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A B S T R A C T   

River flow monitoring has recently experienced rapid development due to advancements in optical methods, 
which are non-intrusive and enhance safety conditions for operators. Surface velocity fields are obtained 
recording and analyzing displacements of floating tracer materials, artificially introduced or already present on 
the water surface. River discharge can be assessed coupling the surface velocity fields with geometric data of a 
cross section. The accuracy of optical techniques is strongly affected by different environmental and hydraulic 
factors, and software parameterization, with tracer features that often play a prominent role. An adequate 
density and spatial distribution of tracer is required to ensure a complete characterization of surface velocity 
fields. In practical applications such conditions might occur only for a limited portion of the entire acquired 
images sequence. This work proposes an automatic procedure for identifying and extracting the best portion of a 
recorded video in terms of seeding characteristics and demonstrates how LS-PIV software performances can be 
enhanced through this approach. The procedure is implemented through a data-driven empirical approach based 
on an Artificial Neural Network, trained using data collected during an extensive measurement campaign across 
different rivers in Sicily (Italy). Performances are evaluated in terms of error in reproducing surface velocity 
profiles along specific transects, where benchmark profiles derived using an Acoustic Doppler Current Profiler 
are available. The procedure, also tested via numerical simulations on synthetic image sequences, outperformed 
an approach based on an existing metric for seeding characterization and represents a simple and useful tool for 
LS-PIV based applications.   

1. Introduction 

River discharge monitoring is typically characterized by consider
able uncertainty compared to other hydrological variables like rainfall 
and temperature. A conventional measurement approach implies the 
adoption of the velocity-area method based on the evaluation of the 
mean flow velocity and the wetted cross-sectional area along a transect. 

Velocity measurements are traditionally performed with mechanical 
or electromagnetic current meters (Herschy, 1995), while in the last 
decades, current meters have been replaced by more technologically 
advanced instruments, i.e., Acoustic Doppler Current Profilers (ADCPs). 
Such instruments require direct contact with water flow, sometimes 
exposing sensors and operators to risks especially under flood condi
tions. The intrusiveness issue of current meters has been partially 
addressed by the adoption of ADCPs. However, conventional approaches 

are generally time-consuming and expensive, requiring highly special
ized personnel (Ioli et al., 2020). 

The improvement of discharge measurement techniques is one of the 
major tasks in hydrometry (Larnier et al., 2021; Riggs et al., 2022). 
Recent technological advances have given a strong impulse to the 
development of innovative approaches based on remote sensing 
methods, such as optical techniques using radars, terrestrial and satellite 
image detectors (Costa et al., 2006; Pavelsky, 2014; Pearce et al., 2020; 
Junqueira et al., 2021; Rahman Khan et al., 2021). 

This work focuses on image-based techniques, whose large-scale 
application to field sites represents a new and promising frontier in 
river monitoring (Tauro et al., 2017; Dal Sasso et al., 2021a) that de
serves further investigations aimed at the identification of appropriate 
operational protocols, still lacking. More specifically, it is here consid
ered the Large-Scale Particle Image Velocimetry (LS-PIV) method. 
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LS-PIV is one of the most used optical techniques (Fujita et al., 1998; 
Muste et al., 2008; Le Coz et al., 2014) and it is based on four key phases: 
(i) seeding and recording; (ii) images pre-processing; (iii) images pro
cessing; and (iv) images post-processing. 

In the seeding phase, artificial tracer material (e.g., wooden chips, 
bark) is introduced and dispersed over the liquid surface, when natural 
tracers (e.g., bubbles, foam, leaves) are not present with adequate 
consistency. Tracer should be of a clearly distinguishable color, floating 
on the surface, and with an adequate shape to minimize the impact of 
wind. The seeding phase represents one of the most complex activities in 
practical applications, since the accuracy of the subsequent steps 
strongly depends on tracer particle density and distribution over space 
and time, which are characteristics that are hard to control during field 
campaigns. It is worth emphasizing that some applications do not use 
any forms of natural/artificial tracers, analyzing the water surface rip
ples caused by wind and hydraulic turbulence (Tauro et al., 2016; Yeh 
et al., 2019). 

During the recording phase, tracer motion is captured by recording 
devices that can be located on bridges, riverbanks or by Unmanned 
Aerial Vehicles, UAVs (Detert and Weitbrecht, 2015; Lewis et al., 2018; 
Pearce et al., 2020; Bandini et al., 2021; Lagogiannis and Dimitriou, 
2021; Koutalakis and Zaimes, 2022). Camera acquisitions are frequently 
affected by disturbing effects such as shake due to wind or vehicular 
traffic, sudden shifts due to rough movements of the operator, fluctua
tions caused by the oscillation of drones during flights (Jolley et al., 
2021; Liu et al., 2021). Also lens and perspective distortions frequently 
occur (Le Boursicaud et al., 2016; Lewis and Rhoads, 2018; Li et al., 
2019), as well as disturbances due to reflections, glint, and shading 
(Acharya et al., 2021). 

Once frames are extracted from the acquired videos, at the acquisi
tion or at a lower frame-rate, some pre-processing steps may be applied, 
and they typically include: (i) stabilization for removing undesired 
movements of cameras, (ii) orthorectification to remove optical and 
perspective distortions, (iii) graphical enhancement to minimize re
flections and improve the contrast between tracer and background. 

In the processing phase, a statistical analysis is performed through 
specific software packages, often freely available and open-source, such 
as PIVlab (Thielicke and Stamhuis, 2014), FUDAA-LSPIV (Le Coz et al., 
2014), KLT-IV (Perks, 2020), and RIVeR (Patalano et al., 2017). Soft
ware programs use cross-correlation algorithms to detect the most 
probable frame-by-frame tracer displacement and derive instantaneous 
surface velocity fields. These last are then post-processed using filters to 
discard outlier and incoherent (e.g., scarcely correlated) displacement/ 
velocity vectors, and spatially interpolate missing data. The mean sur
face velocity field is finally obtained by averaging the instantaneous 
surface velocity fields. 

An additional step can be considered when discharge is required 
(Creutin et al., 2003; Hauet et al., 2008). In this case, the discharge in a 
transect is evaluated as the product of the wetted area, derived from 
knowledge of the cross-section geometry, and the mean flow velocity, 
that is often computed as a function of the mean surface velocity at the 
same cross-section, assuming a constant ratio between mean surface 
velocity and depth-averaged velocity equal to 0.85 (Hauet et al., 2018). 

The density and the spatio-temporal distribution of the tracer play a 
crucial role in boosting the performance of the cross-correlation algo
rithms. Several efforts have recently been made to study the optimal 
setup for field campaigns in terms of optimal tracer density, distribution, 
frame-rate, length of the processed sequence, software parametrization, 
etc., via numerical experiments (Dal Sasso et al., 2018; Pizarro et al., 
2020b; Pumo et al., 2021; Bodart et al., 2022) or analyzing field mea
surements (Watanabe et al., 2021; Zhao et al., 2021). Nevertheless, 
seeding conditions are highly influenced by the river hydraulic condi
tions and the seeding field operations, and achieving and maintaining 
desired “target” tracer features in practical applications is extremely 
difficult, especially when the tracer is introduced manually. 

According to Pizarro et al. (2020b) errors in evaluating surface 

velocity fields are directly related to the seeding characteristics, and 
often the acquired video sequences may be partially or totally not suit
able for cross-correlation analyses. Nevertheless, it is sometimes possible 
to identify, select and process a sub-sequence from the original videos 
over which the seeding characteristics maintain desirable properties, i. 
e., adequate and steady-state tracer density over the various frames, 
with particles having uniform spatial distribution over the entire area of 
analysis (Pizarro et al., 2020a, 2020b; Dal Sasso et al., 2021a). Pizarro 
et al. (2020b) introduced a metric, the Seeding Distribution Index (SDI), 
to characterize the seeding river status in terms of density and distri
bution. SDI was derived numerically, through the analysis of synthetic 
sequences generated under controlled seeding conditions and consid
ering different tracer spatial-clustering levels and densities. The authors 
showed that LS-PIV based analyses of sub-sequences with low SDI were 
able to provide more accurate velocity estimates than sub-sequences 
with high SDI, demonstrating the importance of selecting an optimal 
sub-sequence based on tracer characteristics for the processing phase. 

The aim of the present work is to verify what emerged from the 
numerical approach by Pizarro et al. (2020b), structuring a new auto
matic procedure on empirical basis capable of identifying and extracting 
from the entire recorded video the best sub-sequence in terms of tracer 
features, with the final aim to enhance LS-PIV based estimations. A new 
metric, named global index (GI), is here introduced for the evaluation of 
the seeding characteristics over the entire sequence, and it integrates 
four different indicators related to the density and the spatial and tem
poral distribution of the tracer; the proposed procedure is able to detect 
the best sub-sequence that can be extracted from raw recorded videos 
based on the GI. 

The procedure is based on a Multi-Layer Perceptron (MLP) Artificial 
Neural Network (ANN), developed exploiting measurements arising 
from a field campaign carried out on different Sicilian rivers, in Italy, 
and applying one of the most used LS-PIV software, i.e. PIVlab (Thielicke 
and Stamhuis, 2014). The results are evaluated in terms of errors in 
reproducing the surface velocity profile along specific transects for each 
case study, for which a benchmark profile derived by an ADCP is 
available. The use of the procedure is simple, fast, and suitable for 
practical applications. Validation in case studies not used for generating 
the ANN demonstrates how the adoption of such procedure may lead to 
a reduction of the error in the mean surface velocity reproduction even 
in the order of the 40 %. The proposed procedure was also successfully 
tested under controlled conditions, through numerical analyses on 
synthetic video sequences generated ad hoc, demonstrating its suitability 
also under conditions different from those characterizing the field case 
studies here considered. 

The paper is organized as follows: Section 2 presents case studies and 
the experimental set-up considered for each case. The field protocol 
adopted for the application of both LS-PIV and ADCP techniques is 
described in the same section, together with the procedure adopted to 
obtain the benchmark velocity profiles. Section 2 also describes the 
proposed automatic procedure, while results and discussion are reported 
in Section 3 and 4, respectively. Conclusions are provided in the final 
section. 

2. Methodology 

2.1. Case studies 

Data arising from an extensive field campaign in Sicily were analyzed 
to develop the proposed procedure. Topographic surveys and simulta
neous flow river measurements by LS-PIV technique and ADCP along 
specific transects were performed in six rivers, depicted in Fig. 1. A total 
of twelve independent field measurements were acquired on different 
days during the period 2020–2021 (Table 1): single measurements were 
performed in the Palma and Imera rivers (i.e., PA-01, and IM-01) and at 
two different sections of the Belice river, i.e., in the upstream Ponte 
Belice section (BEP-01) and in the downstream Marinella section (BEM- 
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01), while multiple measurements over time were performed in the 
Oreto (OR-01, OR-02 and OR-03), Platani (PL-01, PL-02 and PL-03), and 
Castelbuono (CA-01 and CA-02) rivers. 

Case studies are representative of different river characteristics, 
environmental and hydraulic conditions, as well as different modalities 
of video sequences acquisition (Tables 1 and 2). In particular, Table 1 
provides a comprehensive overview of the case studies at measurement 
sections, reporting information concerning the drainage area (Ar) and 
some specific characteristics of the river channel derived from direct 
observation, i.e., the anthropization level (natural or artificial), the 
overall shape (regular or irregular), the type of prevalent material of the 
riverbed, and the channel width. Table 1 also reports devices used for 
video recording at each case. Different operative setups for the appli
cation of LS-PIV technique were applied; while in OR, CA, BEM and PA 
cases video sequences were acquired by a camera mounted on a tripod in 

fixed position on a bridge, in the remaining sections (i.e., PL, BEP and 
IM) video acquisition was performed from a drone. As in most of the 
Sicilian rivers, the flow regime for the selected case studies is ephemeral 
and intermittent (Pumo et al., 2013, 2014). 

A total of 10 measurements (i.e., OR-01, OR-02, OR-03, PL-01, PL- 
02, PL-03, CA-01, CA-02, BEP-01, and IM-01) were used during the 
structuring and the calibration phase of the procedure, whilst the 
remaining two case studies (i.e., BEM-01 and PA-01) were used exclu
sively for validation purposes. 

2.2 ADCP measurements 

2.2.1. StreamPro ADCP, WinRiverII, and operational field protocol 
Benchmark surface velocity profiles at specific transects were 

derived for each field measurement using an ADCP, which measures 

Fig. 1. Monitored rivers and correspondent drainage areas. Triangular markers represent the measurement locations.  

Table 1 
Identification code (IDm) associated to each measurement, time of acquisition (Date), drainage areas (Ar), channel features (Type, Geometry, and prevalent Riverbed 
material), cross-sectional width (Wd), and acquisition modality (Acq) at the various case studies.  

IDm Date Ar [km2] Channel Acq 

Type Geometry Riverbed Wd [m] 

OR-01 07/02/20 70.8 natural irregular sandy 5 bridge 
OR-02 14/09/20 70.8 natural irregular sandy 5 bridge 
OR-03 04/06/21 70.8 natural irregular sandy 5 bridge 
PL-01 18/06/20 1221 artificial regular concrete 4.5 drone 
PL-02 08/09/20 1221 artificial regular concrete 4.5 drone 
PL-03 07/05/21 1221 artificial regular concrete 4.5 drone 
CA-01 09/04/21 938 natural regular rocky 6 bridge 
CA-02 23/11/21 938 natural regular rocky 6 bridge 
BEP-01 18/10/21 858 artificial regular concrete 2.5 drone 
BEM-01 18/10/21 938 natural irregular sandy 4.5 bridge 
PA-01 07/05/21 119 natural irregular pebbly 5.5 bridge 
IM-01 15/09/20 634 natural irregular pebbly 15 drone  
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water velocity using Doppler’s principle (Muste et al., 2004). More 
specifically, the StreamPro ADCP, produced by Teledyne Marine RD 
Instruments, was used to measure velocity and bathymetry through 
WinRiver II (v2.22) software. Two profiling modes (WM12 and WM13), 
available in WinRiver II, were used depending on the hydraulic condi
tions and the depth of the river under analysis. 

A standard operational field protocol according to the United States 
Geological Survey guidelines (Mueller et al., 2009) and the World 
Meteorological Organization standard (World Meteorological Organi
zation, 2008) was adopted for ADCP discharge measurements, ac
counting for the following requirements:  

i. perform multiple reciprocals measurements along a transect to 
minimize directional bias;  

ii. exposure time (i.e., total duration of the measurements) longer 
than 720 s to average any possible disturbance effects over time;  

iii. removal of outlier measurements, characterized by an excessive 
deviation in the discharge from the mean over all the measures. 

Regarding the last point, WinRiver II software provides a “Discharge 
Summary”, which uses a Dynamic Residual Analysis algorithm allowing 
for a fast deviation evaluation. The relative residual of a discharge 
transect-measurement (RRi) is computed as: 

RRi =
Qi − Qmean

Qmean
[%] (1)  

where Qi is the generic i-th discharge transect-measurement, and Qmean 
is the mean value over all the acquired discharge transect- 
measurements. The residual control criterion is: 

|RRi|〈MPRR (2)  

where MPRR is the Maximum Permissible Relative Residual, whose 
value depends on the number of performed transect-measurements: the 
greater the number of measures, the greater the MPRR value. In Win
River II, MPRR ranges from 5 % with 4 transect-measurements up to 
almost 20 % with 20 transect-measurements. Following this approach, 
transect-measurements with relative residual over the MPRR were dis
carded, deriving final assessed value of ADCP at each measurement as 
averaged values over the retained transect-measurements (Table 2). 

2.2.2. ADCP based benchmark surface velocity profile 
ADCP instrument cannot measure surface velocities due to trans

ducer submersion. To infer benchmark surface velocity profile from each 
ADCP measurement, the approach proposed by Le Coz et al. (2010) and 

Pearce et al. (2020) was adopted. During a transect-measurement, ADCP 
collects raw velocity data at different depths along several verticals, 
dividing the water columns into a finite number of cells. Thus, from each 
retained transect-measurement by ADCP, it is possible to build a dataset 
containing paired normalized velocity-depth data at each vertical, with 
velocities normalized with respect to the mean velocity along the ver
tical, and depths normalized with respect to the total depth for the 
corresponding vertical. For each field campaign, a unique dataset can be 
obtained by aggregating all the normalized datasets from each retained 
transect-measurement. 

The normalized depth (Znorm), ranging from zero (bottom) to one 
(surface), is binned into 0.05-wide intervals, evaluating the median of 
the normalized velocities within each bin. All the assessed median ve
locities at each bin are paired with the average normalized depth of the 
corresponding bin, and the obtained points are interpolated by a power 
law: 

Vnorm(Znorm) = aZn
norm (3)  

where Vnorm(Znorm) is the normalized flow velocity at the normalized 
depth Znorm, while a and n are the power law parameters. For example, 
Fig. 2a shows the cloud of paired normalized velocity-depth points and 
the derived power law curve in a case study randomly selected (PL-03). 

The exponent n is often fixed equal to 1/6 (Muste et al., 2008; Le Coz 
et al., 2010, 2012); in this work, site-specific values for both a and n 
were assessed. The coefficient a represents the normalized surface ve
locity at the water surface (Znorm = 1). Thus, once a and n are computed, 
the surface velocity for a generic vertical can be obtained multiplying 
a-coefficient by the normalization term, i.e., the mean velocity along 
that vertical. A point cloud of surface velocities is then obtained 
applying the described procedure to all the verticals of a field campaign 
dataset (Fig. 2b). The final surface velocity profile was obtained again by 
a binning procedure, dividing the total length of the transect into equal 
size bins (i.e., 0.3 m), and associating to each bin the mean of surface 
velocities falling in that bin. Finally, a bootstrap resampling approach 
was used to derive the 95 % confidence intervals for the surface velocity 
profile obtained at the various field campaigns (Fig. 2b). 

2.3. LS-PIV measurements 

2.3.1. Instruments and experimental set-up 
The equipment used to carry out LS-PIV measurements includes 

tracer materials and devices for video recording and topographic survey. 
Artificial tracer released manually from the riverbanks was used for all 
the measurements, exploiting a commercially available and low-cost 
wooden materials, i.e., chips and conifer bark with variable shape and 
size (prevalently cylindrical shaped, with maximum linear dimension 
between 25 and 40 mm). The selected material is scarcely sensitive to 
wind disturbances and provides a good contrast with the background. 

Images were recorded using a commercial camera and a small drone. 
In the first case, a Nikon Coolpix 530 (1080/19:9, 1080/25p – 30 fps) 
was placed in a fixed position mounted on a tripod. In the second case, a 
DJI Mavik drone equipped with a full HD camera (1080/16:9; 1080/25p 
– 30 fps) was used. For each case, the position of the recording device 
was chosen according to the monitored area in order to contain the 
transect along which the benchmark ADCP profile was derived. 

Marker panels, placed in clearly visible positions within the analysis 
areas, were used as Ground Control Points (GCPs) during orthor
ectification and stabilization phases. GCPs coordinates were acquired by 
a high-resolution differential GPS (Global Navigation Satellite System 
receiver device: Stonex S500). 

2.3.2. Images processing 
Considering the image spatial resolution and the maximum expected 

velocity for each case study, sub-pixel particle displacements could 
occur at the original acquisition frame-rate, negatively affecting the 

Table 2 
Discharge (Q), cross-section wetted area (A), and mean velocity (V) estimated by 
the ADCP for all the case studies. Total number of valid transect-measurements 
(Nv) out of the total number of performed transect-measurements (Np), total 
exposure time (tex), maximum relative residual (max|RRi|) of the valid transect- 
measurements and corresponding Maximum Permissible Relative Residual 
(MPRR).  

IDm Q A V Nv(Np) tex max|RRi| MPRR 
[m3/s] [m2] [m/s] [-] [min] [%] [%] 

OR-01 0.298 3.77 0.079 7 (10) 59 2.3 8.6 
OR-02 0.164 3.24 0.050 6 (8) 27 5.5 7.5 
OR-03 0.223 2.87 0.077 5 (8) 46 2.9 6.3 
PL-01 0.233 1.59 0.146 6 (8) 15 6.7 7.5 
PL-02 0.316 1.63 0.193 11 (12) 12 7.1 12.6 
PL-03 0.630 3.09 0.203 4 (6) 13 1.9 5 
CA-01 0.272 2.62 0.103 5 (6) 34 4.7 6.3 
CA-02 0.392 2.87 0.136 4 (6) 63 1.9 5 
BEP-01 0.180 2.40 0.075 4 (6) 12 2.3 5 
BEM-01 0.654 3.71 0.176 8 (8) 19 4.1 9.7 
PA-01 0.050 1.51 0.033 5 (6) 34 5.2 6.3 
IM-01 0.382 10.05 0.038 4 (10) 32 4.9 5  
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detection procedure (Pumo et al., 2021). Frames extraction from the 
original acquired videos was thus performed reducing the processing 
frame-rate with respect to the acquisition frame-rate, i.e., from 30 to 15 
fps. 

The obtained frame sequences were then subjected to the pre- 
processing steps of stabilization and orthorectification. However, PIV
lab is not equipped with stabilization and orthorectification algorithms, 
but it is featured with only a “Calibration” module through which the 
spatial and temporal resolution of the frames can be specified. For this 
reason, additional software were used to fulfil the pre-processing tasks. 
In particular, stabilization was applied using a highly performing 
module of the KLT-IV software (Perks, 2020), which uses the Good 
Features to Track algorithm (Shi and Tomasi, 1994) for the detection of 
the tracer movements, and the pyramidal Kanade Lucas Tomasi tracking 
scheme (Lucas and Kanade, 1981; Tomasi and Kanade, 1991), for the 
tracking process. In particular, considering a “dynamic” orientation of 
the camera used in the field campaigns, the “GCPs & Stabilization” 
option was chosen. In order to enhance the contrast between tracers and 
background, a greyscale transformation was finally applied by the sta
bilization algorithm (Tauro et al., 2017; Perks et al., 2020; Jolley et al., 
2021), obtaining single-band images, with each pixel characterized by a 
Digital Number (DN) ranging from 0 (black) to 255 (white). 

The last pre-processing step is the orthorectification of the stabilized 
and enhanced frames, used to correct perspective distortions and for 
images georeferencing. The “complete orthorectification” option was 
applied using a dedicated module of the FUDAA-LSPIV software (Le Coz 
et al., 2014). 

When frames are acquired by drone (e.g., from a height around 20 m 
onwards), differences in the GCPs z-coordinate can be neglected 
assuming that GCPs lie onto the river surface plane (Jolley et al., 2021). 
If frames are recorded from a fixed location, the non-orthogonality of the 
camera lenses to the water surface introduces strong perspective dis
tortions. Usually at least six not aligned GCPs are needed for frames 
heavily affected by perspective (Jodeau et al., 2008; Muste et al., 2008; 

Detert, 2021), thus in all field case studies considered in this work, six 
GCPs were always ensured. 

The processing phase was conducted through the freely available 
open-source PIVlab software (Thielicke and Stamhuis, 2014), developed 
in MATLAB environment. A Region of Interest (ROI) to which restrict the 
analyses was first identified, masking the portions of frames not occu
pied by liquid surface. The Fast-Fourier-Transform Cross-Correlation 
algorithm was selected for the statistical detection of the most probable 
frame-by-frame tracer displacement (frames processing style: 1–2, 2–3, 
3–4, etc.). A total number of three passes were set, using linear inter
polation option as window deformation interpolator. The size of the first 
Interrogation Area (IA1) was selected equal to 32 px, following the 
guidelines from PIVlab developers (Thielicke and Stamhuis, 2014). The 
second and third passes width were calculated halving once and twice, 
respectively, the previous value (i.e., IA2 16x16 px; IA3 8x8 px). 

Finally, a post-processing phase was applied using the Standard 
Deviation Test as vector validation algorithm. Denoting with V is the 
average velocity of the instantaneous surface velocity fields, and σ is the 
standard deviation, velocity vectors out of the range V ± 2σ were 
rejected. 

PIVlab uses a boundary value solver as interpolation algorithm, 
extrapolating missing data from the neighboring nodes through vertical, 
horizontal, and diagonal connections. As last post-processing step, the 
mean surface velocity field is obtained by temporally averaging node- 
by-node all the post-processed instantaneous velocity fields, also 
retrieving the surface velocity profile along the same transect considered 
for deriving the benchmark ADCP profile. 

2.4. Automatic identification of the optimal processing sequence 

The performances of LS-PIV based software programs are influenced 
by a wide range of factors. For instance, when tracer is manually 
introduced, operators have scarce control on the actual density and 
distribution of the tracer, which might become major sources of 

Fig. 2. PL-03. (a) Aggregated velocity data (blue points) collected at all the verticals of the retained transect-measurements, represented in a normalized graph. 
Median values at different depth intervals are reported by black square points, with indication of data dispersion for each interval through the visualization of the 
interquartile distance (horizontal solid black lines). Dashed black curve represents the normalized vertical velocity profile obtained by fitting a power law. (b) Surface 
velocity profile (blue line with circle markers) and 95% confidence interval (yellow bands) obtained from raw ADCP data. Grey points represent surface velocities 
obtained by power law interpolation at each vertical. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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uncertainty. Low tracer density and/or inhomogeneous spatial distri
bution of tracer particles could cause the occurrence of scarcely sampled 
portions of the investigated area, resulting in an incomplete and inac
curate representation of surface velocity fields. On the contrary, high 
tracer density could favor particles aggregation, disturbing cross- 
correlation algorithms. Density and distribution of the tracers can be, 
in turn, highly affected from several factors, such as the presence of 
wind, main currents and turbulence, and the disturbance effect of 
vegetation in the riverbed and banks. 

Usually, seeding density and spatial distribution do not remain 
constant throughout the recording phase and some portions of video 
sequences might be not suitable for the subsequent LS-PIV phases. In 
such cases, it could be preferable to process only a limited portion of the 
acquired sequences, characterized by appropriate tracer properties. 
Pizarro et al. (2020b) introduced a metric, the SDI, able to characterize 
tracer density and its dispersion degree and whose formula was derived 
by considering numerical analyses on synthetic sequences generated 
under controlled tracer conditions. A features-detection algorithm (Dal 
Sasso et al., 2020) is used to compute SDI as a function of the frame-by- 
frame tracer density (expressed in particles-per-pixel, ppp) and the 
average spatial-clustering level, expressed as the average of ratios be
tween the actual spatial-clustering level, i.e., ratio between variance and 
mean of the number of tracer particles, and an assumed reference dis
tribution given by Poisson distribution, computed at different subareas 
of the ROI. The authors used the average SDI across several sub- 
sequences for the identification of the best (minimum SDI) and worst 
(maximum SDI) portion of a recorded video sequence. 

The procedure proposed here is based on a metric analogous to the 
SDI, i.e., the global index GI, which is derived as a function of four in
dicators characterizing the spatial and temporal variability of tracer 
density and dispersion. The entire procedure is schematically described 
in Fig. 3. After a preliminary image sequence preparation, several sub- 
sequences are extracted from the original video through a moving 
window of varying duration. Tracer indicators are then computed, 
associated to each sub-sequence, and used to derive input variables for 
an Artificial Neural Network (ANN), which returns a numerical value of 

GI for each sub-sequence. Based on the obtained GI values, the pro
cedure extracts the best sequence from the original video, corresponding 
to the sub-sequence with the minimum GI, also providing information 
about its initial frame position along the original video and its total 
number of frames. 

2.4.1. Preliminary images sequence preparation and sub-sequences 
generation 

The proposed methodology requires a further pre-processing step of 
graphic enhancement. A background removal (Elhabian et al., 2008) is 
then applied in order to maximize the contrast between tracer and 
background, favoring the characterization of the tracer density and 
distribution. With this purpose a video of the liquid surface, hereafter 
referred to as pre-seeding sequence, must be acquired immediately prior 
to the seeding process; the pre-seeding sequence duration is set equal to 
10 s since it must be not too short to efficiently characterize the back
ground, and not excessively long to minimize computational times and 
possible environmental (e.g., lighting) disturbance effects. The 
pre-seeding sequence must undergo the same pre-processing steps of the 
post-seeding video. An analysis on the pre-seeding frames is then per
formed, obtaining a reference background image by averaging DNs at 
each pixel of images over the entire pre-seeding sequence. 

Once the reference background image is computed, the original post- 
seeding sequence is modified by subtracting, pixel-by-pixel, the associ
ated DNs from the reference background image, and then applying a 
final stretching procedure through a binarization algorithm, with a 
binarization threshold ranging between 80 % and 90 % of 255 (8-bits) 
(Dal Sasso et al., 2021a). The obtained frame sequence contains Boolean 
images with tracer particles pixels assuming DNs equal to 1 (white) and 
background pixels with DNs equal to 0 (black). 

The next step in the proposed procedure involves extracting a series 
of sub-sequences from the original video. Sub-sequences generation is 
performed using a moving window of given duration sliding along the 
binary sequence with a fixed time-lag. The procedure allows user to set 
multiple time-window durations and lags as parameters. The minimum 
duration should be chosen according to the expected tracer velocity, 

Fig. 3. Flowchart of the proposed procedure. Sequences recorded under pre- and post-seeding conditions, properly pre-processed, are used as input, with the latter 
used to derive an average background image. Considering a selected ROI, where a mask can be also applied to the useless portions of the frames, a combined 
enhancement-binarization procedure is applied to obtain Boolean images. Several sub-sequences are then extracted through a moving window of variable size, 
computing four indicators representative of the seeding conditions for each of them. These are used to force an ANN which provides the global index GI for each sub- 
sequence, useful to identify the best sub-sequence within the original available video, that is ultimately extracted for LS-PIV analysis. 
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while the maximum duration must not exceed the total length of the 
original video. Lag parameter might help to reduce computational times, 
avoiding redundancy due to excessively overlapping sub-sequences. 

2.4.2. Characterization of each sub-sequence 
An indicator representative of the tracer amount in the ROI of each 

frame, i.e., the Instantaneous Seeding Density (ISDi), is defined, frame- 
by-frame, as the ratio between the total number of pixels within the 
ROI occupied by tracer, ntr,i, and the total number of pixels of the ROI, 
nROI,i: 

ISDi =
ntr,i

nROI,i
(4)  

with i referring to the generic i-th frame and ranging from 1 to the total 
number of frames in a recorded video, Nfr. 

ISDi is dimensionless and it increases with tracer density, ranging 
from 0 to 1. ISDi is a proxy measure of the actual instantaneous seeding 
density in the ROI; nevertheless, incorrect interpretation of pixels (as 
tracer particle or background) can occur due to the approximate method 
adopted for binarization. This does not significantly influence the suit
ability of ISDi for the purpose of the proposed procedure, which con
siders seeding density in relative terms to discriminate the various sub- 
sequences. 

All the extracted sub-sequences are then characterized in terms of 
tracer properties through four, dimensionless indicators: (i) the Tracer 
Density index (TD), (ii) the coefficient of variation of ISDi (ISDCV), (iii) 
the Seeding Distribution index (SD), and (iv) the Undersampling 
Coverage index (UC). Such indicators are always greater than or equal to 
zero, with null values denoting optimal conditions. 

The first two indicators are representative of the overall seeding 
density and its frame-by-frame variability across the analyzed sub- 
sequence, and they are derived from the frame-by-frame ISDi. In 
particular, TD is obtained as: 

TD =
⃒
⃒ISD* − ISDavg

⃒
⃒ (5)  

where ISDavg is the mean value of the ISDi considering all the frames 
contained in each sub-sequence, while ISD* represents an ideal reference 
value of tracer density. Dal Sasso et al. (2018) demonstrated via nu
merical experiments that for low tracer density, optical analyses per
formances increase with increasing tracer concentration, whereas no 
significant improvements can be noticed for density over to 0.01 ppp. It 
is worth noting that tracer concentrations significantly lower than 0.01 
ppp are usually adopted in real field applications (Pearce et al., 2020; 
Dal Sasso et al., 2021b), whereas an excessive tracer density (e.g., more 
than 30 % of the surface area, according to Meselhe et al. (2004)) could 
lead to tracer aggregation, negatively affecting LS-PIV analyses. Here, a 
value of ISD* equal to 0.2 was assumed, corresponding to the maximum 
value of ISDi under conditions of no coalescence phenomena and par
ticle size of the tracer uniform and equal to a pixel. 

SD and UC are representative of the tracer spatial distribution over 
the ROI. More specifically, SD is derived adopting an Eulerian approach, 
first computing the relative frequency, fP, of tracer occurrence in each 
pixel of the ROI over the entire sub-sequence, and then comparing it 
with the average value over all the pixels of the ROI, 〈fP〉, representing, 
for given tracer density, the reference value of fP under uniform spatial 
distribution of the tracer. In particular, SD is computed as a Root Mean 
Square Error (RMSE), where the residuals are defined by the differences 
between fP and 〈fP〉 at each pixel of the ROI: 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
nROI

∑nROI

j=1

(
fP,j − 〈fP〉

)2

√
√
√
√ (6)  

where j refers to the j-th pixel within the ROI. 
UC is calculated as the fraction of pixels within the ROI classified as 

“under-sampled”. The “under-sampled“ condition in a specific pixel is 
established based on the relative frequency of tracer occurrence, fP. In 
particular, a pixel is defined “under-sampled” when fP is lower than a 
prefixed threshold value f*

P , which was set equal to 0.01 as calibration 
parameter after performing a sensitivity analysis on a synthetic 
sequence, the same generated for the final test on the entire procedure 
that will be presented at Sect. 3.3 by exploring a range of f*

P from 10-8 to 
0.1; this implies, for instance, that for 60-second sub-sequences at 15 fps 
(i.e., 900 frames in total), a pixel is “under sampled” if it assumes DN 
equal to 1 for less than 9 frames. 

2.4.3. Processing module for the identification of the best sub-sequence: 
Global index and ANN 

Differently from the numerical approach used in Pizarro et al. 
(2020b), a data-driven empirical approach based on field data is used to 
derive the metric, i.e., the Global Index (GI), considered for the char
acterization of a sub-sequence in terms of seeding properties. In 
particular, GI is here obtained as a function of the four indicators 
described in the previous section, by mean of an ANN, opportunely 
designed, thus removing any a-priori assumption about the analytical 
form of the underlying relationships among the various seeding char
acteristics considered to characterize a sub-sequence. 

All the sub-sequences with 30-, 60-, 90-, and 120-second durations (i. 
e., 450, 900, 1350, and 1800 frames at 15 fps, respectively) and lag of 2 s 
(corresponding to 45 frames at 15 fps), were extracted from the videos 
acquired at all the case studies, computing the four seeding indicators 
(TD, ISDCV, SD, UC). The selected minimum duration considered for sub- 
sequences extraction ensures sufficient tracer dispersion within the ROIs 
for all the analyzed case studies, while the maximum duration was 
chosen equal to the shortest total duration of the acquired videos in all 
the case studies. Fig. 4 shows the obtained seeding indicators for all the 
30-second and 120-second sub-sequences extracted for the case of PL- 
02, as demonstrative example. A portion of frame randomly extracted 
from both the best and the worst 30-second sub-sequences according to 
the TD indicator (i.e., minimum and maximum TD, respectively), is also 
visualized in the inset plots of Fig. 4, in order to highlight the existing 
differences in terms of seeding density. 

Each extracted sub-sequence was analyzed applying the workflow 
described in Section 2.3.2, deriving the associated surface velocity 
profile along the transect where benchmark ADCP surface velocity 
profiles are available (see Section 2.2.2). ADCP surface velocity at the 
nodes of the PIVlab computational grid along the transect and corre
sponding PIVlab velocities were first retrieved, and the performance 
associated to each sub-sequence was measured comparing LS-PIV and 
ADCP velocity estimates through two different metrics: (i) the RMSE and 
(ii) the Willmott index, δ. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
np

∑np

k=1

(
vPIVlab,k − vADCP,k

)2

√
√
√
√ (7)  

δ = 1 −
∑np

k=1
(
vPIVlab,k − vADCP,k

)2

∑np
k=1

( ⃒
⃒vPIVlab,k − vADCP

⃒
⃒+

⃒
⃒vADCP,k − vADCP

⃒
⃒
)2 (8)  

where np refers to the total number of computational nodes along a 
transect, vPIVlab,k and vADCP,k represent the surface velocity profile at the 
generic k-th computational node of the transect, and vADCP is the average 
velocity value of the benchmark profile. The dimensionless Willmott 
index (Willmott and Wicks, 1980; Willmott et al., 2012) allows for a 
direct comparison of results arising from different case studies; it can 
assume values ranging from zero (i.e., worst performances) to one (i.e., 
best performances). 

The processing module of the proposed procedure is based on a 
Multi-Layer Perceptron Feedforward Artificial Neural Network (ANN), 
developed using the MATLAB ANN Toolbox. Two measurements, i.e., 
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BEM-01 and PA-01, were excluded for the ANN training and will be used 
only for validation purposes. Data from the ten remaining measurements 
(i.e., calibration case studies) were considered to form a unique large 
database used to train the ANN. This last was obtained after aggregation 
of different “single-case” datasets derived from each calibration case 
study. Each sample of a “single-case” dataset refers to a specific sub- 
sequence and contains paired input–output variables; more specif
ically, as output “response” variable for the ANN it was considered the 
RMSE associated to the sub-sequence normalized by the mean RMSE of 
all the sub-sequences extracted for that case study, while five variables 
for each sub-sequence are used as paired input: the ISDavg and the four 
seeding indicators (TD, ISDCV, SD, UC) associated to the sub-sequence, 
these last after normalization with respect to the corresponding mean 
values over all the sub-sequences. From the analysis of the sub- 
sequences extracted at all the calibration case studies, a unique data
base containing 2780 samples was obtained after aggregation of all the 
“single-case” datasets. 

An approach similar to that used in Pumo and Noto (2023) was 
adopted for the configuration and training of the ANN. A total of 395 
different ANN topologies were explored, considering one or two Hidden 
Layers (HLs), and progressively varying the number of nodes in the first 
HL from 5 to 200 nodes and, in the case of two layers, fixing the number 
of nodes in the second HL equal to half of those in the first HL. The ANN 

was trained using the “Levenberg-Marquardt” error backpropagation 
algorithm and considering the Mean Absolute Error (MAE) as loss 
function. The training adopted an early stopping criterion considering a 
random division of the dataset for training (70 % of data), validation 
(15 %) and testing (15 %) purposes. For each explored topology, a total 
of 100 training trials were performed, selecting for each structure that 
with the lowest MAE in validation. Once the “optimal” ANN topology 
was identified, as the one among all the tested configurations with the 
lowest MAE, a training refining was carried out performing further 1000 
training trials under that configuration and selecting as final ANN the 
one with the lowest MAE in validation. The aforementioned procedure 
provided a final network with two HLs, having 135 nodes at the first HL 
and 67 at the second HL. Fig. 5 shows a schematic representation of the 
final ANN structure and the regression plot of the considered response 
variable, i.e., the normalized RMSE versus the simulated output vari
able, i.e., the GI, from which it is possible to notice a very high matching 
degree, with a coefficient of determination R2 equal to 0.97. 

No constraints were applied to the ANN output, so the GI can assume 
both positive and negative real values. When a sequence is passed to the 
automatic procedure and sub-sequences are extracted, the ANN evalu
ates all the GI associated to all the sub-sequences and selects the best 
sub-sequence as that corresponding to the lowest GI, which represents 
the most suitable for LS-PIV analyses. Given the considered response 

Fig. 4. Seeding indicators for the case PL-02. Indicators refer to sub-sequences extracted with a 30-second (solid lines) and 120-second (dashed lines) moving 
windows. X-axis refers to the initial frame of the sub-sequence with respect to the first acquired frame. Green circles and red triangles represent the sub-sequences 
characterized by the best (lowest) and worst (highest) value for each indicator, respectively. Equal sized portions of a frame randomly extracted from the 30-second 
sub-sequence with the lowest (green contour) and highest (red contour) TD are also reported in the inset plots. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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variable, values of GI lower than unit denote performances better than 
the mean performances over all the sub-sequences. 

3. Results 

3.1. Application to the calibration case studies 

The training dataset used to create the ANN was generated consid
ering sub-sequences extracted from 10 out of 12 field case studies re
ported in Table 1 (see Sect. 2.4.3). The calibrated procedure is here 

applied to all the calibration case studies, and the results are summa
rized in Table 3. The RMSE values, evaluated by comparing LS-PIV and 
the corresponding ADCP surface velocity profiles, for the best sub- 
sequences according to the GI are significantly lower (on average 
− 40 %) than those associated to the worst sub-sequences. The best case 
in terms of both RMSE and δ was OR-02, where the analysis of the 
optimal sub-sequence identified by the procedure led to RMSE equal to 
0.026 m/s and δ equal to 0.92. For all the cases, the deviation of the 
RMSE associated with the best sub-sequence according to GI from the 
lowest achievable value (RMSEmin) is extremely low, i.e., on average 

Fig. 5. (a) Schematic representation of the ANN model: Input Layer with 5 nodes (i.e., TD, ISDCV , SD, UC, and ISDavg), two HLs with 135 and 67 nodes at the first and 
second HL, respectively, and Output Layer with single node. The visualization of the ANN structure is derived from MATLAB. (b) Regression plot between normalized 
RMSE and GI over the entire dataset used for the ANN training. Dashed black line refers to the perfect matching. 

Table 3 
Results at the calibration case studies (IDm). The best and the worst performance indexes PI (PIbest and PIworst, respectively) among all the sub-sequences of each case 
study, with indication of the minimum and maximum RMSE and δ. Characterization of the best and worst (in italic) sub-sequences identified according to GI, with 
indication of the associated GI, RMSE and δ, the sub-sequence duration (dss) and initial frame with respect to the first frame of the original video (frin).  

IDm PIbest PIworst GI dss frin RMSE δ 

RMSEmin δ max RMSEmax δ min 

[m/s] [-] [m/s] [-] [-] [s] [fr] [-] [m/s] [-] 

OR-01 0.052 0.72 0.095 0.39 0.76 30 450 1 0.061 0.65 
1.59 30 450 2071 0.095 0.40 

OR-02 0.014 0.96 0.155 0.09 − 1.08 30 450 1381 0.026 0.92 
2.44 30 450 2671 0.153 0.12 

OR-03 0.048 0.85 0.130 0.45 0.58 90 1350 751 0.055 0.80 
1.72 30 450 3451 0.130 0.45 

PL-01 0.060 0.59 0.114 0.34 0.26 30 450 781 0.068 0.51 
1.70 30 450 2161 0.114 0.34 

PL-02 0.023 0.95 0.135 0.37 0.34 30 450 871 0.031 0.92 
2.90 30 450 1 0.135 0.37 

PL-03 0.061 0.89 0.267 0.33 0.40 60 900 1 0.069 0.87 
2.13 30 450 2701 0.262 0.35 

CA-01 0.068 0.73 0.132 0.37 0.81 120 1800 721 0.076 0.57 
1.60 30 450 3061 0.131 0.51 

CA-02 0.053 0.65 0.156 0.20 0.59 30 450 511 0.058 0.65 
2.05 30 450 1 0.155 0.39 

BEP-01 0.036 0.92 0.171 0.42 0.58 60 900 961 0.039 0.91 
2.05 30 450 1 0.155 0.42 

IM-01 0.026 0.88 0.189 0.05 0.24 90 1350 241 0.031 0.81 
2.90 30 450 2911 0.189 0.05  
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equal to 0.007 m/s and never exceeding 0.012 m/s, demonstrating the 
suitability of the automatic procedure proposed in all the case studies. It 
can be also noticed that, as it was expected, the worst sub-sequences 
according to the GI are always associated to short sub-sequences (i.e., 
30 s long, that is the lowest duration considered) extracted from the 
beginning or the ending part of the original video, when tracer is often 
not yet or no longer well dispersed over the entire area. 

Fig. 6 shows for the same field case study used in Fig. 4 (i.e., PL-02), a 
comparison between tracer coverage maps relative to the best and the 
worst sub-sequences automatically identified by the procedure based on 
GI. The tracer coverage maps display the pixel-by-pixel values of the 
relative frequency of tracer occurrence over the entire ROI ,fP, which is a 
variable used for the computation of both SD and UC (Section 2.4.2). 
Tracer coverage maps provide clear insights on the density and the 
distribution of the tracer in space and time over the sub-sequence, with 
“under-sampled” pixels displayed in white, while pixel properly crossed 
by tracer displayed using a scale color bar. In the upper inset plots of 
Fig. 6, three frames extracted from the initial, middle, and final part of 
the sub-sequences are also visualized to further emphasize the differ
ences between the best and the worst sub-sequences in terms of tracer 
density and spatial distribution. Moreover, the position of the reference 
transect, where performances indexes RMSE and δ are evaluated, is also 
reported within the tracer coverage maps by red lines. 

The two sub-sequences identified at the selected PL-02 case by the 
procedure, are characterized by the same duration (i.e., 30 s, equal to 
450 frames at 15 fps), GI equal to 0.34 for the best sub-sequence, and 
2.90 for the worst one. The worst sub-sequence (Fig. 6b) was extracted 
from the beginning of the raw video, with initial frame of the sub- 
sequence corresponding to the first frame of the acquired video, while 

the best sub-sequence was extracted starting from the 871st frame, i.e., 
from the central portion of the original video. From the tracer coverage 
map, it can be noticed how tracer for the worst sub-sequences remained 
mainly concentrated in the upstream portion of the ROI, with a density 
and spatial coverage increasing in time (see associated frames in the 
inset plots). The area along the transect was scarcely sampled causing 
weak performance indexes, since the tracer had not yet covered the 
entire frame. On the contrary, tracer for the best sub-sequence (Fig. 6a) 
was rather well distributed over the ROI, especially along the central 
area of the river, and not significant differences in terms of tracer density 
and spatial distribution can be noticed from the comparison among the 
frames reported in the inset plots, demonstrating that such conditions 
were stable over time along the sub-sequence; this indeed led to an 
adequate characterization of the surface velocity field by the LS-PIV 
approach and, consequentially, to much better values of the perfor
mance indexes compared to the worst sub-sequence, with RMSE passing 
from 0.135 m/s to 0.031 m/s and □ passing from 0.37 to 0.92. Com
parison in Fig. 6 clearly shows the capability of the proposed procedure 
in identifying sub-sequences characterized by adequate and not 
adequate tracer density and spatial distribution based on the four in
dicators used to compute the GI, and, in fact, such indicators well de
scribes the two sub-sequences shown in figure, with the best sub- 
sequences having more tracers (TD = 0.154 vs. 0.176), with density 
much less variable in time (ISDCV==4.08E-5 vs. 2E-4), and better 
distributed over the ROI (SD = 0.036 vs. 0.039, andUC = 0.26 vs. 0.63) 
compared to the worst sub-sequence (see also Fig. 4). 

Fig. 7 shows, for the cases of OR-02 and BEP-01, a comparison among 
the ADCP benchmark profile (dashed blue lines) and all the PIVlab based 
surface velocity profiles (grey lines) derived from the processing of all 

Fig. 6. Tracer coverage maps of (a) the best and (b) the worst sub-sequences identified by the automatic procedure at PL-02. White color denotes “under-sampled” 
pixels (fP < 0.01). Tracer motion direction (green arrow) and the location of the reference transect (dashed red line) are also highlighted within the coverage maps. 
Three frames extracted at the 25 %, the 50 %, and the 75 % of the total duration of the two sequences are also reported in the inset plots (number in the corner refers 
to the progressive frame across the entire original video acquired at the case study). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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the sub-sequences extracted from original videos, with highlighted those 
corresponding to the best (black lines) and worst (red lines) sub- 
sequences according to the GI metric. The PIVlab based surface veloc
ity profiles corresponding to the best sub-sequences according to the SDI 
metric by Pizarro et al. (2020b) (black dashed lines) are also highlighted 
in the same figure for comparison. The variability of the grey lines in 
Fig. 7 underlines the high sensitivity of the PIVlab response to the 
considered sub-sequence for each case study. Most of the LS-PIV based 
profiles for OR-02 (Fig. 7a) show large discrepancies with the bench
mark velocity profiles close to the right riverbank, that could be due to 
two factors. The first reason is specific of the case under analysis, where 
differently from other cases, during the seeding activities, tracer was not 
uniformly distributed over the surface, leaving this region rather under- 
sampled compared to the central zone; the second reason could be 
addressed to the systematic underestimation of velocities operated by 
PIVlab software near the banks, known as border effects (Pumo et al., 
2021). For both cases shown in Fig. 7, there is an underestimation of the 
velocities with respect to the benchmark velocity profile, with the 
largest errors localized near the riverbanks. It is worth noting how for 
both cases, the best sub-sequences according to SDI are characterized by 
an error higher than those relative to the best sub-sequences identified 

by the proposed procedure based on GI. 

3.2. Validation of the procedure 

In order to test the generalizing ability of the ANN and the trans
ferability of the proposed methodology, the procedure was applied on 
two independent validation cases, totally neglected for the procedure 
setup, which are the BEM-01 and PA-01 case studies, also described in 
Table 1. Performance resulting from the PIVlab processing of the best 
and worst sub-sequences according to the GI and the SDI are compared 
in Table 4 and Fig. 8. 

All the extracted (best and worst) sub-sequences have a total length 
of 30 s, except for the best sub-sequence according to the GI at the PA- 
01, which has a length of 120 s sub-sequence. It is worth noting that, for 
both cases, the best and the worst sub-sequences identified based on GI 
are not corresponding to those identified based on SDI. The advantages 
of considering the GI rather than the SDI as metric to select the best sub- 
sequences are evident for the case BEM-01, where similar performance 
indexes were found for the best and the worst sub-sequences identified 
via SDI, which are slightly higher than those associated to the worst sub- 
sequences according to GI, whereas much better performance indexes 

Fig. 7. Comparison between surface velocity profiles obtained by processing in PIVlab all the possible extracted sub-sequences from original videos (grey lines) and 
the ADCP benchmark profile (dashed blue lines) at the calibration case studies (a) OR-02 and (b) BEP-01. The 95% confidence intervals for ADCP benchmark profiles 
are also shown (yellow bands). Surface velocity profiles associated with the best and the worst sub-sequences according to the GI are underlined with the black and 
red solid lines, respectively, while dashed black lines refer to the best sub-sequence according to the SDI. In the x-axis the progressive distance from the left bank is 
shown, while the y-axis reports the surface velocity values in m/s. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Table 4 
Total duration dss (expressed both in seconds and total number of frames), initial frame (frin), RMSE and δ for the best and worst sub-sequences according to the GI 
(proposed procedure) and the SDI (Pizarro et al., 2020b) at the two validation cases (i.e., BEM-01 and PA-01). Associated GI and SDI are also reported, with the lowest 
and highest values highlighted in bold and italic, respectively. The lowest and the highest values of the performance indexes (i.e., RMSE and δ) among all the sub- 
sequences extracted for each case are also displayed below the IDm.  

IDm  GI SDI dss frin RMSE δ 

[-] [-] [s] [fr] [-] [m/s] [-] 

BEM-01 
RMSEmin = 0.050 m/s, δmax=0.53 
RMSEmax = 0.185 m/s, δmin=0.14 

best for GI 0.58 6.08 30 450 1441 0.057 0.50 
best for SDI 1.20 4.61 30 450 901 0.111 0.23 
worst for GI 2.29 9.70 30 450 1 0.185 0.15 
worst for SDI 1.33 61.07 30 450 2731 0.112 0.26 

PA-01 
RMSEmin = 0.005 m/s, δmax=0.99 
RMSEmax = 0.029 m/s, δmin=0.79 

best for GI 0.41 0.57 120 1800 361 0.005 0.99 
best for SDI 2.65 0.45 30 450 1 0.027 0.80 
worst for GI 2.74 0.46 30 450 121 0.029 0.79 
worst for SDI 1.35 0.89 30 450 2101 0.014 0.93  
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were found for the best sequence identified using GI (Table 4). This 
demonstrates the higher efficiency of the GI in identifying both the best 
and the worst sub-sequences compared to the SDI metric. Similar con
siderations can be made for PA-01, where PIVlab processing of all the 
extracted sub-sequences provided always surface velocity profiles rather 
close to the benchmark ADCP profiles; in this case, the best and the worst 
sub-sequences selected by the proposed procedure are corresponding to 
the sub-sequences with the best (lowest RMSE and highest δ) and the 
worst (highest RMSE and lowest δ) performances, respectively, among 
all the sub-sequences analyzed, while the sub-sequences selected based 
on SDI showed a counter intuitive behavior, with the worst sub- 
sequence (minimum SDI) having performances better than the best 
sub-sequence (maximum SDI). 

Fig. 8, analogously to Fig. 7, shows the comparison between the 
surface velocity profiles for the two validation cases; bars error plots 
displayed on the right refer to the comparison between the ADCP 
benchmark profile and the PIVlab profiles associated to the best and the 
worst sub-sequence according to both GI and SDI. 

For BEM-01 (Fig. 8a), the LS-PIV surface profile of the best GI sub- 
sequence follows the ADCP benchmark profile in the middle part, 
showing high percent errors with respect to benchmark values mainly 
along the banks (− 98 % and − 77 % for the left and right banks, 
respectively) and an overall slight underestimation of the mean surface 
velocity. On the contrary, the procedure based on SDI fails in detecting 
the optimal sub-sequence, with the profile associated to the best sub- 
sequence according to SDI characterized by an overestimation of the 
surface velocities along most of the transect and maximum percent error 
around 200 % in central nodes. Performances associated to the best and 
worst sub-sequence based on SDI for BEM-01 are rather similar with 
each other, with RMSE and δ almost two times those corresponding to 
the best GI sub-sequence (Table 4). 

For PA-01 (Fig. 8b), the LS-PIV surface profile of the best GI sub- 
sequence shows an almost perfect matching with the corresponding 
benchmark ADCP profile (RMSE equal to 0.005 m/s and δ equal to 0.99), 
closely following the entire profile, with alternating under- and over
estimations of the velocity throughout the transect never exceeding 

Fig. 8. Surface velocity profiles comparison (left plots) at the (a) BEM-01 and (b) PA-01 validation case studies: blue dashed lines refer to ADCP benchmark profiles; 
grey solid lines refer to LS-PIV profiles; profiles for the best (black lines) and the worst (red lines) sub-sequences identified based on GI (solid lines) and SDI (dashed 
lines) are highlighted; 95% confidence intervals of the ADCP profiles are also reported. Right plots display error bars derived for the best and worst sub-sequences 
based on GI and SDI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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0.009 m/s. Greater errors are obtained considering the surface velocity 
profile of the best sub-sequence for SDI, where a maximum over
estimation of 0.056 m/s was reached. 

The application of the proposed method to both the validation cases 
confirmed performances similar to those obtained through the applica
tions to the calibration case studies, also highlighting how the procedure 
based on the GI metric outperforms that based on SDI, since it is more 
efficient in identifying the most and the least suitable sub-sequences for 
LS-PIV analysis within the original sequence. 

3.3. Test under controlled conditions 

A numerical experiment has been carried out with the aim to test the 
proposed methodology under flow velocity and tracer density conditions 
significantly different from those characterizing the field measurements 
used to build the ANN-based processing module. Using the Image 
Sequence Generator (ISG) described in Pumo et al. (2021), two 15-min 
synthetic image sequences with temporal resolution of 15 fps and spatial 
resolution of 0.003 m/px were generated, setting circular tracer parti
cles with constant diameter of 10 px randomly dispersed over a ROI of 
600 × 600 px. The first half of each sequence is characterized by a tracer 
uniformly distributed over the ROI and density linearly increasing from 
0.013 ppp to 0.104 ppp, corresponding to half and four times, respec
tively, the average density derived from the real field case studies (0.026 
ppp). The second half of the sequences considers the same tracer density 
variations, but its spatial distribution is disturbed deliberately leaving 
from 1/6 to 1/3 of the ROI uncovered by tracer. The unseeded areas 
position varies along the sequence in a loop modality, including: i) the 
area close to both the banks first; ii) then the area close to only a bank at 
a time (left first and then right); and iii) finally the central area of the 
ROI. Tracer particles 1-D motion is simulated applying a uniformly ve
locity profile along the direction of water current. More specifically, 
tracer velocity was set constant over the entire sequences, imposing a 
realistic logarithmic velocity profile along the cross section, with peak 
velocity in the middle section and lower velocities close to the banks. For 
the first sequence an average velocity of 0.5 m/s was set, while the 
second considers an average velocity of 2 m/s, so that both values are 
consistently higher than the mean velocities observed during the field 
surveys (Table 2). 

Synthetic sequences do not consider disturbances phenomena to 
which real sequences are naturally subject (e.g., changes in lights, wind, 
rain, glares, turbulent eddies, tracer coalescence phenomena, vegeta
tion, etc.). Tracer particles generated by ISG are regular in shape and 
constant in size, and their movement is not disturbed by turbulent eddies 
and has no transverse components. It is worth noting that even using the 
most complex image sequences generators, it is not possible to faithfully 
reproduce the high variability of the real cases characteristics consid
ering the high influence of disturbing factors. More details about the ISG 
can be found in the original paper (Pumo et al., 2021). 

The automatic procedure was applied to the two synthetic image 
sequences, extracting and processing all the possible sub-sequences with 
duration of 30, 60, 90, and 120 s, and time-lag equal to 2 s. For each sub- 
sequence, the procedure evaluated the seeding indicators described in 
Sect. 2.4.2, deriving the associated GI through the ANN and retrieving 
the sub-sequence with the lowest GI as the most suitable sub-sequence 
for LS-PIV analysis. 

Fig. 9 show the full range of PIVlab surface velocity profiles (grey 
lines) obtained after processing all the extracted sub-sequences for each 
synthetic case. The profiles associated to the best and the worst sub- 
sequences in terms of GI are highlighted in black and in red, respec
tively, while imposed velocity by the ISG is also reported for comparison 
by blue markers. 

The variability of the PIVlab response over the various sub-sequences 
is much less evident than for the real cases, since, for synthetic cases, it 
depends exclusively on the different tracer density and distribution, 
while in real cases it is also affected by other disturbance effects, inev

itably present despite the application of graphical enhancement pre- 
processing procedures. Results shown in Fig. 9 confirm the reliability 
of the proposed procedure also under conditions rather far from those 
considered to train the ANN core module and experienced during the 
real field measurements campaign. For both the synthetic sequences 
tested, the best sub-sequences detected by the proposed procedure are 
characterized by surface velocity profiles in satisfying agreement with 
the ISG imposed surface velocity profiles, with an error evaluated in 
terms of RMSE near to the lowest RMSE over all the sub-sequences 
(0.020 m/s vs 0.014 m/s for faster case, and 0.072 m/s vs 0.035 m/s 
for slower case). At the same time, the worst sub-sequences show RMSE 
values close to the highest RMSE over all the sub-sequences (0.072 m/s 
vs 0.084 m/s for the faster case, and 0.153 m/s vs 0.154 m/s for the 
slower case), providing the highest error along the riverbanks. In terms 
of δ, the best sub-sequences detected for both the synthetic cases also 
show an almost perfect agreement with ISG imposed profiles, with 
values equal to 0.99. 

4. Discussion 

The proposed work is aimed to the development of operative pro
cedures for field applications of optical techniques. Considering the 
critical influence that seeding density (Liu et al., 2021; Pumo et al., 
2021; Bandini et al., 2022) and distribution (Dal Sasso et al., 2020, 
2021a) may have in the optical software response, the proposed pro
cedure represents an useful and practical instrument with the potenti
ality of automatically detecting an optimal portion of a recorded video 
sequence in terms of tracer characteristics for LS-PIV analyses. This tool 
can be considered as a fundamental component of the pre-processing 
phase in the workflow of image-based analyses. From the application 
of the proposed procedure to the 12 field measurements considered in 
this study, in fact, it is possible to notice that processing the best sub- 
sequence automatically extracted at each case rather than processing 
the entire available sequence leads to a percent reduction of the RMSE, 
on average, equal to 65 %. The main practical implication is that the best 
sub-sequences identified by the proposed procedure may have an in
formation content higher than the entire sequences from which they are 
extracted. The identification of a smaller sequence, characterized by the 

Fig. 9. Comparison between the velocity imposed in the ISG (blue star 
markers) for the generation of two synthetic image sequences, and the PIVlab 
surface velocity profiles obtained by processing all the sub-sequences extracted 
for each synthetic sequence (grey lines). The best (lowest GI, black lines) and 
the worst (highest GI, red lines) surface velocity profiles identified by the 
automatic procedure are also reported. Upper graph refers to the synthetic 
image sequence with average surface velocity of 2 m/s, while bottom graph 
refers to the synthetic sequence with average velocity of 0.5 m/s. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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best compromise in terms of seeding density and distribution conditions, 
both in space and time, potentially allows for removing from the ana
lyses scarcely sampled frames that may disturb the overall surface ve
locity field reconstruction, for example discarding the initial and final 
portions of the sequence, which are usually affected by a reduced 
presence of tracer with not well distributed patterns. This could allow 
for a significant improvement in the ability of LS-PIV software to 
reproduce velocity profiles, especially when tracer is artificially and 
manually introduced and there is scarce control on the seeding 
procedure. 

The procedure basically extends an existing approach by Pizarro 
et al. (2020b), using a different and more complete metric for the 
seeding characterization and the consequent best sub-sequence identi
fication and integrating the entire modeling chain in a unique algorithm 
coded in MATLAB environment. In particular, the SDI index used in 
Pizarro et al. (2020b), is obtained by an a-priori imposed functional 
exponential relationship between two seeding indicators of tracer den
sity and distribution, calibrated numerically exclusively using synthetic 
sequences generated under controlled conditions. 

The characterization of the seeding conditions of an images sequence 
is evaluated in the present work in a more comprehensive manner; the 
metric here adopted, the GI, is in fact based on four seeding character
istics, with two (i.e., TD and SD) rather similar to those used to compute 
the SDI and describing the spatial variability of seeding characteristics, 
and two further indicators that allow for taking into account also the 
temporal variability of tracer density (ISDCV) and its spatial distribution 
(UC) along the processed image sequence. Differently from the SDI, the 
GI does not describe the mean density and distribution of tracer in a 
sequence, but rather it is a “state variable” that must be evaluated only 
in relative terms, comparing the different values associated to all the 
sub-sequences that can be extracted from the original video. Thus, the GI 
essentially measures, in relative terms, the suitability for LS-PIV analysis 
of a sub-sequence as a function of its seeding conditions. The relation
ship between LS-PIV performances and the seeding characteristics is 
here derived empirically, using a data-driven soft computing-based 
approach and exploiting a variety of field case studies, characterized 
by different conditions in terms of shape of cross-section, roughness of 
the channel bed and banks, vegetation, flow regime, and other envi
ronmental and hydraulic features. 

The direct comparison between approaches using as discriminator 
metric for the seeding status, the SDI and the GI, has demonstrated the 
superiority of the empirically based method proposed. In many cases, 
the sub-sequence with the lowest SDI was not the actual best sub- 
sequence, corresponding to the sub-sequence allowing for the most ac
curate surface velocity field reconstruction after LS-PIV processing. 
Moreover, in some cases, the sub-sequences with the lowest and highest 
SDI provided similar accuracy or even counterintuitive results. On the 
contrary, the surface velocity profiles associated to the optimal sub- 
sequence based on GI have always shown a high matching degree 
with the reference ADCP profile, with performances very close or 
coincident with best achievable at each case, and always better than that 
corresponding to sub-sequence with the highest GI. 

The core module of the procedure is an ANN that was trained with a 
rather wide number of field measurements. Nevertheless, the velocity 
characterizing the considered case studies were all representative of low 
flow conditions, with rather low average values, and this is probably the 
strongest limitation of the proposed approach. Despite the suitability of 
the procedure for higher velocity conditions was here successfully tested 
numerically, using properly generated synthetic sequences, the pro
posed approach could benefit from a future recalibration once other 
field measurements under high velocity conditions will be available. 

5. Conclusions 

Optical techniques are promising methods that allow for integrating 
or replacing traditional approaches to the river monitoring, offering a 

series of relevant advantages; they are low-cost, non-intrusive mea
surement techniques, permitting to acquire measures also when tradi
tional methods cannot be applied, such as during floods. 

In this paper we focused on the LS-PIV technique, which is one of the 
most used optical techniques for river monitoring in field applications. 
Many pre-processing operations can significantly improve the accuracy 
of cross-correlation algorithms, which represent the core modules of the 
most common LS-PIV based software. The performances of such pro
grams are strictly dependent on the tracer conditions of the analyzed 
images sequence in terms of density and distribution in space and time. 
Ensuring proper seeding conditions in field measurements is often a hard 
challenge, due to the scarce control in the seeding process, especially 
when tracer is manually introduced. Many studies, including the present 
one, have demonstrated how processing only a limited and better seeded 
portion of the entire video recorded rather than the entire available 
sequence may considerably improve LS-PIV software performances. 

This study has proposed a new procedure, accounting for the char
acteristics and time–space variability of the tracer along the entire ac
quired video, which allows for identifying and extracting automatically 
the most suitable sub-sequence for LS-PIV applications. The methodol
ogy was developed empirically, using data acquired from several field 
measurements for which benchmark ADCP surface velocity profiles 
were also available for specific transects. The procedure is based on a 
Global Index, GI, derived through an artificial neural network (ANN) as 
a function of different indicators characterizing the seeding conditions 
over the full examined sub-sequence, and it is aimed to identify among 
all the sub-sequences extractable from a case study that most suitable for 
LS-PIV analysis. 

The application of the procedure to ten different calibration case 
studies has demonstrated the high reliability of the method and its po
tentialities in improving LS-PIV based reconstruction of the surface ve
locity profiles. The suitability of the procedure under conditions 
different from those experienced in the cases considered for the gener
ation of the procedure was also successfully tested on two independent 
real case studies and using synthetically generated image sequences, 
with performance in validation similar to those achieved in calibration. 
The procedure developed is very simple and quick, and it could be 
particularly useful for all the cases where environmental and hydraulic 
conditions could negatively influence seeding motion, resulting in not 
constant and well-distributed particle patterns. The ability of the pro
cedure in isolating the best portion of raw videos recorded during field 
measurement campaigns, in terms of seeding density and its distribu
tion, has also a beneficial effect on the estimation of the discharge in a 
specific section of the river, reducing the overall uncertainty related to 
the estimation of surface velocities. Although the proposed procedure 
was implemented using LS-PIV technique, it could potentially support 
also other optical methods; for example, future research could be aimed 
at quantifying the benefits obtainable in Large-Scale Particle Tracking 
Velocimetry applications. 
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