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We consider an elliptic equation driven by a p-Laplacian-like operator, on an n-
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1. Introduction

Let N be a connected, without boundary, n-dimensional Riemannian manifold. In
this paper we study the following elliptic equation:∫

N
|∇x|p−2∇x∇ydHn +

∫
N

|∇x|2p−2∇x√
1 + |∇x|2p

∇ydHn

=

∫
N
g(x)y dHn for all y ∈ W 1,p(N). (1)

In this equation, we incorporate the p-Laplacian-like operator, with 1 < p < +∞.
We mention that Hn is the volume measure on N induced by the Riemannian
metric on N (here, we suppose Hn(N) < +∞). Also, g : R → R is continuous and
has certain other regularity and growth properties listed in the sequel. The basic
hypotheses on g are as follows:

(g1)
g(s)

|s|p−1
→ 0 as s → 0,

(g2) G(s) > 0 for s ̸= 0, with G : R → R given as G(s) =
∫ s
0 g(t)dt, s ∈ R,

(g3) there exists s0 > 0 such that sg(s)− 2pG(s) > 0 if |s| > s0.

Remark 1.1 If (g1) and (g2) hold, then for every ε there exists s0 > 0 such that

G(s) ≤ ε|s|p if |s| < s0. (2)
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Remark 1.2 If (g2) and (g3) hold, then for all κ ∈ [p, 2p] there exists s0 > 0 such
that

G(s) ≥ a0|s|κ if |s| ≥ s0, for some a0 > 0. (3)

So, we can find a0, a1 > 0 such that

G(s) ≥ a0|s|p − a1 for s ∈ R. (4)

Also, we have

G(r) ≤ G(s)(r/s)κ if s0 ≤ r ≤ s or s ≤ r ≤ −s0. (5)

So, for all σ > 0, we can find a > 0 such that

G(s) ≤ abκG(s/b) if |s| ≥ σ, 0 < b < 1. (6)

Our work here continues the one by Barletta-Cianchi-Maz’ya [3]. In [3] the
differential operator is the p-Laplacian. The authors prove the existence of a
nontrivial solution, by using the isocapacitary inequality of N , which for all
measurable set E ⊂ N , with 2Hn(E) ≤ Hn(N), gives us

ηN,p(Hn(E)) ≤ CN,p(E), (7)

where ηN,p : [0,Hn(N)/2] → [0,+∞] is the isocapacitary function

ηN,p(s) = inf {CN,p(E) : E ⊂ N, s ≤ Hn(E) ≤ Hn(N)/2} for s ∈ [0,Hn(N)/2]

and CN,p(E) is the condenser capacity of E

CN,p(E) = inf

{∫
N
|∇u|pdHn : u ∈ W 1,p(N), u ≥ 1 Cp-quasi everywhere in E

}
,

where Cp-quasi everywhere means that the condition holds outside a set of p-
capacity zero. Recall that the p-capacity is defined by

Cp(E) = inf

{∫
N
|∇u|pdHn : u ∈ W 1,p

0 (N), u ≥ 1 in some neighbourhood of E

}
.

The isocapacitary inequality was defined by Maz’ya [9] to obtain a priori bounds
for solutions to nonlinear elliptic equations in Sobolev spaces. For earlier related
discussion and results, we refer to Cianchi-Maz’ya [6], Maz’ya [8], Milman [10],
and the references therein. For other results on elliptic equations see Vétois [18]
(existence of multiple solutions on compact manifold) and Sun [17] (nonexistence
of positive solutions on noncompact manifold).
We mention that elliptic equations driven by the p-Laplacian-like operator attract

considerable interest since this operator arises in problems of mathematical physics
(for instance, it is useful to model the phenomenon of capillarity). So, one can found
various existence and multiplicity results for such equations in the recent literature.
We recall the papers of Chen-Luo [5], Papageorgiou-Rocha [12], Rodrigues [15],
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Vetro [21], Zhou [23] (Dirichlet problem), Afrouzi-Kirane-Shokooh [1], Shokooh [16]
(Neumann problem).
Here, we produce a nontrivial solution of (1), by using a Palais-Smale compactness

condition and a mountain pass geometry. For other types of differential operators see
also Vetro [19, 20] (Neumann and Robin problems) and Vetro-Vetro [22] (Dirichlet
problem).

2. Mathematical background

In our analysis of equation (1), we will use the Sobolev type space W1,p(N), 1 ≤ p ≤
+∞, and the Orlicz space LΦ(N) of a Young function Φ : [0,+∞[→ [0,+∞]. Clearly
LΦ(N) reduces to Lp(N) whenever Φ(s) = sp, 1 ≤ p < +∞. Also LΦ(N) = L∞(N),

where Φ(s) =

{
0 if 0 ≤ s ≤ 1,

+∞ if s > 1.

According to Barletta-Cianchi-Maz’ya [3], we start by the following definition.

Definition 2.1 We say that Φ : [0,+∞[→ [0,+∞] is a Young function if

Φ(s) =

∫ s

0
ϕ(t)dt for s ≥ 0,

for some non-decreasing, left-continuous function ϕ : [0,+∞[→ [0,+∞] such that
neither ϕ ≡ 0 nor ϕ ≡ +∞. Also, Φ∗(s) = supt≥0{ts − Φ(t)} is called the Young
conjugate of Φ.

We have

Φ∗(s) =

∫ s

0
ϕ−1(t)dt for s ≥ 0

(ϕ−1 is the (generalized) left-continuous inverse of ϕ).

Now, Φp : [0,+∞[→ [0,+∞] defined by Φp(s) = |s|pp−1, 1 ≤ p < +∞, is an easy
example of Young function.

Remark 2.2 Given a Young function Φ : [0,+∞[→ [0,+∞], we have

Φ(s) ≤ sϕ(s) ≤ Φ(2s) for s > 0. (8)

Given two Young functions Φ,Ψ : [0,+∞[→ [0,+∞], we say that Φ dominates Ψ
globally (near infinity) if there is k > 0 such that

Ψ(s) ≤ Φ(ks) for s > 0 (for s ≥ s0 ≥ 0). (9)

Provided that Φ and Ψ dominate each other globally (near infinity), we say that
Φ and Ψ are equivalent globally (near infinity). The notion of equivalent functions
applies not necessarily to Young functions (as shown in the following example).

Example 2.3 Let ω :]0,+∞[→ [0,+∞[ be such that s → ω(s)

s
is non-decreasing
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and consider the Young function defined as

Φ(s) =

∫ s

0
t−1ω(t)dt for s > 0.

From (8) and since s−1ω(s) is non-decreasing, we have

Φ(s) ≤ ω(s) ≤ Φ(2s) for s > 0. (10)

It follows that Φ and ω are globally equivalent.

Given two finite-valued Young functions Φ,Ψ : [0,+∞[→ [0,+∞[, we say that Ψ
increases essentially more slowly than Φ near infinity if

Ψ(χs)

Φ(s)
→ 0 as s → +∞, for all positive χ.

We recall the Luxemburg norm related to a Young function Φ.

∥x∥LΦ(N) = inf

{
χ > 0 :

∫
N
Φ

(
|x|
χ

)
dHn ≤ 1 with x : N → R measurable

}
.

Also, we have

LΦ(N) = {x : x is measurable and ∥x∥LΦ(N) < +∞},
W1,p(N) = {x : x is weakly differentiable on N and |∇x| ∈ Lp(N)},
W 1,p(N) = W1,p(N) ∩ Lp(N) (the standard Sobolev space),

∥x∥W 1,p(N) = ∥∇x∥Lp(N) + ∥x∥Lp(N) (here ∥∇x∥Lp(N)∥ = |∇x|∥Lp(N)), (11)

W 1,p
0 (N) = the closure in W 1,p(N) of the set of smooth

compactly supported functions on N ,

W 1,p
⊥ (N) =

{
x ∈ W 1,p(N) : xm =

1

Hn(N)

∫
N
xdHn = 0

}
,

∥x∥ = ∥∇x∥Lp(N) + |xm|,

W 1,p(N) = R⊕W 1,p
⊥ (N).

For all x ∈ LΦ(N) and y ∈ LΦ∗
(N), we have∫

N
|xy|dHn ≤ 2∥x∥LΦ(N)∥y∥LΦ∗ (N) (Hölder’s inequality). (12)

If Φ dominates Ψ globally, it follows that

∥x∥LΨ(N) ≤ k∥x∥LΦ(N) for all x ∈ LΦ(N), k > 0 as in (9). (13)

Moreover, if Φ dominates Ψ near infinity, then (13) remains true with k =
k(Φ,Ψ,Hn(N)) (see [4, 13, 14]).
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Finally, we put supp(x) = {z ∈ N : x(z) ̸= 0} and

med(x) = inf
{
s ∈ R : 2Hn({z ∈ N : x(z) > s}) ≤ Hn(N)

}
,

that is, med(x) is the median of a measurable function x : N → R.
Here, a key tool is the following theorem of Barletta-Cianchi-Maz’ya [3, Theorem

2.1].

Theorem 2.4 Let Φ : [0,+∞[→ [0,+∞[ be such that Φ(s1/p), 1 ≤ p < +∞, is a
Young function (Φ is a Young function, too). We put

µ(α) = sup
t∈]0,α[

1

ηN,p(t)Φ−1(1/t)p
, α ∈

]
0, H

n(N)
2

]
.

The following assertions are equivalent:

(i) There is α ∈
]
0, H

n(N)
2

]
such that

µ(α) < +∞. (14)

(ii) µ(α) < +∞ for all α ∈
]
0, H

n(N)
2

]
.

(iii) For all x ∈ W1,p(N) with Hn(supp(x)) ≤ α, there is a0 satisfying

∥x∥LΦ(N) ≤ a0∥∇x∥Lp(N). (15)

(iv) For all x ∈ W1,p(N) with Hn(supp(x)) ≤ α, there is a0 satisfying∫
N
Φ
( |x|
a0∥∇x∥Lp(N)

)
dHn ≤ 1. (16)

(v) For all x ∈ W1,p(N), there is a0 satisfying

∥x−med(x)∥LΦ(N) ≤ a0∥∇x∥Lp(N). (17)

(vi) We have

W1,p(N) ↪→ LΦ(N). (18)

Also, in (15)-(17), we can choose

a0 = kµ(α)1/p for some constant k = k(p). (19)

Indeed, the results in Barletta-Cianchi-Maz’ya [3] are proved for the following
class of manifolds:

Dp(η) = {N : ηN,p(s) ≥ η(s) with s near at zero,

η :]0,+∞[→ [0,+∞[ quasi-concave}.
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If N ∈ Dp(η), we have

inf
s∈]0,Hn(N)/2[

ηN,p(s)

s
> 0.

Remark 2.5 If lims→0+ ηN,p(s) > 0, then (14) is true for each Φ : [0,+∞[→
[0,+∞], and so also for LΦ(N) = L∞(N). Indeed inequality (15) becomes

∥x∥L∞(N) ≤ a0∥∇x∥Lp(N) (20)

for all x ∈ W1,p(N) such that α ≥ Hn(supp(x)), where a0 is as in (19).

We recall some consequences of Theorem 2.4.

Corollary 2.6 Let Φ : [0,+∞[→ [0,+∞[ be such that Φ(s1/p), 1 ≤ p < +∞, is a

Young function. If (14) holds for some α ∈]0, H
n(N)
2 ] (and so for all α ∈]0, H

n(N)
2 ]),

we have W 1,p(N) = W1,p(N), up to equivalent norms. Also, there is k = k(p) such
that

∥x∥LΦ(N) ≤ kµ

(
Hn(N)

2

)
∥∇x∥Lp(N) for all x ∈ W 1,p

⊥ (N) (21)

and

∫
N
Φ

 |x|

kµ
(
Hn(N)

2

)
∥∇x∥Lp(N)

 dHn ≤ 1 for all x ∈ W 1,p
⊥ (N). (22)

Proof. Note that
Φ(s1/p)

s
is non-decreasing, and so Φ(s) dominates sp near infinity.

Thus LΦ(N) ↪→ Lp(N) and W1,p(N) ↪→ Lp(N) (by (18)). So W1,p(N) ↪→ W 1,p(N).
This leads to W 1,p(N) = W1,p(N) since W 1,p(N) ↪→ W1,p(N) holds trivially.
Moreover (21) follows from (17), since ∥x−xm∥LΦ(N) ≤ 2∥x−med(x)∥LΦ(N). Finally,
we mention that (22) and (21) are equivalent (by the Luxemburg norm). ■

The following result concerns the compactness of Sobolev embeddings.

Corollary 2.7 Let Φ and p as in Theorem 2.4. If (14) holds and Ψ is a Young
function increasing essentially more slowly than Φ near infinity, then

W 1,p(N) ↪→ LΨ(N) (23)

is compact.

Proof. Since Ψ increases essentially more slowly than Φ near infinity, appealing to
a property of Orlicz-Sobolev embeddings (see Theorem 3.4 of Hajlasz-Liu [7]) we
have the compactness of (23). Recall that (18) says us W 1,p(N) ↪→ LΦ(N). ■

Denote by g : R → R a continuous function and set G(s) =
∫ s
0 g(t)dt, s ∈ R. Also

consider ĝ : R → [0,+∞[ given by

ĝ(s) = max
t∈[−|s|,|s|]

|g(t)| for s ∈ R,
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and Ĝ : [0,+∞[→ [0,+∞[ defined as

Ĝ(s) =

∫ s

0
ĝ(t)dt for s ∈ [0,+∞[. (24)

Clearly ĝ is even in R and non-decreasing in [0,+∞[, so that Ĝ is a Young function.
We mention the following basic facts.

Lemma 2.8 [3, Lemma 3.5] Let f : ]0, t0[→]0,+∞[ be a quasi-concave function,
with t0 > 0, and g : R → R be a continuous function satisfying:

(i) sf−1(1/s) → 0 as s → +∞;
(ii) sf−1(1/s)g(qs) → 0 as s → +∞, for all q ∈ R.

For all q ∈ R, we have

lim
s→+∞

sf−1(1/s)ĝ(qs) = lim
s→+∞

f−1(1/s)G(qs) = lim
s→+∞

f−1(1/s)Ĝ(|q|s) = 0. (25)

Definition 2.9 Let (X,X∗) be a Banach topological pair. We say that J : X → R
has the Palais-Smale property if any sequence {xi} satisfying:

(i) {J(xi)} is bounded;
(ii) ∥J ′(xi)∥X∗ → 0 as i → +∞,

admits a convergent subsequence.

3. Existence of a nontrivial solution

To obtain our result, we need a mountain pass geometry. So, we recall an useful
version of the mountain pass theorem (see Theorem 5.3 of Rabinowitz [11]). Let
B(0, ρ) = {x ∈ W 1,p(N) : ∥x∥ < ρ}, ρ > 0. Fixed x̂ ∈ W 1,p(N) and ρ > 0, we set

[0, ρx̂] = {x ∈ W 1,p(N) : x = χx̂ for some χ ∈ [0, ρ]}.

We mention that by ∂Qρ we denote the boundary of Qρ = [−ρ, ρ]⊕ [0, ρx̂].

Theorem 3.1 Consider W 1,p(N) and W 1,p
⊥ (N) given as above (recall W 1,p(N) =

R ⊕ W 1,p
⊥ (N)). Let J : W 1,p(N) → R be a C1-functional with the Palais-Smale

property such that:
(i) there are r, γ > 0 satisfying J|∂B(0,r)∩W 1,p

⊥ (N) ≥ γ;

(ii) there are x̂ ∈ ∂B(0, 1) ∩W 1,p
⊥ (N) and ρ > r satisfying J|∂Qρ

≤ 0.
Thus J admits a critical point x̃ such that J(x̃) = c ≥ γ, with c =
infβ∈Θ supx∈Qρ

J(β(x)), where Θ = {β ∈ C0(Qρ,W
1,p(N)) : β|∂Qρ

= id|∂Qρ
}.

Here, we consider the norm ∥x∥ = ∥∇x∥Lp(N) + |xm| for all x ∈ W 1,p(N) (by
Corollary 2.5 of [3], this norm is equivalent to the standard one ∥ · ∥W 1,p(N), see

(11)), and define J : W 1,p(N) → R by

J (x) =
1

p

∫
N
|∇x|pdHn +

1

p

∫
N

[√
1 + |∇x|2p − 1

]
dHn −

∫
N
G(x)dHn
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for all x ∈ W 1,p(N). It is well-known that the solutions of (1) are the critical points
of J .
We collect some useful results derived from [3].

Proposition 3.2 [3, Proposition 3.2] Let Φ : [0,+∞[→ [0,+∞[ be such that

Φ(s
1

p ), 1 ≤ p < +∞, is a Young function. Let η be a quasi-concave function
with N ∈ Dp(η), and g : R → R be a continuous function satisfying (g1), (g2).
If lims→0+ η(s) = 0, we suppose that

sup
t∈]0,α[

1

η(t)Φ−1(1t )
p
< +∞ for some α ∈

]
0,

Hn(N)

2

[
, (26)

g satisfies (g3) and lims→+∞ η−1(s−p)sg(qs) = 0 for all q ∈ R,
G(s) ≤ Φ(γ|s|) if |s| ≥ s1, for some γ > 0 and s1 > 0. (27)

Then

lim
x∈W 1,p

⊥ (N),∥∇x∥Lp(N)→0

∫
N G(x)dHn

∥∇x∥pLp(N)

= 0. (28)

We can find δ > 0 so that

J|∂B(0,r)∩W 1,p
⊥ (N) > 0 if δ > r. (29)

Proof. We show that (28) implies (29). By (28), we can find δ > 0 such that∫
N
G(x)dHn <

1

p
∥∇x∥pLp(N) for all x ∈ W 1,p

⊥ (N) satisfying ∥∇x∥pLp(N) < δ.

From

J (x) =
1

p

∫
N
|∇x|pdHn +

1

p

∫
N

[√
1 + |∇x|2p − 1

]
dHn −

∫
N
G(x)dHn

≥ 1

p
∥∇x∥pLp(N) −

∫
N
G(x)dHn

>
1

p
∥∇x∥pLp(N) −

1

p
∥∇x∥pLp(N) = 0

for all x ∈ ∂B(0, r) ∩W 1,p
⊥ (N) with δ > r, we deduce (29).

Now, we have to prove (28). We distinguish the cases lims→0+ η(s) = 0 and
lims→0+ η(s) > 0. In the first case, as G is continuous, and Φ is increasing and
goes to infinity (at infinity), by (27) for all s0 > 0, there is γ0 > 0 such that

G(s) ≤ Φ(γ0|s|) if |s| ≥ s0. (30)

Now, given ε > 0, one can find s0 so that (2) is true. For x ∈ W 1,p
⊥ (N), put

r = ∥∇x∥pLp(N). From (26), we have

inf
t∈]0,Hn(N)/2[

ηN,p(t)

t
> 0 for all N ∈ Dp(η).
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By Corollary 2.5 of [3], one can find a0 = a0(p,N) so that

∥x∥Lp(N) ≤ a0∥∇x∥Lp(N) for all x ∈ W 1,p
⊥ (N). (31)

Thus, by inequalities (2) and (31), we get∫
{|x|≤s0}G(x)dHn

r
≤ ε

∫
N |x|pdHn

r
≤ εap0. (32)

Put σ = s0 in (6), and choose r so that b = γ0kµ(Hn(N)/2)r1/p < 1 (k as in (21)).
From (6), (30) and by the equivalence of (21) and (22), we have∫

{|x|>s0}G(x)dHn

r
(33)

≤ abκ

∫
{|x|>s0}G

(
x
b

)
dHn

r

= aγκ0 k
κµ(Hn(N)/2)κr(κ−p)/p

∫
{|x|>s0}

G
(x
b

)
dHn

≤ aγκ0 k
κµ(Hn(N)/2)κr(κ−p)/p

∫
{|x|>s0}

Φ

(
|x|

kµ(Hn(N)/2)r1/p

)
dHn

≤ aγκ0 k
κµ(Hn(M)/2)κr(κ−p)/p, where κ ∈]p, 2p].

Since ε is arbitrary, (32) and (33) imply (28).
We consider the second case, that is, lims→0+ η(s) > 0. For s0 as in (2) and a0 as

in (20), if s0
a0

> r1/p we have

∫
N G(x)dHn

r
=

∫
{|x|≤s0}G(x)dHn

r
≤ ε

∫
N |x|pdHn

r

≤ ε∥x∥pL∞(N)

∫
N dHn

r
≤ εap0H

n(N) (fixed ε > 0).

This implies that (28) holds true (again ε is arbitrary). ■

Proposition 3.3 If g : R → R is continuous and (g2), (g3) hold, then we can find

x̂ ∈ ∂B(0, 1) ∩W 1,p
⊥ (N) and ρ > 0 such that

J|∂Qρ
≤ 0. (34)

Proof. To simplify the notation, let us define N1 = {z ∈ N : x̂(z) ≥ 1}, N2 = {z ∈
N : x̂(z) ≤ −1}, N+ = {z ∈ N : x̂(z) ≥ 0} and N− = {z ∈ N : x̂(z) ≤ 0} with

x̂ ∈ ∂B(0, 1) ∩W 1,p
⊥ (N) such that

Hn(N1) > 0 and Hn(N2) > 0,

⇒ Hn(N+) ≥ Hn(N1) > 0 and Hn(N−) ≥ Hn(N2) > 0.
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Given s0 > 0 such that (5) holds, we put

ρ > max

{(
2sκ0

pHn(N1)G(s0)

) 1

κ−p

,

(
2sκ0

pHn(N2)G(−s0)

) 1

κ−p

, s0

}
, κ ∈]p, 2p].

We have∫
N
|∇(µx̂)|pdHn = ∥µx̂∥p1,p = µp for µ > 0 (as x̂ ∈ ∂B(0, 1) ∩W 1,p

⊥ (N)).

If µ ∈ ]0, ρ], by (g2) and (5), we get

J (ρ+ µx̂)

=
1

p

∫
N
|∇(ρ+ µx̂)|pdHn +

1

p

∫
N

[√
1 + |∇(ρ+ µx̂)|2p − 1

]
dHn −

∫
N
G(ρ+ µx̂)dHn

=
1

p

∫
N
|∇(µx̂)|pdHn +

1

p

∫
N
[
√

1 + |∇(µx̂)|2p − 1]dHn −
∫
N
G(ρ+ µx̂)dHn

≤ 2

p
µp −

∫
N
G(ρ+ µx̂)dHn

≤ 2

p
ρp −

∫
N+

G(ρ+ µx̂)dHn

≤ 2

p
ρp − G(s0)ρ

κHn(N+)

sκ0

≤ ρp
(
2

p
− G(s0)Hn(N+)

sκ0
ρκ−p

)
≤ ρp

(
2

p
− G(s0)Hn(N+)

sκ0

2sκ0
pHn(N+)G(s0)

)
= 0.

Also, we have

J (−ρ+ µx̂) ≤ 2

p
ρp − G(−s0)ρ

κHn(N−)

sκ0

≤ ρp
(
2

p
− G(−s0)Hn(N−)

sκ0

2sκ0
pHn(N−)G(−s0)

)
= 0.

Now, we consider µ ∈ [0, ρ]. So, we get

J (µ+ ρx̂) ≤ 2

p
ρp −

∫
N1

G(µ+ ρx̂)dHn

≤ 2

p
ρp − G(s0)ρ

κHn(N1)

sκ0

≤ ρp
(
2

p
− G(s0)Hn(N1)

sκ0

2sκ0
pHn(N1)G(s0)

)
= 0.
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Next, if µ ∈ [−ρ, 0], we have

J (µ+ ρx̂) ≤ 2

p
ρp −

∫
N2

G(µ+ ρx̂)dHn

≤ 2

p
ρp − G(−s0)ρ

κHn(N2)

sκ0

≤ ρp
(
2

p
− G(−s0)Hn(N2)

sκ0

2sκ0
pHn(N2)G(−s0)

)
= 0,

Thus, if µ ∈ [−ρ, ρ], we get

J (µ) = −
∫
N
G(µ)dHn ≤ 0.

So, (34) is an immediate consequence of the above inequalities. ■

Lemma 3.4 [2, Lemma 3.5] Let Φ, Ψ be Young functions with Ψ increasing
essentially more slowly than Φ near infinity. If the function g : R → R is continuous
such that |g(s)| ≤ k(1 + (Ψ∗)−1(Ψ(k|s|))) for s ∈ R, we have:

(i) if x ∈ LΨ(N) and the sequence {xi} is bounded in LΦ(N) with xi → x in
LΨ(N), then ∫

N
g(xi)(xi − x)dHn → 0 as i → +∞;

(ii) if x ∈ LΦ(N) and {xi} is a bounded sequence in LΦ(N) such that xi → x in
LΦ(N), then

∥g(xi)− g(x)∥LΦ∗ (N) → 0 as i → +∞.

The following lemma is useful to show that the Gâteaux derivative of
∫
N G(x)dHn

is continuous.

Lemma 3.5 [3, Proposition 3.7] Let g : R → R be a continuous function, and Φ be
a Young function such that

W 1,p(N) ↪→ LΦ(N), 1 < p < +∞. (35)

Suppose that either Φ is finite-valued and there is a Young function Ψ, increasing
essentially more slowly than Φ near infinity, such that

|g(s)| ≤ k(1 + (Ψ∗)−1(Ψ(k|s|))) for s ∈ R, some k > 0, (36)

or Φ is infinite for large values of its argument (and hence LΦ(N) = L∞(N), up to
equivalent norms). Let x ∈ W 1,p(N), then

sup
y∈W 1,p(N)\{0}

∣∣ ∫
N (g(xi)− g(x))ydHn

∣∣∣
∥y∥1,p

→ 0 as i → +∞,
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for any sequence {xi} ⊂ W 1,p(N) with xi → x in W 1,p(N).

Now, we prove the following result.

Proposition 3.6 J is a C1-functional, provided that Φ, Ψ and g satisfy the
hypotheses of Lemma 3.5.

Proof. We note that
∫
N |∇x|pdHn+

∫
N [
√

1 + |∇x|2p−1]dHn is a C1-functional. So,

we need to show that
∫
N G(x)dHn is a C1-functional too.

Given 0 < ε < 1, for x, y ∈ W 1,p(N) we have

1

ε

[∫
N
G(x+ εy)dHn −

∫
N
G(x)dHn

]
=

∫
N

G(x+ εy)−G(x)

ε
dHn.

Since g is continuous, we get

lim
ε→0+

1

ε
[G(x(z) + εy(z))−G(x(z))] = g(x(z))y(z) for a.e. z ∈ N.

Also, we can find 0 < ϑz < 1 satisfying

1

ε
[G(x(z) + εy(z))−G(x(z))] = g(x(z) + εϑzy(z))y(z) for a.e. z ∈ N,

⇒ 1

ε
[G(x(z) + εy(z))−G(x(z))] ≤ k[1 + (Ψ∗)−1(Ψ(k(|x(z) + εϑzy(z)|)))]y(z)

≤ k[1 + (Ψ∗)−1(Ψ(k(|x(z)|+ |y(z)|)))]|y(z)| for a.e. z ∈ N ,

(if Φ is finite-valued and (36) is true).

The right-hand side of the last inequality belongs to L1(N) as∫
N
(Ψ∗)−1(Ψ(k(|x|+ |y|)))|y|dHn

≤ 2∥(Ψ∗)−1(Ψ(k(|x|+ |y|)))∥LΨ∗ (N)∥y∥LΨ(N) (by (12))

< +∞ (by (35) and as Ψ grows essentially more slowly than Φ near infinity).

The above facts and Lemma 3.5 imply that the Gâteaux derivative of
∫
N G(x)dHn

is continuous. Indeed

lim
ε→0+

1

ε

[∫
N
G(x+ εy)dHn −

∫
N
G(x)dHn

]
=

∫
N
g(x)ydHn,

for all x, y ∈ W 1,p(N), by the dominated convergence theorem. The continuity of∫
N g(x)ydHn is a consequence of Lemma 3.5. ■

Proposition 3.7 (Palais-Smale condition) Let Φ : [0,+∞[→ [0,+∞[ be such

that Φ(s
1

p ), 1 < p < +∞, is a Young function. Let η be a quasi-concave function
with N ∈ Dp(η) such that (26) holds, and g : R → R be a continuous function
satisfying (g2), (g3). If either Φ is finite-valued and Ψ is a Young function increasing
essentially more slowly than Φ near infinity for which (36) holds, or Φ is infinite
for large values of its argument, then J has the Palais-Smale property.
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Proof. In view of the definition of Palais-Smale property, we consider a sequence
{xi} ⊂ W 1,p(N). So, we may assume that J (xi) → k as i → +∞, for some k ∈ R
(by passing to a subsequence, if necessary). Fixed ε > 0, we can find a natural
number i0 satisfying

k + ε > J (xi) > k − ε for i > i0. (37)

From ∥J ′(xi)∥W 1,p(N)∗ → 0 as i → +∞, it follows that we can find {εi}, with
εi → 0+, such that

−εi∥y∥1,p ≤
∫
N
|∇xi|p−2∇xi∇ydHn +

∫
N

|∇xi|2p−2∇xi∇y√
1 + |∇xi|2p

dHn −
∫
N
g(xi)ydHn

≤ εi∥y∥1,p for all y ∈ W 1,p(N). (38)

Now, (g3) implies that there is s0 > 0 with

sg(s)− 2pG(s) > 0 if |s| > s0. (39)

By (37), we have

k + ε > J (xi)

=
1

p

∫
N
|∇xi|pdHn +

1

p

∫
N

[√
1 + |∇xi|2p − 1

]
dHn −

∫
N
G(xi)dHn, (40)

for i > i0. By (40) and the first inequality of (38) (with y = xi), we obtain

1

2p
∥∇xi∥pLp(N) +

1

p

∫
N

[√
1 + |∇xi|2p − 1− 1

2

|∇xi|2p√
1 + |∇xi|2p

]
dHn (41)

− 1

2p

∫
N
[2pG(xi)− g(xi)xi]dHn ≤ (k + ε) +

εi
2p

∥xi∥1,p

if i > i0. Since ∫
N

[√
1 + |∇xi|2p − 1− 1

2

|∇xi|2p√
1 + |∇xi|2p

]
dHn ≥ 0,

from (39) and (41) we have

1

2p
∥∇xi∥pLp(N)

≤(k + ε) +
εi
2p

∥∇xi∥Lp(N) +
εi
2p

|(xi)m|+ 1

2p

∫
|xi|≤t0

[2pG(xi)− g(xi)xi]dHn

for i > i0. By the continuity of g, we can find a0 satisfying

1

2p
∥∇xi∥pLp(N) ≤ a0 +

εi
2p

∥∇xi∥Lp(N) +
εi
2p

|(xi)m| for i > i0. (42)
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We have to prove that {xi} is bounded in W 1,p(N). On the contrary, we assume
that {xi} is unbounded. So, if {∥∇xi∥Lp(N)} is unbounded, we can find a natural
number i1 ≥ i0 such that

∥∇xi∥pLp(N) < |(xi)m| if i > i1 (by (42)). (43)

By Remark 1.2 we can find a1 > 0 and a2 > 0 such that (4) holds. So

J (xi) ≤
2

p
∥∇xi∥p −

∫
N
G(xi)Hn <

2

p
|(xi)m|+ a1 − a2∥xi∥pLp(N) (by (43))

whenever i > i1. We conclude that J (xi) → −∞, as i → +∞, which leads
to contradiction with J (xi) → k ∈ R. So, {∥∇xi∥Lp(N)} is bounded and hence
{|(xi)m|} is unbounded. It follows that {∥xi∥Lp(N)} is unbounded. Next, by Remark
1.2, we get

J (xi) ≤
2

p
∥∇xi∥pLp(N) + a1 − a2∥xi∥pLp(N) ≤ a3 − a2∥xi∥pLp(N) for some a3 > 0,

and again we have the absurd J (xi) → −∞ as i → +∞.
We proved that {xi} is bounded in W 1,p(N). By Theorem 2.4, we have

W 1,p(N) ↪→ LΦ(N) (see (18)), and hence {xi} is bounded in LΦ(N). By Corollary
2.7, we have that W 1,p(N) ↪→ LΨ(N) is compact. So, we can find a subsequence,
say again {xi} (without any loss of generality), which is convergent to x in LΨ(N)
(and hence also in W 1,p(N)). We have

(xi)m → xm as i → +∞. (44)

If Φ is finite-valued and (36) is true then, by (38) with y = x − xi, Lemma 3.4(i)
and the boundedness of {xi} in W 1,p(N), we have

lim
i→+∞

(∫
N
|∇xi|p−2∇xi∇(x− xi)dHn +

∫
N

|∇xi|2p−2∇xi∇(x− xi)√
1 + |∇xi|2p

dHn

)
= 0.

Passing to a subsequence if necessary, we can assume

lim sup
i→+∞

∫
N
|∇xi|p−2∇xi∇(x− xi)dHn ≤ 0 (45)

or

lim sup
i→+∞

∫
N

|∇xi|2p−2∇xi∇(x− xi)√
1 + |∇xi|2p

dHn ≤ 0. (46)

If (45) holds, then the convexity of ∥ · ∥ gives us

lim sup
i→+∞

∥∇xi∥ ≤ ∥∇x∥.
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If (46) holds, then the convexity of the function
√
1 + t2p − 1 ensures again that

lim sup
i→+∞

∥∇xi∥ ≤ ∥∇x∥.

The previous inequality implies that {∇xi} is strongly convergent to ∇x in Lp(N)
(since Lp(N) is uniformly convex). So, by (44), we have that xi → x in W 1,p(N).

■

Theorem 3.8 Let η be a quasi-concave function with N ∈ Dp(η). If (g1)-(g3) hold
true and either lims→0+ η(s) > 0 or

lim
s→0+

η(s) = 0 and lim
s→+∞

η−1(s−p)sg(qs) = 0 for all q ∈ R, (47)

then problem (1) admits a nontrivial (that is, non-constant) solution.

Proof. We mention that η :]0,+∞[→ [0,+∞[ is a (continuous) quasi-concave
function, means that η is increasing and

η(s)

s
is non-increasing. (48)

Now, if lims→0+ η(s) = 0, we consider ω :]0,+∞[→ [0,+∞[ defined by

ω(s) =
1

η−1( 1
sp )

for s > 0, (49)

which is continuous, increasing and such that

s → ω(s)

sp
is non-decreasing (as sp

η−1(sp) is non-increasing and recall (48)).

We have

η(t) =
1

[ω−1(1t )]
p

for t > 0,

⇒ (14) holds (by (26), with ω instead of Φ).

By Remark 2.2 of [3], we get easily W 1,p(N) ↪→ LΦ(N), where Φ is the Young
function defined as

Φ(s) =

∫ s

0
t−1ω(t)dt for s > 0, (50)

which is globally equivalent to ω, by Example 2.3.
Let Ĝ(s) =

∫ s
0 ĝ(t)dt, for s ∈ [0,+∞[, as in (24), and assume that (47) holds. By
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(25) and (49), with f(t) = η(t)
1

p , we have

η−1(s−p)Ĝ(qs) =
Ĝ(qs)

ω(s)
→ 0 as s → +∞, for every q > 0, (51)

⇒ Ĝ(qs)

Φ(s)
→ 0 as s → +∞, for every q > 0, (by (10) and (51)). (52)

So, by (52), we conclude that Ĝ increases essentially more slowly than Φ near
infinity. Next, since

ĝ(s) ≤ 2(Ĝ∗)−1(Ĝ(2s)) for s > 0 (by (8)),

⇒ |g(s)| ≤ 2(Ĝ∗)−1(Ĝ(2|s|)) for s ∈ R,

it follows that g satisfies the hypotheses of Lemma 3.4 (set Ψ = Ĝ and Φ as in (50)).
We conclude that all the hypotheses of Propositions 3.2, 3.3, 3.6 and 3.7 hold. The
same hypotheses hold also in the case lims→0+ η(s) > 0, provided that Φ is a Young
function that equals infinity for large values of its argument.
So, by the mountain pass theorem (Theorem 3.1), the C1-functional J admits

a critical point x̃, which is a solution to (1), with J (x̃) > 0. To conclude that x̃
is non-constant (that is, nontrivial), we observe that if x̃ = c for a certain c > 0,

then Ĵ(x̃) = −
∫
N G(c)dHn ≤ 0. This leads to contradiction with the inequality

J (x̃) > 0 and hence x̃ must be nontrivial. ■

We conclude with the following example.

Example 3.9 Let Ω ⊂ N be an open domain (as special case, Ω ⊂ Rn). We consider
the problem:

−div

((
1 +

|∇x|p√
1 + |∇x|2p

)
|∇x|p−2∇x

)
= g(x) in Ω, (53)

with Neumann boundary condition

∂x

∂n
= 0 on ∂Ω,

where n is the unit inner normal vector field on ∂Ω. Clearly, a function x ∈ W 1,p(Ω)
satisfying (1) is a weak solution of (53). Recall that in order for (1) to have a solution
is necessary that g(x0) = 0 for some x0 ∈ R. The necessity of this condition can be
proved on choosing y constant in (1).
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