, equipment, or system. 

As a result, these definitions will have an impact on the economic elements of industrial 

organisations.  

The evolution of maintenance concepts is linked to the approaches used to satisfy current 

maintenance demands and is based on the expectations of the industries. There are now such 

principles as keeping dependable and existing systems, shut down for maintenance, detecting 

and monitoring characteristics that suggest the optimal time to undertake maintenance for 

preventing problems, and so on. Other concepts, such as, for instance, initiatives to assure 

reliability and maintainability, are still in the design phase and serve as reinforcements to 

anticipate maintenance operations. Effective use of a maintenance approach is required for 

decision-making assertiveness. As a result, understanding the ideas of the most appropriate 

maintenance type to be implemented is required. Although the integration of various categories 

of maintenance must be theoretically understood, recognizing where a given application is 

completed and another one is initialised is critical for effectively planning and managing 

industrial maintenance.  

In the current practice, new definitions for types of maintenance are continually being presented 

in literature and scientific publications, with little modification with respect to the existing 

notions, but potentially generating confusion due to the introduction of diverse terms [1]. As 

studied by Trojan and Marçal [1], maintenance may be categorized into generations, and the 

timeframe for each generation has been selected as shown in Figure 1.A. This evolution can be 

seen in the industrial demands of each generation, which emphasised the basic notions 

concerning maintenance classes and how they may be categorised. Splitting maintenance into 
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generations resulted in the development of concepts for more efficient maintenance types that 

could be used in industry. 

 

 

Figure 1.A. Maintenance evolution over time [1] 

 

The first generation backed the development of corrective maintenance ideas including 

planned, unplanned, preventative, or repairing. The core idea of the first generation was 

corrective maintenance, which is until now "repair after damage".  The second generation 

introduced conceptual ingredients towards preventive maintenance development, that is 

founded on planned repairs, operational process scheduling and control, and the progression of 

information technology. The evolution of condition monitoring tools as well as failure and risk 

analysis techniques provided the foundation for predictive maintenance in the third generation. 

Increasing maintenance demands fuelled the growth of these notions. These demands 

compelled the emergence of new innovations that may assist the manufacturing industry in 

ensuring quality and reliability, safety, availability of their assets and ultimately manufacturing 

operations. In such a context, reliability centred maintenance provided sophisticated 

methodologies connected to availability and reliability to the present generation, borrowed from 

the aerospace sector and commonly applied to industrial facilities [1]. 
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Industrial assets and resources are maintained while controlling time and budget constraints, in 

order to provide optimal efficiency in the production process via the use of maintenance 

management. There was a time when maintenance management was seen as a merely time-

consuming, labour-intensive, paper-based procedure. Nowadays, on the contrary, maintenance 

management is completely handled by Computerised Maintenance Management Systems 

(CMMSs). 

While software plays an important role in maintaining equipment, the most effective methods, 

best practises, and properly qualified staff all come together to make up the whole of 

maintenance management. The types of maintenance carried out at a facility may be taken into 

consideration when designing a maintenance management system. Maintenance programmes 

should be calibrated according to the specific maintenance adopted and also by considering the 

function played by maintenance itself in the organisation of reference, independently on using 

a condition-based programme like predictive maintenance or a time-based programme like 

preventive maintenance. Any organisation with machine assets should strive to continually 

improve maintenance management, but there is no one-size-fits-all answer to this problem.  

Assuring the long-term success of a maintenance programme relies on maintenance 

management, also involving such aspects as quality assurance, operational efficiency, and asset 

condition. Unplanned downtime is considerably reduced when industrial assets and resources 

are well-maintained. When there is unexpected downtime, the expenses associated with repairs 

(overtime personnel, replacement parts, and so on), delays in shipments, lost income, or full 

malfunctions of machinery, may quickly escalate. In addition to reducing operating expenses 

and increasing the quality and quantity of produced goods, maintenance management helps to 

increase the operational efficiency of plant facilities. Besides cost savings, additional 

advantages include greater workplace safety and productivity, and lower human errors [2]. 

The primary objective of equipment maintenance is to ensure that equipment continues to 

operate at peak performance levels. When a piece of equipment is properly maintained on a 

regular basis, its manufacturing output is maximized and its usable life is extended. If a 

maintenance department does not approach proactive equipment maintenance, then the 

frequency of failures may increase, potentially leading to shorter equipment life cycle, 

production delays, budget concerns, increase in overtime, inventory issues, safety accidents, 

and unsatisfied personnel throughout the factory floor. The actual cost of equipment downtime 
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may be catastrophic when the above-mentioned list is not taken properly into account, as well 

as the possible damage to brand reputation [3]. 

Considering the significance of maintenance management in industries, the primary motivation 

for this dissertation work is to investigate existing practices and propose new 

methodologies capable of providing practical implications that may be useful in contributing to 

this field of study in terms of predicting failures before they occur, efficiency and cost 

optimization. 
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Research topics 

The overall goal of maintenance management is to implement activities aimed at maximising 

productivity and identify the most effective methods and procedures in a particular field. In 

order to effectively manage expenses, efficiently plan projects, and reduce the likelihood of 

system failures, a CMMS report analyses constitute an excellent starting point. Generally, 

maintenance management's primary goals include the aspects detailed in the following. 

Budgeting and cost control: maintenance management tools help managers to make informed 

decisions on how to spend company money. Cost management is a critical issue, since certain 

expenditures are more cost-effective than other ones. Decisions about which new component 

to be purchased for an equipment have to be made by considering cost, useful life and reliability. 

Work scheduling and resources allocation: operational efficiency depends on scheduling work 

and allocating time and resources to maximize productivity. Maintaining thorough awareness 

of the phases of a process is helpful for maintenance managers to prioritize different tasks. As 

an example, maintaining a forklift is a task that may be prioritized by a maintenance manager 

in order to assure on-time delivery of products in the warehouse and onto the delivery vehicle. 

Regulation and compliance: in order to comply with local, state, and federal requirements, 

enterprises use maintenance management software. A single operator may seem to be the most 

cost-effective solution, even if at least two people are required by law to be assigned to each 

asset for reasons of safety. 

Reduced downtime/loss: to minimize downtime and losses due to failure, an effective 

maintenance management program establishes a maintenance schedule. In such a way, less 

income is wasted due to fewer production stoppages. 

Increase life of asset: organizations use to invest a lot of money on equipment; therefore, they 

want to extend the related life cycle. Programs for equipment and infrastructure maintenance 

assist to keep them in excellent working order at all times. Indeed, machines, facilities, and 

other components last longer when properly maintained. 

Equipment upgrade: maintenance management also aims to improve the current state of 

equipment by changes and expansions, or through the addition of new, low-cost products. 

Training: Ensuring and maximizing the quality of the finished end product, maintenance 

management programs should involve educating employees in specialized maintenance skills 
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as well as increasing operational safety and providing advice on equipment procurement, 

installation, and operation. 

New trends in maintenance: latest technologies and computerized maintenance management 

strategies should be considered in achieving a comprehensive understanding of the day-to-day 

operations. Moreover, accessing historical data may reveal important information such as, for 

example, the reasons why a specific asset is continually underperforming [2], and so on. 

An important part of maintenance management consists in dealing with assets aiming at 

guaranteeing their long-term functioning. However, a few fundamental differences have to be 

specified between the two disciplines of asset management and maintenance management. 

1. Asset management: it is aimed at monitoring performance of industrial assets, and then 

acting on this data to increase production efficiency. Long-term success of organisations 

strictly depends on their asset management systems, being in tune with their entire business 

strategy. Organizations may use asset management techniques to determine whether their 

equipment are running as expected, operational expenses are being lowered, and their assets 

are yielding a greater return on investment. 

2. Maintenance management: as previously discussed, CMMS software is often used to 

effectively track such company's resources as personnel, materials, and equipment. This 

kind of system provides analyst with relevant information about how to express judgments 

regarding building or enhancing maintenance processes. In order to reduce downtime and 

unplanned repairs, maintenance management ensures that company's equipment is kept in 

top functioning condition. 

While asset management and maintenance management are technically defined as two diverse 

disciplines, they are typically combined and well complemented with each other. On the one 

hand, asset management examines the whole set of available data to identify and prioritize work 

that needs to be carried out on each asset. On the other hand, maintenance management focuses 

on the physical performance and upkeep of equipment [2]. CMMS eases the whole maintenance 

function, and the benefits of implementing a software platform which is capable to track all the 

relevant aspects for maintenance is clear. By maintaining a computer database of information 

on industrial maintenance activities, this type of system may provide progress reports as well 

as comprehensive records of the maintenance tasks. When data are reviewed, this will allow 

maintenance staff to perform their duties more efficiently and, at the same time, will enable the 
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top management to make more effective decisions resource distribution and manage 

expenditures. Using CMMSs eliminates the need of manual data tracking and enables to 

monitor and synthetize numerous organisational aspects into a single digital location. CMMSs 

facilitate equipment information management, along with the management of preventive and 

predictive maintenance activities, the organization of work order systems, planning and 

scheduling, supplier management and inventory control. There are two types of CMMS 

systems: on premise (more conventional) and cloud-based (more current). On-premise servers 

are characterised by some limitations, including higher prices, complicated setup, and ongoing 

maintenance. Advantages are listed in the following. 

Work order management: CMMSs with work order management features considerably 

streamline each stage of the maintenance work order process. Operators may submit service 

requests and maintenance managers can monitor work orders from their desktop or mobile 

device. It is possible to include preventative maintenance into the program by employing time, 

use, or condition-based events to automatically notify the software when a planned activity 

needs to be performed. Work orders may be scheduled automatically, and inventory can be 

alerted to guarantee that the essential components are in stock. All of the software's users, 

including technicians and managers, have access to real-time upgrades. Technicians have 

access to a dashboard where they can keep track of their day-to-day activities, mark tasks as 

completed, and bring assets online. Managers, meanwhile, are capable to monitor the status of 

tasks. 

Reports on assets performance: the capability to gather and analyse information of 

every equipment is a huge benefit for maintenance managers, as it allows them to identify areas 

where performance and effectiveness may be quickly improved. Monitoring how company 

assets are being used and how they are functioning is an important aspect of maintenance 

management. Examining working hours and having the possibility of reading indicators based 

on time and distance are part of this. By using this data, CMMSs create asset profiles that 

contain information relevant to each asset, such as repair checklist, malfunction signals, safety 

precautions, and single-point lessons. A thorough picture of company's maintenance function 

can be obtained by building reports on such topics as asset unavailability and influence profiles 

of each asset on the inventory costs. 

Inventory management: tracking extra components may be a complex task. Industries can have 

the right components on hand when they need them with the precise quantity. Various CMMS 
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systems allow organizations to keep track of all inventory, including their location, time 

of procurement, way of use, and whether or not they are available across all of the organization 

sites. When carrying out activities of maintenance or repairs, professionals can locate the 

needed items and learn how to use them.  Using CMMS also helps to keep track of inventory 

prices, order information, cycle counts, usage statistics and first-in/first-out details.  

Audit capabilities: having a searchable record of each task makes prepares for audits processes. 

This enables the asset maintenance history to be audited by the maintenance management team. 

User profiles tracking certifications and renewal dates can be set up and standard training videos 

can be provided to people who need to renew and stay compliant with many CMMS systems. 

All of the work orders, task lists, and photos are saved for future reference, in case they will be 

needed to support the ISO certification application. 

Mobile capabilities: recent cloud-based CMMS technology is almost always provided with the 

opportunity to be used from a smart device through remote access. This is essential as 

maintenance staff devote most of their period in the field, on the plant floor, and away from the 

office. The use of mobile technology enables maintenance professionals to document their work 

in real time. Taking images and asking for assistance on-site is also possible. Changes may be 

made even with no Wi-Fi connection thanks to a CMMS app with offline capability. 

Integrating capabilities: modern CMMS technology has the capacity to interact with some 

different systems in any firm, which is one of the finest features. For example, integrating 

CMMSs with sales software offers the sales staff permissions to access to data they were unable 

to see before. With a wide range of integration options available from a reliable CMMS 

supplier, it is possible to create the perfect system for business organisations [2]. 

Firms often restrict access to their CMMSs to a small number of maintenance managers, 

something that has led to heated dispute about who should possess access authorizations. This 

can lead to a handful of issues over time. Most of the system's functions are placed on a small 

set of users, who must handle everything from tracking down work requests to evaluating and 

reporting on them. Another problem refers to the reduction of the collective influence of the 

entire team. Human resources are more likely to skip work, make poor judgments, and have 

poorer moral if they cannot understand the big perspective of maintenance operations. 

Alternatively, having CMMSs accessible to a wider range of co-workers and departments may 

significantly benefit business by spreading the burden of maintenance management. This allows 
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the maintenance staff to focus on other aspects of their work. Additionally, other departments 

may take data-driven choices based on information throughout the whole organization. 

Some of the stakeholders that should have accessibility to the CMMS are listed below. 

• Maintenance manager: human resources from the maintenance department, who are also 

system administrators, are obviously the most significant choice. The CMMS is under the 

direct control of the system administrators, who are also extensively engaged in the selection, 

implementation, and optimization of the CMMS itself. Maintenance managers are 

responsible for drafting, scheduling, and prioritizing work orders, as well as maintaining 

assets and providing reports on the status of those assets. 

• Facility manager/operator: by granting the access to facility managers, they will be able to 

view data on various facilities, including maintenance schedules, measurements, and overall 

efficiency. Improved efficiency, budgeting, planning for audits and purchasing inventory 

can be extremely benefited from this information. 

• Reliability engineers: engineers specialized on ensuring systems are reliable people who 

analyse CMMS reports and transform them into useful information. Providing reliability 

engineers with access to all of the CMMS's data enables them to produce effective reports 

and process enhancements with higher degree of accuracy. 

• Inventory managers: the need of a CMMS in inventory management has been already 

discussed. Improved inventory management and buying helps to ensure that the maintenance 

crew gets the right components in the correct place whenever they require them. It also helps 

to keep better track of expenditures and data. 

• Health and Safety personnel: maintaining regulatory compliance is easier when all the safety 

and health data are housed in a single system. This information is available to all the workers 

and can be accessed any time. 

• Technicians: guaranteeing access to CMMS to technicians should be considered, since 

they use the system's capabilities more frequently. It is not necessary to grant all technicians 

administrative access, but they should be able to read work orders, get notifications and 

update asset profiles, and execute other duties related to repairs and inspections. 

Additionally, having all of this information available means that they will have the ability to 

log data in real-time and to consequently be more efficient and precise. 

• Production staff: equipment workers and supervisors as well as other staff members who 

interact with the machinery on a regular basis fall into this category. CMMS enable 
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manufacturing workers to make proposals or add more information to work orders, enabling 

more effective repair procedures. CMMS can also be used by maintenance managers to 

allocate generic personnel or autonomous maintenance tasks, such as cleaning of equipment. 

• Vendors: CMMS visitor permission should be granted to vendors and professionals who are 

not directly linked with the firm but conduct normal working activities. In such a way, work 

orders, task lists, and resources can be all readily visible. Furthermore, with the addition of 

mobile access, vendors would be able to keep in touch with maintenance personnel. 

• Executives: the executive board and top management take data-driven choices using all the 

available facts. Accessibility to the CMMS is a simple approach to keep them informed 

regarding progress, successes, key performance metrics and more [2]. 
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Objectives and methodologies 

Given the importance of maintenance management in industrial contexts, the key purpose of 

the present work of thesis consists in investigating on current practices and in developing new 

approaches capable to offer practical insights that may be helpful to contribute to this field of 

research in terms of performance optimisation and cost reduction. Hence, the objectives of this 

research are: 

1. To study current practices of Predictive Maintenance (PrdM) and its applications in 

industry to identify its capability to predict and control equipment failures of complex 

systems. 

2. To investigate various Multi-Criteria Decision Making (MCDM) methods and their 

applications to develop an effective integrated PrdM and decision-making methodology 

for complex systems optimization in industry 4.0. 

3. Study the digital transformation of maintenance management in industry 4.0, 

advantages and constraints of digitalization, critical factors of digitalization in 

maintenance management, and to determine what types of data should be gathered 

digitally to efficiently execute PrdM strategies. 

4. Studying and addressing uncertainty in decision-making process for effective 

maintenance decision making of complex systems in industry 4.0. 

In achieving the objectives of this thesis, a mix methodology i.e qualitative and quantitative 

research, and an extensive literature study is carried out. Literature review of PrdM and its 

applications in industry along with its limitations is conducted to identify the flaws in existing 

approaches. Various MCDM methodologies are studied as well to investigate the effects of 

applying MCDM in maintenance management. Mainly, Failure Modes Effects and Criticality 

Analysis (FMECA), ÉLimination Et Choix Traduisant la REalité (ELECTRE) TRI and 

Decision-Making Trail and Evaluation Laboratory (DEMATEL) approaches are analysed and 

a case study is conducted of a pump used in cleaning vehicle of a company operating in waste 

management sector. FMECA, ELECTRE TRI and DEMATEL techniques subjected to PrdM 

are integrated to identify failure mode and their criticality, sort failure into ordered classes and 

rank failures of a complex service system. Moreover, study discussed the digital transformation 

of maintenance management, identified critical factors and their interdependence by studying 

Fuzzy Cognitive Mapping (FCM). Additionally, dealing with uncertainty in decision making is 

also demonstrated in this study. Further, this research is extended to another real-case dealing 
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with Fuzzy theory along with Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS), i.e FTOPSIS is utilized to investigate the most critical factor of maintenance 

management by converting linguistic variables, obtained from maintenance expert during 

various brainstorming sessions, into Fuzzy numbers, calculating the positive and negative 

distance from ideal solutions, and finding the closeness coefficient using TOPSIS method.  
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Thesis organisation 

This thesis is formalized with a brief introduction on maintenance management along with 

objectives and methodologies, including three main chapters namely, overview on maintenance 

management, decision-making models supporting predictive maintenance, and digital 

transformation of maintenance management, respectively. The last part of the thesis includes 

the conclusion and future developments section. Moreover, appendices, abbreviations, 

references and list of publications are also provided in the thesis. 

 

 

Figure 1.B. Thesis organization 

Introduction section of this thesis includes the motivation that provides the idea and need of 

research on this topic. Further, various definitions, concepts and important factors of 

maintenance in industry are presented. Moreover, objectives of the research are formalized in 

this section and methodology used in this study is presented. 
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Chapter 1, “overview on maintenance management” elaborates the role of maintenance in 

industrial context, various maintenance policies, maintenance strategies and their classification, 

maintenance triggers and latest maintenance technologies are presented. Critical success factors 

of maintenance management in industry are also debated. Various literatures on Predictive 

maintenance (PrdM) and its role in industry 4.0 along with benefits and constraints is presented 

too in this chapter. Moreover, applications of PrdM in various industries, technical drivers of 

PrdM, role of technology in maintenance, and how to initiate a successful maintenance policy 

is discussed. At the end of the chapter, various analysed cases of PrdM in industry 4.0 are 

presented. 

Chapter 2 titled as “decision-making models supporting predictive maintenance” discusses the 

decision-making approaches integrated with PrdM to achieve the maintenance objectives in the 

industry 4.0. In this chapter, FMECA, ELECRE TRI and DEMATEL methodologies are 

integrated and implemented for complex service system optimization. FMECA method is 

utilized to classify all likely failure modes of a system subjected to PrdM and risk matrices of 

relevance is utilized to assess the criticality of each failure mode. Critical failures are identified 

and categorized, as well as failures considered with high risk levels and conditions are 

highlighted using ELECTRE TRI method. Finally, DEMATEL is applied to find particular 

failures which are considerably dependent with other failures in the similar risk category than 

others within a class. An industrial case study is performed to observe the applicability of these 

integrated methodologies. 

Chapter 3 is formalized with the title of “digital transformation of maintenance management”. 

This chapter discusses the relation between technology and maintenance, and digital 

transformation of maintenance management from traditional one. Chapter studied that what 

different types of data could be gathered digitally to efficiently execute predictive maintenance 

strategies. Chapter also discussed the critical factors of digitalization in maintenance 

management along with their advantages and limitations. Additionally, this chapter elaborated 

a decision-making model to support such strategies of maintenance management. Chapter 

presented that the expected outcome of the study would have the capability to assist 

maintenance management through the understanding of relations of influence bonding related 

critical factors with each other, by allowing to monitor equipment health, identify problems, 

predict and resolve issues long before they occur, and even enhance performance. Moreover, in 

this chapter, we assume a Multi-Criteria Decision-Making (MCDM) approach and, specifically, 
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a method based on the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution 

(FTOPSIS) is applied to rank alternatives relevant to industry 4.0 for characterizing ambiguity 

in maintenance decision-making.  

Last part of the thesis is conclusion and future development section. This section concludes the 

thesis and provides the future directions in the field of study. The presented research might be 

beneficial to facilitate organizations in making effective decisions and optimizing business. As 

a result, this study may have positive impacts on economic, social, and environmental factors, 

as well as maintenance policies implementation on the whole. 
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1.1. The role of maintenance in industrial contexts 

The capability of business organisations to compete on the basis of minimum cost, excellent 

quality, and productivity is strongly impacted by the importance of maintenance as a core 

function in industries [4]. Maintenance costs and downtime due to machine and asset 

breakdown can be catastrophic in many sectors. Maintenance and reliability managers' primary 

goal is to assure the availability of systems and machines in organizations [5]. In the event of 

an unanticipated outage of machinery, equipment, or devices, the organization could be 

severely harmed with a consequent damage on reputation. As an example, when Amazon was 

offline for forty-nine minutes in the year 2013, this event cost $4 million in revenue to the 

corporation [4]. According to a study report carried out by Ponemon Institute, organisations on 

an average experience a loss of $138,000 per hour due to data centre outage. According to 

research, this is also believed to be between the 20% and 35% of the entire income earned by 

offshore wind turbines and between the 15% and 70% of the overall production expenses of oil 

and gas industries. As a result, it is crucial for organizations to apply a well-executed and 

effective maintenance planning to counter unexpected interruptions, enhance overall 

reliability, and minimize operating cost [4]. Maintaining an effective strategy for preventive 

maintenance may indeed lower operational risk and boost efficiency. Even if there are tried-

and-true methods for growing plants, there is not a single approach that works for all of them. 

What works for one industry may not work for another. It all depends on company’s resources 

available, and on company's long-term objectives [6]. 

Maintenance management is described in EN 13306:2010 as a set of all the "activities that 

determine the maintenance objectives, strategies, and responsibilities, and implement them 

through such means as maintenance planning, maintenance control, and the improvement of 

maintenance activities and economics". Objectives are established for the management 

approach based on such factors as costs and availability, safety and dependability. It is 

important for maintenance management to determine the approach based on the liability it 

bears, by taking into consideration equipment availability, human safety, environmental impact, 

and any other important requirement that may be connected with it, as well as the item's 

reliability and final product quality with relation to both cost and environment. The maintenance 

strategy is constructed to take into account processes, actions, resources, and duration. The 

European Standard EN 15341:2007 contains the most important indications. The aims of the 

main aspects are: assessing condition, comparing (internal and external benchmarks), 

diagnosing (analysing threats and opportunities), creating objectives and establishing the targets 
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to be met, planning improvement activities, and constantly measuring changes over time. 

Financial, technological, and organisational factors are the three main categories. Elements 

from within and outside the organisation (culture, industry, product life cycle, criticality) must 

be taken into account while determining these parameters [7].  

Repairing the equipment is not often worthy once it has malfunctioned, since problems must be 

forecasted and managed beforehand they occur by recognising associated root causes.  Omshi, 

et al. [8] investigated on the different maintenance and repair approaches which have been 

presented until now, varying from basic life-based to condition-based maintenance. Lundgren, 

et al. [9] examined various models of maintenance and discovered that their applicability in 

industry is restricted to measure the effect of maintenance. Industry needs regular maintenance 

to ensure and keep equipment, components and assets, and for guaranteeing correct 

operational work. Lack of equipment to fulfil specified functions results in downtime, cost, and 

hazards for workers, and all of these factors are progressively worsened by each failure. In 

current business practices, high levels of competition do not allow companies to fail. With the 

advancement of technology and information systems, industries have been forced to adopt 

advanced monitoring technologies. In order to format, preserve, and evaluate the information 

on a descriptive and analytical level, they also involve complex analytics.  

Implementing proper maintenance activity is necessary to limit the risk of breakdown. As 

presented by the British Standard BS EN-13306:2017, maintenance is a set of "management 

operations during the life cycle of an object designed to keep or restore it to a state in which it 

can perform the appropriate function”. Inspection, monitoring, testing, diagnosis, prognosis as 

well as such active maintenance measures as repair and refurbishing are examples of technical 

maintenance. Maintenance backed occurs when an organization receives support for its 

responsibilities [10]. 

Integrating cyber physical systems with the advancement of computing infrastructures, like big 

data, Artificial Intelligence (AI), data analytics, Internet of Things (IoT), cloud computing 

platform, and so on, is enabling smart manufacturing, in other terms Industry 4.0.  Integrating 

systems through the use of digitalization promotes the creation of systems responding on a real-

time basis to changing circumstances in the manufacturing facility, logistics system, and 

demands from clients. During the course of a manufacturing process, a vast amount of data is 

gathered and aggregated from many elements such as, for instance, human, tangible and 

intangible resources. Pre-trained AI algorithms may be used to rule computing infrastructures 

based on data available from manufacturing systems [10]. 
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It is common to apply AI-based tools in order to obtain valuable knowledge from industrial 

data. The methods leverage past training and experience to integrate knowledge into the 

systems, allowing them to automatically learn and perceive to new environments. It is also 

shown that the approaches may be used in the manufacturing business because of their 

capability of managing large amounts of data, decreasing complexity, enhancing current 

knowledge, and uncovering key process relationships. These skills permit to predict the subject 

of interest of the company in order to ideally minimize the variance in their manufacturing line 

and increase efficiency and product quality. AI algorithms may be used to predict how 

production systems will behave in the future, and so this information can be used to make better 

decisions [10]. 

Optimising decision-making processes with the help of data-based useful information can aid 

the industrial transition to more environmentally friendly practises (e.g. reduction in wastage, 

increase in energy and resource efficiency, and predictive maintenance). An effective way to 

promote industrial sustainability while using intelligent manufacturing platforms consists in 

establishing proper communication tools between equipment and reliability/maintenance 

experts with the aim of optimising machinery maintenance activities. Also, manufacturing 

plants need effective maintenance plans to maintain system dependability, save costs, eliminate 

downtime, and optimize the usable life of equipment. Unforeseen events induced by ineffective 

maintenance approaches diminishes the overall economic output of a plant up to 20% and costs 

roughly $50 billion annually [10]. 

The first maintenance technique is the so-called run-to-failure, which means that no 

maintenance is performed until a breakdown occurs. Unforeseen events are inevitable in this 

case, even if the usage of a machine part is enhanced to some level. To avoid any unwanted 

breakdowns, preventative maintenance is the most common practice in industry, something that 

involves inspecting and maintaining parts periodically. A large suspension period and 

significant maintenance costs may be associated with routine inspections and maintenance. For 

these reasons, maintenance engineers frequently face a compromise scenario: they must choose 

between increasing the useful life (unplanned maintenance) and increasing uptime (preventive 

maintenance) [10].  

Various kinds of maintenance strategies are described in literature. A comprehensive 

descriptive overview is reported in the following sections.  
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1.1.1. Maintenance policies 

Several  maintenance policies currently exist, but the three main commonly used approaches to 

keep machine and equipment operational are reactive, preventive, and predictive maintenance 

[6, 7, 11, 12]. The terminology of types of maintenance may differ from organization to 

organization, making it difficult to distinguish between concepts like preventive and predictive 

maintenance [13]. Historically in Europe, maintenance is organized and executed according to 

scheduled regular plans, and it is referred to as preventive maintenance or corrective 

maintenance if a failure has occurred. In preventive maintenance, actions involve performing 

repairs or changing out the parts to avoid equipment failure while, in corrective maintenance, 

repair is done only after the equipment or component has failed. This last approach makes it 

possible to get the most out of the machine's complete lifespan. However, as it can be expected, 

sudden breakdown can lead to costly repairs and potentially catastrophic circumstances. 

Alternatively, in predictive maintenance, machine or equipment failure is predicted before 

breakdown, considering the condition monitoring data predictions [1, 11]. Millions of dollars 

are yearly spent in industry because of unexpected shutdown and bad equipment conditions. In 

their never-ending effort to address these events, companies apply various maintenance 

methods, usually integrating two or more policies [13]. Based on the significance of the system, 

certain maintenance should be promptly undertaken, while other interventions could be 

rescheduled/postponed [1, 11]. Different types of maintenance are herein presented.  

 

 

Figure 1.1. Maintenance policies 
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Corrective Maintenance (CM) 

Corrective maintenance seems to be the most prevalent form of maintenance and is concerned

with finding, isolating, and correcting a problem. Restoring a machine or component back up 

and running is ideal. However, corrective maintenance  is completed after failure occurrence, 

which may be both costly and dangerous [1, 6, 7, 13]. If the intervention is postponed, this 

refers to as deferred corrective maintenance, while if the intervention is completed immediately, 

this refers to as immediate corrective maintenance [1, 7], since maintenance crew is primarily 

focused on restoring the equipment to the original operational status. Specifically, corrective 

maintenance could be deliberated as a run-to-failure maintenance approach, that is defined as 

"maintenance until the system fails." Condition-based maintenance could be beneficial and 

represent a cost-effective strategy relying on the maintenance team being observant enough to 

see how to maximize advantages of corrective maintenance by integrating condition-

based, reliability-centred maintenance or other approaches [13, 14]. 

Preventive Maintenance (PM) 

Preventing breakdown and malfunctioning is the primary goal of preventive maintenance. 

Failure occurrence is herein prevented, even if this is more commonly accomplished on the 

basis of a specific amount of time. Missing failures not occurring within a predetermined period 

of time may be extremely expensive [6]. Preventive maintenance is performed by analysing 

such data as operating hours or duration from the previous intervention, which results in 

periodic maintenance operations that do not take into account the actual state of the equipment. 

In most cases, there is still a reasonable amount of useful life remaining at the point of 

maintenance, but there is a concern of extra maintenance, for example, extensive lubrication of 

moving components [1, 11]. Preventive maintenance is carried out at programmed schedules or 

based on predetermined conditions in order to decrease the likelihood of breakdowns [7]. 

Specific procedures are generated for examining equipment on a regular basis, identifying 

minor faults and implement corrections before they become serious.  Preventive maintenance 

aims to minimise the downtime risk. Several strategies are used to such an aim, including 

increasing the productive life of equipment, reducing the number of key equipment failures, 

and minimising productivity loss caused by equipment failure [3, 13]. The term "preventive 

maintenance" refers to a range of different forms of maintenance. The following ones are two 

examples:  
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1) usage-based maintenance, which employs triggers depending on how each item is really 

used and maintenance managers are expected to organise a preventative maintenance schedule 

based on predefined criteria by tracking asset utilization with equipment monitors;  

2) prescriptive maintenance, which mirrors preventive maintenance in application, but making 

use of such machine-learning technologies as AI and IoT to support plan preventive 

maintenance actions [13]. 

 

 

Figure 1.2. Pros and Cons of preventive maintenance adopted from [13] 

 

Predictive Maintenance (PrdM) 

The primary goal of predictive maintenance consists in identifying possible problems before 

their occurrence, which opens a longer window of opportunity to address them [1, 6, 12]. 

Maintenance actions are performed in accordance with the machines projected condition to 

prevent a breakdown [7]. Condition monitoring, system efficiency, and other indicators are 

combined in predictive maintenance in order to forecast breakdowns or efficiency loss. 

Equipment conditions are continuously monitored, and any change in that state corresponds to 

prompt measures, something that extends the system lifespan. Predictive maintenance is the 

preferred technique when it comes to maintain supply grids in the most cost-effective, labour 

and environmentally-friendly way. A sophisticated algorithm is needed to establish effective 

and risk-free methods. Such AI-based techniques as expert systems and machine learning can 

also be utilized to develop these algorithms. PrdM currently represents one of the most popular 

use of AI in industry [3, 11]. This policy keeps track of the progress and status of equipment 

under normal operating situations in order to predict equipment failure. It is similar to 

preventive maintenance, being even defined as a type of preventive maintenance. A recent 
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survey led by Reliable Plant found that many firms implement either predictive and preventive 

maintenance, but there are some differences between these two policies. Preventive 

maintenance does not use condition monitoring, which is required by predictive maintenance, 

implying the integration of such condition-based techniques as acoustic monitoring, infrared 

thermography, oil analysis, and vibration analysis. The fact that preventative maintenance 

entails the examination and execution of maintenance on equipment independently on the actual 

need of maintenance is another significant distinction, being the schedule based on a trigger.  

 

 

Figure 1.3. Pros and Cons of predictive maintenance adopted from [13] 

 

 

Figure 1.4. Example of maintenance strategies adopted from [11] 
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It can be extremely useful to have a thorough grasp of each of the maintenance policies 

previously described to have the possibility to include all of them into the general maintenance 

plan as much as possible. Predictive maintenance strategies can assist decrease unplanned 

downtime and outages, but they have also some flaws and limitations. Even if these strategies 

can assist in reducing human error, they cannot totally eradicate it [6]. Moreover, literature has 

been identifying other types of maintenance as discussed further. 

Condition-Based Maintenance (CBM) 

CBM denotes to predictive type of maintenance [14] which can be executed through the use of 

complex algorithms describing the failure progression. Indeed, the predicted form of the 

component as it declines to complete failure form is different from the actual condition of the 

component. On the one hand, as a complementary action, detection systems or any associated 

hardware device(s), which are critical to the accuracy required to monitor significant changes 

at the most fundamental physical level, might too become integral to the implementation of 

effective high-end CBM methodology for critical or complex systems as a whole. On the other 

hand, many CBM interventions do not necessitate such sophistication [3, 13]. This is the reason 

why the type of maintenance activity to be undertaken to prevent an approaching failure should 

have to be determined on the basis of the relevant trends of the failing state [14]. More in detail, 

predictive maintenance can be considered as one of the alternative form that have emerged from 

CBM: a preventive part which concerns the identification of the underlying causes of failures 

and a predictive side that concerns the identification of the significant symptoms and defects 

leading to failures [13]. A component's Remaining Useful Life (RUL) may be predicted by 

using CBM, which is based on the capability of being able to anticipate the RUL. This can be 

obtained by examining and measuring the physical features of the component at its most 

fundamental physical level as it progresses through its failure process until the data necessary 

to enable this predictive technology can be gathered. Such advanced procedures as the Highly 

Accelerated Life Test (HALT) and the Highly Accelerated Stress Test, are used to evaluate and 

expedite the experience of failure.  

Prognostics Health Management (PHM) 

PHM implies the existence of a dependence on decision-making based on CBM, even if not all 

the prognostics approaches are developed to be autonomously controlled and implemented as 

integrated components of the PHM process. Prognostics may comprise the development of a 

health management system and the use of specific devices to determine the physics of failure 

characteristics of essential parts aboard an automobile or system, among others. More 
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straightforward implementations of prognostics-informed diagnostics may include the 

employment of a indicator, simple visible gauge, or other procedure that will provide an alarm 

beforehand with respect to failure occurrence, which can be considered to serve the role of a 

prognostic capacity. It goes without saying that minimizing the chance of encountering any 

failure is beneficial, but this gain is usually associated with a cost [14]. 

Reliability-Centred Maintenance (RCM) 

RCM is among the most conventional type of preventive maintenance. It is Based on the 

application of reliability-based engineering principles into the planning and scheduling 

activities for replacing parts before they fail. Particularly, such a technique is used to reduce the 

likelihood of component failure. Accordingly, systems are likely to fail independently and in 

line with the particular individual reliability engineering forecasted breakdown features that are 

associated with them [1]. This assumption is utilized to justify the planning of maintenance 

schedules and the associated operations under a maintenance policy where the main goal 

consists in the possibility of preventing the occurrence of more severe failures [14]. The 

procedure of recognizing expected failures with company’s assets and identifying what are the 

specific needs to ensure that those systems last to operate at highest capability is known as 

RCM. In other words, breakdown is examined in order to determine optimal maintenance 

procedures and specific maintenance plans for each particular asset. Preventive maintenance 

and RCM are sometimes interchanged, even if there is still a significant distinction between 

these two policies: preventive maintenance is not selected like RCM, resulting in being lesser 

effective. Since RCM examines every component on an individual basis, inadequacy is 

minimized by allocating maintenance activities that are specific to each component of the 

system. When it comes to reliability-centred maintenance, a standard four-step workflow is 

used: asset selection, asset assessment, maintenance policy identification, and process repetition 

[13, 14]. 

Scheduled Maintenance (SM) 

Parts or components could be changed carefully to their predicted failure when using scheduled 

maintenance in order to exploit more usage of the equipment at the chance of them failing just 

before they are replaced. Furthermore, the scheduled maintenance program may promote more 

cautious approaches in which parts are substituted more in advance of the expected failure, that 

might put the system at danger of some kind of early change of parts. This might naturally 

increase the cost of opportunity while minimizing the possibility of operational accomplishment 

[14]. 
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Opportunistic Maintenance (OM) 

Maintenance activities performed as a part of a preventive or corrective maintenance program 

may necessitate the utilization of OM, aiming at replacing parts in ahead of time depending on 

the factor of convenience. In such a way, their probability of breakdown or becoming 

deteriorated avoid to compromise operational success when undertaking an associated 

maintenance task. Another reason for implementing this procedure would be to improve the 

system's availability, productivity of organizations, and safety as well as to reduce or increase 

the cost of ownership. This is a predictive process relying on elements of both RCM and CBM 

occurrences. OM is a type of individual technique that allows decision-makers to take into 

account interrelations among parts, systems, and variable costs connected with any changes or 

repairing operation while taking decisions about replacement or repair. It is possible to 

completely vet any component, structure, or design since the interrelationships of the parts, 

systems, and models have already been defined. Because of this, a high-end diagnostic 

assessment tool may be used to assess the possibility of an efficient opportunistic maintenance 

plan for a given design with respect to any model where the interrelated operational and failure 

features have been properly described and documented. This will provide the benefit of being 

capable to evaluate the effect of this type of preventive maintenance plan in conjunction with 

other combination of concepts, methods, systems, or economic aspects. When designing the 

implementation of any maintenance paradigm, opportunistic maintenance solutions can be 

efficiently utilized by involving production, manufacturing, and industrial sustainment 

decision-making [14]. 

Total Productive Maintenance (TPM) 

In the manufacturing industry, the TPM policy refers to the process of employing machines, 

equipment, and workers as well as supporting processes capable to sustain and enhance the 

consistency of manufacturing along with system quality. In this context, TPM programs build 

small, interdisciplinary teams to target such fundamental areas as preventive and autonomous 

maintenance by simultaneously educating machine operator and standardising work 

procedures. Total productive maintenance refers to all of the departments within a business 

organization, and it is concerned with ensuring that the means of production are efficiently and 

effectively used. Instead of being considered as a strategy, total productive maintenance is 

regarded more as a process that helps to enhance activities. Also, TPM is not a fast cure, since 

it takes years to fully collect the benefits of a high-quality process. However, related gains are 

quite relevant [1, 3, 13]. 
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Run-to-Failure Maintenance (RTFM) 

RTFM is an unscheduled and repair-after-fail style of maintenance, typically implemented as a 

conscious effort to save expenses. For items such as disposable assets (i.e. equipment with 

disposable components that are intended to be changed out instead of to be fixed), items which  

are not critical such as tools, durable components (i.e. items which are not subjected to break 

or do not expected to be failed during normal operational situations), and systems that shows 

haphazard failure signs which are impossible to be predicted, organisations can choose to 

implement an RTFM plan [13]. Maintenance is approached in a reactive manner, actively 

intending to continue to use a piece of equipment until it breaks down or malfunctions. RTFM 

policy is appropriate for equipment with modest repair costs and when a breakdown would not 

imply significant operating concerns (as for instance production delays). It is possible to 

implement this policy for important equipment that need to be replaced after the next failure 

[3]. 

The following figure provides a quick overview of the many existing maintenance policies, as 

well as the sorts of activities that are involved, the goal of each work, and the methods by which 

the interval between two consecutive tasks is established. A maintenance plan that is efficient 

and successful will include a combination of all of these distinct forms of maintenance [15]. 

 

 

Figure 1.5. Comparison of maintenance policies adopted from  [15] 
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1.1.2. Selecting strategies and classifications 

Predictive maintenance initially appears as the most cost-effective policy. On its turn, PrdM 

may be expensive, seldom representing a good investment, especially if employed for relatively 

inexpensive piece of equipment. Actually, the most effective strategy is frequently a mix of 

several approaches. Most firms begin with preventive maintenance and then gradually 

introduce more advanced solutions such as CBM and PrdM as people become more competent 

and confident in adopting a proactive attitude towards maintenance [3]. The figure below 

provides insights to adopt the best maintenance strategy. 

 

 

Figure 1.6. Summary of maintenance strategies adopted from [3] 

 

Maintenance has been understood and categorised in many ways across the world. As already 

discussed, the European Standard EN 13306 divides preventative maintenance between two 

types: CBM and pre-determined maintenance (PDM) [1]. 

 



Chapter 1. Overview on Maintenance Management 

30 

 

 

Figure 1.7. Maintenance types by CEN (2001) [1] 

 

A particular standard in Germany, termed DIN 31051, states that “all steps for maintaining and 

restoring the goal condition, as well as evaluating and analysing the actual condition of the 

technical equipment in a system" are handled by a division referred to as Plant Maintenance”. 

Preventive maintenance, inspection, and repairs are the three categories of maintenance that are 

classified by DIN 2003. The following figure depicts this classification [1]. 

 

 

Figure 1.8. Maintenance types by DIN (2003) [1] 

 

In the United States, the US Department of Energy (US DOE) requires that historical and 

present maintenance procedures have to be carried out once a system has failed. This definition 

emphasizes the actual interpretation of maintenance as “the work of keeping something in 

proper working order”, something that should consist in activities performed to save a system 

or asset from breakdown, as well as measures implemented to fix regular machine degradation 

during the function of the system, to retain its appropriate functioning state. With this 

understanding, there are four main kinds of maintenance: reactive, preventive, predictive, and 

RCM. This classification is depicted below [1]. 

 

 

Figure 1.9. Maintenance types by US DOE (2004) [1] 
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Trojan and Marçal [1] presented a categorization system based on the strategies that were 

considered to be associated with conventional maintenance considerations. The authors provide 

two major methods in equipment maintenance, namely reactive and preventive strategies, as 

well as the numerous tactics associated with the maintenance ideas, as indicated in the following 

tables. The authors come to the conclusion that each of these approaches can be undoubtedly 

implemented through the use of a variety of methods, strategies, and technologies. 

 

Table 1.1.  Reactive tactics in maintenance [1] 

 

 

Table 1.2. Preventive tactics in maintenance [1] 

 

s 

Table 1.3. Proactive tactics in maintenance [1] 

 

 

Some writers from Latin America, notably Brazil, where the research was conducted, offer 

maintenance categorization in the same way as European and North American categories are 

presented, resulting in a miscellaneous classification [1]. The Brazilian standard ABNT, NBR 

5462 (1994), categorises the different kinds of maintenance into the following categories: 
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precautionary maintenance, remedial maintenance, measured maintenance or predictive 

maintenance, scheduled and non-scheduled maintenance, On-site and off-site maintenance, 

distant maintenance, programmed maintenance, delayed maintenance, and planned 

maintenance [1]. 

As presented by French standards AFNOR NF X60-010 and NF X60-011, maintenance could 

be characterised as follows: corrective maintenance, preventive maintenance, and other 

maintenance. It is also possible to investigate preventive maintenance in the form of Preventive 

Systematic and Preventive Conditional approaches. Corrective maintenance was separated into 

two branches by Monchy (1989), in addition to the definitions provided by the AFNOR 

standards: Curative Corrective Maintenance and Palliative Corrective Maintenance [1]. 

According to Trojan and Marçal [1], the categorization developed by the United Nations 

includes an intriguing aspect on the forms of maintenance that are preventative and corrective 

in nature. Planned maintenance was the name given to the group of tasks that were assigned 

together. Accordingly, the United Nations categorization analyses remedial maintenance with 

approximate degree of scheduling, and maintenance measures are accounted when the machine 

is working, while it is not operating, or until the machine fails completely (repair by fatigue). 

The idea of operating following a failure is addressed in this categorization by maintaining a 

breakdown or performing unexpected maintenance [1]. As studied by Trojan and Marçal [1], a 

classification distinguishing between preventive maintenance and corrective maintenance was 

developed, however it also involves PrdM inside the preventive category, assuming it to be a 

form of prevention based on the situation of the equipment. In this aspect, the notion of "repair 

after failure" was introduced by corrective maintenance, and the concept was further developed 

to include improvements in the application of corrective maintenance practises. The authors’ 

concepts include the planning criterion as an implicit part of their overall design. Summing up, 

fundamental conditions for establishing effective maintenance strategies are the following: 1) 

the equipment, system, or installation must be capable of some form of monitoring; 2) the 

equipment, system, or installation must be capable to make decision on which the maintenance 

type to be used is supported by the associated expenses; 3) breakdowns necessarily initiate from 

root causes which could be analysed and their progression must also be managed [1]. 

A more comprehensive approach adopted by The Brazilian Association of Maintenance, aiming 

at satisfying the dependability and maintainability objectives of the third revolution of industrial 

maintenance. Corrective, preventive, and predictive maintenance are the three primary 
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branches. Other nomenclatures are used to comprehend some of the changes that have been 

occurring in each of these subgroups [1]. 

  

 

Figure1.10. Classification of maintenance strategies proposed by [1] 

 

1.1.3. Maintenance triggers 

Maintenance triggers may be created and utilized in anticipation of a variety of different sorts 

of maintenance projects. Breakdown triggers are employed in conjunction either RTF or 

corrective maintenance schedules. PrdM employs techniques such as time-based triggers in the 

shape of warnings in order to attempt to control a breakdown from happening. In addition to 

event-based triggers, usage-based triggers, and condition-based triggers will be explored [13]. 

 

Figure 1.11. Types of Maintenance Triggers 
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• Breakdown triggers: as earlier indicated, breakdown triggers are employed in conjunction 

with RTF or reactive maintenance plans. In the event that an asset ceases to function, an 

alert is generated, which prompts the creation of a maintenance activity request aimed at 

repairing the system and returning it to its previous functioning state. In case, an industry is 

operating a collection of less-expensive, replaceable equipment and has inventory of 

replaceable components and units with them that may be switched out quickly and cheaply, 

stoppage is minimized to the greatest extent feasible and breakdown triggers are often not 

beneficial. There is no need to organize interventions with a great advance and this helps to 

keep maintenance budget as low as possible. However, it is also necessary to have 

replacement components and equipment accessible at any times, as well as qualified 

employees to handle problems. Keeping stock in this manner goes in contradiction of lean 

concepts such as Just in Time (JIT), which are intended to reduce the amount of retained 

inventory [13]. 

• Time-based triggers: these are among the most popular types of maintenance trigger. A 

computerized maintenance management system or other maintenance planning software is 

linked to these devices, which warn when a certain time period is exceeded. The use of 

time-based triggers in prognostic and precautionary maintenance plans is common for basic 

activities such as oiling components or organizing examination appointments. For instance, 

when a system's operating time reaches the period of fourteen days, an alert is sent to the 

appropriate party to have it serviced. As a practical example, a time-based trigger outside 

of the industrial environment would be changing the air filters in Heating, Ventilation, and 

Air Conditioning (HVAC) quarterly [13]. 

• Usage-based triggers: usage-based triggers are same as the time-based triggers since they 

depend on an already determined metric subjected to the utilization of the asset under 

analysis, irrespective of the duration during which the metric is measured. Usage-based 

triggers, as opposed to time-based triggers, ensure that an asset receives maintenance only 

after it has performed a particular amount of service. This is in contrast to time-based 

triggers, which are carried out on a regular basis regardless of the machine state. Any 

equipment that conducts period or amount-limited activities may be created along with a 

usage-based trigger in the same way that, for instance, an automobile receives changing of 

oil in each 5,000 miles. Meter readings can be entered into a computerized maintenance 

management system and utilized to trigger indications when a specified amount or reading 

is attained. Usage-based triggers are an excellent method of keeping machines operational 
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that operates on an irregular schedule, and they are most frequently used in combination 

with predictive or preventive maintenance approaches [13]. 

• Event-based triggers: a fire or a flood are examples of events that can be triggered, and 

event triggers may be utilized to act and inspect system or asset one the incident has 

happened. As an example, the requirement of planning and executing checks on the electric 

system and structure following a flood may be operated by a computerized maintenance 

management software capable to notify the maintenance team. Despite the fact that event-

based triggers occur once an incident has occurred, they might also indirectly relate to the 

incident that triggered them. In most cases, event-based triggers serve as investigating 

activities after an incident has occurred [13]. 

• Condition-based triggers: depending on the conditions of a certain asset, condition-based 

triggers are used to activate this asset. The evaluation is used to decide if the asset can be 

acceptably allowed to continue operating or whether maintenance is required on the asset 

under consideration. Maintenance employees must get a comprehensive understanding of 

how the asset works so as to make a reliable conclusion regarding its state under this option, 

which is a more in-depth choice. The conditions of the equipment can also be assessed 

remotely. It is possible to employ condition-triggered alerts in conjunction with sensors 

installed on a system to observe characteristics such as noise, temperature, and vibration. 

An alarm may be generated to schedule an inspection if, for instance, a sensing device 

detects a rise in temperature which exceeds a predefined limit [13]. 

 

1.1.4. Latest maintenance technologies 

One of the most important factors in achieving excellence in operations and maintenance for 

manufacturers is to have the benefits of the data offered by latest smart technologies. In order 

to accomplish this objective, a new maintenance solution is almost certainly necessary for 

keeping assets, workers, and procedures organized and running smoothly. The most significant 

technological advancements have occurred in the field of condition-based monitoring, which is 

used to perform preventive and predictive maintenance. Techniques such as thermography, 

vibration analysis, oil analysis, and motor current analysis may be used in conjunction with 

these types of maintenance to better decide on underlying reasons and failure triggers, search 

for advantages such as enhancement of machine’s lifespan and prior problem identification, 

and reduction in the frequency and effect of faults. With current technology advancements, 

manufacturers are seeing fewer mistakes and defects, as well as increased productivity while 
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decreasing labour expenses. The use of automated sensors that can continually monitor 

machines is one of the most significant advancements. Not only can they be used in a variety 

of different forms of maintenance, but also they can provide a large quantity of data to be 

examined and utilized to enhance the efficiency of the maintenance process. Maintainability 

management system solutions can assist in harnessing all of these data and integrating them 

with four critical components for latest maintenance technology policy: utilizing PrdM, quality 

data and IoT, inventory management, and enhancing rounds for continuous improvement [13]. 

1. Using predictive maintenance: Although preventive maintenance is an excellent practice 

for avoiding shutdowns and decreasing stoppage, the subsequent phase is to adopt PrdM in 

order to effectively acquire and analyse the information generated by equipment. 

2. Quality data and IoT: CMMSs capable of handling the huge quantity of data generated 

across facilities represent an ideal solution. The information from ordinary already 

connected sensing devices to implanted devices and all other in between will need to be 

included into the system. It is common a CMMS to be integrated with an IoT-based 

approach to not be dependent on specific types of gear. Data collected from assets on the 

plant floor are wirelessly integrated into the CMMS systems used by the company, thanks 

to IoT technology. This will need as a basis the configuration of the previously stated 

triggers and indications in order to automatically create work orders without personnel 

intervention. 

3. Managing inventory: according to a recent Plant Services’ study, approximately the 29% 

of respondents reported a backlog of maintenance activities that lasted three to four weeks. 

Adopting a reactive maintenance strategy all of the time simply leads to a growing backlog, 

which means that assets are not receiving the proper repair as they would require. Tracking 

backlogged jobs in a CMMS aids in the identification of problems, their causes, and their 

remedies, as well as the adoption of added positive culture in order to minimize 

accumulation. 

4. Improving cycles: using information from a smart factory system and connected them with 

a CMMS allow to improve the maintenance cycle by sustaining savings and globally 

increasing efficiency [13]. 

Current maintenance technology trends are mentioned and briefly discussed in the following. 

• The Industrial Internet of Things (IIoT): IIoT is a new technology based on the automated 

collection of data by making utilization of a system of cordless sensing devices. Affordable, 

multi-purpose sensing devices are now quite easily accessible than they have ever been. 
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These sensors may be integrated into a variety of industrial assets, and they can be used to 

collect maintenance data in an automated and reliable way. This removes the need for 

manual data entry, which is both expensive and time-consuming, as well as open to the 

occurrence of human mistakes. 

• Augmented Reality (AR): as a result of the capability to provide remote instructions, AR is 

being used in remote maintenance and training, among other applications. This is a 

personalized method which enables maintenance duties to be tailored to the understanding 

and ability level of each individual employee who performs them. Augmented reality can 

be used to assist training delivered through an equipment merchant or senior maintenance 

employees through the use of a virtual presentation that demonstrates how a task has to be 

performed. While still a new trend, the use of AR for training is growing in fame as the 

complication of industrial system continues to rise. When it comes to continue with the 

variances in new system, especially the technically enhanced abilities that come with every 

system, augmented reality may release the stress on the involved maintenance employees. 

In the current market, some vendors supply large-scale AR services for maintenance, as 

well as IIoT organizations who offer AR as compliment of a packaged solution. 

• Maintenance as a Service (MaaS): this is a relatively novel concept in the realm of 

maintenance. Essentially, it entails to provide maintenance facilities and, instead of 

charging a fixed service amount, plant operators can be charged with respect to the 

equipment maintenance services truly used. Vendors accomplish this by gathering and 

analysing data, processing data in the online data management system i.e. cloud, and 

planning jobs. Providers of services include those that predict the remaining life of an 

equipment or provide understanding into optimum maintenance intervals, those that provide 

service instructions and recordings, as well as virtual reality and AR communicating 

services, those that configure information technology and additional plant systems in 

accordance with investigative results, and those offering thorough data and information on 

system [13]. 

 

1.1.5. Critical success factors for maintenance management 

Organizations must pay close attention to the critical success factors (CSFs) for maintenance 

management (MM) systems. Bakri, et al. [16] identify and synthesis nine CSF components 

having the most significant influence on MM implementation on the basis of the examination 

of prior research. A summary of the CSF components generated from prior investigations is 
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depicted in the figure below. The past study conducted by earlier researchers served as the 

foundation for the development of the maintenance management framework. Based on the 

cause-effect diagram, the nine CSF components were integrated to form a final product. The 

MM framework built on this foundation illustrates the critical role played by senior 

management towards the solution of problems involving human and operational contextual 

variables throughout the MM program implementation. 

 

 

Figure 1.12. CSFs for MM adapted from [16] 

 

Workers have to necessarily adjust their mind-sets and working culture for progress and 

improvement of the program. All of these challenges represent a significant element that must 

be carefully considered by senior management prior to the launch of a mass migration initiative. 

Top management should have a dominant role in setting maintenance policies, procedures, 

resource allocation, and aligning them with the company's commercial objectives.  

The emphasis on training and instruction would instil in employees a desire to alter their mind-

sets and be eager to take control of their equipment. Training on MM is indeed one of the most 

important factors defining success. Effective training programs would increase the competence 

of employees in the use of maintenance management approaches, according to the report. 

Emphasising the operational contextual variables would be the next step to be taken into 

account upon the human contextual aspects.  

Bakri, et al. [16] lastly highlight that, in order to assure successful maintenance management, 

the strategy should be practical, complemented with strategic planning and disciplined 

execution methods in place. The integration of the maintenance management program with 

appropriate tools, methodologies, and technology will assure the long-term viability of the 
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endeavour. The use of a computerised system would aid the corporation in its examination of 

the maintenance data for its machinery. Maintenance management would be able to improve if 

appropriate performance monitoring and evaluation on its progress are regularly carried out. 

This would allow management to examine its accomplishment while also addressing 

shortcomings in the implementation [16]. 
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1.2. Literature review on predictive maintenance 

Over the past years, the concept of maintenance has evolved from a reactive maintenance 

activity to a proactive process [17], with a focus on preventive maintenance. Maintenance that 

is reactive, such as corrective maintenance, only rectifies failures after they have occurred, 

tending to result in unplanned downtime. Preventive maintenance instead aims to replace 

components or machines that may still have significant productive operating time, leading to 

higher overall repair costs. Alternatively, predictive maintenance has the potential to forecast 

breakdowns in advance, minimising unexpected downtime and prolonging life of equipment, 

thereby decreasing maintenance costs while enhancing system dependability [18]. 

Through the growth of advanced methods, e.g. those based on IoT, sensor systems, intelligent 

systems, among others, there has been a transition in maintenance approaches through CM to 

PM and finally to PrdM. As already widely discussed, CM is only performed to restore the 

working condition of the equipment after a problem arises, tending to create significant latency 

and leading to important reactive maintenance costs. To prevent breakdowns, PM is led with 

respect to a predetermined plan depending on time or procedure repetitions. As a result, PM 

may undertake needless interventions, resulting in excessive preventive maintenance costs. 

PrdM is conducted based on online assessments of the equipment state of health, in achieving 

the finest transaction between the two needs of, on the one hand, exploiting as much as possible 

the useful life of systems and, on the other hand, to minimise the number of maintenance 

interventions and avoid the related expenses [4]. 

PrdM has become an important concept both in industry and academia [17]. Since it can be 

considered as a condition-based method forecasting equipment failures in ahead of time (on the 

basis of past data like inspection, condition monitoring data from previous failures as well as 

maintenance and other kinds of data), not only is a PrdM-based strategy cost-effective, but also 

it significantly increases the useful life of equipment [18]. Engineers and researchers have been 

continuously developing new methods for predicting problem and system degradation 

throughout the period of a system useful life, based on historical data, modelling, simulation, 

and failure probability calculations. In general, the useful lifespan of equipment is determined 

by the amount of data that is available and reachable. However, there are certain unanticipated 

scenarios difficult to be forecasted, such as for example shock damage and unwanted sudden 

equipment degeneration. Researchers are currently trying to figure out what is causing these 

issues and how they are affecting PrdM [17]. 
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Figure 1.13. PrdM development activities adopted from [19] 

 

By encouraging a more proactive maintenance approach, it is possible to reduce the need for 

regular and preventive maintenance interventions. A great deal of study has been developed on 

PrdM till date. Cheng, et al. [20] demonstrate that reactive maintenance is not able to avoid 

breakdowns and that preventive maintenance is unable to forecast the impending state in 

advance, allowing equipment to be restored early and therefore extending their life. As a result, 

companies are using the PrdM strategy in conjunction with new technology in order to bypass 

such constraints. AI, Machine Learning (ML), Statistical Process Control (SPC), Deep Learning 

(DL), IoT, Big Data, the Cyber Physical System (CPS), and the cloud architecture have all been 

used to make advancements, and they have provided significant avenues for future study. These 

strategies are mainly based on data collection from multiple resources, enabling to accurately 

predict failures of various nature.  

While both unscheduled and preventive maintenance are subjected to the need of matching the 

previously discussed trade-off scenario, PrdM is a reliable strategy which has the ability to 

bridge the gap by optimizing availability. It is intended to observe the health of running system 

and to forecast when the system will fail in order to maximize uptime. In other words, it is 

possible to predict the future behaviour and condition of systems, which will aid to overall 

optimise maintenance activities. It is feasible to considerably minimise machine outage and 

maintenance costs by decreasing the occurrence of maintenance, while at the same time 

increasing the performance of the equipment [10]. 

The field of predictive maintenance has gained significant attention during the past couple of 

years for a wide number of reasons. Determining which method is the most appropriate, robust, 

and accurate in terms of fault detection still remains a challenge for industries, since detecting 

faults as early and as accurately as possible is an extremely critical issue as well as an important 

aspect of predictive maintenance. The main difficulty originates from that fact that, in 
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manufacturing contexts, it is often essential to design models in the absence of a consistent 

amount of historical data. In such situations, unsupervised learning would be a preferable 

method for model construction [21]. 

Many sectors have benefited from the positive contributions of PrdM, demonstrating that it can 

be a crucial part of asset management both at the organizational and operational levels. Being 

the life cycle data of assets made of several measures resulting in huge amounts of data, data-

driven algorithms are often used to effectively support Asset Performance Management (APM). 

As already expressed, current PrdM technologies are becoming more reliant on ML 

technologies, as data-driving technology progressively matures and becomes more widely used 

and accepted. However, despite the fact that ML algorithms have shown to be high-tech in 

terms of increasing diagnostics and condition monitoring abilities, these are not entirely exempt 

from flaws. Indeed, data types or structures utilized to train and verify algorithms may have a 

negative effect on their global performance. These constraints may result in greater calculation 

complexity, longer computational times, and worse accuracy, making PrdM solutions useless 

in terms of creating real-time estimates of assets future status as well as correct findings. A 

standard of practise for how data should be formatted per type of PrdM analysis depending on 

ML does not exist at this time due to the lack of suitable architectures or frameworks. Data-

driven PrdM algorithms, as a result, may be restricted in their capacity to offer accurate and up-

to-date information, depending on the ML-based analytical method that is used [22]. It still 

seems that failures have to be preferably corrected by firefighting rather than by identifying and 

solving the root causes [23]. It is possible to infer that methodologies capable to anticipate 

failures and identify associated reasons for pursuing core systems optimization continue to be 

developed and refined. Particularly, aiming at avoiding to experience possible critical failures, 

the foremost objective of PrdM is to provide opportunities to perform either an autonomous 

remedial maintenance along with the most desireable maintenance actions to mitigate the 

impacts triggered by undergoing incipient failures [14]. 

 

1.2.1. Predictive maintenance in industry 4.0: benefits and constraints 

While the immediate goal is to establish a predictive maintenance capacity, there are several 

costs and aspects that must be addressed in achieving desired objectives. The greatest portion 

of the cost and predictive capabilities may indeed affect the implementation of maintenance 

strategies and, consequently, their efficacy, aspect that can be observed only after the 

investment has been shouldered [14]. 
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Many predictive techniques need knowledge that is both expensive and unlikely to be easily 

accessible when the system is deployed, at least not at a fair cost. Consequently, except the 

knowledge is held internally and not ready to be transferred to another program, studying 

predictive tactics above and beyond the low-hanging fruit may result in cost savings for the 

system integrator or client. Finally, PHM designers must take into account the limitations of 

the own knowledge and experience. Most of the time, this is the case when knowledge is not 

shared for a single piece of design that the expert produces and implements. As a consequence, 

such information is not easily transferable to others. Thus, all of the potential options have to 

be carefully evaluated before committing to a maintenance strategy assuming the prediction of 

failures as the best solution in every situation. PrdM should first analyse live conditions of the 

systen and find if the anticipated RUL of important equipment is adequately more, by defining 

the so-called "Failure Horizon". This will increase the probability that the equipment is going 

to be appropriately used in the future. It is possible that the equipment depends on the 

accomplishment of a specific job or operation. This aspect leads to the view that PrdM seems 

among the exclusively desirable technique to maximise the operating capability of the 

component or comlex system [14]. 

During the previous years, there has been increasing attention on tools and methodologies for 

engaging in the concepts of predictive maintenance activities is developed. Maintenance can be 

planned by observing mechanical conditions of critical assets employing such parameters and 

predictors as temperature distribution, vibration trends, and acoustic features with the support 

of numerous condition monitoring systems. This allows the scheduling of maintenance when 

actually necessary. The study of Physics of Failures (PoF) patterns has received significant 

attention over the past fifteen years, raising the possibility that, sometime, almost any failure 

may be stopped or forecasted by thoroughly evaluating related PoF trends and developing 

suitable sensors to accurately notice and assess the progress of the indications to the failure as 

capability prognostics. In this context, PrdM actions may be planned in anticipation of a 

breakdown on the basis of the condition of the detected components, which is finally 

characterised as CBM [14]. 

Fourth industrial revolution (Industry 4.0), has been driven by the  technological transformation 

which has turned manufacturing into smart manufacturing via evolvement and development of 

intelligent systems [24]. Almost every aspect of our life has been affected by the expansion of 

intelligent systems and other forms of information technology, by means of which the industrial 

world has undergone a huge evolution process. Since its inception in 2011, the notion of 
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"Industry 4.0" has ushered in significant transformations, particularly in manufacturing. Smart 

machines, big data, cloud computing, and CPS are just a few examples of notions that have 

emerged within the context of 4.0, which is a broader paradigm including a wide range of 

technologies. With Industry 4.0 technology, manufacturing costs are reduced and performance 

is boosted, resulting in a more efficient processes and techniques. In addition, Industry 4.0 made 

it simpler to detect and correct system faults [25]. 

The IoT technology as well as cloud computing methods are key components of Industry 4.0. 

As technology advances, such a concept is spreading. Industry 4.0 aims to build latest 

generation software and hardware to enhance productivity while simultaneously minimising 

expenses. Some of the most significant concepts of Industry 4.0 refer to interoperability, 

virtualization, autonomous management, real-time competence, service orientation, and 

modularity. Interoperability enables CPS to connect with humans and intelligent systems via 

the IoT technology. Sensor data utilized in the created system are connected to a virtual space 

and simulation models via virtualisation. It is evident as condition monitoring and problem 

diagnostics can be considerably simplified in systems through Industry 4.0 technologies. 

Another advantage consists in the possibility to consistently reduce costs and build new 

business along with innovative service models. The primary goal of Industry 4.0 is to create a 

network of connected devices that can interact with each other, monitor their surroundings using 

sensors, and analyse the collected data for leading relevant analyses [25]. 

From the reactive to the preventive to the predictive approach, it is clear as maintenance has 

been hugely evolving over time. Predictive maintenance does not represent the end of the road 

though, since new technology-driven advances are continuously in progress. The optimal use 

of industrial resources requires plants iterating and refining their core procedures on a regular 

basis. Strengths derived from diverse policies should be preferably combined in order to design 

a comprehensive plan for maintenance and to be prepared to face the occurrence of failures in 

the most effective way [6]. 

Since available resources are limited, it is important to consider that inaccuracies and 

restrictions will inevitably occur. There is a direct correlation between the time and money 

needed to fix or replace a piece of equipment or a system, as well as how much productivity is 

lost as a result of the reaction time required by workers who are obliged to manage failures or 

outages, e.g. corrective vs preventive vs predictive maintenance. Maintenance plans may be 

improved via reflection and implementation, which will lead to operational excellence [6]. 
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Predictive maintenance has several advantages, one of which is the possibility of implementing 

the intervention only when it is really necessary, in general immediately prior to equipment 

breakdown. In other words, predictive maintenance allows to save money until the very last 

minute, before any significant harm occurs and without resulting in business shut-down and 

mechanism breakdown. It has been calculated as, thanks to the support of PrdM, return on 

investment may be enhanced while exponentially reducing downtime by up to 70-75% and 35-

45%, respectively [12]. The following graph shows how a typical operational breakdown 

progresses over time. Failure is depicted in the form of an orange arrow. The time period 

reported in the top-right corner begins when the failure first begins to show signs of physical 

degeneration and process may last at a reduced level. With time advancing, the approaching 

failure moves across its predicted failure prospect, culminating in actual failure at the orange 

line uppermost point. 

 

 

Figure 1.14. Progression of failure over time adopted from [14] 

 

When examining the course of failure, scientists make use of cutting-edge sensors and 

algorithms derived from in-depth research into the underlying physics of the process. In order 

to accomplish this task, which is highly specialized and often expensive, researchers must first 

gather enough data from a variety of sources, including measurements and sensors that can only 

be obtained by studying determined physical characteristics. 

However, we are more interested in enhancing the investigative model and sustaining 

capabilities of an item by fulling use any inclusion of this kind of technology. There are factors 
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that must be taken into consideration while developing a predictive or prognostic system for a 

deployed asset, such as location, coverage, diagnostic validation, and so on [14]. PrdM has also 

a number of disadvantages, the most significant being the high initial investment. High degree 

of technology is indeed required for the implementation, as well as workers that can correctly 

analyse data from condition monitoring sensors. This may require part-time employees capable 

to read and disseminate information. This is the reason why making decision on PrdM 

implementation has to follow a thorough budget analysis.  

 

1.2.2. Applications of predictive maintenance in relevant industries 

There are several businesses contexts whose operations are heavily relying on predictive 

maintenance. These industries often feature important equipment that can be anticipated with 

regular monitoring. Food production, oil and gas, manufacturing, electricity and energy plants, 

and information technology are examples of industries falling within this description. Let us 

think, for example, to industrial ovens that are critical components of food processing plants 

and whose capability to remain viable may depend on PrdM. In such a case, placing a sensor 

monitoring heating and shaking would allow workers to make actual improvements or 

modifications on under-performing devices [14]. Since the 1990s, PrdM has been used in 

industrial settings. ISO published a series of condition-based maintenance standards in 2003. 

As a part of the ISO 13374, MIMOSA implemented the Open System Architecture for 

Condition-Based Maintenance (OSA-CBM), which represents criteria and techniques for 

exchanging, providing, and showing pertinent statistics and facts. OSA-CBM began with seven 

common layers, but now only six functional blocks are considered [4]. 

• Data sensors can be accessed and collected using the data acquisition module. 

• Single or multi channel signals can be transformed by particular feature extraction 

techniques used to acquire data. 

• Condition monitoring is carried out by comparing characteristics to predicted values or 

operating limitations and returning indications and/or alerts. 

• Health of systems is assessed by monitoring operation condition and maintenance history.  

• An assessment of future usage patterns is carried out as a prognostics assessment to predict 

the existing health status of the machines into the future. 

• Considering the operating history, existing and prospective mission profiles and resources, 

the Advisory Generation suggests maintenance operations and modifications to systems. 
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Table 1.4. Benefits, challenges and applications adopted from [4] 

 

 

Table 1.5. Summary of international standards related to PrdM [4]
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As reported in the above Table, OSA-CBM is not the only standard currently existing in the 

field of PrdM. For the need of comprehensiveness, it is important to mention the IEEE 

Standards developing regulations primarily focused on the generic definition of examining and 

finding the information, e.g. the AI Exchange and Service Tie to All Test Environment (AI-

ESTATE), within IEEE 1232, and the Software Interface for Maintenance Information 

Collection and Analysis (SIMICA), within IEEE 1636. Moreover, such published standards as 

ISO 2041, ISO 13372, ISO 13373-1, and ISO 13381-1 refer to condition monitoring in a 

methodical way. It is possible to observe as PrdM has widely been the focus of many other 

organizations and nations. Based on all of these considerations, we may conclude that the PrdM 

framework is still an open issue. The substance of standards created by various organizations 

and governments overlaps and, lastly, developing technologies have not yet been included in 

the standards into the backdrop of smart operations and Industry 4.0 [4]. 
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1.3. Technical drivers for predictive maintenance management 

The high level of complexity characterising modern industrial systems along with required 

automation and adaptability make PrdM an appealing strategy for reducing machine downtime, 

enhancing overall system dependability, and lowering operating costs. The following three 

critical issues have to be taken into account when evaluating PrdM. 

1) Architectures of PrdM systems: as a output of the urgency of Industry 4.0, such smart 

techniques as enhanced sensing methods and cloud computing have been incorporated into 

industrial systems. This allows to create compatibility with diverse industry standards in 

developing effective, correct, and generalized maintenance models by adopting evolving 

approaches. As long as the essential needs of PrdM are met (e.g. data collection, problem 

identification and prediction), it will be viable to maintain this integration.  

2) Objectives of PrdM: objectives have to be thoroughly analysed and specified with relation 

to the specific system subjected to PrdM. Multi-component systems, for example, may suffer 

from excessive dependability, with consequent unacceptable availability rates corresponding to 

minimum maintenance costs. It is then important to comprehensively characterise systems and 

constraints before considering PrdM. 

3) Diagnostic and prognostic methods: some of the most popular methods differ in terms of 

used algorithms, e.g. model-based algorithms, auto encoder, Support Vector Machine (SVM), 

Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and others. PrdM 

may face problems varying according to the specific industrial context. Fault diagnostic and 

prognosis methodologies supporting PrdM must be developed for particular issues [4]. 

 

1.3.1. Use of technology in maintenance 

Technological solutions, particularly predictive maintenance tools, should be considered as 

integrant part of maintenance plans. In the case of systems requiring more frequent monitoring 

than set point alarms, industries have the following options. 

1. All of the equipment can be monitored on a rotational basis, something that enables the plant 

to check on the status of all of the equipment on a regular basis.  

2. Core and critical equipment can be continuously monitored so that the likelihood of severe 

failure occurrence can be reduced, with consequent beneficial influence on the overall safety 

and production level of performance related to a given plant.  
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Resources and time are constraints on what a facility can observe, but technology can assist in 

overcoming these constraints. If predictive maintenance technology automatically tracked all 

of the equipment in real time, sending alerts to the plant when a piece of equipment needs to be 

repaired or replaced, this would be more effective. Besides predictive maintenance solutions, 

there are a variety of technologies available for enhancing the maintenance function [6]. 

Strategy is crucial, but even the finest strategy is worthless if not integrated with effective 

methods. The first step to accomplish this integration aims to assess current skills as well as 

specific goals. Using machine learning to forecast maintenance, for example, will require high-

quality data. Moreover, training and information exchange are two important steps that are 

commonly overlooked. Implementing maintenance strategies requires resources in terms of 

time and money to achieve and maintain effectiveness. In this context, developing suitable 

training plans as well as strategies for information exchange is fundamental to involve human 

resources as actual parts of the process by nurturing their awareness. 

It is also important to highlight as predictive maintenance services are available in a variety of 

price ranges and complexity levels, ranging from economical to expensive and from simple to 

sophisticated. They do not have to be simultaneously implemented, even if considering 

potential areas for service integration can support towards the development of maintenance plan 

and methods, something that is not a one-time endeavour [6]. 

 

1.3.2. Initiating a successful maintenance program 

Maintenance personnel is often under pressure to deliver appropriate outcomes while working 

with restricted budget constraints. This occasionally leads to the purchase of the cheapest assets 

just because they are more easily accessible. However, this is clearly a short-sighted decision, 

since this kind of assets tend to breakdown more frequently, apart from using a greater 

proportion of maintenance resources over time. What are potential solutions? The quantity of 

equipment maintenance required corresponds to the quality of the assets purchased. The 

necessity to find a balance between maintenance expenses and investments is something that 

maintenance departments must take into account on a daily basis. Independently on the quality 

of the equipment, some amount of maintenance will always be necessary. Let us consider how 

to draw up a preventative maintenance schedule for equipment. This subsection will proceed 

under the premise that an organisation has previously implemented a CMMS since, as already 

stressed, running an efficient maintenance program without a centralised maintenance system 

and the capabilities that come with it is nearly impossible.  
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1) Making a list of all of the equipment. CMMSs should manage information about every piece 

of equipment that will be subjected to predictive maintenance schedules. There are two primary 

causes for this. The first point to mention is that establishing a work order for a specific piece 

of equipment is much easier if the equipment is already registered in the CMMS database. The 

second point to mention refers to the asset history, since a major advantage of computerized 

maintenance management systems over paper records is that they automatically store asset 

history, which can be accessed from any location with an internet connection. 

2) Deciding which maintenance method will be used on which piece of equipment and when. 

The maintenance schedule should be created once the whole list of the equipment needing to 

be serviced on a regular basis has been compiled. However, before doing that, it is necessary to 

determine which maintenance procedures would be most appropriate for the specific situation. 

A comprehensive predictive maintenance policy will be implemented by the vast majority of 

enterprises at the outset. Of course, embedding critical pieces of equipment with suitable 

sensors may represents a great advantage. 

3) Establishing maintenance programs for equipment. Equipment maintenance schedule is the 

focal focus of every equipment maintenance program, regardless of its size. It determines which 

maintenance actions should be performed, when they should be performed, and by whom. 

Therefore, the maintenance schedule should offer a comprehensive picture of all incoming and 

ongoing maintenance tasks. To go along with that, it should provide a simple way to swiftly 

plan normal operations, simply reschedule any maintenance task, and easily adjust task priority 

with a few clicks. When constructing an initial preventive maintenance plan, original equipment 

manufacturer manuals have to be carefully analysed by following the guidelines included. Also, 

it is necessary to have a brainstorming with maintenance specialists to understand whether any 

specific asset may have any long-standing concerns that need to be taken into consideration. If 

a company is using CBM or PrdM, then a portion of its maintenance plan should be based on 

data collected from sensors or predictive algorithms, respectively, to be part of the maintenance 

schedule. Independently on the specific techniques and strategies adopted by the organisation, 

a set of routine maintenance chores must be scheduled and carried out on a continuous basis. 

4) Developing checklists and processes for preventative maintenance. Maintenance 

management involves a huge amount of repetitive operations that must be performed on a 

regular, weekly, or monthly timeframe. In such a context, establishing best practices and 
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standardising processes represent substantial benefits. In particular, organisations should 

define:  

• Standard Operating Procedures (SOPs); 

• Emergency Maintenance Procedures (EMPs); 

• Lock Out/Tag Out procedures (LOTO); 

• Predictive maintenance checklists; 

• All-purpose safety precautions instructions. 

These listed items must be disclosed to the individuals who will be required to utilize these, and 

who may also be connected to particular work orders, and should be determined or required. 

5) Maintenance personnel training. Technicians should be able to read and understand 

maintenance plans, apart from having the professional skills required to carry out the 

maintenance operations stated in the plan. These stakeholders must also be familiar with the 

implemented CMMS as well as with any other digital solution adopted by the company. It may 

be necessary to conduct a number of maintenance skills training sessions in order to bring 

everyone up to the needed level. When making the transition from reactive to proactive 

maintenance services, the organisation should invest special efforts to ensure that the entire 

maintenance staff is on board together with the direction of the company. The first few months 

may be the most critical period for ensuring that technicians are following new processes, 

recording every significant information within the equipment maintenance log, and making 

proper use of the CMMS features that have been implemented successfully. This is done in 

order to modify undesirable habits before they become established in the individuals.  

6) Evaluating and improving. Being overconfident and expecting things to operate smoothly 

on the first try would be a mistake. It is vital to conduct a regular evaluation of maintenance 

performance metrics and monitor other indicators in order to identify and eliminate 

inefficiencies and faults in the maintenance plan at its current state. The equipment maintenance 

software that is being employed should be able to provide analysts with enough information to 

properly optimise a successful equipment maintenance program over time [3]. 
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1.4. Analysed industrial cases 

Various research has been conducted in literature on the predictive maintenance field, and a 

wide variety of models and procedures has been established in the context of the Industry 4.0. 

Hashim, et al. [23] propose a modified PrdM approach in order to reduce the upkeep costs of 

centrifugal pumps in chemical plants. Miller and Dubrawski [26] analyse the work on PrdM 

from a system perspective, as well as distinct failure risk prediction and condition estimating 

capabilities, which are currently employed for basic components but which are required to solve 

important assets. Gohel, et al. [27] develop a machine learning method to conduct PrdM of 

nuclear facilities. Daniyan, et al. [28] apply artificial intelligence to PrdM and develop training 

elements to teach maintenance staffs how to observe and investigate information collected from 

the IoT technology and certain alternate source materials in predicting the status and possible 

breakdown of a rail-car wheel bearing. Hsu, et al. [29] employ statistical process control (SPC) 

and machine learning to identify defects in wind turbines and estimate when maintenance 

should be performed. Jimenez-Cortadi, et al. [30] review several maintenance techniques and 

describe the procedure that should be followed for the deployment of data driven PrdM in 

machine decision-making, and data collecting and processing. Fernandes, et al. [31] offer a 

failure detection system for boilers that makes it possible to predict defects and mistakes in 

advance of their occurring. In addition, their research includes preliminary PrdM strategies 

utilizing the data they obtained. Namuduri, et al. [32] provide an overview of the deep learning 

methods utilized for PrdM and give a real-case of the prediction of engine failure. In addition, 

their paper analyses the existing usage of sensors in the industry as well as the potential for 

electrochemical sensors in PrdM in the future. Peters, et al. [33] investigate a number of 

standard machine learning approaches to develop a unique one. Using the example of Industry 

4.0, Sang, et al. [34] investigate how to effectively support PrdM. A distinctive feature of the 

Reference Architectural Model Industry (RAMI) 4.0 is to support PrdM through the use of the 

FIWARE framework.  

We have been widely described PrdM techniques as capable to assist in failure detection for 

essential equipment that has a variety of failure modes that occur on a regular basis. With this 

recognition, the study of failure physics should be preferably combined with real-time gathering 

of the appropriate metrics utilising IoT technology, as well as the use of ML techniques to 

anticipate and categorise the condition of healthy and defective equipment. Furthermore, the 

transition of conventional maintenance into PrdM must be accompanied by an financial study 

to demonstrate the viability and effectiveness of the shifting process. Performing a real case 
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scenario in a local hospital in the United Arab Emirates (UAE), it was demonstrated that the 

Vitros-Immunoassay analyser, which was chosen on grounds of maintenance activities and 

criticality analysis as an ideal applicant for changing maintenance from CM to PrdM, could be 

applied in a variety of situations [35]. Using information from the medium's yearly temperature 

and annual sunshine information, a complex fuzzy system was constructed in this research 

study. In this case, the proposed predictive maintenance strategy for rail systems is based on 

periodic influences such as seasonal weather and daylight availability. Therefore, the complex 

fuzzy system outperforms the classic fuzzy system when it comes to precision of results. 

Complex fuzzy membership functions were generated on the complex plane in this article, and 

the phase interval was restricted to a value of 2 in the complex plane. According to the 

investigations in the literature, both the rail line and the pantograph condition monitoring have 

made a contribution to the suggested approach, which includes the proposed technique [25]. 

Lee, et al. [10] chose two essential machine tool system parts to be monitored using artificial 

intelligence algorithms: the cutting tool and the spindle motor, respectively. The algorithms are 

taught to forecast the occurrences of failure events in the systems. A number of predictive 

modelling approaches is described and then applied to industrial data in investigating their 

effectiveness. The results of the model are displayed using the confusion matrix, which displays 

both the accuracy and the inaccuracy of the prediction together. The study discusses the 

progress that has been made in the water business in the direction of digitalisation. It has been 

specifically detailed how the progress, authentication, and field testing of a live edge device as 

part of a condition monitoring/predictive maintenance system for implementation on large-

scale pumping system for use in the water sector was carried out [36]. Specifically, in this study 

is presented the construction of a live prediction system which can aid information technology 

teams in the maintenance of large-scale storage systems by sending alerts when a drive failure 

is approaching. In addition, it is provided a framework for the predictive monitoring of hard 

disc drives failure relying on machine log files rather than traditional statistical prediction 

methods [18]. As an example of unsupervised learning algorithms, the authors have selected a 

normal vibration data set gathered from an exhaust fan and fitted with multiple untrained 

learning algorithms, in order to evaluate precision, efficiency, and applicability. An approach 

for comparing multiple algorithms and selecting the appropriate model [21] is provided. 

According to this study, all of the areas of condition monitoring for medium voltage switchgear 

are now at the cutting edge of technology. It also proposes a strategy for developing a PrdM 

system that is composed of innovative devices and ML techniques. Another study demonstrates 

how the current medium voltage grid infrastructure may be adapted to meet these additional 
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requirements on a cost-effective basis [11]. As part of the Industrial 4.0 framework, a big data 

environment is offered for the application of problem identification and diagnosis in predictive 

maintenance utilising actual industrial big data collected directly from large-scale global 

manufacturing facilities. The objective is to provide a comprehensive framework for 

commercial IoT-based smart factory. Multifaceted challenges, such as big data absorption and 

incorporation, conversion, and storing in a real-time setting are addressed by the proposed 

architecture. It makes use of various technologies and methods capable to solve data and 

network security challenges. A distributed model based on the Map-Reduce framework is being 

developed for fault identification and diagnosis [24]. An overall context for developing a digital 

twin is discussed in conjunction with industrial IoT technologies in increasing the autonomy of 

aircraft platforms. The use of data fusion techniques, in particular, is critical in the development 

of the digital twin architecture. Sensor-to-sensor, sensor-to-model, and model-to-model 

integration are the mechanisms that push the transfer of data from raw information to 

meaningful decision-making. Further discussion and identification of the function of data 

integration in the digital twin architecture for aviation PrdM are presented and discussed in 

[37]. The goal of this project is to construct prediction models making use of current data from 

a railway agency and produce outcomes that are easy to understand. To forecast the need for 

maintenance, the kind of activity, and the state of the triggers on railway switches, we propose 

to use tree-based categorization approaches in machine learning in conjunction with other 

methodologies. Predictive models on grounds of the decision tree, random forest, and gradient 

boosted trees are constructed based on data from a real-world business process [38].  A 

systematic methodology is employed to evaluate the advantages and disadvantages of available 

open-source programs for big data and stream processing in order to determine their suitability 

for use in Industry 4.0 applications. Among the selected PrdM utilized cases in the areas of rail 

carriage and wind energy, they developed a set of demands that were then tested against each 

other. They performed the first-ever comprehensive mapping of PrdM utilized case needs to 

the capabilities of big data streaming technologies, with a particular focus on open-source tools 

[39]. Condition monitoring, in conjunction with predictive maintenance, of electric motors and 

some other machines used by the industrial sector helps to prevent serious economic losses 

caused by unforeseen motor failures and to enhance system dependability by a significant 

margin. This work provides a ML architecture for PrdM, which is based on the Random Forest 

technique and is described in detail elsewhere. In order to test the system on a real-world 

industrial example, researchers developed a method for data collecting and analysis, used a ML 

methodology, and compared the results to those obtained from a simulation tool [40]. Using 
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readily available data, this work proposes a novel technique to predicting rail and geometry 

flaws that blends prediction with inspection and maintenance scheduling operations. The 

underestimate of faults is controlled in the suggested strategy by the new application of risk-

averse and hybrid prediction methodologies. Then, using these predictions, a discounted 

Markov decision process model is used to generate the best inspection and maintenance 

scheduling rules [41]. This study focuses on the topic of PrdM for a metallurgical firm, and it 

reports the findings of primary data investigation and characteristics selection that was done on 

a sample of the data that had been obtained in the course of the research. Using the knowledge 

gathered from the data, researchers would construct adaptive learning models capable to 

process complicated information to be implemented to a complete system of industrial machine. 

In addition, multiple rules were derived from the associations discovered throughout the data 

investigation procedure, and these rules were aggregated into a rule-based model for further 

consideration. A rule-based system would be built around these principles, to be used to 

supplement the predictive model that will be developed in the future [42]. A method for 

integrating the practical application of Industry 4.0 in a small bottling plant is proposed in [43], 

which focuses on early fault detection and threat detection in conveyor motors, as well as the 

generation of a predictive maintenance schedule in response to these early faults or threats. 

Hoffmann, et al. [11] use PrdM and ML in medium voltage switchgear. PrdM was adopted in 

the steel sector by Ruiz-Sarmiento, et al. [43], while deployed in wind turbines by Wang, et al. 

[44]. Lee and Pan [45] describe an interconnected PrdM strategy for complex systems that 

incorporates the Discrete Time Markov Chain (DTMC) and Bayesian Network (BN) methods, 

while Verhagen and De Boer [46] describes a PrdM approach for aeroplane components that 

incorporates the proportional hazard model technique. Further application and examples of 

PrdM applicability to critical systems can be seen more in detail in [22, 47-55]. 
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2.1. Decision-making models for failure classification 

Organizations nowadays must be agile, adaptable, and robust, as well as exhibit dynamic skills, 

to strive in the economical world. Due to the advancement of powerful digital technology, 

industries have now the ability to radically reinvent themselves. High-intelligence maintenance 

systems have grown increasingly popular as a result of the development of smart devices. 

Large-scale advances are being made in the realm of operation management as intelligent 

systems converge and advance with industries. As already underlined, the emergence of 

different information technology breakthroughs has resulted in a considerable disruption of 

industrial techniques. Preventive maintenance approach that was previously handled by 

humans are now being changed into predictive maintenance. Large amounts of data from 

manufacturing operations are gathered, evaluated, and triggered in order to enable effective 

decision - making in real time basis [47, 56]. In predictive maintenance, decision-making refers 

to create practical suggestions regarding maintenance activities and initiatives that remove or 

minimise the effects of the expected breakdown or failures. Industry 4.0 has caused in a 

extensive utilization of sensing devices for health monitoring of machines, that enables timely 

taking of decision. The P-F interval, defined as the interval of time among the emergence of a 

possible problem and its progression into a system failure, can be considered as an indication 

window throughout which decision-making algorithms can suggest steps aimed at avoiding or 

mitigating the predicted functional failure. 

 

 

Figure 2.1. Predictive maintenance in a P-F curve adopted from [6] 
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Most PrdM decision-making strategies focus on algorithms-based diagnostic models instead of 

data-driven models. As a result of the limitation of data analytics competences, the 

accompanying decision-making methodologies and strategies are mostly knowledge-based. For 

predictive maintenance, the degradation process is unpredictable, something that makes the 

decision-making approach extremely difficult. The use of simulation models or iterative 

solution processes is hence widespread in present decision-making systems. Simple models are 

often engaged in finding exact answers. Furthermore, simulation is often integrated with robust 

optimization strategies (for example: simulated annealing, genetic algorithms, and others) to 

minimize the computational efforts and obtain useful results [47]. 

The applications of Multi Criteria Decision-Making (MCDM) methods in the maintenance 

planning domain is extremely beneficial since they combine both subjective and quantitative 

aspects in a highly effective manner. A wide variety of MCDM approaches already been 

proposed in the field of study in the past decade to choose the alternatives that reflect the most 

effective results as per a set of assessment standards, and it is found among the most widely 

implemented decision-making approaches in a variety of domains such as manufacturing, 

materials, safety and risk, supply chain, reliability, quality and technological innovation. 

Mardani, et al. [57] give a number of studies that demonstrate the relevance of the technique as 

well as numerous approaches that have been presented in the literature. In this context, 

ELimination Et Choix Traduisant la REalité (ELECTRE) TRI is a multi-channel data 

management technique that is frequently utilized. ELECTRE TRI has evolved after the 

ELECTRE group of techniques, which comprises a number of iterations, such as ELECTRE I, 

II, III, IV, and IS, among others. There are two versions of this approach [58, 59]. The first one 

is a multi-criteria aggregating and decision assisting process applied to cope with the ordinary 

sorting issues, while the second one distributes choices to specified categories. ELECTRE TRI 

applications in a variety of fields and organisations have been documented in the literature. 

Fontana and Cavalcante [60] employ the ELECTRE TRI technique to solve the problem of 

storage site assignment. Norese and Carbone [61] utilise it to analyse and allocate every airport 

to a sequential class based on the results of their evaluations in Italian Airports. Becker [62] 

extends the method to information and communications technology (ICT) in businesses. This 

approach is used by Trojan and Morais [63] for the minimization of losses in water distribution 

system, the maintenance of electricity supply plant [64], and the maintenance of water supply 

system among other things [65]. Certa, et al. [66] employed ELECTRE TRI in the realm of 

project risk management. In addition, Brito, et al. [67] used this technique to estimate the 

hazards associated with natural gas pipelines. Furthermore, Trojan and Marçal [68], Trojan and 
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Marçal [68] make use of the ELECTRE TRI technique for aggregating maintenance types by 

multi-criteria analysis in order to explain maintenance ideas in operations and production 

management. Almeida-Filho, et al. [69] constructed a decision support system for an electrical 

power distribution firm to help in maintenance scheduling, while, de Almeida, et al. [70] 

proposed MCDM strategy to categorise and distribute maintenance priority for reliable 

maintenance scheduling. Based on the existing literature, it is feasible to deduce that multiple 

evidence of implementations of the ELECTRE TRI technique have been associated with the 

topic of maintenance. However, because of the limited number of applications of this approach 

in PrdM, the above-mentioned methodology has been herein used for complex systems that are 

exposed to PrdM interventions. The primary goal is to provide analysts with a tool potentiating 

failure control procedures without having to pairwise compare all of the parts of the study, 

hence decreasing mistakes and simplifying computations for complex systems. ELECTRE TRI 

involved two sequential steps. The first step uses concordance and discordance indices to 

construct outranking connections among pairs of alternatives and reference profiles to identify 

which options are better for concordance. This stage entails assigning options to categories 

based on their evaluation of the performance relationships that were developed during the 

previous phase. For this task, it is necessary to have previously defined ordered classes in which 

there is no crossing among the linked reference profiles, in addition to having collected the 

subsequent input data:  

• Set of evaluation criteria 𝐵𝑗, (j = 1, …, J) and weights 𝑤𝑗 indicating their relative importance. 

• Set of reference profiles 𝑏𝑘, (k = 1, …, K) for each criterion, being 𝑏0
(𝑗)
< … <  𝑏𝐾+1

(𝑗)
. 

• Set of classes 𝐶ℎ, (h = 1, …, K+1) specified by the 𝐾 reference profiles. 

• Set of alternatives 𝐴𝑖, (i = 1, …, I) and associated evaluations 𝑔𝑗(𝐴𝑖) under each criterion. 

• Cutting value λ ∈ ]0.5, 1], need to conclude the initial stage of the ELECTRE TRI method. 

• Indifference, solid preference, and veto thresholds, respectively 𝑞𝑗, 𝑝𝑗, and 𝑣𝑗 . 

An in-depth description of the procedure [71] will be provided later, specifically in subsection 

2.4.1.2. A real-case of a complex service systems whose key elements are exposed to PrdM is 

reported in the next section. Particularly, the ELECTRE TRI, has been applied to categorize 

failure modes of components into ordered risk groups, as opposed to the traditional way of 

classification. The adoption of such a strategy allows for the identification of failures that are 

connected with greater risk circumstances, hence necessitating interventions to be prioritised 

more aggressively. This is accomplished by optimising the monitoring for the entire system.  
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2.2. Complex maintenance service systems optimisation 

This section presents a case study that demonstrates the applicability of the ELECTRE TRI 

technique to a real-world complicated system that is exposed to preventative maintenance 

interventions. This case study has been published within a conference paper [72], then extended 

as a journal paper [73]. In particular, the complex system refers to the vehicle studied in [74] 

deputed to provide street cleaning service and embedded with a network of sensors for 

predictive maintenance. The dependability diagram of the system, along with the associated 

block map defining the system assembly, were both developed in [75] and [76], respectively. 

This most recent study [76] particularly highlights a group of three important parts that should 

be considered with importance in order to lead to proactive maintenance actions. These 

identified components are three hydraulic pumps, which are critical in ensuring the proper 

operation of the most significant sweeping parts, as well as the loading and emptying systems, 

among other things. In order to detect the wear state of pumps, an appropriate network of 

sensors was created to monitor acceleration as a metric connected to wear condition. This study 

will look at these hydraulic pumps in more detail. Table 2.1 contains a list of probable 

breakdowns and underlying reasons affecting these components, as well as a diagram 

illustrating the potential consequences of failures on the overall system's operation and 

performance. 

As per the obtained results of the investigation of Table 2.1, identified two categories of 

probable faults which are discovered for pumps I (deployed to the sweeping system), II 

(deployed to the loading system), and III (deployed to the emptying system). Despite the fact 

that failures are caused by the same underlying reasons, they might have drastically varied 

consequences depending on how the three pumps are distributed throughout the system in 

various locations. To such an aim, the present application is aimed at sorting failures into 

priority classes upon identifying the particular root causes of problems for which a high level 

of urgency is necessary. Accordingly, the six failures (i.e., options of the MCDM problem) are 

categorised into the three different ordered risk classes as follows: C1, low priority; C2, medium 

priority; and C3, high priority (see below). According to three key assessment criteria, the 

assignment method is carried out: B1, execution time; B2, execution mode; and B3, frequency 

of occurrence. The first two criteria are concerned with the execution of maintenance 

interventions, whilst the third criterion is concerned with the incidence of failures in the system. 

Each criterion has been reviewed by a panel of decision-makers, and the results obtained (Table 

2.2) have been converted, in turn, into numerical values (Table 2.3) ranging between [1, 5]. 
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Table 2.1. Failures, root causes and criteria evaluation 

ID Failure Causes Effects 

A1 Pump I: fault 

distribution 

system 

Power outage; fluid 

properties; valve or other 

equipment failure 

Hydraulic circuit and hydraulic actuators are 

not operating properly; work position is not 

taken; and brush and roller rotation is not 

permitted. 

A2 Pump I: 

mechanical 

fault 

Components wear (journal 

boxes, bearings, etc.) and 

sealing elements undergo 

wear. 

Hydraulic circuit and hydraulic actuators are 

not operating properly; work position is not 

taken; and brush and roller rotation is not 

permitted. 

A3 Pump II: 

fault 

distribution 

system 

Power outage; fluid 

properties; valve or other 

equipment failure 

The loading and unloading mechanism is not 

working properly; a work position is not being 

taken; trash is not being loaded; tank is not 

being emptied. 

A4 Pump II: 

mechanical 

fault 

Components wear (journal 

boxes, bearings, etc.) and 

sealing elements undergo 

wear. 

The loading and unloading mechanism is not 

working properly; a work position is not being 

taken; trash is not being loaded; tank is not 

being emptied. 

A5 Pump III: 

fault 

distribution 

system 

Power outage; fluid 

properties; valve or other 

equipment failure 

Elevator plant functioning has been 

compromised; interaction between the elevator 

plant and the collecting tank has been 

challenging; waste loading in the tank has not 

been completed; elevator plant was shut off. 

A6 Pump III: 

mechanical 

fault 

Components wear (journal 

boxes, bearings, etc.) and 

sealing elements undergo 

wear. 

Elevator plant functioning has been 

compromised; interaction between the elevator 

plant and the collecting tank has been 

challenging; waste loading in the tank has not 

been completed; elevator plant was shut off. 
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Table 2.2. Evaluation of alternatives under criteria 

 

Table 2.3. Evaluation scale 

 

The preference and indifference limits were supposed to be half and one-fourth of the width of 

the categories, while the disapproval barrier was considered to be similar to the width of the 

categories, respectively. Table 2.4 shows the outcomes obtained from both the pessimistic and 

the optimistic approaches to the problem. The pessimistic method starts with higher-valued, 

restricting reference profiles and designating classes as a starting point for the operation. When 

the condition that the alternative Ai is at slightest excellent as profile Ph is tested, it allocates 

the option Ai to class Ch+1 if the requirement that Ai is at least as excellent as profile Ph is 

satisfied. The optimistic procedure begins with smaller value restricting reference profiles that 

define classes and works its way up. Assigning alternative Ai to class Ch is accomplished by 

verifying the condition that Ph is preferred to Ai in the class Ch where the alternative Ai has 

been determined to be preferable to Ph. Readers are encouraged to visit [77] for further 

information on this subject and [78] for more details about the application. Because there is no 

difference between the two approaches, we may conclude that there are no incompatibility 

relations between the items in the set of elements that have been examined. The allocation of 

every failure to the established classes was accomplished considering the principle of equal 

weightage conditions and by establishing three different values for the cutting level: 0.60, 0.70, 

and 0.80 (see Figure 2.2). Results were double-checked and confirmed using the J-Electre-v2.0 

programme for multi-criteria decision assistance (https://sourceforge.net/projects/j-

electre/files/) [79]. 

https://sourceforge.net/projects/j-electre/files/
https://sourceforge.net/projects/j-electre/files/
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Table 2.4. Assignment of alternatives to classes 

 

By examining the findings acquired through the implementing the ELECTRE TRI process, it 

is possible to derive various practical insights. All of the three pumps under consideration are 

regarded to be key components of the complex system under investigation. Failures that may 

have included pump I, on the other hand, have been allocated to the high priority class, and 

failures that may have involved pumps II and III have been rated a moderate priority status. 

This result is critical for planning maintenance interventions on the system, since it identifies 

the needed maximum priority using a systematic MCDM assistance, which is useful for system 

organisation. As seen in Figure 2.2, a block diagram describing the subsystems of the vehicle 

that are directly dependent on the operation of pump I is reported. 

 

 

Figure 2.2. Block diagram of subsystems impacted by pump I 
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Optimisation of the hydraulic circuit, actuators, as well as sweeping elements such as brush and 

roller, will be achievable after minimising the root causes associated with the likely occurrence 

of failures A1 and A2. Furthermore, because a system of sensors is accessible to inspect pumps 

I, II, and III, the existing application can even recommend a more desirable assignment of 

sensors, given that underlying causes of failure connected with pump I require greater priority 

than those associated with the other pumps. Finally, the results are confirmed to be robust 

because no differences can be observed when the cutting level is varied (Table 2.4). 

Main goal of this application is to adopt a MCDM viewpoint for MM of service systems in 

order to better understand and manage maintenance. The implementation of the ELECTRE TRI 

approach, in particular, is proposed for sorting failures that might possibly include fundamental 

components of systems that are exposed to predictive maintenance and the underlying causes 

of those failures. The primary goal of allocating failures to ordered priority classes is to draw 

attention to which underlying reasons of failure must be eliminated with the highest level of 

priority. This application can be beneficial in assisting with predictive maintenance 

management by ensuring timely responses and operational preparedness in a variety of 

situations. On a real-world service system, we employed the suggested technique to sort 

common failures involving its key components, and in particular, to classify common issues 

composed of its key elements.  

The implementation has been guided by the consideration of various cutting level values in 

order to get an understanding of the probable differences in outcomes. It is a benefit of the 

suggested technique that failed categorization may be performed without the need to elicit 

preference between pairs of alternatives, because items are only compared pairwise with 

reference profiles that define classes. This is unquestionably a more successful technique as the 

number of basic items to be considered rises, since it promotes effective management of 

complexity and the elimination of the possibility of transitive comparisons. As expansions of 

this study, the suggested approach has been integrated with another MCDM (this will be 

reported and discussed in the next sections). The issue of reliance among criteria and 

alternatives may be the subject of future applications if the possibility of the presence of no 

transitive preference relations is taken into consideration once again. In order to improve 

predictive maintenance management on a global scale, it is critical to examine the possibility 

of dependence relationships between the various aspects of the analysis, as described in the next 

section.  
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2.3. Evaluation of interdependence among critical failures 

2.3.1.  Open challenges 

As widely discussed throughout the present work of thesis, corrective maintenance may have a 

negative impact on industrial operations and results in severe economic, social, and 

environmental losses [80]. In the great majority of circumstances, fixing equipment after it has 

failed is not convenient, mainly because of the fact that failures should be avoided whenever 

possible by identifying significant underlying reasons prior to their occurrence. Various 

methods of maintenance and replacement have been proposed to date [8]. Traditionally, 

industrial maintenance policies have focused on PM, by scheduling maintenance activities on 

the basis of the revision of historical failure data and system conditions. Because PM does not 

take into account the existing health status of systems, this technique is not totally successful 

in preventing unanticipated system breakdowns, which may result in extra expenditures 

associated with the execution of some unneeded actions. However, by deploying an architecture 

of sensors across the system, these concerns can be alleviated.  

In observing and inspecting systems, installed sensors, operational data, process data, and 

systems and previous failure data are all utilised to anticipate failures. PrdM discourages routine 

and preventative maintenance interventions while encouraging a more proactive approach to 

maintenance. It is a sort of technique in which staff may dynamically watch performance, 

productivity, and other relevant elements in predicting the optimum period for performing 

maintenance on a certain system. The individual characteristics of systems, as well as the 

distinctive wear behaviour of the most crucial components, are taken into consideration, rather 

than just relying on statistical data to make this determination. When PrdM is effectively 

applied, the cost of maintenance is significantly decreased and, with this perspective, 

highlighting interdependence among critical failures may be strategic. 

Both PM and PrdM strategies are designed to avoid system failures by maintaining the running 

condition of the system until the breakdown occurs. As previously specified, most major 

difference between the two methodologies may be discovered in the analysis stage, where The 

assessment granularity that contributes to the maintenance process is the most significant 

distinction. The maintenance planning process does actually concentrate on groups of systems 

that have common characteristics and aim to identify metrics that may be used to enhance 

maintenance planning. The PrdM method, on the other hand, treats each individual system as 

if it were a single element, seeking to extract the parameters that describe the present condition-

of-health of assets in predicting the timeframe until failure [81]. PrdM, as a whole, contributes 
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to the minimization of issues by forecasting the state of systems [80]. Despite the fact that 

various attempts have recently been made to migrate to PrdM, incorporating reactive 

maintenance techniques is helpful and is predicted to continue to be required for effective 

management. The value of reactive maintenance can be seen in the fact that certain systems 

will still fail suddenly, and the value of proactive maintenance can be seen in the fact that it 

serves as a form of safety net if the actions necessary for PrdM are not available [81]. 

Nevertheless, on the one hand, reactive maintenance is unquestionably ineffective at preventing 

failures and, on the other hand, PM is incapable of predicting future situations and of assisting 

in the early restoration of equipment in extending their useful lives [20]. The use of PrdM is a 

more successful way for reducing the degree of PM, as well as the occurrence of failures that 

contribute to reactive maintenance, thus improving run-time and decreasing overall 

maintenance expenses [81]. Furthermore, by implementing PrdM, equipment and systems may 

be extra readily safeguarded against failure, while also ensuring that the scheduled activities 

may be performed during their lifespan. Moreover, its efforts to maximise performance by 

minimising the significant expenses associated with PM. 

Previous study has discovered that, whenever PrdM is utilised intelligently, the asset’s average 

dependability, availability, and maintenance operational expenditure are the minimum level of 

any of its competitors. The evolution from corrective to predictive maintenance significantly 

enhances equipment maintenance scheduling, especially for complex assets with higher 

economic value [82]. However, PrdM strategies have significant practical obstacles since they 

need the development of new tracking technology, the construction of robust data gathering 

systems, and the deployment of complicated supervision and prognostic structures  [83]. As 

widely discussed in the previous chapter, some problems of the use of PrdM for complex assets 

are now impeding its effectiveness in some situations. Individual businesses would be put under 

a significant amount of financial and technological stress if they were required to monitor and 

analyse all probable failure modes for the complicated equipment under consideration. 

Furthermore, it is difficult to categorise each probable failure mode associated with a single 

asset, and a independent set of data concerning failures is always inadequate, resulting in low 

forecast accuracy. Therefore, reliable and timely maintenance schedule information is required. 

In order to do this, it is required to improve the flexibility of PrdM decision-making in complex 

manufacturing settings [84]. 

Since they automate prognostics and can effectively monitor complex systems in real-time, 

system models have become popular. They also give early warning indications of impending 
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problems. As with any field, there are several methods to PrdM, each with its own set of 

strengths and weaknesses [85]. For utilizing PrdM, it is essential to have online access to 

information about the system conditions, that is now feasible owing to the adoption of 

appropriate monitoring sensors. Many studies have been conducted to date on estimating a 

system's remaining usable lifespan, whether it is a single component or the entire equipment, 

using deterministic reliability models. There is a lot of research on PrdM for complex systems 

that can be found in the literature and has already been presented in chapter 1 under section 1.4. 

 

2.3.2. Overview on FMECA strengths and weaknesses 

Failure Modes, Effects and Criticality Analysis (FMECA) was one of the first failure analysis 

methodologies to be developed. It is a technique that uses inductive logic to monitor the safety 

and health of system [82] and to methodically investigate potential component failure 

mechanisms of a method or product. In order to enhance the constancy of critical systems or 

component, it is necessary to identify and evaluate the risks connected with various failure 

modes, as well as the related impacts on equipment operations [82, 86, 87]. Notable cases of 

complex systems having a wide range of subsystems and components are ships and other 

transport facilities, power plants, chemical industries, and the oil and gas industry [88]. The 

FMECA approach can help to carry out in-depth analyses by focussing on the criticality of 

systems. Although this approach is helpful to detect all of the required components, it does not 

guarantee that all of them have been recognised [89]. FMECA is used in combination with CM 

to determine the criticality of a system [86]. There are several applications for this technique, 

including the identification of system components and the definition of system elements in 

identifying the most relevant aspects to be examined and observed and also to effectively 

implement a PrdM strategy [90]. Even though a PrdM-based method appears to be a desired 

approach for a provided complex system, it is possible that it will not be feasible with all of the 

elements of that specific equipment in some circumstances. To categorise acceptable 

components, the FMECA method may be used. Traditional FMECA-based procedures, on the 

other hand, may become more thorough and time-consuming when used at the component level 

for essential assets. In these instances, it would be advantageous to investigate options that 

might reduce the amount of effort necessary for maintenance [89]. 

For complex systems, FMECA applications integrated with PrdM have been demonstrated in a 

number of case studies, including maritime systems [83], aircraft and manufacturing [91], 

Computer Numerical Control (CNC) lathe machines [90], dynamical evolving systems [83], 
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super thermal power plants [86], wind turbine assembling plants [92], and so on. Furthermore, 

as can be seen in [87], there are several studies justifying the use of FMECA for complex 

systems. Despite the fact that FMECA is a very adaptable tool, it has a number of drawbacks 

and boundaries in terms of application, cause and effect presentation, risk investigation, and 

resolving issues [93]. A few benefits of FMECA are mentioned here. 

• It facilitates the detection of failure's root causes and the development of corrective actions. 

• It assists in the identification of failure modes that may jeopardise the safety of operations, 

as well as the detection of failures that may have unwanted or significant effects for the 

functioning of the system. 

• By intervening at the beginning of the development process, it aids in the recognition of the 

requirement for profitable design strategies for reliability improvement, likewise product 

selection and redundancy. 

• It provides a method for analysing the possibility of system failures as well as a method for 

doing criticality analysis. 

• Demonstrating that anticipated hazards have been identified can assist in the resolution of 

protection and system accountability concerns, also the resolution of supervisory non-

compliance. 

• It assists in categorising and rating failures according to their Risk Priority Number (RPN). 

• In addition to assisting in the installation of a cost-effective quality monitoring and 

management as well as controlling the production process, it assists in the selection of a 

maintenance strategy by giving a foundation for planning maintenance. 

• It is particularly exhaustive and responsive to different techniques of equipment analysis, 

and it may enhance design, component selection, and system dependability. It is also 

effective for identifying individual failure areas in a system [94]. 

Despite its many advantages, FMECA has a number of important flaws that must be addressed. 

• It considers just the effects of single failures, being unsuccessful when required in providing 

a gauge of system dependability, despite being an important component of decision-making. 

• It is useless when attempting to depict links between distinct failure modes since it is 

predicated on the independence of failure modes as a core premise. 

• As a result of the numerous failure scenarios that must be addressed, dealing with complex 

assets may be exceedingly difficult and time-consuming [94]. Furthermore, the quantity of 

unique system information that must be researched is enormous, particularly when dealing 

with a wide range of different operating modes, repairs, and maintenance procedures. 
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• It is fundamentally a reductionist strategy, and the implications of simultaneous problems 

are not taken into consideration in the correct way. Variations in the surrounding 

environment may have an impact on the assumed dependability of components. More to the 

point, human errors and hostile conditions are frequently overlooked, and system flaws are 

nearly hard to remedy in most cases [94]. 

• It's only useful during the design phase, and it solely considers failure modes, with no 

consideration given to their interrelationships. Due to the fact that failure rates vary from 

one element to another and that numerous integration of many components result in the 

similar RPN index, there is replication or deceptive assessments as well [95]. 

 

2.3.3 Review on MCDM approaches in the field 

The integration of classical failure analysis for complex systems with MCDM techniques can 

be crucial in overcoming the limitations that have been identified. In this aspect, MCDM 

incorporates both subjective and quantitative factors, and is thought to be a very helpful 

approach. A wide number of MCDM strategies have been proposed and advocated in the 

literature in previous decade to help decision makers in selecting the alternatives that reflect the 

optimal compromise under a variety of assessment criteria. Various methods have been widely 

utilized in different fields, as presented by [57]. Mardani, et al. [57] provide a number of 

research that demonstrated the relevance of the MCDM approach, as well as a number of 

methods that had been offered in the literature. The ELECTRE TRI approach is among most 

extensively selected MCDM approaches [96]. In order to counter with ordinary classification 

failures and assign options to specified classes, the ELECTRE TRI approach is utilized [58-

60]. This MCDM approach has been selected for implementing the methodological tactic 

proposed in the present work of thesis because of its flexibility for addressing diverse types of 

problems. As previously reported, there are numerous real-world scenarios of the ELECTRE 

TRI technique in the maintenance area that may be studied in the literature. Considering PrdM, 

a basic problem is undoubtedly presented by the dependency bounding critical failure modes 

with each other.  

At the end, the DEcision-MAking Trial and Evaluation Laboratory (DEMATEL) strategy is a 

successful MCDM method, being capable to illustrate the structure of complex causal 

relationships through the use of appropriate matrices and graphical charts. A popular theme in 

the area of industrial engineering at the moment is the DEMATEL method, which is used to 

discover significant parts in complex systems by combining many techniques in one. As 
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previously said, an extensive study of dependent relations is very crucial for achieving 

exhaustive findings in our specific field of application, and this is particularly true in this 

specific area of application. It is still difficult to have an objective viewpoint on things, despite 

the reality that multiple work has been put into improving this element [97].  

For the first several years of its existence, DEMATEL was intended and utilised to resolve 

complex and interconnected cluster components or systems [98-101]. It is a systematic 

structural modelling strategy for developing and analysing cause-and-effect linkages 

(dependency) between system elements. When investigating and solving challenging and linked 

situations, DEMATEL may aid in the process by proving dependency between pieces and 

assisting in the construction of a diagram to represent relevant relationships inside components. 

By identifying causal aspects that may be prioritised in order to achieve rapid and effective 

resolution of major problems, it assists in the identification of cause-and-effect variables [98-

102]. Not only does the DEMATEL technique turn interdependency relationships into cause 

and effect clusters by utilising matrices, but it does so in a more comprehensive manner. It also 

makes use of an effect-relation flow chart to discover the characteristics of complex systems 

that are relevant to their operation. Due to the advantages and diversity of application of this 

approach, it has attracted a better deal of consideration over the last decade, and other 

academicians have utilised it to tackle complex system difficulties in a range of sectors. As a 

result, DEMATEL has been developed to improve decision-making in a variety of settings as 

various complex systems consist erroneous and ambiguous dataset [100]. The majority of 

decision-making techniques that have been developed are based on idealistic beliefs, such as 

the risk contributing component in a complex system and the factor independence. The risk 

variables and the information sources used in the decision-making method do, in fact, have a 

strong relationship with one another. It is still necessary to develop a decision-making approach 

that takes into account the interaction between risk factors and data sources [103]. The literature 

has several DEMATEL applications, and a few of them are discussed in this section. Rolita, et 

al. [99] proposed integrating DEMATEL with the Analytic Hierarchy Process (AHP) in 

improving the efficiency of the airport safety management system. Using related analysis, the 

authors look at contributing relationships between the linked conditions for successful decision-

making in order to make more informed decisions. Maduekwe and Oke [104] applied the 

DEMATEL approach in the food processing sector to analyse and rank key performance 

indicators (KPIs) for the maintenance system. Karuppiah, et al. [105] used a combination of 

DEMATEL and Fuzzy AHP (FAHP) to identify, explore, and assess a group of Faulty 

Behaviour Risks (FBRs) that were likely responsible for factory accidents and injuries. 
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Karuppiah, et al. [80] used a combination of Interpretive Structural Modelling (ISM) and the 

DEMATEL approach to develop a sustainable PrdM implementation strategy. As an example, 

in [102], an integrated model for photovoltaic cell manufacturing industry based on Failure 

Modes and Effects Analysis (FMEA) and the DEMATEL strategy is proposed, and an 

combination of DEMATEL with the Best-Worst Method (BWM) and the Bayesian Network 

(BN) for safety management in the highly digitized industry was carried out in [103].  

DEMATEL implementation include a structural DEMATEL method for critical equipment 

[106], a combination between DEMATEL and Analytic Network Process (ANP) as a risk 

assessment model in oil and gas building projects [107], an integrated dynamic quantitative risk 

assessment method for oil and gas leaks on offshore platforms [108], and a DEMATEL-ANP 

risk assessment model in oil and gas exploration and production developments.  The 

DEMATEL has been widely used in its fuzzy form to treat with a variety of problems, such as 

home appliance assembly [109] and supply chain management in the automobile sector [110]. 

Furthermore, fuzzy DEMATEL has been used in conjunction with other approaches, such as 

the TOPSIS technique, to evaluate risks of a hydrogen production unit [111], as well as with 

cloud models [112], and FMEA analyses applied to turning machines [113]. 

 

 

Figure 2.3. Diagram exemplifying the proposed procedure for complex systems 

 

 

 

FMECA

•Determine appropriate research
limits by determining the
crucial elements and key
components of the complex
system susceptible to
predictive maintenance.

•Applying FMECA to gain a
thorough understanding of the
system by establishing a list of
failure mechanisms as options
to the MCDM concern.

ELECTRE TRI

•Employing ELECTRE TRI to
arrange modes of failure among
risk categories by assigning
varied weighting to FMECA
variables, which are criterion of
the MCDM problem.

•The treatment is carried out in
two parts.

•First step: establishing an
outranking connection by
evaluating each option to the
class limits, or referenced items.

•Second step: assigning options
to groups using pessimistic and
optimistic approaches.

DEMATEL

• Implementing DEMATEL for
the study of dependency
connections between classes
and highlighting particular
faults needing a prioritised
maintenance update. The
following is a summary of the
technique.

•Obtaining the total relation
matrix, which collects the
complete connection between
elements, by manipulation of
the input matrix.

•Determining significance and
relationship, ordering elements
on their declining significance
value, and constructing the
related impact chart.
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Table 2.5. Synthesis of the literature analysed  

Technique Description References 

FMECA 

Articles describing the extensive use of FMECA to a variety 

of engineering disciplines. The importance of this method 

for optimising complex systems is highlighted in context of 

component criticality assessment. 

[82] [87]  [88] [89] 

Studies suggesting the actual implementation of FMECA to 

equipment undergoing proactive maintenance, highlighting 

the efficacy of this type of combination. 

[83] [86] [88] [90] [91] [92] 

Publications detailing the primary benefits and drawbacks 

of the FMECA approach, emphasising that, amidst its 

adaptability, FMECA must be used caution. 

[93] [94] [95] [114] 

ELECTRE 

TRI 

Studies demonstrating the methodology's applicability for 

tackling a wide variety of classification issues relative to 

certain other current MCDM methodologies. 

[58-60] [77] 

Efforts establishing the practical applicability of ELECTRE 

TRI to address challenges in several management domains, 

revealing a deficiency in the arena of PrdM. 

[61] [78] [63] [64] [65] 

[115] [68] [72] 

DEMATEL 

Articles illustrating the application of DEMATEL for 

assessing the presence of cause-and-effect linkages among 

a variety of decision-making factors. 

[97] [98] 

Papers detailing integrations of DEMATEL with certain 

other methodologies, such as risk assessment, other MCDM 

techniques, probability-based strategies, structural 

modelling, etc. 

[80] [99] 

[102-108] 

Works expanding DEMATEL's fuzzy variant to handle 

unclear data input. 
[109-113] 
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2.4. Proposed integrated approach 

2.4.1. Objectives and methodological details 

Based on an examination of the shortcomings and strengths of each approach, as well as their 

common applications, we propose to use the integration of these three strategies that optimises 

the management of system breakdowns exposed to predictive maintenance. Such an integrated 

approach has been published as a journal paper [73] by extending the previous conference paper 

[72]. The following are the formalised justifications for which the combination of these three 

particular methodologies is being suggested to the area of the study. 

1. All possible failure modes in systems subjected to PrdM are identified using FMECA and 

the criticalness of failure modes is evaluated using risk metrics of relevance. 

2. ELECTRE TRI is used to identify and categorise the high-risk failures, as well as highlight 

those failures that have been related with greater risk levels and situations. 

3. DEMATEL is used to identify specific failures that are more interdependent with other 

failures in the same risk category than others within a class. 

The proposed integrated framework may support business realities in making effective 

decisions and implementing successful risk management actions. Identifying the failure modes 

that have the greatest influence on systems and the incidence of additional failures is the 

ultimate aim for each risk class. However, it is also important to control the other dependent 

failure scenarios as well. Maintenance and risk management processes, as well as system 

functionality, might be improved as a result of this approach.  

 

2.4.1.1. FMECA for quantitative failure assessment 

CEI EN 60812 specifies FMECA as a method for organising the analysis of systems in order 

to identify probable failure modes, pinpoint reasons, and assess the impact on system capability 

of those findings. By extending the FMEA methodology, FMECA makes it possible to rank 

and highlight failure modes in connection to their importance. Severity (S), Occurrence (O), 

and Detection (D) are the three risk metrics utilized to assess the criticality of any failure 

scenario. S is an estimation of the degree of impact the breakdown could cause to the system, 

O is the ratio of frequency of any failure mode within a certain timespan, and D is the probability 

of detecting the fault. Equation 1 reports the RPN calculation:  

𝑅𝑃𝑁 = 𝑆 ∙ 𝑂 ∙ 𝐷     (1) 
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A number between [0, 10] is commonly used to represent each risk factor. FMECA begins with 

a description of the recognised system and the creation of a logical framework. To acquire a 

complete picture of the examined system, it is needed to gather enough data on the 

dependability connection between the system's primary components and to characterise them 

in terms of their rank and placement. It is strongly suggested that components of the study be 

omitted since they will not be evaluated or taken into account throughout the analysis. A system 

block diagram depicts the practical relationships between components. It is also critical to detail 

all possible failure modes for each element, classify the reasons, and describe fully the 

consequences of each. According to Mzougui, et al. [116], it is important to consolidate and 

record all the results in appropriate spreadsheets that aid in establishing risk assessment in 

particular, calculating RPN against each failure scenario [116]. 

 

2.4.1.2. ELECTRE TRI for sorting failures into risk priority classes 

As already discussed at the beginning of this chapter, ELECTRE TRI is a decision-making 

problem-sorting and categorization technique centred on outranking. In the ELECTRE TRI 

method, an outranking relation indicates circumstances that exist between groups of options or, 

more specifically, between options and reference items. Concordance and discordance rules are 

at the heart of this kind of relationship since they validate the consistency amongst criterion 

indicating a certain solution is superior to other choices (or reference items) and the confliction 

among elements that this statement may not be accepted. Occasions of disinterest, preferences, 

or incomparability can be highlighted by having a common relationship with someone. 

Alternatives consistently outperform reference items in the first scenario; in the second, 

alternatives consistently outperform reference items but not in the reverse; and in the third, 

alternatives and reference items have such a wide disparity between them that they cannot be 

compared. Setting the right numerical thresholds can lead to these kinds of scenarios. 

For ELECTRE TRI, determining threshold values is crucial since it has a direct impact on the 

classification of results. Cut-off values must be defined by the analyst in order to adjust the 

technique based on the unique problem being investigated, as stated in [77]. In order to simulate 

larger thresholds, it is important to begin with a variety of different methodologies and then 

continually adjust such parameters till every criterion determines that they are satisfactory. 

Ordered classes must be specified, and they must not overlap with any of the related reference 

items, as required by ELECTRE TRI. At the same time, every referenced element displays the 
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higher and lower referenced elements for a given class simultaneously. An individual or a team 

of decision-makers might identify the reference item directly, or by using specific elicitation 

processes that allow for indirect preference information. A typical example of this is shown in 

Figure 2.4, which shows four ordered classes defined by three reference profiles and four 

generic criteria. In order to proceed with the application and address these fundamental issues 

regarding ELECTRE TRI, the same input data as the ones recalled in section 2.1 are necessary. 

 

 

Figure 2.4. Classes and reference profiles representation for each criterion [77] 

 

The first and second stage to be implemented to carry out the technique are specified next. 

1. First stage: The first step is to build an outranking relation (herein denoted as X) by 

comparing each option to the reference profiles. This level has four intermediate steps. 

1.1 Computing each criterion's correlation index. Each option 𝐴𝑖 must be evaluated bilaterally 

with each of the specific reference elements 𝑏𝑘, and correlation indexes, 𝐶𝑗(𝐴𝑖 , 𝑏𝑘), must 

be calculated for each criteria 𝑔𝑗 utilizing the given equations: 

𝐶𝑗(𝐴𝑖, 𝑏𝑘) =

{
 

 
1                         if  𝑔𝑗(𝑏𝑘) − 𝑔𝑗(𝐴𝑖) ≤ 𝑞𝑗

𝑔𝑗(𝐴𝑖)−𝑔𝑗(𝑏𝑘)+𝑝𝑗

𝑝𝑗−𝑞𝑗
        if  𝑞𝑗 < 𝑔𝑗(𝑏𝑘) − 𝑔𝑗(𝐴𝑖) < 𝑝𝑗

0                          if  𝑔𝑗(𝑏𝑘) − 𝑔𝑗(𝐴𝑖) ≥ 𝑝𝑗

.  (2) 

The aggregated concordance index 𝐶(𝐴𝑖, 𝑏𝑘) going to be calculated by utilising the 

previously computed correlation values for every criteria and collecting and weighting the 

indexes as a function of follows: 

𝐶(𝐴𝑖, 𝑏𝑘) =
∑ 𝑤𝑗∙𝐶𝑗(𝐴𝑖,𝑏𝑘)
𝐽
𝑗=1

∑ 𝑤𝑗
𝐽
𝑗=1

.      (3) 

1.2 Compute the discordance indexes for each criteria using the equation given hereunder: 

𝐷𝑗(𝐴𝑖, 𝑏𝑘) =

{
 

 
1                         if   𝑔𝑗(𝑏𝑘) − 𝑔𝑗(𝐴𝑖) > 𝑣𝑗

𝑔𝑗(𝑏𝑘)−𝑔𝑗(𝐴𝑖)−𝑝𝑗

𝑣𝑗−𝑝𝑗
         if   𝑝𝑗 < 𝑔𝑗(𝑏𝑘) − 𝑔𝑗(𝐴𝑖) ≤ 𝑣𝑗

0                          if   𝑔𝑗(𝑏𝑘) − 𝑔𝑗(𝐴𝑖) ≤ 𝑝𝑗

.  (4) 
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1.3 Calculate the relative importance index utilising formula provided here. 

𝜎(𝐴𝑖, 𝑏𝑘) = ∏
1−𝐷𝑗(𝐴𝑖,𝑏𝑘)

1−𝐶(𝐴𝑖,𝑏𝑘)
𝑗∈𝐹 ,    (5) 

where 𝐹 = [𝑗: 𝐷𝑗(𝐴𝑖, 𝑏𝑘) > 𝐶(𝐴𝑖 , 𝑏𝑘)]𝑠; 𝜎(𝐴𝑖, 𝑏𝑘) = 𝐶(𝐴𝑖, 𝑏𝑘) otherwise. In the absence of 

a defined rejection limit for every criteria, the confidence value 𝜎(𝐴𝑖 , 𝑏𝑘) equates the 

aggregate correlations score, 𝐶(𝐴𝑖, 𝑏𝑘). A fuzzy outranking connection based on parameters 

must be transformed into a crisp relationship after computing. 

1.4 The significance level, which often resides in the range [0.5, 1], provides the limit value for 

𝜎(𝐴𝑖, 𝑏𝑘) to back up the theory that 𝐴𝑖 outranks 𝑏𝑘, and is utilized to characterise the sort 

of pairwise connection. The preferred connection between 𝜎(𝐴𝑖 , 𝑏𝑘), 𝜎(𝑏𝑘, 𝐴𝑖) and λ is 

determined by the values of 𝐴𝑖 and 𝑏𝑘: 

• 𝜎(𝐴𝑖 , 𝑏𝑘) ≥ 𝜆 and 𝜎(𝑏𝑘, 𝐴𝑖) ≥ 𝜆 ⇒ 𝐴𝑖 S 𝑏𝑘 and 𝑏𝑘 X 𝐴𝑖 ⇒ 𝐴𝑖 I 𝑏𝑘; 

• 𝜎(𝐴𝑖 , 𝑏𝑘) ≥ 𝜆 and 𝜎(𝑏𝑘, 𝐴𝑖) < 𝜆 ⇒ 𝐴𝑖 S 𝑏𝑘 and not 𝑏𝑘 X 𝐴𝑖 ⇒ 𝐴𝑖 P 𝑏𝑘; 

• 𝜎(𝐴𝑖 , 𝑏𝑘) < 𝜆 and 𝜎(𝑏𝑘, 𝐴𝑖) ≥ 𝜆 ⇒ not 𝐴𝑖 S 𝑏𝑘 and 𝑏𝑘 X 𝐴𝑖⇒ 𝑏𝑘 P 𝐴𝑖; 

• 𝜎(𝐴𝑖 , 𝑏𝑘) < 𝜆 and 𝜎(𝑏𝑘, 𝐴𝑖) < 𝜆 ⇒ not 𝐴𝑖 S 𝑏𝑘 and not 𝑏𝑘 X 𝐴𝑖⇒ 𝐴𝑖 R 𝑏𝑘; 

Here X stands for the outranking relationship (e.g., Ai X bk) means that option 𝑖 is at least 

as beneficial as reference profile 𝑘) and I, P, and R stand for irrelevance, solid choice, and 

superiority, respectively. 

2. Second stage: The second stage is aimed at allocating possibilities to categories based on 

two different procedures that are the pessimistic and optimistic procedures. 

2.1 The process known as a pessimistic (or conjunctive) procedure assigns an alternative 𝐴𝑖 to 

the class 𝐶𝑘 for which the condition Ai X bk is verified, meaning that this alternate profile 

Ai is at minimum as excellent as characteristic k.  The pessimistic process begins with the 

highest value limiting reference profile creating classes, then goes through the next two 

steps. 

• Progressively analysing each option to the class borders, that is, Ai is gradually equated 

to profiles defining classes until the earlier stated criteria is verified. 

• Class C(k+1) has been assigned to alternative Ai. 

2.2 Positive (or disjunctive) method: Option Ai is allocated to the class Ck for which the criteria 

bk P Ai is satisfied, meaning that reference profile k should be chosen over alternative Ai in 
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an optimistic (or disjunctive) method. The optimistic method initiates with the minimum 

score constraining reference profiles and forming classes, and it proceeds from there: 

•  Comparing each alternative to the class limits. In order to verify alternative Ai, the 

profiles describing classes are compared progressively until the criterion bk P Ai is met. 

•  Class Ck has been assigned to alternative Ai. 

 

2.4.1.3. DEMATEL for analysing dependence within each class 

It is discussed in this subsection how to determine the effect connection between the important 

components of a complex system using a technique called impact analysis. It is necessary to 

take into account the existence of mutual reliance among the key parts when making decisions 

about complex systems, and the DEMATEL approach may be used to achieve this task quickly 

and efficiently. As a result, when dependency relationships are not thoroughly explored, the 

consequences of decision-making are more than likely to be adversely influenced. In present 

research, the DEMATEL method is utilised to assess the influence of the effects of relations 

between components on the decision-making of a complex system, and the results are 

presented. In order to obtain this goal, the DEMATEL strategy needs the cooperation of an 

expert or a team of specialists in the subject matter in order to get a more in-depth understanding 

of the problem under investigation. The essential steps involved in putting the method into 

action are detailed in further below [117]. 

• Collecting the positive input parameters, X, whose cells shows the relation of effect Xij of 

one element, i, over other one, j, utilizing the following descriptive evaluation scale: 0 (no 

influence), 1 (very low influence), 2 (low influence), 3 (high influence), and 4 (very high 

influence). In order to avoid the possibility of components having an influence on oneself, 

the major diagonal is filled with zeroes. 

• The earlier step is accomplished by engaging a decision-making team, each expert is asked 

to create their individual input data matrix, with the objective of processing the entire 

collection of input variables as equitably and consistently as feasible. All created matrices 

are then integrated into a single matrix, which is referred to as the direct relation matrix, 

abbreviated as A (input of the subsequent phase of the process). If only single specialist is 

involved, the matrix X will match with the matrix A, 

• Computing the normalised direct connection matrix 𝑁 as: 

𝑁 = 𝑠𝐴,      (6) 
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𝑠 denotes a non-negative numeral somewhat lesser than: 

min [
1

max
1≤𝑖≤𝑛

∑ 𝑥𝑖𝑗
𝑛
𝑗=1

,
1

max
1≤𝑗≤𝑛

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

].     (7) 

Matrix N represents the preliminary influence that elements produce on one another as well 

as the effect that they receive from one another. Getting a continual reduction in non-direct 

effects between variables in relation of successive powers of N is the goal of the subsequent 

stage. 

• Gaining the whole connection matrix T, that gathers all of the interrelationships between 

components, together with both direct and indirect influences. This matrix is computed by 

summing the powers of the standardised direct connection matrix N, and given by the 

following equation: 

𝑇 = 𝑁(𝐼 − 𝑁)−1,      (8) 

Since I is the identity matrix. One has to consider as lim
𝑛→∞

𝑁𝑛 = 0, as the spectral range of 

𝑁 is lesser than 1 and is limited by the sum of extreme row and column. The power sequence 

of the standardised direct relation matrix meets to (𝐼–𝑁)−1. Importantly, it must be 

observed that the major diagonal of matrix N is filled with zeroes, as described earlier, an 

item has no direct influence on itself. Simultaneously, the key diagonal of the overall 

relation matrix T aggregates all of the indirect affects connected with the corresponding 

elements. 

• It is necessary to describe the two vectors 𝐫 = (𝑟𝑖) and 𝐜 = (𝑐𝑗), which denote the 𝑛 × 1 

and 1 × 𝑛 vectors of sums of the rows and the columns respectively in the total relation 

matrix 𝑇. Considering these two vectors, the prominence may be computed as the sum 𝑟𝑖 +

𝑐𝑖, which indicates the overall influence of element 𝑖 on all the other elements, and the 

relation can be computed as the difference 𝑟𝑖 − 𝑐𝑖, which assists in classifying the elements 

as cause (if positive) or effect (if negative), based on these two vectors. 

• When necessary, constructing the impact chart prominence-relationship and calculating the 

final ranking of components based on their diminishing importance value. 

 

2.4.2. Case study: a complex service system subjected to PrdM 

When applied to a key subsystem of a complex service system that has been exposed to PrdM, 

the presented real-case is intended to illustrate the practical utility of integrating the FMECA 
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method with the suggested integrated MCDM technique, published as a journal paper [73]. The 

ELECTRE TRI is used as an alternate method to regular RPN, with the goal of eliminating few 

of its disadvantages. As an alternative of just sorting alternatives based on their RPN score, 

ELECTRE TRI is used to classify failures between risk preference categories, which is then be 

ranked accordingly.  

Those failures that are in urgent need of repair will be quickly identified and highlighted in 

accordance with their respective classifications. By simplifying the implementation of 

maintenance activities, this strategy will help to improve the efficiency of maintenance 

management. The described technique will also allow for different levels of relevance to be 

assigned to the FMECA risk factors. For determining the allocation of failures to classes, the 

DEMATEL approach will rely on views offered by the specialist in charge of maintenance 

regarding the relation that connect pairs of failed failures. The goal is to draw attention to those 

failures within each class that are linked with a greater extent of dependency with the other 

failures and whose direct management can work together to reduce the likelihood of the 

occurrence of other dependent failures.  

As a result, the fundamental benefits of the suggested technique is that it can identify, for all 

preference class, the failure reasons that are distinguished by their greater importance. Direct 

involvements on these particular failure modes help to the overall improvement of system 

conditions as well as the optimization of maintenance in accordance with the PrdM strategy 

that has been implemented for the system in question. The complex system under consideration 

is again the vehicle studied in [118]. Two factors, the interconnected power take-off (PTO) and 

the oil storage, as well as three core subsystems, make up the system. 3) system for movement, 

4) system for cleaning and funnelling, and 5) system for loading and dumping, make up the 

vehicle's basic construction. Table 2.6 contains an in-depth functional description of the system 

components. Because the failure of any one of these five basic aspects would result in the 

breakdown of the entire system, reliability networks are adopted as in sequence. 

 

 

Figure 2.5. Series of components and subsystems 
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Table 2.6. Components and subsystems functional description 

Component/ 

Subsystem 
Description 

1. Integral PTO 

Component 1: Through the employment of a suitable power take-off system, Component 1 enables 

the linkage of the hydraulic pumps to the main engine, hence enabling the functioning of the 

complete system. The normal functioning status of the whole system is directly reliant on the 

performance of this element, with the pumps functioning as the key key parts by which vehicle's 

mobility is assured and all of the different stages of sweeping are executed. 

2. Oil Tank 

Component 2: It is the initial part in the whole hydraulic circuit, and its major role is to promote 

the loss of heat generated during regular vehicle functioning. This design decision results in the oil 

tank being partially integrated into the water tank and linked to it through an outside flange. 

Tracking of the oil level and temperature is essential, and this may be achieved with the aid of an 

appropriate level gauge and temperature sensor. 

3. Moving System 

Subsystem 3 includes the beginning pump (3.1), start-up engine (3.2), and electronically controlled 

system. It is accountable for the vehicle's progress throughout operational stage (3.3). The varying 

start-up pump controls the operation of the hydraulic traction engine. It is crucial to note that by 

modifying the pump dislocation, it is possible to vary the rotor velocity of the hydraulic motor and, 

subsequently, the vehicle's motion. The hydraulic transmission enables the vehicle to be driven 

more slowly for sweeping operations (vehicle speed is determined by the flow of oil from the 

pump). The electronics control regulates each part of system, such as the connected PTO and 

hydrostatic transmission. 

4. Sweeping and 

Funnelling System 

Subsystem 4: It is accountable for coordinating the sweeping activity with the garbage transfer to 

the garbage loading system. There are numerous parts, such as a sprinkler system (4.1), a hydraulic 

system, and sweeping elements (4.2). The spraying system consists of a water tank, water pump, 

and spray nozzles and is placed upstream of the cleaning and transporting operations. Subsystem 

4.1 is primarily responsible for spraying water over powders to compact them and keep them from 

spreading into the air, hence enhancing the performance of the side brushes and side rollers. There 

is a pump I in subsystem 4.2 that is accountable for the movement of the circuit's sweeping sections, 

which have been separated into two systems based on their location: the right-side system and the 

left-side system. 

5. Loading-up and 

Emptying System 

Subsystem 5: It organises and supervises garbage loading and tank dumping processes. It consists 

of three parts: pump II (5.1), loading system (5.2), and dumping system (5.3). Pump II controls a 

hydraulic engine that powers the rear roller, as well as cylinders that act on the roller framework 

and cylinders accountable for the tank overturning. Pump II also regulates the elevator plant's 

releasing cylinder. The loading-up system, which is governed by pump III and fully accountable 

for garbage pickup until the collection tank is full, includes a back roller and connected elevator 

plant. First, waste is transmitted from the rear roller to the elevator plant, and then from the elevator 

plant to the storage tanks. After the release of the elevator plant by the suitable cylinders, the tank 

is emptied by inverting it via the support system, enabling the cleaner to reinstate cleaning 

operations. 
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In previous studies [75, 76], comprehensive block drawings depicting the entire set of 

components as well as the overall layout of the system were developed. As discussed in the 

case study reported in section 2.2 [72], Aiello, et al. [76] particularly highlighted three important 

components that must be monitored by sensors in order to lead to treatments for PrdM. Pump 

I, pump II, and pump III are three hydraulic pumps that are required to ensure the proper 

operation of the most critical sweeping elements, as well as the loading and emptying systems, 

among other things. Speed has been identified as the characteristic associated with the wear 

condition of pumps, and it will be monitored by a network of sensors in the right configuration. 

The research conducted in [72] revealed that failures possibly affecting pump I are related with 

a higher degree of intervention priority as compared to failures potentially involving pumps II 

and III. As a consequence of this finding, the current real-case considers on the central 

subsystem that is directly influenced by the operation of pump I, namely subsystem 4.2 

(hydraulic circuit and sweeping parts), whose process structure is depicted in Figure 2.5 (this is 

the version of the figure 2.2, updated with ID codes for each component/subsystem). Fig. 2.6 

depicts the reliability diagram of the "Right-side system" [74]. It is noticeable as subsystem 4.2 

is critically important for avoiding any unintended service termination. 

 

 

Figure 2.6. Hierarchical structure of the subsystem ruled by pump I [118] 

The FMECA analysis will be performed first, followed by the use of the integrated MCDM 

technique to address the list of failure modes and their assessments in the next paragraph. 
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Figure 2.7. Detailed reliability diagram of the “right-side system” [118] 

 

2.4.3. Data collection and application 

After all of the components have been identified to the greatest extent possible, Table 2.7 

examines the failure of the parts that are placed at the lowest levels of the structure of the 

subsystem under consideration. It has been determined what the various failure modes are for 

each component, as well as what the failure causes and effects are for each component, with 

the last two relating to both single components and the entire system. The quantitative 

evaluation of three FMECA variables, which were established within the discrete range of 

values [1-3] with the assistance of the technician responsible for vehicle maintenance, is 

presented in Table 2.8. To be specific, the During one-on-one sessions with the relevant 

decision-making experts, who was personally questioned about the quantitative assessments to 

be connected with the three FMECA variables for each failure mode, the input data collecting 

stage was organised, as well as through questionnaires. As part of this collaboration, the expert 

has agreed to regard the interval [1-3] as appropriate for representing the subject under 

investigation in its entirety, and he has also agreed on the definition of the scale of values. 

Because he is responsible of vehicle maintenance, the specialist who was questioned is familiar 

with the most common problems that affect the system and its basic components, as well as the 

most important factors relating to operator safety and security. 
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Table 2.7. Analysis of failure modes, causes and effects 

ID Component Failure Modes Failure Causes Failure Effects 

4.2.1. Pump I 

Fault distribution 

system 

Power outage;  

fluid characteristics; 

Valves or other 

elements failure. 

The hydraulic circuit and hydraulic 

actuators are not operating properly; 

• The work position is not taken; 

• The spinning of the brush and rollers 

is not permitted. 

Mechanical fault 

breakdown of 

elements (bearings, 

journal boxes, etc.); 

breakdown sealing 

elements. 

Faulty hydraulic circuit and 

hydraulic actuators; 

Unoccupied work location; 

Prohibited brush and roller spinning. 

4.2.2.1./ 

4.2.3.1. 
Distributor 

Sweeping 

elements not 

lubricated 

No supply of oil; 

mechanical 

malfunction; contact 

element 

deterioration 

• Not permitted to rotate brushes or 

rollers; 

• Garbage not conveyed. 

4.2.2.2.1./ 

4.2.2.3.1./ 

4.2.3.2.1./ 

4.2.3.3.1. 

Hydraulic 

engine 

Stopped start-up 

engine 

Pump I failure; 

Oil overheating. 

• Brushes stopped; 

• lateral rollers halted; 

• trash not transported 

Mechanical fault Bearing wear. • Increased vibrations. 

4.2.2.4./ 

4.2.3.4. 

Hydraulic 

cylinders 

Stopped hydraulic 

cylinders 

Pump I and / or 

pump II failure; 

high friction; 

hydraulic circuit 

failure. 

• Translation of brushes/rollers was 

not executed (elements not adherent 

to the ground when working or not 

lifted during transportation). 

Mechanical fault 

The deterioration of 

the sealing 

components. 

• Inconsistent interpretation and oil 

wastage 

4.2.2.2.3.1. 

4.2.2.3.3.1. 

4.2.3.2.3.1. 

4.2.3.3.3.1. 

Support arms 

Broken arms 

Deformation caused 

by collisions with 

huge trash or 

sidewalks. 

• Impaired performance of brushes 

and side rollers 

Stopped arms 
Hydraulic system 

problem. 

Failing to open or close side arms; 

Alterations in action range of 

transportation system. 

4.2.2.2.3.2. 

4.2.2.3.3.2. 

4.2.3.2.3.2. 

4.2.3.3.3.2. 

Pivots and 

journal boxes 

Slackened pivots 

Due to vibrations, 

incorrect assembly/ 

strain has occurred. 

Excessive vibration; 

Possibility of brush or roller removal 

from the holder. 

Worn journal 

boxes 

Incorrect assembly/ 

activity of pins 

included inside the 

journal boxes 

Improper connection between the 

arms and the brushes or rollers. 

4.2.2.2.2./ 

4.2.2.3.2/ 

4.2.3.2.2./  

4.2.3.3.2/ 

Bristles 
Damaged brush or 

roller 

Mechanical 

interaction between 

garbage and the 

road surface. 

Waste collection inefficiency; 

Bristles that attach poorly to the 

ground 
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Table 2.8. List of failure modes for subsystem 4.2 and factors evaluation 

FAILURE MODES ID S O D 

4.2.1. 

Pump I 

Fault distribution system in Pump I PI_1 2 2 2 

Mechanical fault in Pump I PI_2 2 1 2 

4.2.2. 

Right-

side 

system 

Sweeping elements not lubricated by right-side distributor RSS_1 2 3 2 

Stopped right-side hydraulic cylinders RSS_2 1 2 2 

Mechanical fault of right-side hydraulic cylinders RSS_3 1 2 2 

Stopped start-up engine of right-side brush RSS_4 1 2 1 

Mechanical fault of start-up engine of right-side brush RSS_5 3 1 1 

Broken support arms of right-side brush RSS_6 2 1 1 

Stopped support arms of right-side brush RSS_7 2 1 1 

Slackened pivots of right-side brush RSS_8 1 2 3 

Worn journal boxes of right-side brush RSS_9 2 2 3 

Damaged bristles of right-side brush RSS_10 1 3 2 

Stopped start-up engine of right-side roller RSS_11 1 2 1 

Mechanical fault of start-up engine of right-side roller RSS_12 3 1 1 

Broken support arms of right-side roller RSS_13 2 1 1 

Stopped support arms of right-side roller RSS_14 2 1 1 

Slackened pivots of right-side roller RSS_15 1 2 3 

Worn journal boxes of right-side roller RSS_16 2 2 3 

Damaged bristles of right-side roller RSS_17 1 3 2 

4.2.3. 

Left-

side 

system 

Sweeping elements not lubricated by left-side distributor LSS_1 2 3 2 

Stopped left-side hydraulic cylinders LSS_2 1 2 2 

Mechanical fault of left-side hydraulic cylinders LSS_3 1 2 2 

Stopped start-up engine of left-side brush LSS_4 1 2 1 

Mechanical fault of start-up engine of left-side brush LSS_5 3 1 1 

Broken support arms of left-side brush LSS_6 2 1 1 

Stopped support arms of left-side brush LSS_7 2 1 1 

Slackened pivots of left-side brush LSS_8 1 2 3 

Worn journal boxes of left-side brush LSS_9 2 2 3 

Damaged bristles of left-side brush LSS_10 1 3 2 

Stopped start-up engine of left-side roller LSS_11 1 2 1 

Mechanical fault of start-up engine of left-side roller LSS_12 3 1 1 

Broken support arms of left-side roller LSS_13 2 1 1 

Stopped support arms of left-side roller LSS_14 2 1 1 

Slackened pivots of left-side roller LSS_15 1 2 3 

Worn journal boxes of left-side roller LSS_16 2 2 3 

Damaged bristles of left-side roller LSS_17 1 3 2 
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The collection of possibilities for the hybrid MCDM application is based on thirty-six failure 

scenarios, with the three FMECA risk factors serving as the foundation presumed to be the 

assessment criteria in this study. For the interest of completeness, we would like to point out 

that the ELECTRE TRI application described below may be carried out by altering or increasing 

the set of criteria, for example, by considering features relating to human factors and/or 

economic considerations, among other things. We will go into further depth regarding the 

parameters' assessments in the next sections. Insignificant failures, defined as those that cause 

just a partial deterioration of specific functionalities without having a significant impact on the 

system or individuals, have been assigned severity values equal to 1. The severity values of 2 

have been assumed for marginal failures, which are failures that may cause a decline in 

efficiency or even the complete loss of some functionalities, but do not cause significant 

damage to the system or to the individuals who are affected by them. In the case of catastrophic 

failures, severity values equivalent to 3 have been assumed, which means that they can 

substantially impair major working roles and reason significant harm to the system and its 

surroundings, with possible consequences for human safety. The probability of occurrence has 

been assigned a value of 1 for remote failures, 2 for occasional failures, and 3 for probable 

failures. Finally, detection has been rated from 3 to 1, with 3 reflecting failures that are difficult 

to detect (hence concomitant with greater risk conditions) and 1 representing failures that are 

easy to detect (thus concomitant with lower risk situations). For the ELECTRE TRI application, 

three classifications of risk with equal width, designated by two reference profiles (𝑏1 = 1 and 

𝑏2 = 2 for each criteria), have been taken into consideration: low (class C), medium (class B), 

and high risk (class A). With the use of the J-Electre-v2.0 software for multi-criteria decision 

assistance established by Pereira [79], the results of the ELECTRE TRI method have been 

double-checked to ensure they are accurate. 

The ELECTRE TRI outcomes are detailed in Appendix A. Tables A1 (pessimistic process) and 

A2 (optimistic procedure) display the assignment based on varying values of the cut-off level 

λ and cases with varying risk factor weights. In specifically, scenario 1 assigns 50% weight to 

the severity component, with the remaining 50% weight divided evenly between occurrence 

(25%) and detection (25%). Likewise, cases 2 and 3 provide 50% weight to occurrence and 

detection, and 25% weight to each of the remaining criteria. The values of the limits have been 

determined by guiding several phases of application until they were deemed suitable for the 

case study under consideration. The indifference threshold 𝑞𝑗 has been assumed to be 

equivalent to 0.5 and the severe preference limit 𝑝𝑗 has been set to 1, but the rejection limit 𝑣𝑗  
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has not been considered for this application. It is possible to note as results obtained through 

the optimistic procedure should be preferred because, as demonstrated in [77], it has a tendency 

to allocate solutions to classes associated with higher ratings, which can make risk appraisal 

and action management more effective. Accordingly, the output of the optimistic method (Table 

A2) has been deemed a body of input data for the DEMATEL application, which will be used 

to carry out the application. Failure modes have been classified into two groups, designated as 

A and B, which reflect high and medium risk circumstances, respectively. According to the 

evaluations presented, no failure has been classified as being of low-risk class C. In order to 

find the most affecting failure(s), which might have a negative influence on all of the others, 

two independent phases of DEMATEL were carried out, one for each class. 

 

Table 2.9. DEMATEL results 

Class A: HIGH RISK Class B: MEDIUM RISK 

ID 𝒓𝒊 + 𝒄𝒊 𝒓𝒊 − 𝒄𝒊 
Ranking 

position 
ID 𝒓𝒊 + 𝒄𝒊 𝒓𝒊 − 𝒄𝒊 

Ranking 

position 

PI_1 6.8649 -0.5896 1st PI_2 5.0521 0.6556 1st 

RSS_1 6.5265 0.9876 3rd RSS_2 3.5946 -0.0669 5th 

RSS_5 6.5564 -1.1123 2nd RSS_3 4.4026 0.4313 2nd 

RSS_8 5.6600 0.0889 7th RSS_4 3.6040 0.0098 4th 

RSS_9 5.7838 -0.0397 5th RSS_6 3.3846 0.3366 8th 

RSS_10 5.5247 -0.1170 8th RSS_7 3.5146 -0.6614 6th 

RSS_12 5.9712 -0.3207 4th RSS_11 4.0056 0.1520 3rd 

RSS_15 5.1112 0.7988 9th RSS_13 3.3186 -0.1777 9th 

RSS_16 5.7361 0.1284 6th RSS_14 3.4807 -0.3515 7th 

RSS_17 5.0962 -0.1193 10th LSS_2 3.5946 -0.0669 5th 

LSS_1 6.5265 0.9876 3rd LSS_3 4.4026 0.4313 2nd 

LSS_5 6.5564 -1.1123 2nd LSS_4 3.6040 0.0098 4th 

LSS_8 5.6600 0.0889 7th LSS_6 3.3846 0.3366 8th 

LSS_9 5.7838 -0.0397 5th LSS_7 3.5146 -0.6614 6th 

LSS_10 5.5247 -0.1170 8th LSS_11 4.0056 0.1520 3rd 

LSS_12 5.9712 -0.3207 4th LSS_13 3.3186 -0.1777 9th 

LSS_15 5.1112 0.7988 9th LSS_14 3.4807 -0.3515 7th 

LSS_16 5.7361 0.1284 6th     

LSS_17 5.0962 -0.1193 10th     
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DEMATEL input data have been organised throughout Appendix B. As a starting point, the 

first step has been guided by gathering pairwise influence assessments (Table B1) from the 

involved specialists on the set of nineteen failure modes that have been categorised into class 

A. The second stage has been focused on the remaining seventeen failure possibilities, which 

have been categorised into class B (Table B2). According to their diminishing levels of 

prominence (𝑟𝑖 + 𝑐𝑖), failures within each risk class are finally ranked in Table 2.9 according 

to their ultimate ranking. Additionally, the values of the relationship  (𝑟𝑖 − 𝑐𝑖) are presented in 

order to differentiate between causes and effects. Specifically, the DEMATEL charts relevant 

to the two steps of the application, i.e. inside each class, are shown in Figures 2.8 and 2.9. 

 

 

Figure 2.8. DEMATEL chart with failure modes of class A (high risk) 

 

 

Figure 2.9. DEMATEL chart with failure modes of class B (medium risk) 
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2.4.4. Discussion of results and managerial implications 

The achieved outcome is intriguing from the standpoint of actual management application, and 

numerous valuable thoughts may be drawn from them. Using FMECA, which is a significant 

technique of safety and risk analysis performed by safety and risk engineers [118], appropriate 

assessments have been conducted on the service system under consideration. With the FMECA 

application, it is possible to perform an exhaustive system analysis by synthesising reliability 

relations and characterising possible failure modes in a complex system with three critically 

important pumps that are monitored by sensors and subjected to PrdM. 

Due to the higher criticality of pump I identified in a previous conference paper  [72], we chose 

to concentrate on the part of the system that is directly dependent on this component's 

performance. FMECA was utilised to identify thirty-six failure modes (i.e., alternatives to the 

decision-making issue), and the hybrid MCDM was implemented to further optimise 

maintenance management. The ELECTRE TRI method was utilised to categorise the thirty-six 

failure scenarios into two risk groups suggesting a high and a medium intervention priority, 

respectively. In addition to making it easier for decision-makers to access failure modes [114], 

moreover, classifying failure modes into ordered classes has been shown to be a more effective 

approach than the usual ranking method of merely arranging RPN values. It is true that 

categorising failures can provide useful information, allowing risk managers to see which 

failure modes need to be prioritised when it comes to risk mitigation and management. A total 

of 19 failures have been classified as high-risk classes A and B, respectively, while 17 failures 

have been classified as low-risk classes A and B. (medium risk). According to the evaluations 

offered by the included maintenance professional, the method evaluated a additional class C 

(low risk class), but no failure mode was sorted there according to the results of the method. 

This implies that all of the failure modes obtained by FMECA are critical in some way to the 

system's operation. To put it another way, the quantitative assessments assigned to FMECA 

parameters do not support the notion of associating a low level of risk with any of the failure 

modes that have been found. Following a further discussion with specialist, he stated that this 

is a very prudential supposition, as it is always important to keep in mind the worst-case 

scenario when it comes to the risk assessment of the particular component under consideration. 

Study assume that this finding may be confirmed as a universal rule, because it might lower the 

likelihood of underestimating the probable incidence of particular failures by seeing them as 

unimportant than they actually are. Indeed, even when it appears that this is the case, buried 

issues might every time conspire to raise the overall risk estimate at the system level. After 
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considering the foregoing, we can infer that maintenance actions targeted at mitigating the risks 

associated with the detected failures must be taken with a high or medium-high priority, and 

that no action should be suspended indefinitely.  

A sensitivity analysis was conducted by adjusting the cutting level as well as the weights of risk 

variables (i.e. criteria of the decision-making issue), which revealed no changes in the final 

results and subsequently confirmed the reliability of the findings. Again, in contrast to typical 

FMECA, one of the advantages of our method is the ability to take into account varying degrees 

of relevance for severity, incidence, and detection. In addition, different criterion might be 

included to the investigation. In order to visualise causal linkages [118] and determine which 

options are highly important within every class of failures, the DEMATEL process was 

employed after the failures had been categorised. It is necessary to manage these failures to 

reduce the likelihood of further failures occurring within the class of reference, and this involves 

minimising global risk. 

Class A (high risk) failures include those characterised by PI I (fault distribution system in 

Pump I), RSS 5 (mechanical fault of start-up engine on right side brush), LSS 5 (mechanical 

fault of start-up engine on left side brush), RSS 1 (sweeping elements not lubricated through 

right-side distributor), and LSS 1 (sweeping elements not lubricated through left-side 

distributor), all of which must be addressed immediately. In addition, it is feasible to see that, 

among the failures listed, RSS 1 and LSS 1 may be regarded as causes, while the rest failures 

can be regarded as consequences.  

By addressing these issues as soon as possible, it would be possible to reduce the likelihood of 

the occurrence of associated breakdowns like RSS 12, which is a mechanical problem of the 

start-up engine of the right-side roller; LSS 12, which is a mechanical failure of the start-up 

engine of the left-side roller; RSS 9, which is worn journal boxes of the right-side brush; and 

LSS 9, which is worn journal boxes of the left-side brush. This might also have a good impact 

on pump I, which was exposed to PrdM, by increasing the status of its operation and lowering 

the associated maintenance costs. Moreover, similar to this, the technique specifies that when 

leading initiatives for controlling failures associated with class B (moderate risk), such as PI 2 

(mechanical fault in pump I), RSS 3 (mechanical fault of right-side hydraulic cylinders), LSS 

3 (mechanical fault of left-side hydraulic cylinders), RSS 11 (stopped start-up engine of right-

side roller), and LSS 11 (stopped start-up engine of left-side roller), needs priority treatment. 

According to the positive values of prominence (ri-ci), the technique shows that these failures 

might be considered as sources of the observed phenomena. 
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To summarise, it has been demonstrated that initiatives that are aimed at enhancing pump I, a 

vital part that is subjected to PdM, in addition to the engines that rule the sweeping components 

and their oil changes, are essential for keeping the complex system that is being investigated in 

an appropriate functional state and for optimising its level of efficiency over the course of its 

lifecycle. It is claimed that concentrating on these specific failures will result in a reduction in 

the likelihood of the recurrence of further failures in the similar class as the ones being targeted. 

The failures that have been identified as the utmost serious are, in fact, the ones whose existence 

is most probable to have an influence on the occurrence of all other failure. 

 

 

 

 



   

 

 

 

 

 

 

 

 

  

 

 

 

Chapter 3.  

Digital transformation in maintenance management 

  



 Chapter 3. Digital transformation in maintenance management 

93 

 

3.1. Industry 4.0 technologies 

Technology growth has dramatically changed the entire industry in the previous few years, and 

all manufacturing industries are therefore forced to a shift in the technological paradigm. 

Industry 4.0 is the distinguishing aspect that has emerged as an enabling factor of industrial 

functions (maintenance, operations, production, etc.) which are streamlined and become more 

productive via the huge adoption of advanced digital technologies. Industry 4.0 is a 

technological revolution that aims to create a worldwide impact by revealing the true 

possibilities of a sustainable society and permitting sustainable production. Implementing the 

industry 4.0 concept entails converting the industries into a completely networked facility 

where actions could be taken swiftly using comprehensive, clear, and factual data. It can be said 

that adaptability, integration, automation, collaboration, consistency, information-sharing, 

interconnectivity, modularity, condition monitoring, service quality, improvement, technical 

support, and remote visualization are some of its core features [119].  

Industry 4.0 technologies have a significant influence on industries' maintenance, operational 

processes, security, and economics [119]. As a result, the entire process inferred significant 

benefits because of the incorporation of different industry 4.0 aspects that foster true predictive 

maintenance, allow data analysis and collection, enhance collaboration across multiple 

maintenance activities, assist monitoring via virtual technologies, and, ultimately, enhance 

efficiency and productivity, minimize accidental breakdowns, and, hence, decrease 

maintenance expenses [120]. Maintenance management in industries is one of the driving 

factors of Industry 4.0, and it has led to the emergence of new industrial difficulties [121]. In 

regards to effective interconnectivity, the incorporation of various industry 4.0 technologies, 

namely AI, ML, CPS, IoT, Big Data, AR, Cloud Computing, and so on, has substantially 

changed the maintenance management of traditional production systems of industries [120]. 

Particularly, PrdM has made substantial advancements, offering numerous promising benefits 

including increased output, particularly by enhancing both quality and availability and lowering 

expenses through digitalization for manufacturing real-time tracking, early diagnosis of 

breakdowns, reduced idle time, and asset life forecasting [121]. Industry 4.0 permits PrdM to 

intervene prior to actual failures or breakdowns emerge, ensuring the uninterrupted functioning 

of manufacturing processes. Once potential equipment abnormalities have been recognized or 

anticipated, a diagnostic process can be initiated to determine the underlying causes of the 

failures. In such a manner, maintenance activities like machine user interference are 

recommended to prevent assembly line failure [122]. 

The notion of Industry 4.0 is centered on technological advancements, and this study has 

outlined technologies that represent Industry 4.0, such as Cyber-Physical Systems (CPSs) [119, 

120], Cognitive Computing [119], Cybersecurity [119, 123], Cloud Computing [119, 120, 123], 

Mobile Technologies [119], Machine-to-Machine (M2M) [119], Additive Manufacturing (AM) 

[119, 123], Autonomous Robotics [119, 123], Big Data and Analytics [119, 120, 123], Internet 

of Things (IoT) [119, 120, 123], Augmented Reality (AR) [119, 123], Simulation [119, 120, 

123], and Artificial Intelligence (AI) [120] as shown in Figure 3.1. These technologies have 
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been extensively studied and reported in the literature, among few references are [119, 120, 

123-125]. Furthermore, readers are encouraged to see [119] for a detailed list of industry 4.0 

technologies where authors identified and listed “100 Industry 4.0 technologies for world class 

manufacturing” which can be adopted and utilized in various domains of industries, such as for 

PrdM [119]. Moreover, study has found interoperability, interconnectivity, decentralization, 

and integration as the important features of industry 4.0 [120, 123]. 

 

3.2. digitalization in maintenance management 

Technology and maintenance are mutually advantageous since the constant evolution of 

technology leads to substantial breakthroughs in the maintenance industry [126, 127]. 

Digitalization has been recognised as one of the fundamental trends altering society and 

industry [128], and it plays a crucial role in efficiently modernizing maintenance management. 

Innovation in technology does lay the foundation for the industry's long-term success. 

Digitalization is continually transforming organisations by allowing them to collect data 

automatically via the application of suitable technology. Different kinds of equipment and 

components are now capable of collecting long-term operating data, which, when digitalized, 

may yield an abundance of insightful information [126].  

However, to ensure accurate failure prediction, maintenance management requires a number of 

smart technologies with wider digitalization solutions, such as AI, big data, IoT, digital twins, 

novel sensor technologies, information gathering and distribution from different smart sensors, 

and the investigation of huge amounts of information employing machine/deep learning [129, 

130]. Lamdasni and Okar [131], determined that the concepts of digitization and Industry 4.0 

could be implemented to maintenance, which is a crucial industry practice. Failure prediction, 

maintenance diagnostics, and decision-making can benefit from data collection and intelligent 

systems [131]. Pech, et al. [132] investigated and enumerated many kinds of smart sensors that 

allow the gathering of a huge amount of information that can be effectively analysed to optimize 

the maintenance management of complex systems and decision-making. Digitization has 

emerged as one of the most prominent trends over the past decade, not just in the manufacturing 

industry but also in other facets of industrial operations, including maintenance. The digital 

revolution has been compared to the industrial revolution in terms of its impact. The growing 

complexity of products, the progress of engineering fields, and the constant implementation of 

technologically intelligent solutions are all factors that have contributed to the unprecedented 
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increase in global competitiveness, where the application of totally new notions in 

manufacturing and process advancement represents a significant dilemma [128, 131]. 

 

Figure 3.1. Technologies connected to Industry 4.0 [133] 

 

This study herein presented mainly aims to evaluate which kind of data should be collected 

digitally in order to effectively perform predictive maintenance methods. This may be 

discovered by developing a literature analysis and examining the most recent digitalization 

trends in maintenance management. This research will also examine the key factors of 

digitization in maintenance management, as well as their benefits and drawbacks. Additionally, 

a decision-making model will be proposed in order to enable such maintenance management 

strategies. The anticipated outcome of the research would be able to support maintenance 

management through the understanding of influence relationships between related critical 

factors, enabling the monitoring of equipment health, identification of problems, prediction and 

resolution of issues well in advance of their occurrence, and improvement of performance. 

Consequently, this study may have good effects on economic, social, and environmental 

concerns, as well as the execution of maintenance policies in general.  

Numerous researchers have studied the term Industry 4.0, which involves the present era and 

may be defined as the "fourth industrial revolution" thanks to the introduction of smart factories 

that are defined by their capacity to connect with each other. To achieve a level of production 

that is at the same time soft, dynamic and smart, the physical and virtual applications are 

blended in the fourth industrial revolution by utilizing interconnected systems, cutting-edge 
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manufacturing equipment, and embedded technology. Numerous experts believe that the world 

has reached four important milestones on the road to the fourth industrial revolution. 

Specifically, the term “Industry 4.0” arose in 2011 as a synthesis for the global industrial aims 

of the German economy. There are three interconnected motivations for the development and 

implementation of Industry 4.0. Through digitization, we must move away from fundamental 

technical-economic ties and toward complex networks. Utilizing digital technologies enhances 

the quality of processes in terms of both products and services. As a third reason, new market 

models must be created. This industrial digital revolution encompasses the integration of every 

digital technology used in our daily life, including smartphones, tablets, and computers. 

As industrial processes and communications technologies constantly improve, and as new 

analytic concepts are brought to the industry, maintenance management has attained a high 

degree of accuracy and an outstanding level of dependability in the huge quantity of data 

acquired from sensors and robots. In recent years, evolving notions such as CPS, IoT, and big 

data have altered how manufacturing industries are viewed, and have prompted researchers and 

practitioners to discover different research insights that will unquestionably influence top 

management perspectives by opening new avenues for innovation and information 

capitalization. As previously stated, digitization has had a huge influence on industrial 

maintenance tasks. Lamdasni and Okar [131] laid out four phases of maintenance digitization 

strategies. In the first reactive stage, the use of technologies is restricted in order to decreased 

maintenance response time. During the second phase, digital technologies contribute to the 

optimal implementation of the maintenance preventive programme. At the level of predictive 

maintenance, intelligent technologies employ historical data to anticipate conditions, and 

monitoring current state problems at their onset has become practicable due to the easy access 

of real-time data. In addition, proactive maintenance is a maintenance plan in which digital 

transformation guarantees criticality investigation and aids in making critical decisions like 

equipment death or investment decisions. Several intelligent maintenance systems have been 

developed in the past to help the digitization of maintenance. Among the models researched 

and reported by [131] include the Real-time Intelligent Multiple Fault Diagnostic System 

(RIMFDS), a system with ability to process numerous failure analyses as presented by smart 

sensors, the Intelligent Predictive Decision Support System (IPDSS), among others.  

Johansson, et al. [134] studied the effects of implementing digital maintenance, including 

greater information on uncertain situations, increased capacity, enhanced maintenance, 

decreased costs, and increased sustainability. All of these factors illustrate a variety of 
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economic, environmental, and social benefits. Digitalization is a compelling approach for value 

generation that encompasses all automated operations that are combined with communication 

and information technologies. Several advantages and high potentials of digitalization have 

been noted in the literature, such as rapid coordination, increased manufacturing process 

flexibility, and cost reduction [131]. Figure 3.2 depicts the maturity model of industry 4.0 

concerning digitalization. 

 

 

Figure 3.2. Industry 4.0 maturity model concerning digitalization adopted from [135] 

 

3.2.1. Digital data collection  

As we are living the 4th industrial revolution, empowered by Industry 4.0 developments such 

as ML, big data analytics, and virtual reality, we usually have access to a significant amount of 

data to aid in decision-making and the direct connection of assets via technologies such as 

embedded devices, also known as the IoT. In recent years, the greatest difficulty has shifted 

from collecting data to determining whether the information is practically helpful. The 

significance of having sufficient data in the maintenance decision-making process is contingent 

on our ability to use this data and predictive analysis to propose and take smarter decisions. As 

a result of this growth, new opportunities for data-driven techniques like as predictive analytics, 

AI, and ML have emerged, with the ability of higher productivity gains. [136]. 

Digital collection of data for maintenance management is a method that employs IoT 

technology to incorporate maintenance equipment, enabling distant data gathering, data 
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transfer, investigation, and prospective efficiency and productivity enhancements, in addition 

to the scheduling of maintenance activities. For data collection, sensors convert machine-

emitted physical processes such as temperature and vibration into digital signals. Machine data 

alone is insufficient for maintenance decision-making; a dependable IoT architecture is 

necessary to enable widespread sensor data collection and the connection of maintenance 

equipment to data sources [137]. Various types of data are being collected digitally, some of 

the examples are listed in Table 3.1. 

It is usual for the data gathered by inspection devices to provide information regarding the status 

of plant components, as opposed to normal maintenance chores such as cleaning, lubrication, 

and component replacement. Physical phenomena can be monitored across time and space to 

provide diagnostic and prognostic information regarding the equipment's state. In addition, a 

list of sensor applications for each type of equipment and other details on maintenance 

digitalization may be found in a variety of research publications, as indicated by the authors 

[138]. 

Table 3.1. Examples of digital data collection  

 

 

 

 

 

 

 

3.2.2. Critical factors for digitalization 

Maintenance management techniques have been profoundly affected by the digital revolution 

of industries. It is essential to determine which organizational competencies are required, as 

well as how organizations should evaluate their eagerness to initiate a digitalization transfer for 

maintenance management. Lamdasni and Okar [Lamdasni and Okar [131]] carried out research 

and outlined various critical factors for the successful digitization of maintenance management, 

which are categorized under five key notions as management of information and 

communication technology, resources for digitalization, organizational development, formation 

Types of Data Device/Sensors 

Vibration Data Accelerometers or Piezoelectric sensors 

Imaging of abnormally hot regions Thermography 

Subsurface inspection data Ultrasonics 

Materials integrity data Resistance 

Viscosity and impurity levels data Oil analysis 

Pipe thickness data Radiography 
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of maintenance programs, and progression of corporate culture, as depicted in Figure 3.3. 

Additionally, Johansson, et al. [134] analysed others aspects, such as smart technology 

development, organizational growth, change in working practices, regulatory compliance, and 

data privacy and security, that are beneficial for the effective implementation of digital 

maintenance. Moreover, Singh and Gupta [139] analysed and investigated fourteen 

maintenance management aspects using a literature study, interviews with maintenance 

professionals and specialists, the nominal group method, and brainstorming. In contrast to 

critical factors, three major obstacles to the adoption of maintenance techniques in the industry 

have emerged: insufficient management collaboration, lack of overall equipment effectiveness 

(OEE) evaluation, and lack of strategic planning and execution measures [140].  

 

 

Figure 3.3. Critical factors for digitalization of maintenance management 

 

3.2.3 Advantages and limitations of digitalization 

Digital maintenance promotes the development, refining, and implementation of contemporary 

technologies, hence enhancing their efficacy. Integrating vast volumes of past and real-time 
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data with analytical skills has created the foundation of digitized maintenance services. As a 

result of the positive technical effect, maintenance skills such as tracking, detecting, 

troubleshooting, predicting, and optimising are all contribute to the technological sustainability 

of these developments. By digitizing maintenance and employing the necessary tools and 

technology, only mandatory, adequate, and proper maintenance can be conducted through real-

time predictions and diagnostics. This lowers waste and energy utilization, saves time, and 

eventually has a positive influence on the environment. Digital maintenance decreases failures 

dramatically by predicting, diagnosing, and eliminating breakdowns digitally and in advance. 

This promotes a culture of safety, enables employees to behave safely, and maintains a safe and 

healthy work environment. This ensures that digital maintenance has a healthy effect on the 

environment and society. Karki and Porras [126] outlined the numerous economic, 

environmental, social, technological, and administrative benefits of digitization in maintenance 

management. 

Despite the potential benefits, the digitalization of maintenance brings several disadvantages. 

Not all industries possess the requisite level of abilities to digitalize their maintenance services, 

mostly owing to their inability to grasp effective implementation approaches and best practices. 

This is one of the fundamental obstacles. Indeed, it may be rather difficult to identify value-

creation possibilities and shift the emphasis from technology to strategic thinking. The most 

crucial problem is the absence of the essential right mindset to transform the typical run-to-

failure mentality into one that can perceive and integrate maintenance services into the system 

that permits digitalization. Rapid cost reduction is exceedingly challenging and may not initially 

appeal to all clients. When running expenses are restricted, operational issues and technological 

limits are unavoidable. Consequently, digital capabilities are limited, including the inability to 

automate maintenance procedures, the inability to utilize massive data sets, and poor remote 

monitoring. While it is evident that the digitalization of maintenance has an impact on 

sustainability in a number of ways, identifying the precise degree of this impact and how it 

appears is a big issue that needs considerable and in-depth research [126]. 
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2.4 Decision-making models dealing with uncertainty 

Everyday life is characterized by constant decision-making, and every decision brings with it 

the possibility of uncertainty and risk [136]. Various MCDM strategies and procedures have 

been proposed in the literature over the decade in order to choose the alternative that represent 

the optimal solution based on a number of distinct analysis criterion. Similar programs have 

been widely implemented in numerous domains, like manufacturing, industry, power 

management, economics, environment, sustainability, supply chain management, hospitality, 

production operations, materials, risk and safety, operations research, reliability, and quality 

[72, 73]. Multiple MCDM strategies have been developed and implemented in maintenance 

management. Among them, for instance, TOPSIS is a widely used traditional MCDM 

methodology with the following benefits: clarity, logically understood beliefs, increased 

operational efficiency, and the ability to express the efficiency of each alternative using a simple 

mathematical form. As a result, TOPSIS has been used in a variety of sectors [141-143]. 

Behzadian, et al. [144] evaluated and contrasted several MCDM strategies with TOPSIS and 

recognized it as an effective tool for categorizing maintenance decision-making. Singh, et al. 

[140] utilised TOPSIS to determine the most significant maintenance management obstacles in 

their investigation. Moreover, Alshraideh, et al. [145] in instances involving complicated 

decision-making, the proportions of the variables or factors are sometimes contradictory, which 

might present analytical challenges. Extending standard models with fuzzy logic has been 

effectively utilized in a variety of industrial applications to alleviate this issue [146]. In the 

context of the present study, an examination of the interdependencies between the identified 

essential elements may help to identify those that are most significant for the optimization of 

the entire maintenance management procedure. As demonstrated in recent studies (Carpitella 

and Izquierdo [147], Carpitella, et al. [148]), both pertaining to the subject of risk management, 

this objective may be efficiently attained by developing a decision-making model using Fuzzy 

Cognitive Maps (FCMs). 

 

3.3.1. Critical factors of maintenance management 

In this chapter, the research identified the critical elements required for the digitalization of 

maintenance management, among which are the management of information and 

communication technology, resources, organizational growth, smart technology development, 

formation of maintenance strategy, corporate culture, transition in working practices, regulatory 

compliance, data privacy, and security, etc., as detailed in Table 3.2. In this study, digital data 
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collecting via intelligent technologies are also explored. In addition, the study identified 

possible benefits and constraints throughout the transformation to maintenance management 

digitalization. Consequently, it has been determined that the digitization of maintenance 

management is advantageous for performing timely maintenance and preventing breakdowns 

in advance. Moreover, the research explored certain decision-making methodologies frequently 

employed in the area of maintenance management in an effort to enable maintenance employees 

to make proper judgments and prioritize maintenance operations. 

 

 Table 3.2. Critical factors of maintenance management 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. FCM to identify relations of influence among factors 

As indicated in the preceding section, the essential components of maintenance management 

formalized in Table 3.2 are further analysed to find the most significant factors based on 

influence connections. The relationships in Table 3.3 were gathered through many 

brainstorming activities with a specialist in the digitalization process and maintenance 

No. Critical factors of maintenance management Ref 

CF_1 Management commitment and support [139] 

CF_2 Smart technology development [134] 

CF_3 Organizational growth [131, 134] 

CF_4 Development of skilled and empowered workforce  [139] 

CF_5 Resources required for digitalization [131] 

CF_6 Maintenance strategy development [131, 139] 

CF_7 Corporate culture [131] 

CF_8 Change in working practices [134] 

CF_9 Effective and efficient maintenance system [139] 

CF_10 Regulatory compliance [134] 

CF_11 Safety and health awareness [139] 

CF_12 Data privacy and security [134] 

CF_13 Sustainable performance improvement [139] 
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management. Judgments have been formulated as linguistic variables, that was gradually 

translated into fuzzy numbers in order to construct the FCM shown in Figure 3.4. The map was 

created using the software Mental Modeler. For more information, readers are referred to the 

previously cited studies (Carpitella and Izquierdo [147], [Carpitella, et al. [148]]), in which the 

FCM tool was proposed for use in different engineering fields, and whose findings led to the 

development of pertinent management processes.  

Observable in Table 3.3 are the indirect effects (IE) and total effects (TE) connected with each 

critical factor based on the influence relationships between pairs of factors. Linguistic 

evaluations have been attributed as very low (VL), low (L), medium (M), high (H), very high 

(VH). The assessment process is very adaptable, as evaluations may be tailored to the specific 

business context of interest. Factors with higher TE values indicate conditions of significant 

influence; in other words, their proper management might have a favourable impact on all other 

elements considered.  

Table 3.3. Connection Matrix 

 

C
F

_
1
 

C
F

_
2
 

C
F

_
3
 

C
F

_
4
 

C
F

_
5
 

C
F

_
6
 

C
F

_
7
 

C
F

_
8
 

C
F

_
9
 

C
F

_
1

0
 

C
F

_
1

1
 

C
F

_
1

2
 

C
F

_
1

3
 

IE TE 

CF_1 0 VH H VH M H H VH VH M VH H H M M 

CF_2 0 0 VH VH H H L VH VH 0 H M H L L 

CF_3 M VH 0 H H H H H H 0 H M H M M 

CF_4 H 0 L 0 0 M VL H H 0 VH 0 H VL M 

CF_5 VH H L M 0 VH L H VH 0 0 M H L L 

CF_6 H M M M 0 0 H VH VH 0 H 0 VH M M 

CF_7 H L H H L H 0 H H 0 H H H L L 

CF_8 0 M H H 0 L M 0 M 0 VH 0 H L M 

CF_9 0 L H H H VH M H 0 0 H 0 VH L M 

CF_10 VL VH H 0 M H H M H 0 VH VH VH VL M 

CF_11 VH H H VH 0 H H VH H M 0 M VH M H 

CF_12 0 M M 0 M 0 M M M 0 0 0 0 M M 

CF_13 VL 0 H 0 H VH H H VH M VH 0 0 VL H 

IE VL L L M L L VL M M M H M H   
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Figure 3.4 of 1FCM depicts 125 connections among 13 elements or around 9.6 connections per 

element. The critical elements CF_11 and CF_13 are connected with total effects indicating 

very influential linguistic assessments. This means that "safety and health awareness" and 

"sustainable performance improvement" are crucial factors to consider when planning and 

executing digital transformation initiatives for maintenance management operations. Other 

factors have associated moderate total impacts, but, according to the judgments of the 

questioned expert, critical factors CF_2, CF_5, and CF_7 are the least influential, having 

associated lower total effects. Smart technology development, digitalization, required 

resources, and company culture are unquestionably crucial challenges in the field of analysis. 

However, in terms of prioritising relevant features, the FCM tool proposes that we place greater 

emphasis on other components, which may have a favourable effect on less influential factors. 

This is evident, as the deployment and optimization of effective and efficient maintenance 

systems (CF_9) unquestionably contribute to the formulation of innovative smart developments 

(CF_2) for the whole maintenance function, and so on. 

 

 

Figure 3.4. FCM displaying relationships among critical factors  

 

3.3.3. Uncertainty in decision-making models  

Everyday life is characterised by continuous decision-making, and all of these decisions has the 

possibility of risk and uncertainty [136], which might have a significant impact on maintenance 
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practises. Various factors contribute to uncertainty, some of which are quite substantial while 

others may be insignificant, influencing the system's performance in a positive, neutral, or 

negative manner  [149]. Overall, two distinct types of uncertainty may be differentiated: 

qualitative, which relies on heuristic estimations generated from expert judgements, supplier 

needs, and equipment accuracy, and quantitative, which relies on observable statistical data. 

The first group, on the one hand, has been studied extensively and can be easily quantified using 

the data set's standard deviation. Conversely, the second category is notoriously difficult to 

classify. In addition, there are epistemic and aleatory types of uncertainty. The first is associated 

with the precision of the models and data used, which is influenced by the available data and 

may be improved on or even minimised. The other category refers to statistical variables that 

are in a constant state of change and hence cannot be reduced [149]. The lack of understanding 

of engineering phenomena is the leading cause of uncertainty among the many factors that 

contribute to it. Actually, decision-making methods are influenced by many types of ambiguity, 

each of which has its own origins. Uncertainty expresses itself on several levels in diagnostic 

difficulties, especially with regards to information and/or system flaws. Fuzziness and 

randomness are the two fundamental elements of uncertainty that pertain to the information 

utilised to assist decision-making challenges. Depending on the system's characteristics and the 

decision-priorities, maker's the optimal decision-making techniques in uncertain scenarios for 

achieving the maintenance aim differ [150]. Currently, decisions on industrial maintenance are 

generally dependent on two types of data: recorded information and subjective specialist’s 

opinions. The gathered data comprises factual information which are subjected to a 

quantitatively measurable level of uncertainty represented by the standard deviation of the data 

under consideration. Subjective specialist’s comments attribute qualitative ambiguity to 

persons based on the attributes that classify them as experts and the basis for their perspective 

in order to demonstrate its validity. Rarely are the accuracy of the utilised system and the skill 

of the maintenance acknowledged as contributing to total uncertainty in data gathering 

procedures.  

A combination of empirical facts and subjective perspectives should be incorporated to generate 

trustworthy judgements that lead to efficient maintenance outcomes. Certain situations require 

more abilities, while others require more data. The question is having a complete view of these 

uncertainties might aid in enhancing decision-making and mitigating both through life costs 

and unexpected failures [149]. 
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It is essential for maintenance managers to review and adjust maintenance plans to the 

numerous options accessible in systems or facilities. Particularly when many contradictory 

criteria and methodologies are considered, it is challenging to implement effective maintenance 

plans. Using many criteria for evaluation and taking into account actual maintenance 

circumstances are key to minimising evaluation uncertainty are the fundamental challenges 

[151, 152]. In this study, study assumed a MCDM paradigm and, specifically, implement a 

method based on FTOPSIS to rank related alternatives connected to industry 4.0 in 

characterising uncertainty in maintenance decision-making. The presented research might help 

organizations in making decisions that optimise their overall company outcomes. 

 

3.3.4. Treating uncertainty with fuzzy-based MCDM techniques  

Numerous fields, including engineering, supply chain management, economics, social sciences, 

and medicine, make substantial use of MCDM methodologies. Despite its diversity, the MCDM 

perspectives has numerous objectives and criteria that can contradict. In recent decades, MCDM 

methods have gained prominence in fields such as operations research [153], and their adoption 

is generally regarded as a reliable scientific strategy for making reliable and beneficial decisions 

in complex maintenance aspects [154] such as those associated with industry 4.0. Diverse 

specialists in a variety of academic fields have extensively employed MCDM approaches [146]. 

Some of these strategies are outlined by Aruldoss, et al. [155], as shown in Figure 3.5, and can 

be utilised in either their conventional or fuzzy forms. 

 

Figure 3.5. MCDM techniques and versions [155] 

In the first scenario, decision-making components (e.g., criteria, sub-criteria, alternatives) are 

assessed, scored, and/or weighted based on numerical evaluations. Alternately, in the second 

situation, linguistic variables are transformed into fuzzy integers to better control uncertainty 
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and the lack of accuracy and clarity impacting input assessments [156]. Study has utilized the 

TOPSIS and its fuzzy extension FTOPSIS among the MCDM approaches available in the 

literature. This decision is supported by the reality that these methodologies permit exceptional 

flexibility in ranking aspects, which looks to be particularly effective in maintenance 

environments that have been profoundly influenced by digital transformation. 

With great majority of actual-world situations, because of the uncertainty of human preference 

behaviour, decision-makers are frequently unable to provide adequately meaningful numerical 

assessments for distinguishing between the principal aspects of a complicated problem. 

Multiple MCDM strategies have been proposed and implemented in past decade, and amongst, 

TOPSIS is found to be the most prevalent strategies presented in the literature to resolve 

complex decision-making issues [141, 146, 157-159], with the key objective of getting a 

systematic ranking of choices [158, 160] based on assessment criteria, appropriately weighted. 

TOPSIS was established on the notion that the selected alternative(s) should have the shortest 

distance to a Positive Ideal Solution (PIS) and the longest distance to a Negative Ideal Solution 

(NIS)  [141, 156, 158, 159, 161]. The output is then determined by calculating the positive and 

negative distances for each alternative [162]. To this end, an accommodating aggregation 

approach may give weights to each criterion to perform a preliminary evaluation of a group of 

alternatives [146]. Nevertheless, utilising real precise numbers to evaluate the options under 

consideration may constrain the ability to handle ambiguity [157]. In any event, TOPSIS 

features a straightforward and adaptable calculating method that may simultaneously take into 

account many criteria with different units [158]. TOPSIS is a well-known MCDM technique 

utilised by several academics in a vast array of fields [144, 162]. ] owing to its high application 

versatility. In addition, it has been frequently incorporated with a variety of other MCDM 

approaches as an effective means of prioritising maintenance decision-making (see Singh, et al. 

[140]; Ighravwe and Oke [163], among others). TOPSIS is thought to be significantly more 

adjustable, understandable, and uncomplicated than the majority of other MCDM techniques 

[164]. TOPSIS' strengths include clarity, intuitively understood concepts, enhanced 

productivity level, and the ability to analyse the effectiveness of every option in a easy 

numerical form, which has caused in the widespread admittance and comprehension of this 

method across a variety of organizations [141]. The primary advantage of using TOPSIS is that 

it needs limited data from experts, like criterion score and linguistic inputs of options [160]. It 

welcomes suggestions in the shape of any conceivable collection of criteria and attributes. As 

a result of the concept of dissociation from perfect patterns, it truly has physical importance. It 
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is especially useful in situations in which maintenance managers, based on their specialised 

expertise, think that technical issues may be ranked from most important to least important 

factors. The aforementioned characteristics of TOPSIS make it a potential option for dealing 

with prioritising problems [163], especially when taking into consideration the ability to 

concurrently examine optimum and crucial solutions using a straightforward mathematical 

programming technique [165]. In its conventional version, TOPSIS has significant drawbacks 

despite its extensive usage, as it fails to provide exact information when situations are highly 

vague and poorly articulated [162]. In addition, the subjective nature of human cognition is 

typically not captured by the use of objective values to evaluate alternatives. This may cause 

the approach to fail to accurately reflect the priorities of decision makers in real-world 

circumstances [164]. In multi-criteria scenarios, changing proportions are typically 

inconsistent, creating significant evaluation issues. In addition, TOPSIS's shortcomings may 

result in the following deficiencies: 1) its use may yield inaccurate results due to its simplicity; 

2) its deterministic approach may not assist completely when addressing uncertainty  [154].  

Consequently, traditional TOPSIS can only partly support ambiguous or unclear expert input. 

Numerous research papers have incorporated fuzzy logic concepts into MCDM methodologies 

to overcome all of the aforementioned flaws. In this regard, Chen's [166] FTOPSIS technique 

is offered as a mix of fuzzy set theory and classical TOPSIS, wherein fuzzy numbers are utilised 

to generate preference ratings by specialists [146, 157, 160, 164]. 

In complex and challenging maintenance management decision-making situations in industry 

4.0, understanding the numerous variables and elements may be a difficult process. Extending 

classical approach to fuzzy logic, as we have already discussed, can considerably aid in 

mitigating this issue, as has been effectively proved in several industrial applications [146]. 

Taking into consideration human ambiguity and subjectivity, Zadeh invented the notion of 

fuzzy sets in 1965 to stimulate spontaneous thinking by including human ambiguity. As the 

basic objective of fuzzy logic is to quantify the imprecision of human thought [141, 162], 

linguistic variables can be expressed by fuzzy integers with an associated degree of membership 

µ(x), ranging from 0 to 1. Many scholars have been examining the feasibility of applying fuzzy 

sets theory to address complicated uncertain decision-making challenges. In addition, Gau and 

Buehrer proposed the idea of ambiguous sets in 1993, emphasising that a single value cannot 

attest to a set's actuality  [141]. FTOPSIS is very effective in addressing uncertainty and 

ambiguity in collected data resulting from human perception and judgement. Given the 

uncertainty and absence of understanding in MCDM, linguistic concepts utilised in FTOPSIS 



 Chapter 3. Digital transformation in maintenance management 

109 

 

could be used to express erroneous data in order to cope with ambiguous information more 

effectively [146, 157]. In fact, the usage of fuzzy numbers for evaluating criteria accelerates the 

entire analysis process by making it easier for decision-makers to communicate their personal 

ideas regarding qualitative criteria. Consequently, FTOPSIS is a straightforward, practical 

strategy for anticipating and compensating prospective alternatives based on hard cut-offs [159, 

161]. Nevertheless, it is essential to note that the majority of the data collected and utilised in 

FTOPSIS is developed on human perception, which makes assessment of values vital and 

reliant on the amount of data, which must be "reliable, dependable, consistent, definite, genuine, 

true and credible." Despite the drawbacks, FTOPSIS is a suitable approach for analysing values 

and ranking key decision-making factors based on linguistic variables and fuzzy numbers [162]. 

Numerous research on FTOPSIS and its integrations have been published. Using Design 

Structure Matrix (DSM) and FTOPSIS techniques, Hwang, et al. [167] analysed maintenance 

requirements for train electrical facility systems based on the subjective assessment information 

of decision-makers. Alshraideh, et al. [145] employed an FTOPSIS model to assess the quality 

of offers in order to determine the best suitable maintenance contractor under uncertain 

situations. Momeni, et al. [168] ] suggested the FTOPSIS as a tool for choosing maintenance 

schedules by transforming the decision makers' uncertain and imprecise judgement into fuzzy 

numbers. Selim, et al. [169] developed a maintenance scheduling framework that integrates the 

FTOPSIS and Failure Mode and Effect Analysis (FMEA) techniques for evaluating the 

maitnenance urgencies of machines in reducing and sustain maintenance costs. Chen, et al. 

[170] utilised the FTOPSIS approach to rank and prioritise pathways to smart waste 

management solution implementation in Ghana, taking into consideration the subjectivity of 

decision-maker priorities. FTOPSIS have been designed to address any kind of issue; examples 

include evaluating and selecting solutions for the long-time adoption of renewable energy 

technology in Pakistan Solangi, et al. [162]; considering several options based on subjective 

criteria and weighing each component for robot selection Chu and Lin [171]; assessing vendors 

in the oil and gas sector based on Health Safety and Environment (HSE) criteria to select 

maintenance and operations contracts Haddad, et al. [164]; and so on. According to Kutlu and 

Ekmekçioğlu [158], FTOPSIS has also been applied to the following issues: Method and site 

selection for the disposal of municipal solid waste, selection of the most effective energy 

technology alternatives, modelling the processes involved in the acceptance of new consumer 

products, and selection of plant locations and suppliers are all examples of important decisions. 
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3.4 Proposed methodological procedure 

3.4.1 Methodological overview 

As indicated in previous studies [Carpitella, et al. [75], Brentan, et al. [142]], the most prevalent 

form of fuzzy numbers are Triangular Fuzzy Numbers (TFNs), herein �̃�,which may be 

represented as follows [172]:  

�̃� = (𝑎, 𝑏, 𝑐);      (9)  

where a ≤ b ≤ c. It is simple to execute standard algebraic operations with one or more fuzzy 

integers. For instance, the following equations can be written: 

�̃�1⊕ �̃�2 = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2);        (10) 

�̃�1⊙ �̃�2 = (𝑎1 × 𝑎2, 𝑏1 × 𝑏2, 𝑐1 × 𝑐2);        (11) 

�̃�1
−1 = (

1

𝑐1
 ,
1

𝑏1
 ,
1

𝑎1
);          (12) 

Next, we will discuss the procedures required to execute the FTOPSIS methodology based on 

these preliminaries. [173-175]. 

• Defining the fuzzy decision matrix �̃� collecting the whole set of input data:  

�̃� = [
�̃�11 ⋯ �̃�1𝑛
⋮ ⋱ ⋮
�̃�𝑚1 ⋯ �̃�𝑚𝑛

] .        (13)  

The generic TFN �̃�𝑖𝑗  of matrix �̃�  corresponds to the rating of alternative i under criterion j: 

�̃�𝑖𝑗 = (𝑎𝑖𝑗, 𝑏𝑖𝑗 , 𝑐𝑖𝑗);     (14) 

• We generate matrix �̃� by applying various weighting and normalisation criteria to matrix �̃�, 

and its elements are computed as follows:  

�̃�𝑖𝑗 = ( 
𝑎𝑖𝑗

𝑐𝑗
∗  ,

𝑏𝑖𝑗

𝑐𝑗
∗  ,

𝑐𝑖𝑗

𝑐𝑗
∗  )  × 𝑤𝑖𝑗,  𝑗 ∈  𝐼′;    (15) 

�̃�𝑖𝑗 = ( 
𝑎𝑗
−

𝑐𝑖𝑗
 ,
𝑎𝑗
−

𝑏𝑖𝑗
 ,
𝑎𝑗
−

𝑎𝑖𝑗
 )  ×  𝑤𝑖𝑗,  𝑗 ∈  𝐼′′;   (16) 
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I′ is the subset of criteria that has to be maximized, I′′ is the subset of criteria that needs to be 

minimized, 𝑤𝑗, is the weight of criterion 𝑗 and 𝑐𝑗
∗ and 𝑎𝑗

− are determined by using the formulas 

below: 

𝑐𝑗
∗ = 𝑚𝑎𝑥

𝑖
𝑐𝑖𝑗     𝑖𝑓    𝑗 ∈ 𝐼′;     (17) 

𝑎𝑗
− = min

𝑖
𝑎𝑖𝑗    𝑖𝑓    𝑗 ∈ 𝐼

′′;              (18) 

• Computing distances between each alternative and the fuzzy ideal solutions 𝐴∗ and 𝐴−: 

𝐴∗  = (�̃�1
∗, �̃�2

∗   .  .  .  , �̃�𝑛
∗ );             (19) 

          𝐴− = (�̃�1
−, �̃�2

− .  .  .  , �̃�𝑛
−);           (20) 

Where �̃�𝑗
∗ = (1, 1, 1) and �̃�𝑗

− = (0, 0, 0), j = 1. . . n. The vertex approach allows for the 

calculation of distances between each feasible option and these ideal spots Chen [166], for 

which the distance 𝑑(�̃� , �̃�) between two TFNs  �̃� = (𝑚1,𝑚2, 𝑚3) and �̃� = (𝑛1, 𝑛2, 𝑛3) 

corresponds to the crisp value: 

𝑑(�̃� , �̃�) =  √
1

3
 [(𝑚1 − 𝑛1)2 + (𝑚2 − 𝑛2)2 + (𝑚3 − 𝑛3)2]  (21) 

Then, aggregating based on the total set of criteria, the distances between each possibility i from 

𝐴∗ and 𝐴− are, respectively:  

𝑑𝑖
∗ =∑ 𝑑(�̃�𝑖𝑗

𝑛

𝑗=1
, �̃�𝑗

∗)    𝑖 = 1,… , 𝑛;    (22) 

𝑑𝑖
− =∑ 𝑑(�̃�𝑖𝑗

𝑛

𝑗=1
, �̃�𝑗
−)  𝑖 = 1, . . . , 𝑛;    (23) 

• Calculating the closeness coefficient 𝐶𝐶𝑖: 

𝐶𝐶𝑖 =
𝑑𝑖
−

𝑑𝑖
−+𝑑𝑖

∗      (24) 

To determine the final rank of alternatives, it is important to order the closeness coefficient 

values for each option in descending order. 
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3.4.2 Application and discussion 

The present case study utilised the FTOPSIS method to analyse a set of thirteen maintenance 

criteria essential to industry 4.0, as identified and published by [Ahmed, et al. [176]]. The 

researched elements propose to investigate the role of digitization in maintenance, and their 

resultant evaluation reveals the concerns that should be considered most when formulating 

industrial strategies in the face of evaluation uncertainty.  

Alternatives have been examined based on three primary criteria: safety & security (C1), 

process quality (C2), and cost efficiency (C3), all of which must be optimised and are equally 

weighted in the current application. The linguistic assessments in Table 3.4 pertain to a real 

organisation that is involved in the waste management activities; has been assigned, in 

partnership with the human resources responsible for the maintenance function, and is 

accountable for the safety and security system.  

The following is a list of the utilised linguistic variables and the accompanying TFNs: VL 

(1,1,3), very low impact; L (1,3,5), low impact; M (3,5,7), medium impact; H (5,7,9), high 

impact; VH (7,9,9), very high impact. The findings of the FTOPSIS process and the final 

ranking of maintenance factors are summarised in Table 3.4. 

 

Table 3.4. Evaluation of maintenance factors relevant to industry 4.0 
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Considering Table 3.4, factor MF4, which is "development of skilled workforce," has, in the 

opinion of the engaged experts, the greatest impact on optimising all of the assessed criteria. 

MF6 ("maintenance strategy development") and MF5 ("resources required for digitalization") 

are also viewed as important factors. In contrast, factors MF7, MF8, and MF12, which are, 

respectively, "corporate culture," "change in working practice," and "data privacy and security," 

are ranked at the bottom of the list due to their weaker influence relative to the other 

maintenance factors.  

Some of the factors, such as MF2 and MF3, occupy the same place in the ranking due to the 

fact that factors have been assigned the similar weightage. If weightage fluctuated, so will 

position in the rankings. In the case of MF2 and MF3, for instance, if a high weightage was 

assigned to the quality criteria and a low weightage to the cost-effectiveness criterion, MF2 

would hold a higher place in the final ranking than MF3, which had a lower assessment under 

C2. 
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Conclusions 

As we are living in the digital era, technology is continually evolving, with enormous 

advancements in automation enabling more efficient and cost-effective maintenance 

management. The contemporary digital era, empowered by industry 4.0 technologies like ML, 

big data, and AR, is often characterized by a plethora of data access to help in decision-making. 

Systems may be simply and instantly integrated through architecture of compatible sensing 

devices, sometimes known as the IoT. The major issue has moved from gathering data to 

creating informed judgments based on that data. The entire maintenance management is based 

on these data sets, also to use data and predictive analytics to support decision-making. As a 

result, more opportunities for data-driven methodologies like as predictive maintenance, AI, 

and ML have evolved, having the potential for substantial productivity improvements. 

To compete in today's global market, organizations must be nimble, flexible, and resilient, as 

well as have dynamic talents. As a result of the growth of advanced digitalized technology, 

industries are now able to undergo significant transformations. As smart devices have become 

more prevalent, the demand for maintenance systems with a high level of intelligence has 

arisen. Intelligent systems are converging and advancing in tandem with industries, resulting in 

significant progress in operation management. As has been previously stated, the introduction 

of various information technology innovations has caused a significant upheaval in industrial 

practices. The traditionally human-managed preventive maintenance strategy is being replaced 

with predictive maintenance. Massive volumes of data from industrial activities are collected, 

analysed, and triggered in real-time to allow effective decision-making. In predictive 

maintenance, decision-making refers to the generation of hands-on endorsements for 

maintenance functions and initiatives that remove or control the effects of anticipated 

breakdowns or failures.  

In complex systems' condition monitoring and inspection, on-board sensors, lifecycle data, 

process data, systems, and historical failure data are all used to predict failures. PrdM rejects 

routine and preventive maintenance activities instead of a more proactive maintenance strategy. 

It is a methodology in which one function monitors a system's performance, productivity, and 

other important factors to determine the real time to do maintenance. Instead of depending 

solely on statistical information, this analysis takes into account the exclusive features of 

machines and the particular deterioration behaviour of the critical components. When PrdM is 

utilized properly, the maintenance expenditure is greatly reduced; hence, it may be beneficial 

to emphasize the dependency between major failures. 
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Previous research discovered that the system's average dependability, availability, and 

operational expenditure for maintenance are lower than those of its rivals when PrdM is used 

intelligently. Switching from reactive maintenance to proactive maintenance is a wonderful 

way to significantly improve system maintenance planning, particularly for more complicated 

systems that have a significant monetary value. PrdM methods do, however, face a number of 

substantial challenges in terms of their application, as they necessitate the use of contemporary 

tracking technologies, the development of robust data gathering systems, and the execution of 

a variety of intricate procedures. As was extensively covered in the preceding chapter, various 

issues with the usage of PrdM for complex assets are inhibiting its efficacy in some 

circumstances. If organizations were expected to monitor and assess all probable failure modes 

for the complex system under consideration, they would experience substantial economic and 

technological pressure. In addition, it is impossible to classify each potential failure mode 

associated with a single asset, and a single failure dataset is always inadequate, resulting in poor 

prediction accuracy. Therefore, accurate and timely information regarding the maintenance 

schedule is necessary. To achieve this, it is vital to increase the flexibility of PrdM decision-

making in contexts of complex industrial environments. 

System models have gained popularity since they can successfully observe complicated systems 

in real time and automate prognostics at the same time. In addition, they provide early warning 

signals of future failures. As with any discipline, multiple PrdM approaches exist, each with its 

advantages and disadvantages. PrdM requires online access to information about the system's 

conditions, which is now possible due to the development of suitable detection systems. Using 

deterministic reliability models, several studies have been undertaken to estimate the remaining 

useable lifespan of a system, whether it be a single component or the complete system.  

Considerable research on PrdM for complex systems are available in the literature and have 

been reviewed earlier in section 1.4 of chapter 1. This study also examined the FMECA and 

several MCDM methodologies. Specifically, the ELECTRE TRI and DEMATEL approaches, 

as well as their strengths and drawbacks, are analysed, and potential applications in industries 

for the enhancement of complex systems for decision-making are evaluated. Based on an 

analysis of the strengths and disadvantages of each strategy, as well as their typical applications, 

this work presented the implementation of integration of these three approaches to optimise the 

maintenance management of failures in systems subject to predictive maintenance. Employing 

FMECA, all potential failure modes in systems subjected to PrdM are recognized, and the 

severity of failure modes is assessed using risk metrics of relevance. ELECTRE TRI is applied 
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to recognize and categorize high-risk failures, as well as to expose failures associated with 

higher risk levels and scenarios. DEMATEL is utilized to detect particular failures that are more 

reliant on other failures within the same risk category than other failures within the same class. 

The suggested integrated approach may assist organisations in making good decisions and 

conducting effective risk management strategies. The end goal for each risk class is to 

determine the failure modes that have the significant impact on systems and the frequency of 

further failures. Nonetheless, it is equally essential to manage the other dependent failure 

possibilities. As a result of this strategy, maintenance and risk assessment practices, as well as 

system functioning, may be enhanced. 

Industry 4.0 has resulted in extensive usage of smart devices for condition monitoring, enabling 

quicker decisions. So, the significance of digitalization in maintenance management in 

the industry is emphasized in this study and possible benefits of digitalization such as 

monitoring, diagnosing, forecasting, troubleshooting, and optimizing maintenance capacities. 

Digitalization facilitates remote maintenance tasks, resulting in lower maintenance costs and 

time savings for all stakeholders. The utilization of technology and data aids in promptly 

detecting and preventing failures. Maintenance services are now based on the assessment of 

massive amount of previous and current data, as well as the use of sophisticated analytics tools. 

Novel and effective technologies have emerged to facilitate maintenance activities such as 

monitoring, diagnosing, troubleshooting, forecasting, and optimizing. This is the outcome of 

successful technical impact, and in exchange, these improvements promote secure and 

dependable data transfer, efficient and quick maintenance operations, lower operating costs, 

and so on. Maintaining current equipment procedures and data provides for more accurate 

diagnosis, troubleshooting, prediction, and optimization 

This research also studied ways to cope with uncertainty in decision-making methods, with a 

focus on maintenance management in industry 4.0. After conducting a thorough analysis of the 

MCDM approaches utilised in the issue in question, we highlight the significant aid provided 

by the inclusion of tools such as fuzzy set theory for addressing complex real-world problems 

with uncertain human views. We analysed the TOPSIS and FTOPSIS techniques based on their 

unique characteristics, significant methodological flexibility, formalizing both approaches' 

limitations and advantages. As illustrated by various applications, FTOPSIS is particularly 

beneficial for dealing with uncertainty. Following a description of the methodology, this study 

performed an actual case study with the goal of offering useful insights for maintenance 

managers in the complicated world of digitalization.  
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Overall, by decreasing unexpected downtime and keeping equipment in excellent condition, 

greater availability and performance capabilities may be achieved. This boosts client’s trust in 

the company's ability to compete internationally. Only the required, adequate, and correct forms 

of maintenance may be conducted with the use of the proper technologies and instruments, 

allowing for real-time prediction and diagnostics. Consequently, waste may be decreased, 

energy consumption can be lowered, and time can be saved. Digitalization in maintenance 

contributes significantly to failure reduction by forecasting, diagnosing, and preventing 

breakdowns as early as possible. Establishing a safety culture and encouraging safe 

behavior results in a safe and healthy workplace for everyone. Risks are minimized when 

confidence in an improved maintenance capability is established. Moreover, 

advanced equipment and technologies guarantee information and communication security, 

which is currently recognized as a fundamental social need. This ensures that digital 

maintenance has a positive environmental and social impact. With digitalization, maintenance 

activities become more reliable, safe, and effective, enabling for optimal equipment 

performance. It helps to reduce slowdowns and enhance availability, as well as reduce overall 

expenses and increase profitability, which strengthens the company's decision-making and 

strategic planning. All of this eventually adds to positive environmental benefits and the 

development of profitable, sustainable enterprises.  
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Future developments  

Future research directions may involve the incorporation of other MCDM approaches providing 

a more exact computation of criterion weights as well as valuable mathematical tools, such as 

probability theory. Further, expansions of the current study include expanding the application 

to the entire system excluding the core components and merging the suggested method with an 

additional MCDM methodology for calculating the weights of criteria. This will be done to 

account for the likelihood that the major parts of analysis may have varying mutual effects on 

the final outcome. The element of interdependence between criteria and alternatives may be the 

subject of additional applications by reconsidering the possibility of the absence of transitive 

preference connections. Analysing the potential presence of dependence relationships between 

the primary aspects of analysis will be a crucial signal for enhancing global predictive 

maintenance management.  

Moreover, future areas of research may also involve the usage of Bayesian Networks that may 

be used to describe and portray conditional dependency and, consequently, causation by edges 

in a directed graph. This approach may incorporate human factors as primary aspects of 

analysis, taking into account the knowledge of human resources in conducting their jobs as well 

as the risk of human errors. 

A future area of study may refer to the development of real-case studies on the use of 

Collaborative Robots (Cobots) to improve industrial maintenance techniques. Collaborative 

robots have a great influence on how systems and processes are streamlined, especially in the 

manufacturing industry. Interacting with humans to improve productivity and efficiency of 

operations, these highly-sophisticated machines need to be monitored to prevent safety issues. 

This topic is gaining more and more importance in modern industries, but many realities 

struggle to integrate such systems within their contexts at a practical level. Some of these 

realities may be deeply analysed and a decision-making model may be implemented with the 

goal of supporting the introduction of Cobots towards the optimization of some of the core 

manufacturing processes with a specific focus on maintenance management. This first stage 

would take into account such criteria as economic aspects, difficulty of practical 

implementation, as well as the achievable level of performance. A second stage would refer to 

the capability of the decision-support system to organize monitoring activities and continuously 

improve the safe relation between human workers and Cobots. 
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Appendix A 

 

Table A1. ELECTRE TRI results – pessimistic procedure 

 Scenario 1 Scenario 2 Scenario 3 

Failure 

ID 

λ=0.70 λ=0.80 λ=0.90 λ=0.70 λ=0.80 λ=0.90 λ=0.70 λ=0.80 λ=0.90 

PI_1 A A A A A A A A A 

PI_2 B B B B B B B B B 

RSS_1 A A A A A A A A A 

RSS_2 B B B B B B B B B 

RSS_3 B B B B B B B B B 

RSS_4 B B B B B B B B B 

RSS_5 B B B B B B B B B 

RSS_6 B B B B B B B B B 

RSS_7 B B B B B B B B B 

RSS_8 B B B B B B B B B 

RSS_9 A A A A A A A A A 

RSS_10 B B B B B B B B B 

RSS_11 B B B B B B B B B 

RSS_12 B B B B B B B B B 

RSS_13 B B B B B B B B B 

RSS_14 B B B B B B B B B 

RSS_15 B B B B B B B B B 

RSS_16 A A A A A A A A A 

RSS_17 B B B B B B B B B 

LSS_1 A A A A A A A A A 

LSS_2 B B B B B B B B B 

LSS_3 B B B B B B B B B 

LSS_4 B B B B B B B B B 

LSS_5 B B B B B B B B B 

LSS_6 B B B B B B B B B 

LSS_7 B B B B B B B B B 

LSS_8 B B B B B B B B B 

LSS_9 A A A A A A A A A 

LSS_10 B B B B B B B B B 

LSS_11 B B B B B B B B B 

LSS_12 B B B B B B B B B 

LSS_13 B B B B B B B B B 

LSS_14 B B B B B B B B B 

LSS_15 B B B B B B B B B 

LSS_16 A A A A A A A A A 

LSS_17 B B B B B B B B B 
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Table A2. ELECTRE TRI results – optimistic procedure 

 Scenario 1 Scenario 2 Scenario 3 

Failure 

ID 

λ=0.70 λ=0.80 λ=0.90 λ=0.70 λ=0.80 λ=0.90 λ=0.70 λ=0.80 λ=0.90 

PI_1 A A A A A A A A A 

PI_2 B B B B B B B B B 

RSS_1 A A A A A A A A A 

RSS_2 B B B B B B B B B 

RSS_3 B B B B B B B B B 

RSS_4 B B B B B B B B B 

RSS_5 A A A A A A A A A 

RSS_6 B B B B B B B B B 

RSS_7 B B B B B B B B B 

RSS_8 A A A A A A A A A 

RSS_9 A A A A A A A A A 

RSS_10 A A A A A A A A A 

RSS_11 B B B B B B B B B 

RSS_12 A A A A A A A A A 

RSS_13 B B B B B B B B B 

RSS_14 B B B B B B B B B 

RSS_15 A A A A A A A A A 

RSS_16 A A A A A A A A A 

RSS_17 A A A A A A A A A 

LSS_1 A A A A A A A A A 

LSS_2 B B B B B B B B B 

LSS_3 B B B B B B B B B 

LSS_4 B B B B B B B B B 

LSS_5 A A A A A A A A A 

LSS_6 B B B B B B B B B 

LSS_7 B B B B B B B B B 

LSS_8 A A A A A A A A A 

LSS_9 A A A A A A A A A 

LSS_10 A A A A A A A A A 

LSS_11 B B B B B B B B B 

LSS_12 A A A A A A A A A 

LSS_13 B B B B B B B B B 

LSS_14 B B B B B B B B B 

LSS_15 A A A A A A A A A 

LSS_16 A A A A A A A A A 

LSS_17 A A A A A A A A A 

 

  



APPENDIXES 

123 

 

Appendix B 

 

Table B1. DEMATEL input matrix for high risk class A 
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2
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6

 

L
S

S
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PI_1 0 3 3 1 1 0 3 1 1 0 3 3 1 1 0 3 1 1 0 

RSS_1 1 0 3 3 3 3 3 2 2 2 1 2 2 2 2 2 1 1 1 

RSS_5 3 2 0 2 2 2 1 1 1 1 2 1 1 1 1 0 0 0 0 

RSS_8 2 1 3 0 3 3 1 1 1 1 1 2 1 2 2 0 0 0 0 

RSS_9 2 1 3 2 0 3 2 1 1 1 1 2 1 1 2 1 0 0 0 

RSS_10 1 1 3 2 3 0 2 1 1 1 0 2 1 2 1 1 0 0 0 

RSS_12 3 1 1 2 1 1 0 0 3 3 2 0 1 0 0 1 0 2 2 

RSS_15 2 1 2 1 1 1 3 0 3 2 1 2 0 0 0 2 1 2 1 

RSS_16 2 1 2 1 1 1 3 2 0 3 1 2 0 0 0 2 1 1 2 

RSS_17 1 1 2 1 1 1 1 2 3 0 0 2 0 0 0 0 1 2 1 

LSS_1 1 1 2 2 2 2 2 1 1 1 0 3 3 3 3 3 2 2 2 

LSS_5 3 2 1 1 1 1 0 0 0 0 2 0 2 2 2 1 1 1 1 

LSS_8 2 1 2 1 2 2 0 0 0 0 1 3 0 3 3 1 1 1 1 

LSS_9 2 1 2 1 1 2 1 0 0 0 1 3 2 0 3 2 1 1 1 

LSS_10 1 0 2 1 2 1 1 0 0 0 1 3 2 3 0 2 1 1 1 

LSS_12 3 2 0 1 0 0 1 0 2 2 1 1 2 1 1 0 0 3 3 

LSS_15 2 1 2 0 0 0 2 1 2 1 1 2 1 1 1 3 0 3 2 

LSS_16 2 1 2 0 0 0 2 1 1 2 1 2 1 1 1 3 2 0 3 

LSS_17 1 0 2 0 0 0 0 1 2 1 1 2 1 1 1 1 2 3 0 
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Table B2. DEMATEL input matrix for medium risk class B 
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PI_2 0 4 4 3 1 3 3 1 3 4 4 3 1 3 3 1 3 

RSS_2 2 0 2 2 1 3 2 0 0 0 1 1 0 2 1 0 0 

RSS_3 2 3 0 3 2 3 3 3 3 2 0 2 1 2 2 2 2 

RSS_4 2 2 1 0 2 3 2 1 1 1 0 0 1 2 1 0 0 

RSS_6 1 2 2 1 0 3 3 1 1 1 1 0 0 2 2 0 0 

RSS_7 2 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 

RSS_11 2 2 3 2 1 1 0 3 3 1 2 1 0 0 0 2 2 

RSS_13 1 0 2 1 1 1 1 0 3 0 1 0 0 0 0 0 2 

RSS_14 2 0 2 1 1 1 1 2 0 0 1 0 0 0 0 1 0 

LSS_2 2 0 1 1 0 2 1 0 0 0 2 2 1 3 2 0 0 

LSS_3 2 2 0 2 1 2 2 2 2 3 0 3 2 3 3 3 3 

LSS_4 2 1 0 0 1 2 1 0 0 2 1 0 2 3 2 1 1 

LSS_6 1 1 1 0 0 2 2 0 0 2 2 1 0 3 3 1 1 

LSS_7 2 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 

LSS_11 2 1 2 1 0 0 0 2 2 2 3 2 1 1 0 3 3 

LSS_13 1 0 1 0 0 0 0 0 2 0 2 1 1 1 1 0 3 

LSS_14 2 0 1 0 0 0 0 1 0 0 2 1 1 1 1 2 0 
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