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Abstract: Geometric shape models often help to extract specific contours in digital images (the
segmentation process) with major precision. Motivated by this idea, we introduce two models for the
representation of prostate shape in the axial plane of magnetic resonance images. In more detail, the
models are two parametric closed curves of the plane. The analytic study of the models includes the
geometric role of the parameters describing the curves, symmetries, invariants, special cases, elliptic
Fourier descriptors, conditions for simple curves and area of the enclosed surfaces. The models were
validated for prostate shapes by fitting the curves to prostate contours delineated by a radiologist
and measuring the errors with the mean distance, the Hausdorff distance and the Dice similarity
coefficient. Validation was also conducted by comparing our models with the deformed superellipse
model used in literature. Our models are equivalent in fitting metrics to the deformed superellipse
model; however, they have the advantage of a more straightforward formulation and they depend
on fewer parameters, implying a reduced computational time for the fitting process. Due to the
validation, our models may be applied for developing innovative and performing segmentation
methods or improving existing ones.

Keywords: parametric curves; prostate shapes; magnetic resonance images; superellipses

MSC: 65D10; 68U05; 92C55

1. Introduction

Motivated by the possibility to geometrically describe prostate shapes in magnetic
resonance (MR) images, this paper presents a study, under several mathematical aspects, of
two parametric closed curves of the plane defined by Equations (6) and (7). Making use of
these curves, we introduce new 2D models (Equation (8)) for prostate shapes in the axial
plane of MR images, which we validate by comparing their shapes with prostate contours
(ground truths) delineated by a radiologist with more than 10 years of experience.

Geometric shape models of prostates can be helpful in low-level image analysis,
like the segmentation phase, i.e., the process of extraction of prostate contours in digital
images like MR, transrectal ultrasound (TRUS) or computed tomography (CT) images.
Image segmentation is necessary for prostate volume estimation, which has a crucial role
in evaluating and managing prostate disorders, both malignant and benign [1,2]. For
example, in benign prostatic hyperplasia (BHP), the knowledge of total prostatic volume,
in conjunction with serum prostatic specific antigen, is necessary in the calculation of
prostate specific antigen density, a clinically relevant parameter for decision making [3].
Moreover, prostate volume has an essential role in prostate cancer (PCa) (several studies
showed a relationship between BHP and incidence of PCa [4–6]), and it is also routinely
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calculated for prognostic factors and treatment purposes. It is crucial for biopsy or surgical
planning, focal ablative treatments, radiation therapy or new minimally invasive therapies
like high-intensity focused ultrasound and cryotherapy [7,8].

Prostate volume is usually estimated on TRUS, CT or MR images using the ellipsoid
formula [9]. However, ellipsoid formula volume estimation is often inaccurate due to the
shape variability of the prostate gland (especially in the case of BHP with median lobe
enlargement [10]). Manual image segmentation is the best way to obtain a correct prostate
volume estimation; however, this method is time-consuming, requires experience and is
strongly operator-dependent [11]. Semiautomatic and automatic segmentation techniques
in MR, TRUS and CT images have been developed (see, for instance [7,12–27]). Recently,
deep learning methods for semiautomatic or automatic segmentation of the prostate gland
on magnetic resonance images have shown good performance [10,28]. Besides medical
applications, deep learning segmentation is employed in various other fields like agri-
culture [29,30], biology [31,32], robotics [33,34] and autonomous driving [35,36]. Popular
methods for deep learning segmentation are based on convolutional neural networks,
encoder–decoder and autoencoder models or generative adversarial networks [37]. More
generally, artificial intelligence techniques are used in the medical field not only for seg-
mentation but also for classification and prediction (radiomics) [38–42].

The prostate shape in the axial plane of an MR image may change because the prostate
consists of more parts or because it is affected by BHP, see [43]. Figure 1 displays examples
of the standard shapes (manually extracted by the radiologist).

Figure 1. Some contours (in white) of prostates (internal regions) in the axial plane delineated by the
radiologist representing the most common shapes (the images are rotated clockwise 90 degrees with
respect the usual radiologist’s visualization because of a software setting).

Curves are often used in computer-aided geometric design to model specific objects
(see [32,44–47]). Furthermore, for the specific case of prostate shape, some models are
proposed in the literature. Ladak et al. [16] employed a model made of points which are
connected with anatomic data and cubic interpolation. Jeong and Radke [48] resampled the
contours by interpolating elliptic Fourier descriptor coefficients. Ellipses have been used
in [13,27] for segmentation in TRUS images and in [17,18] for MR images. Makni et al. [19]
modeled a zone of the prostate with catenary curves between two points. Catenary curves
have equations y = a

2 (e
x
a + e−

x
a ) + c and have an appearance similar to the parabolas.

Ellipses and catenary curves are not suitable for certain prostate shapes like those
shapes with a concavity (see Figure 1). A geometric curve that can assume a concavity is
the deformed superellipse, which has been employed to describe prostate shapes and for
segmentation in TRUS images by Gong et al. [12] with very good results. Superellipses have
found applications in several other fields [49–58]), and the following equation defines them:∣∣∣∣ x

ax

∣∣∣∣ 2
ϵ

+

∣∣∣∣ y
ay

∣∣∣∣ 2
ϵ

= 1 (1)

where ax, ay, ϵ > 0. The parametric form of (1) is{
x(t) = ax|cos(tπ)|ϵsgn(cos(tπ))

0 ≤ t ≤ 2,
y(t) = ay|sin(tπ)|ϵsgn(sin(tπ))

(2)

where sgn is the sign function. In Figure 2a, some superellipses with different choices of ϵ
are shown. A superellipse can be deformed with the following transformations [59]:
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• Linear tapering along y axis {
x′ =

(
T
ay

y + 1
)

x
y′ = y

(3)

where −1 ≤ T ≤ 1. The effect of this transformation is shown in Figure 2b.
• Circular bending along the y axis

{x′ =
(

ay
β − y

)
sin

(
x

ay
β −y

)
y′ = ay

β −
(

ay
β − y

)
cos

(
x

ay
β −y

) (4)

where −1 ≤ β ≤ 1, β ̸= 0. The effect of this transformation is shown in Figure 2c.
• Rotation and translation {

x′ = x cos α − y sin α + x0
y′ = x sin α + y cos α + y0

(5)

where α ∈ [0, 2π[, x0, y0 ∈ R.

(a) (b) (c)
Figure 2. In each subfigure, a parameter changes and ax = ay = 1. The dotted, dashed and
solid curves correspond to the first, second and third value of the variable parameter, respectively.
(a) ϵ = 0.7, 1 and 1.3. (b) T = 0, 0.2 and 0.5 (ϵ = 1) . (c) β = 0.01, 0.6 and 0.8 (ϵ = 1).

The model defined by composing Equations (1) and (3)–(5) is the deformed superel-
lipse [12], and we used it as an object of comparison for the validation of our models. The
proof of goodness was obtained by fitting all of our models to the 1227 prostate contours
delineated by the radiologist. Moreover, the fitting performance was measured in terms of
mean distance, Hausdorff distance and Dice similarity coefficient. The results show that our
models are comparable to the deformed superellipse model from the point of view of error
fitting. However, the main quality of our models is the simpler formulation; indeed, it can
see in Section 2 that the models are defined by few and not complex equations. In addition,
our models depend on a smaller number of parameters, and this implies a reduced cost in
their implementation.

Other geometric descriptions of prostate shapes can be found in the literature.
Saroul et al. [20] considered the model defined by only (1), (3) and (5). Tutar et al. [24]
employed superquadrics, which are a 3D version of superellipses. Remaining in the 3D
setting, prostate shape was modeled by Tutar [23] with spherical harmonics.

This paper is organized as follows. In Section 2, we present our models based on
two parametric closed curves of the real plane (that we call CS and CC curves), and we
study their main characteristics. In Section 3, we describe the validation process on our
dataset of prostate shapes in the axial plane of MR images. The results of the validation are
shown and discussed in Section 4 along with a comparison with the deformed superellipse
model. Concluding remarks are in Section 5. Furthermore, in Appendix A, we report
more mathematical studies of the curves, like special cases, elliptic Fourier descriptors,
conditions for simple curves and area of the enclosed surfaces.
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2. Our Models

To describe the contour of the prostate in the axial plane, we propose two types of
curves as base models. We then formulate our general models considering any possible
rotations and translations in the plane.

The first curve we present is defined in terms of parameters a, b, c, d ∈ R with b, d > 0
as follows: {

x(t) = (a cos(tπ) + b) cos(tπ)
0 ≤ t ≤ 2.

y(t) = (c sin(tπ) + d) sin(tπ)
(6)

The parameters b and d are chosen to be positive because of symmetry reasons (see
Section 2.2) and because for b = 0 or d = 0, the curve is degenerate. In Figure 3, represen-
tative examples of simple curves as defined by (6) are provided. A curve is simple if it
does not intersect itself (see also Appendix A.3); we show a picture of simple curves since
they are the only cases of interest for the application we deal with in this paper. We named
Equation (6) the CS curve (the term CS is an abbreviation to indicate the cosine function in
the brackets of the expression of x and the sine function in the brackets of the expression
of y).

Figure 3. Representative examples of simple CS curves.

The second curve is defined for a, b, c, d ∈ R and b, d ≥ 0 as follows:{
x(t) = (a cos(tπ) + b) cos(tπ)

0 ≤ t ≤ 2.
y(t) = (c cos(tπ) + d) sin(tπ)

(7)

We are actually interested in the cases where none of the conditions a = b = 0 or
b = c = 0 or c = d = 0 are satisfied, because each of them corresponds to a degenerate case.
In Figure 4, representative examples of simple curves defined by (7) are depicted. With a
meaning similar to the previous curve, we thus named Equation (7) the CC curve.

Figure 4. Representative examples of simple CC curves.

To the best of our knowledge, curves (6) and (7) have not been previously studied.
Moreover, they include ellipses in the particular case a = c = 0 and other known curves,
which are listed in Appendix A.1.
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The models for prostate shapes which we propose in this paper are defined starting
from (6) and (7) and considering any possible rotations and translations. The models are
formulated more accurately in the following way:{

x̃(t) = x(t) cos α − y(t) sin α + x0 0 ≤ t ≤ 2.
ỹ(t) = x(t) sin α + y(t) cos α + y0

(8)

where α ∈ [0, 2π[, x0, y0 ∈ R and x(t), y(t) are as in (6) or as in (7). These general models
are then obtained by the rotation of angle α followed by a shift of x0 along the x axis and
a shift of y0 along the y axis of a CS or a CC curve. They depend on seven parameters (a,
b, c, d, α, x0, y0). The value of α can be confined in the interval [0, π[ since, as observed in
Section 2.2, by changing the sign of the parameters a and b, one obtains the curve rotated
by a straight angle around the origin.

In the next subsections, we describe various aspects of the two types of curves, dedi-
cating a different paragraph to each one. Further analyses are reported in Appendix A.

2.1. Role of the Parameters

We start by discussing geometric meanings of the parameters a, b, c and d of the models.
We refer to Figures 5–7 for the considerations about CS curves and to Figures 8 and 9 for
the considerations about CC curves. The first observations we make are the following
particular points of the curves determined by t = 0, 1

2 , 1 and 3
2 .

CS curve:

{
x(0) = a + b
y(0) = 0

,

{
x( 1

2 ) = 0
y( 1

2 ) = c + d
,

{
x(1) = a − b
y(1) = 0

,

{
x( 3

2 ) = 0
y( 3

2 ) = c − d
. (9)

CC curve:

{
x(0) = a + b
y(0) = 0

,

{
x( 1

2 ) = 0
y( 1

2 ) = d
,

{
x(1) = a − b
y(1) = 0

,

{
x( 3

2 ) = 0
y( 3

2 ) = −d
. (10)

Taking into account (9) and (10), we can state that for every type of curve, b represents
the half distance of the points determined by t = 0 and t = 1 (i.e., the points B and B′ in
Figures 5 and 8, respectively) and d represents the half distance of the points determined
by t = 1

2 and t = 3
2 (i.e., the points D and D′ in Figures 5 and 8 , respectively). Hence,

b and d play a role as indicators of thickness along the two axes, as it is also shown in
Figures 6b,d and 9b,d.

More rigorously, looking to (6) and (7), we note that if b increases, then x(t) for
0 ≤ t < 1

2 or for 3
2 < t ≤ 2 increases, and this means that the part of the curve from D′ to

D (taken in an anticlockwise way) moves to the right if b increases. Conversely, x(t) for
1
2 < t < 3

2 decreases if b increases, and this means that the part of the curve from D to D′

(taken in an anticlockwise way) moves to the left if b increases. A similar argumentation can be
applied to the parameter d. Concerning the parameters a and c, the geometric meanings vary
between the two types of curves, so we make the related considerations separately below.

2.1.1. CS Curve

From Equation (9) we note that the middle point of the segment BB′, labeled A in
Figure 5, has an abscissa equal to a. This suggests that the parameter a regulates the
stretching along the x axis (it can also be seen in Figure 6a). For the rigorous proof of the
statement, we use Equation (6) and, in particular, that x(t) = a cos2(tπ) + b cos(tπ): for
a fixed 0 ≤ t ≤ 2 except for t = 1

2 and t = 3
2 , if a increases, then x(t) increases too. This

means that if a increases, the curve stretches to the right of the plane.
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A similar observation can be made for the parameter c. The middle point of the
segment DD′, labeled C in Figure 5b, has an ordinate equal to c, and furthermore, the
parameter c regulates the stretching along the y axis, as shown in Figure 6c.

BBB'B'

DD

D'D'

(a)

BBB'B' AA

DD

D'D'

CC

O

(b)

Figure 5. Geometric meaning of the parameters a, b, c and d of a CS curve. B(a + b, 0) and B′(a − b, 0)
are the points determined by t = 0 and t = 1, respectively; D(0, c + d) and D′(0, c − d) are the points
determined by t = 1

2 and t = 3
2 , respectively; A(a, 0) is the middle point of the segment BB′; C(0, c)

is the middle point of the segment DD′. (a) The length of the segment BB′ is 2b. The length of the
segment DD′ is 2d. (b) The length of the segment OA is |a|. The length of the segment OC is |c|.

(a) (b)

(c) (d)

Figure 6. Some examples of CS curves. In each subfigure, three parameters are fixed and the
remaining one changes. The dotted, dashed and solid curves correspond to the first, second and third
value of the variable parameter, respectively. (a) Fixed parameters: b = 1, c = 0.3, d = 1. Variable
parameter: a = 0, 0.5 and 1.1. (b) Fixed parameters: a = 0.5, c = 0, d = 1. Variable parameter:
b = 0.6, 1 and 2. (c) Fixed parameters: a = 0.5, b = 1, d = 1. Variable parameter: c = 0, 0.5 and 1.
(d) Fixed parameters: a = 1, b = 0.8, c = 0.4. Variable parameter: d = 0.5, 1 and 1.5.

Other parameters of particular interest are a
b and c

d . The first value indicates if the
curve has a concavity (like in Figure 7a,d) or a ‘flat side’ on the right/left part (like in
Figure 7b), while the second value specifies the presence of a concavity (like in Figure 7c)
or a ‘flat side’ on the top/bottom part. More precisely, see the following:
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1. The curve has a concavity around B if and only if a
b < − 1

2 ;
2. The curve has a ‘flat side’ around B if and only if a

b = − 1
2 ;

3. The curve has a ‘flat side’ around B′ if and only if a
b = 1

2 ;
4. The curve has a concavity around B′ if and only if a

b > 1
2 ;

5. The curve has a concavity around D if and only if c
d < − 1

2 ;
6. The curve has a ‘flat side’ around D if and only if c

d = − 1
2 ;

7. The curve has a ‘flat side’ around D′ if and only if c
d = 1

2 ;
8. The curve has a concavity around D′ if and only if c

d > 1
2 .

Furthermore, the concavity is more accentuated for greater values of | a
b | (respec-

tively, | c
d |). The statements above can be proved by studying the signed curvature k(t) =

x′(t)y′′(t)−x′′(t)y′(t)

(x′(t)2+y′(t)2)
3
2

for t = 0, 1
2 , 1, 3

2 [60]. For instance, k(0) = 2a+b
d2 , so k(0) < 0, i.e., there is a

concavity around B if a
b < − 1

2 .

(a) (b) (c) (d)
Figure 7. Some examples of CS curves with the values of the indicators a

b and c
d of concavity.

(a) a
b = 1.2 and c

d = 0.3. (b) a
b = 0.5 and c

d = 0. (c) a
b = −0.3 and c

d = 2. (d) a
b = −0.7 and c

d = 0.7.

2.1.2. CC Curve

For the parameter a, we can make the same remarks for the previous curve, i.e., a is the
abscissa of the middle point of the segment BB′, and moreover, it regulates the stretching
along the x axis. The reference figures are Figures 8 and 9a.

The parameter c plays a different role in the case of CS curves. To visualize the effect of
this parameter on the curve, we refer to Figure 8 for the points and to Figure 9c. Increasing
the value of c, the part of the curve from B to D moves up, the part of the curve from D
to B′ moves down, the part of the curve from B′ to D′ moves up and the part of the curve
from D′ to B′ moves down (each part is taken in an anticlockwise way from the first to the
second point excluding the two points).

To prove this statement, we use (7): for example, the part of the curve from B to
D (excluding these two points) corresponds to the values of t from 0 and 1

2 ; therefore,
cos(tπ) > 0 and sin(tπ) > 0. Thus, for a fixed 0 < t < 1

2 , we have cos(tπ) sin(tπ) > 0, so
if c increases, then y(t) increases. For the other parts of the curve, the cos(tπ) and sin(tπ)
may have a different sign, so the argument must be consequently modified.

Moreover, as for CS curves, the parameter a
b is an indicator of concavity:

1. The curve has a concavity around B if and only if a
b < − 1

2 ;
2. The curve has a ‘flat side’ around B if and only if a

b = − 1
2 ;

3. The curve has a ‘flat side’ around B′ if and only if a
b = 1

2 ;
4. The curve has a concavity around B′ if and only if a

b > 1
2 .
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BBB'B'

DD

D'D'

(a)

BBB'B'

DD

D'D'

AA OO

(b)
Figure 8. Geometric meaning of the parameters a, b and d of a CC curve. B(a + b, 0) and B′(a − b, 0)
are the points determined by t = 0 and t = 1, respectively; D(0, d) and D′(0,−d) are the points
determined by t = 1

2 and t = 3
2 , respectively; A(a, 0) is the middle point of the segment BB′. (a) The

length of the segment BB′ is 2b. The length of the segment DD′ is 2d. (b) The length of the segment
OA is |a|.

(a) (b)

(c) (d)

Figure 9. Some examples of CC curves. In each subfigure, three parameters are fixed and the
remaining one changes. The dotted, dashed and solid curves correspond to the first, second and third
value of the variable parameter, respectively. (a) Fixed parameters: b = 0.7, c = 0.3, d = 1. Variable
parameter: a = −1, 0 and 1. (b) Fixed parameters: a = 0.8, c = 0.5, d = 1. Variable parameter:
b = 0.6, 1 and 2. (c) Fixed parameters: a = 0.5, b = 1, d = 1. Variable parameter: c = −1, 0 and 1.
(d) Fixed parameters: a = 1, b = 0.5, c = 0.5. Variable parameter: d = 0.5, 1 and 1.5.

2.2. Symmetries and Invariants

Here we discuss the actions of some transformations on the parameters and general
symmetries of the curves. Parts of the transformations constitute invariants, which can
limit the variability of some parameters. The statements below can be easily proved directly
from the expressions (6) and (7) and taking into account basic properties of the sine and
cosine functions.

2.2.1. CS Curve

1. The transformation a 7→ −a gives the symmetric curve with respect to the y axis.
Thus, if a = 0, the curve is symmetric with respect to the y axis.



Symmetry 2024, 16, 755 9 of 21

2. The transformation c 7→ −c gives the symmetric curve with respect to the x axis. Thus,
if c = 0, the curve is symmetric with respect to the x axis.

3. Each one of the transformations b 7→ −b and d 7→ −d leaves the curve invariant.
This reason, together with the degenerate cases b = 0 or d = 0, justifies our choice to
consider b and d as positive numbers made in (6).

4. The transformation (a, c) 7→ (−a,−c) gives the symmetric curve with respect to the
origin (or, equivalently, the curve rotated by a straight angle with its center as the
origin).

5. The transformation (a, b, c, d) 7→ (c, d, a, b) gives the symmetric curve with respect to
the line y = x. Thus, if a = c and b = d, the curve is symmetric with respect to the
line y = x.

2.2.2. CC Curve

1. The curve is always symmetric with respect to the x axis.
2. Each one of the transformations (a, b) 7→ (−a,−b), (a, c) 7→ (−a,−c) and (a, d) 7→

(−a,−d) gives the symmetric curve with respect to the y axis (or, equivalently, the
curve rotated by a straight angle with its center at the origin, as in the previous
remark).

3. Each one of the transformations (b, c) 7→ (−b,−c), (b, d) 7→ (−b,−d) and (c, d) 7→
(−c,−d) leaves the curve invariant. For this reason, we assume that b and d are
non-negative numbers in (6).

3. Validation of the Models

This section is devoted to the assessment of the models for the representation of
prostate shape in the axial plane of MR images. Thanks to the results we obtained (see
Section 4), we believe that these models may be useful in specific fields of image analysis
(such as segmentation, classification, recognition).

Our dataset is made of 1227 slices of prostate MR images coming from a total of
50 patients. The slices have a resolution of 672× 672 and a pixel size of 0.27 mm × 0.27 mm,
and the distance between two consecutive slices is 2.5 mm. Figure 10 shows an example of
an MR image on the left, a cropped and enlarged version of it in the center and the prostate
contour (ground truth) delineated by the radiologist on the right.

Figure 10. From left to right: one of the MR images, the same image cropped and enlarged containing
the prostate and finally the contour (in white) extracted by the radiologist.

As one can see, the prostate contours in Figure 1 are very similar, with eventual rotations,
to the examples of model curves in Figures 3 and 4. Of course, visual correspondence is not
sufficient to check if a model well represents an object. Therefore, we proceeded to a numerical
validation of the model (8). We point out that here we only take care of the validation of the
models. Future works will be oriented to their service in a segmentation process.

The validation consisted of three parts: the extraction of the prostate contours in MR
images made by a radiologist with more than 10 years of experience, the model fitting and
its performance valuation.

First of all, the expert manually extracted the prostate contours in each of the 1227 slice
images in our database. Then, the model (8) was validated on the ground truths one time
for each of curves (6) and (7). In other words, following the method described below, we
found the best CS and CC curves that approximate the given contour. Finally, we selected
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the best one of the two results for the given contour. Figure 11 shows some ground truths
and the relative fittings with CS and CC curves.

Figure 11. In each row, from the left to the right: a ground truth (in white) and the CS and CC curves
(in dashed red) obtained by the fitting process, respectively. For the best view of the figure, please
refer to the original version.

In detail, the approximation process was set as follows. We denote by Cp a prostate
contour as a set of points (x̃, ỹ) in a 2D digital image and by Cm = Cm(a, b, c, d, α, x0, y0)
the model curve given by (8) (and (6) or (7), depending on the type of curve). For a given
contour Cp and each of the two types of curve (CS and CC), we searched the parameters
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a, b, c, d, α, x0, y0 of the model Cm = Cm(a, b, c, d, α, x0, y0) to find which best fits the prostate
contour, in the sense that it minimizes the following metric:

dm(Cp, Cm(a, b, c, d, α, x0, y0)) = mean
(x̃,ỹ)∈Cp

min
t∈[0,2]

d((x̃, ỹ), (x(t), y(t))) (11)

that is, the mean distance between the generic point of Cp and the closest point of the
model Cm(a, b, c, d, α, x0, y0) [12]. To further evaluate the fitting of the curve found by the
minimization above, we also considered the Hausdorff distance [12,61] and the Dice similarity
coefficient [62,63]. The Hausdorff distance

dH(Cp, Cm(a, b, c, d, α, x0, y0)) = max
(x̃,ỹ)∈Cp

min
t∈[0,2]

d((x̃, ỹ), (x(t), y(t)))

is the maximum distance between the generic point of Cp and the closest point of the model
Cm(a, b, c, d, α, x0, y0). The Dice similarity coefficient is

DSC =
2|Sp ∩ Sm|
|Sp|+ |Sm|

,

where | · | denotes the area of a surface, Sp is the prostate surface (i.e., the surface enclosed
by the contour Cp) and Sm is the surface enclosed by the curve Cm.

The local minima for (11) were searched using the gradient descent method, iterating
the process until the variation in (11) becomes negligible. In the procedure, all the curves
were discretized, with 160 points individuated by uniformly distributed points {ti} in the
interval [0, 2]. The initialization of the process set the ellipse with axes of axial sizes lx and
ly of the prostate contour and centered in the center of the prostate (see Figure 12a). In

particular, this corresponds to the following parameters: a = c = 0, b = lx
2 and d =

ly
2 .

When the prostate has a concavity and the process starts with this ellipse, the gradient
descent method may find a local minimum which does not give a perfect approximation
(for example, this is the case in Figure 12b). For a better result, the method was repeated,
and the initial curve taken was one with a concavity if the mean distance was higher than
a fixed value at the end of the process (see Figure 12c). This way, a better fitting was
usually found, as shown in Figure 12d. More precisely, for the second initialization, we set
a = b = lx

2 , c = 0 and d =
ly
2 for both the CC and the CS fitting.

(a) (b) (c) (d)
Figure 12. In each picture, the solid black curve is the ground truth. The dashed red curves
are CC curves and represent the following: (a) the first initialization (ellipse); (b) the final curve
obtained with the first initialization (dm = 1.34 mm, dH = 4.69 mm, DSC = 92.0%); (c) the second
initialization; (d) the final curve obtained with the second initialization (dm = 0.48 mm, dH = 2.45 mm,
DSC = 96.8%).

Finally, we compared our models with the deformed superellipse model employed
in [12], which we described in the Introduction. In particular, to fit the deformed superel-
lipse model to the prostate contours, we followed an approach similar to the one explained
for our models. Namely, employing the gradient descent method, for each of the 1227 ground
truths, we searched the parameters ax, ay, ϵ, T, β, α, x0, y0 of the deformed superellipse that
best fit the given contour, i.e., that minimized the mean distance (11). The base curve (1) was
implemented by (2) taking, as before, 160 points {ti} uniformly distributed in the interval
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[0, 2]. Then the transformations (3)–(5) were applied. The initial choice of parameters was set
corresponding to the initial curve in our models’ validation.

4. Results and Discussion

The results of the validation are reported in Table 1, where in each entry, the first and
the second numbers represent the mean and the standard deviation of the corresponding
metric over all the 1227 contours, respectively. Table 2 shows the time employed (on an
Intel Core i5-9500 CPU running at 3 GHz) for fitting a given contour.

Table 1. Mean and standard deviation of the three metrics, mean distance dm, Hausdorff distance dH

and Dice similarity coefficient DSC, of the fitting of the different models.

Model dm dH DSC

Best CS-CC 0.56 ± 0.32 mm 2.36 ± 1.67 mm 96.7% ± 3.1%

CS 0.58 ± 0.34 mm 2.42 ± 1.71 mm 96.6% ± 3.3%

CC 0.62 ± 0.35 mm 2.51 ± 1.71 mm 96.4% ± 3.4%

Deformed superellipse 0.61 ± 0.32 mm 2.44 ± 1.63 mm 96.5% ± 2.7%
The models concerning the curves we have introduced are in bold text.

Table 2. The computational cost of the fitting process of our models and the deformed superellipse model.

Model Time Required by the Fitting Process

CS or CC (a single model) 2.5 ± 1.8 s

Best between CS and CC models 5.0 ± 3.5 s

Deformed superellipse 36.5 ± 17.3 s
The models concerning the curves we have introduced are in bold text.

In the first row are the performance metrics when the best model between CS and CC
is selected for a given contour. The model selected is the one that gives the lowest mean
distance value (11). In Figure 13, two ground truths with the fittings of each model are
shown. In particular, we chose two contour examples in which a different model provides
the best approximation.

(a) (b)

Figure 13. The solid black curves are ground truths and the dashed red curves are the model
curves found by the method (in each figure from the left to the right: CS and CC model). The
two comparisons show some cases in which a different model gives a result better than the other
one. (a) CS model (dm = 0.39 mm, dH = 2.45 mm, DSC = 97.2%) and CC model (dm = 0.66 mm,
dH = 4.06 mm, DSC = 93.3%). (b) CS model (dm = 0.68 mm, dH = 2.92 mm, DSC = 93.8%) and CC
model (dm = 0.26 mm, dH = 1.45 mm, DSC = 98.0%).

The performance of a single model (CS or CC) is detailed in the second and third
rows of Table 1. Finally, the performance metrics of the deformed superellipse model are
reported in the last row of Table 1.

The performance metrics of our models are comparable to ones of the deformed
superellipse model (a slightly better result is obtained when the best curve between CS
and CC is selected as the model). However, concerning the time employed for the fitting
process, there is a significant difference. Finding a deformed superellipse that best fits a
contour requires about 15 times the cost necessary for fitting a CS or CC model curve.
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Furthermore, the deformed superellipse model depends on eight parameters (ax, ay,
ϵ, T, β, α, x0 and y0); in contrast, each of our models (CS or CC) (8) depends on seven
parameters (a, b, c, d, α, x0 and y0). Hence, this represents an important benefit of our
models because it provides a more straightforward definition and it is also the reason for
the reduced computational cost in the fitting. Indeed, to obtain a more precise fitting of
deformed superellipses, the method was repeated for different fixed values of b, and this
caused a greater time of execution. Moreover, CS and CC curves have a detailed description
in Section 2 and in Appendix A. This could help to make specific and quantitative analyses
of the prostate shape.

As a limitation, we remark that in some, but few, cases, the prostate has an atypical
contour, different to the ones represented in Figure 1, which is not well approximated by
the CS and CC curves. One of these outlier cases is shown in Figure 14 with its fittings.

Figure 14. An example of atypical prostate contour (in solid black curve) and the model fittings (from
the left to the right: CS model and CC model) in dashed red curves.

Our goal in this paper was to present and validate two models for prostate shape. Due
to the assessment of our models, we believe they can be adopted in prostate segmentation
processes. A possible scheme for an automatic segmentation may be the following. A first
and approximative prostate contour is searched with elementary image analysis techniques
like texture evaluations or morphological operators or with more sophisticated methods
like machine/deep learning [28]. Then the CS and CC models are fitted to the first contour
to reproduce a more real shape. Alternatively, a second approach may be the definition of
an active contour [64] whose shape is restricted to CS and CC curves.

5. Conclusions

We proposed two geometric 2D models for prostate shape in MR images. Each model
is defined starting from a parametric curve and depends on a total of seven parameters. We
described the parametric curves and validated the models on a database of prostate contours
(ground truths) extracted by a radiologist. As part of the validation, we also compared to the
deformed superellipse model employed for prostate segmentation in TRUS images in [12].
The results show that our models are comparable with the deformed superellipse model in
terms of distance and overlapping errors. We highlight values for the mean distance equal to
0.56 ± 0.32 mm and 0.61 ± 0.32 mm and DSC values equal to 96.7% ± 3.1% and 96.5% ± 2.7%
for the best of our models and the deformed superellipse model, respectively. However, our
models have a more compact mathematical expression, depend on fewer parameters and
require less time for contour fitting.
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Appendix A. Further Analysis of CS and CC Curves

In Section 2, we gave geometric meanings to the parameters and studied symmetries
and invariants. In addition, we investigated the curves (6) and (7) also under other aspects
(special cases, elliptic Fourier descriptors, conditions for the curves to be simple and
formulas for the enclosed area), and we collected the results in this Appendix. We also
remark that the curves (6) and (7) are, in particular, algebraic curves with degrees equal to
four or lower in some cases. The implicit (Cartesian form) equations, which are omitted for
their complicated expressions, can be obtained by eliminating the sine and cosine functions
in (6) and (7) or by Sylvester’s matrix elimination method [65] (see also [66]).

Appendix A.1. Special Cases

For some particular values of the parameters, we can recover some known curves [67].

Appendix A.1.1. CS Curve

1. For a = c = 0 and b = d = r, the curve is the circle centered in the origin with radius r.
2. For a = c = 0, the curve is the ellipse centered in the origin with semiaxes b and d.

Appendix A.1.2. CC Curve

1. For a = c = 0 and b = d = r, the curve is the circle centered in the origin with radius r.
2. For a = c = 0, the curve is the ellipse centered in the origin with semiaxes b and d.
3. For a = d = 0, the curve is a Lissajous curve.
4. For a = d = 0 and b = c = 1, the curve is the lemniscate of Gerono.
5. For a = b = c = d, the curve is a cardioid.
6. For a = c and b = d, the curve is a limaçon.
7. For a = c = 2b = 2d, the curve is a limaçon trisectrix.
8. For a = 0 and c = d, the curve is a translation of a piriform quartic.
9. For a = b = −c = d, the curve is a translation of a deltoid.
10. For a = −c and b = d, the curve is a translation of a hypotrochoid.
11. For a = 1, b = 1

2 , c = −1 and d = 1
2 , the curve is a translation of a regular trifolium.

Appendix A.2. Elliptic Fourier Descriptors

Taking into account the formulas cos2(tπ) = 1+cos(2tπ)
2 , sin2(tπ) = 1−cos(2tπ)

2 and
sin(tπ) cos(tπ) = 1

2 sin(2tπ), the curves have the following Fourier basis representa-
tions [68,69] with a number of harmonics equal to 2.

Appendix A.2.1. CS Curve[
x(t)
y(t)

]
=

[ a
2
c
2

]
+

[
b 0
0 d

][
cos(tπ)
sin(tπ)

]
+

[ a
2 0

− c
2 0

][
cos(2tπ)
sin(2tπ)

]
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Appendix A.2.2. CC Curve[
x(t)
y(t)

]
=

[ a
2
0

]
+

[
b 0
0 d

][
cos(tπ)
sin(tπ)

]
+

[ a
2 0
0 c

2

][
cos(2tπ)
sin(2tπ)

]
Appendix A.3. Simple Curves

For some choices of parameters, the curves turn out to be nonsimple, i.e., each in-
tersects itself (see as an example Figure A1). A nonsimple curve is characterized by the
existence of 0 ≤ t1, t2 < 2 such that t1 ̸= t2 and x(t1) = x(t2) and y(t1) = y(t2) (the
value t = 2 is not taken into consideration because of the periodicity of the sine and cosine
functions). In relation to the application that we discussed in Section 4, it is interesting to
have necessary and sufficient conditions on the parameters in order for the curves to be
simple. We give the conditions, along with their proofs, for each type of curve below.

Figure A1. A nonsimple CS curve. The parameters are a = 2, b = 1, c = 1, d = 1.

Appendix A.3.1. CS Curve

Theorem A1. Let b, d > 0. The CS curve (6) is simple if and only if

a2d2 + b2c2 ≥ 4a2c2. (A1)

Proof. First, we assume that (A1) holds and prove that the curve is simple. So let t1, t2 ∈
[0, 2[ with t1 ̸= t2 such that x(t1) = x(t2) and y(t1) = y(t2), i.e.,{

(a cos(t1π) + b) cos(t1π) = (a cos(t2π) + b) cos(t2π)

(c sin(t1π) + d) sin(t1π) = (c sin(t2π) + d) sin(t2π).
(A2)

The equations yield{
(cos(t1π)− cos(t2π))(a(cos(t1π) + cos(t2π)) + b) = 0
(sin(t1π)− sin(t2π))(c(sin(t1π) + sin(t2π)) + d) = 0.

Therefore, since t1 ̸= t2, we have{
a(cos(t1π) + cos(t2π)) = −b
c(sin(t1π) + sin(t2π)) = −d.

(A3)

Clearly, (A3) has no solution if a = 0 or c = 0. So, in the following, we assume that
a, c ̸= 0 and rewrite (A3) as{

sin( t1+t2
2 π) sin( t1−t2

2 π) = b
2a

cos( t1+t2
2 π) sin( t1−t2

2 π) = − d
2c ,

(A4)

which implies that

sin2
(

t1 − t2

2
π

)
=

b2

4a2 +
d2

4c2 . (A5)

We now analyze three cases:
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1. If a2d2 + b2c2 > 4a2c2 holds, Equation (A5), and then the system (A2) has no solutions,
i.e., the curve is simple.

2. If a2d2 + b2c2 = 4a2c2 holds, Equation (A5) means sin( t1−t2
2 π) = ±1. Interchanging,

eventually, t1 with t2, we can suppose that sin( t1−t2
2 π) = 1, and then, taking into

account that t1, t2 ∈ [0, 2[, we have t1 − t2 = 1. We write s := t1 + t2. So we have that
t1 = s+1

2 and t2 = s−1
2 . Imposing that t1, t2 ∈ [0, 2[, we find that

s ∈ [−1, 3[∩ [1, 5[ = [1, 3[. (A6)

For symmetry reasons (see Section 2.2), we can confine ourselves to the case a > 0
and c < 0; therefore, by (A4), s ∈ ]0, 1[, which is in contradiction to (A6).
To summarize, in the case a2d2 + b2c2 = 4a2c2, the system (A2) has no solutions,
i.e., the curve is simple.

Now we assume that (A1) does not hold, i.e., a2d2 + b2c2 < 4a2c2, and prove that the

curve is not simple. Hence, there exist r ∈ ]0, 1[ such that sin(rπ) =
√

b2

4a2 +
d2

4c2 and s ∈ ]0, 2[
such that 

sin(sπ) =
b

2a√
b2

4a2 +
d2
4c2

cos(sπ) = −
d
2c√

b2
4a2 +

d2
4c2

.

Let t1 = r + s + 2m and t2 = s − r + 2n with m, n ∈ Z chosen in such a way so that
t1, t2 ∈ [0, 2[. In particular, we have t1 ̸= t2 because r cannot be an integer. We have that
t1−t2

2 = r + m − n and t1+t2
2 = s + m + n, so (A4) and (A5) are satisfied. This means that

(A2) is satisfied and the proof is completed.

Appendix A.3.2. CC Curve

We assume that not one of the conditions a = b = 0 or b = c = 0 or c = d = 0 holds
since these are the cases of a degenerate curve.

Theorem A2. Let us assume that b, d ≥ 0 and that not one of the conditions a = b = 0 or
b = c = 0 or c = d = 0 holds. The CC curve (7) is simple if and only if one of the following
conditions is satisfied:

(i) c = 0;
(ii) a = 0 and d ≥ |c|;
(iii) a, b, c ̸= 0, d ≥ |c| and b

2a

(
b
a −

d
c

)
≤ 0;

(iv) a, b, c ̸= 0, d ≥ |c| and b
2a

(
b
a −

d
c

)
≥ 1;

(v) a, b, c ̸= 0, d ≥ |c|, 0 < b
2a

(
b
a −

d
c

)
< 1 and b

2|a| ≥
∣∣∣ b

a −
d
c

∣∣∣.
Proof. The proof is divided into two parts: in the first part, we assume that one of the
statements ((i)–(v)) is satisfied and prove that the curve is simple. Let t1, t2 ∈ [0, 2[ with
t1 ̸= t2 such that x(t1) = x(t2) and y(t1) = y(t2), i.e.,{

(a cos(t1π) + b) cos(t1π) = (a cos(t2π) + b) cos(t2π)

(c cos(t1π) + d) sin(t1π) = (c cos(t2π) + d) sin(t2π).
(A7)

The equations can be rewritten as{
(cos(t1π)− cos(t2π))(a(cos(t1π) + cos(t2π)) + b) = 0
(c cos(t1π) + d) sin(t1π) = (c cos(t2π) + d) sin(t2π).

(A8)

We now analyze the different cases.
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Case (i). If c = 0, then d ̸= 0; so by the second line of (A8) and the fact that
t1 ̸= t2, we have cos(t1π) = − cos(t2π). Assuming that the latter condition is true, then
2b cos(t1π) = 0 for the first line of (A8), which gives that t1 = 1

2 = t2 or t1 = 3
2 = t2 since

we can exclude that b = 0. Hence, the curve is simple.
Case (ii). If a = 0 and d ≥ |c|, then b ̸= 0 and the first line of (A8), together with

t2 ̸= t1, implies that t2 = 2 − t1. Assuming that the latter condition is true, we have that
(c cos(t1π) + d) sin(t1π) = 0 by the second line of (A7). So we can say sin(t1π) = 0 or
c cos(t1π) + d = 0. Taking into account that t1, t2 ∈ [0, 2[, if sin(t1π) = 0 then t1 = t2,
which is not allowed. On the other hand, the equation

c cos(t1π) + d = 0. (A9)

has no solutions if d > |c|. If c ̸= 0 and d = c, Equation (A9) has solution t1 = 1,
so t2 = 1 = t1, which contradicts the assumption of t1 and t2. If c ̸= 0 and d = −c,
Equation (A9) has solutions t1 = 0 and t2 = 2 − t1 = 2 /∈ [0, 2[. We conclude that the curve
is simple.

Before we move on to cases (iii)–(v), we make some observations. Since all the cases
impose d ≥ |c|, for the considerations we have made about (A9), we can exclude that
cos(t1π)− cos(t2π) = 0. So, by the first line of (A8), we can assume that

a(cos(t1π) + cos(t2π)) + b = 0, (A10)

which we will be able to be rewritten as

cos
(

t1 + t2

2
π

)
cos

(
t1 − t2

2
π

)
= − b

2a
(A11)

because we assume that a ̸= 0. On the other hand, the second equation in (A7) is equiva-
lent to

d(sin(t1π)− sin(t2π)) =
c
2
(sin(2t2π)− sin(2t1π))

and also to

d cos
(

t1 + t2

2
π

)
sin

(
t1 − t2

2
π

)
=

c
2

cos((t1 + t2)π) sin((t2 − t1)π)

= −c cos((t1 + t2)π) sin
(

t1 − t2

2
π

)
cos

(
t1 − t2

2
π

)
.

(A12)

Since sin
(

t1−t2
2 π

)
̸= 0, because t1 ̸= t2, we derive that

d cos
(

t1 + t2

2
π

)
= −c cos((t1 + t2)π) cos

(
t1 − t2

2
π

)
= −c

(
2 cos2

(
t1 + t2

2
π

)
− 1

)
cos

(
t1 − t2

2
π

)
.

(A13)

Multiplying by cos
(

t1 − t2

2
π

)
in (A13), we obtain

d cos
(

t1 + t2

2
π

)
cos

(
t1 − t2

2
π

)
= −c cos((t1 + t2)π) cos

(
t1 − t2

2
π

)
= −c

(
2 cos2

(
t1 + t2

2
π

)
− 1

)
cos2

(
t1 − t2

2
π

)
.

By (A11), the previous equation becomes

− bd
2a

= − b2c
2a2 + c cos2

(
t1 − t2

2
π

)
,
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and since c ̸= 0 is assumed, it is equivalent to

cos2
(

t1 − t2

2
π

)
=

b2

2a2 − bd
2ac

=
b

2a

(
b
a
− d

c

)
. (A14)

We now continue to examine the cases in the statement.
Cases (iii)–(iv). Let a, b, c ̸= 0. Equation (A14) has no solutions if

b
2a

(
b
a
− d

c

)
< 0 or

b
2a

(
b
a
− d

c

)
> 1.

If
b

2a

(
b
a
− d

c

)
= 0, then there are no solutions by (A14) and (A11). If

b
2a

(
b
a
− d

c

)
= 1,

then by (A14), we have that t1 − t2 is an even number, but this cannot be true if t1, t2 ∈ [0, 2[.
In conclusion, (A13) cannot be realized, i.e., the curve is simple.

Case (v). Let a, b, c ̸= 0, d ≥ |c|, 0 < b
2a

(
b
a −

d
c

)
< 1. By (A11) and (A14), we have

cos2
(

t1 + t2

2
π

)
=

b
2a

b
a −

d
c

. (A15)

If b
2|a| >

∣∣∣ b
a −

d
c

∣∣∣, then (A15) has no solutions. If b
2|a| =

∣∣∣ b
a −

d
c

∣∣∣, then t1 + t2 is an even
number by (A15); taking into account that t1 + t2 ∈ [0, 4[, we necessarily have t1 + t2 = 0,
meaning that t1 = t2 = 0, which is not allowed by the assumption, or t1 + t2 = 2, which
implies the contradiction that b = 0 by (A10). In conclusion, the curve is simple.

We now prove that the curve is not simple if not one of the statements (i–v) is satisfied;
in other words, we assume that one the following statements holds:

1. c ̸= 0, d < |c|;
2. a, c ̸= 0, 0 < b

2a (
b
a −

d
c ) < 1 and b

2|a| <
∣∣∣ b

a −
d
c

∣∣∣;
3. b = 0.

If 1. holds, then there exists t1 ∈ ]0, 2[ such that c cos(t1π) + d = 0 and t1 ̸= 1. Thus,
the pair (t1, t2) with t2 = 1 − t1 is a solution of (A8), i.e., x(t1) = x(t2) and y(t1) = y(t2).
Since t1 ̸= 1, we have that t1 ̸= t2; hence, the curve is not simple.

If 2. holds, then there exist r, s ∈ [0, 2[ such that

cos(rπ) =

√
b

2a

(
b
a
− d

c

)
, cos(sπ) =

− b
2a√

b
2a

(
b
a −

d
c

) .

Let t1 = r + s + 2m and t2 = s − r + 2n with m, n ∈ Z chosen in such a way so that
t1, t2 ∈ [0, 2[. We have that t1−t2

2 = r + m − n and t1+t2
2 = s + m + n, so (A11) and (A12) are

satisfied, i.e., (A7) holds. Taking into account that t1 ̸= t2 because r cannot be an integer,
the curve is not simple.

If 3. holds, then (t1, t2) = (0, 1) is a solution of (A7), so the curve is not simple.

Note that by Theorem A2, if a CC curve is simple then b, d ̸= 0.



Symmetry 2024, 16, 755 19 of 21

(a) (b) (c) (d) (e)
Figure A2. Some examples of nonsimple CC curves. (a) a = 1, b = 0.5, c = 1.5, d = 1. (b) a = 0.5,
b = 1.5, c = −1.5, d = 1. (c) a = 1, b = 0, c = 1, d = 1. (d) a = −1.5, b = 1, c = 1, d = 1. (e) a = −1.5,
b = 1, c = 1.5, d = 1.

Appendix A.4. Area of the Enclosed Surface

Under the condition of a simple curve, a unique surface enclosed by the curve is
formed. Note that with the assumption about b and d that we made in the Introduction, the
curves (6) and (7) are positively orientated, i.e., in the anticlockwise way. The area of the
surface enclosed by the curve is as follows:

1. A = πbd for CS curves (so it does not depend on the parameters a, c and it is the same
as the area of the surface inside an ellipse with semiaxes b and d);

2. A = π
( ac

2 + bd
)

for CC curves.

The area of the surface can be calculated by the Gauss–Green formulas. Here we give,
as an example, the proof of the formula for simple CS curves. By (6) and the Gauss–Green
formula,

A = −
∫ 2

0
y(t)x′(t)dt = π

∫ 2

0
(c sin(tπ) + d) sin(tπ)(2a cos(tπ) + b) sin(tπ)dt

= π
∫ 2

0
(2ac sin3(tπ) cos(tπ) + 2ad sin2(tπ) cos(tπ) + bc sin3(tπ) + bd sin2(tπ))dt

= πbd.
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