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Abstract. Let J be a special Jordan algebra and let cn(J) be its corresponding codimension sequence. The

aim of this paper is to prove that in case J is finite dimensional, such a sequence is polynomially bounded
if and only if the variety generated by J does not contain UJ2, the special Jordan algebra of 2 × 2 upper

triangular matrices. As an immediate consequence, we prove that UJ2 is the only finite dimensional special

Jordan algebra that generates a variety of almost polynomial growth.

1. Introduction

Let J (X) be the free Jordan algebra over a field F of characteristic zero on a countable set X and let J be
a Jordan algebra over F. A polynomial of J (X) vanishing under every evaluation in J is called polynomial
identity of J and we denote by Id(J) the T -ideal of polynomial identities satisfied by J. If Pn is the space of
multilinear polynomials in the variables x1, x2, . . . , xn, we also denote by

cn(J) = dimF
Pn

Pn ∩ Id(J)
, n = 1, 2, . . . ,

the codimension sequence of J. Such a sequence was introduced firstly in the setting of associative algebras
by Regev in [23] and it gives a quantitative measure of the identities satisfied by a given algebra. In the
same paper, the author showed that if A is an associative algebra satisfying a non-trivial polynomial identity
(PI-algebra), then cn(A) is exponentially bounded.

Later on, Kemer in [16] and [17] proved several properties about codimension sequence of associative
algebras. On one hand he showed that cn(A) is polynomially bounded or grows exponentially, on the other
he gave a characterization of the varieties of associative algebras of polynomial growth of the codimensions
proving that cn(A) is polynomially bounded if and only if G and UT2 do not satisfy all the identities of A,
where G is the infinite dimensional Grassmann algebra and UT2 is the algebra of 2 × 2 upper triangular
matrices. Then Giambruno and Zaicev in [10] and [11] showed that the exponential growth of cn(A) is always
an integer called the PI-exponent (sometimes just the exponent) of the algebra A. The scale provided by the
exponent has been exploited in the past years in order to classify some significant classes of algebras (see
[12] for more details).

Similar results about codimension sequence and polynomial growth for associative algebras were given
by several authors in various settings, such as superalgebras ([7]), algebras graded by a finite abelian group
([24]), algebras with involution ([6]), superinvolution ([5]) and pseudoinvolution ([19]).

Concerning non-associative algebras, in general the codimension sequence has overexponential growth, in
fact if J is such an algebra, then

cn(J) ≤ 1

n

(
2n− 2

n− 1

)
n!

where 1
n

(
2n−2
n−1

)
is the Catalan number. A remarkable case is represented by the family of (not necessarily

associative) finite dimensional algebras, since it is well-known that in this setting the codimensions are
bounded by dn where d is the dimension of the algebra. Moreover, in [8] it was proved that if dimF A = d,

then either cn(A) is polynomially bounded or cn(A) > 1
n2 2

n
3d2 for n large enough. Thus no intermediate

growth is allowed between exponential and polynomial in the finite dimensional case.
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Here we deal with finite dimensional special Jordan algebras, i.e., Jordan algebras that have an associative
enveloping algebra. If one considers a variety V of such algebras, the growth of V is defined as the growth
of an algebra J generating V, that means V = var(J) and in this case we write cn(V) = cn(J). Thus we
say that V has polynomial growth if cn(V) is polynomially bounded and V has almost polynomial growth if
cn(V) grows exponentially but every proper subvariety grows polynomially.

The main goal of this paper is to characterize the varieties of finite dimensional special Jordan algebras by
showing that V has polynomial growth if and only if it does not contain UJ2(F ), the 2× 2 upper triangular
matrix algebra endowed with the Jordan product, a ◦ b = 1

2 (ab + ba). Moreover, as a corollary, we classify
up to PI-equivalence the varieties of finite dimensional special Jordan algebras of almost polynomial growth.
Recall that two algebras A and B are said to be PI-equivalent if and only if they have the same polynomial
identities.

2. Preliminaries

Throughout this paper F will denote an algebraically closed field of characteristic zero unless explicitly
written otherwise.

Let X be a countable set of indeterminates and let J (X) be the free Jordan algebra generated by the
set X over F . We say that a polynomial f(x1, . . . , xn) ∈ J (X) is a polynomial identity for the Jordan
algebra J if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ J. In this case we write f ≡ 0. The identities of J form a
T -ideal of J (X), i.e., an ideal closed under all endomorphisms of the free Jordan algebra. Let us denote by
Id(J) = {f ∈ J (X)| f ≡ 0 on J} the T -ideal of polynomial identities of J. It is well-known (see for example
[12, Theorem 1.3.7]) that, in characteristic 0, Id(J) is determined by the multilinear polynomials it contains.
Recall that a multilinear polynomial is an element of the vector subspace

Pn = spanF 〈xσ(1)xσ(2) · · ·xσ(n)| σ ∈ Sn〉,

where Sn is the symmetric group and xσ(1)xσ(2) · · ·xσ(n) stands for a monomial with all possible brackets

arrangements. Thus, the relatively free algebra J (X)

Id(J)
is determined by the sequence of vector subspaces

Pn(J) =
Pn

Pn ∩ Id(J)
, n ≥ 1.

In this way, we can attach to the Jordan algebra J a numerical sequence cn(J) called the codimension
sequence, by defining

cn(J) = dimF Pn(J).

We shall refer to the growth of the Jordan algebra J as the asymptotic behaviour of its codimension sequence.
Given a non-empty set S ⊆ J (X), the class of all Jordan algebras J such that f ≡ 0 on J for all f ∈ S, is

called variety V = V(S) determined by S. Similarly, given a Jordan algebra J , the variety of Jordan algebras
generated by J, var(J), is the set of all Jordan algebras satisfying the identities of J. Hence we say that
A ∈ var(J) if and only if Id(J) ⊆ Id(A). It is clear that there exists a one-to-one correspondence between
T -ideals and varieties, thus given a variety V, we can naturally define Id(V), Pn(V) and cn(V). The growth
of V will be the asymptotic behaviour of cn(V). Moreover, we say that V has almost polynomial growth
if its codimension sequence is exponentially bounded and for any proper subvariety U ( V, cn(U) grows
polynomially.

Now let J be a finite dimensional special Jordan algebra. Recall that a Jordan algebra is special if there
exists an associative algebra A such that J ⊆ A(+), where A(+) is the Jordan algebra obtained by the
same vector space structure of A endowed with a new multiplication, called the Jordan product, that is
a ◦ b = 1

2 (ab + ba) for all a, b ∈ A. In this case A is called the associative enveloping algebra of J . Jordan
algebras which do not share this property are called exceptional.

In case cn(J) is exponentially bounded, as in finite dimensional one, we can construct the bounded

sequence n
√
cn(J), n = 1, 2, . . . , and ask if exp(J) = lim

n→+∞
n
√
cn(J) exists. By [9, Lemma 5],we get that a

variety V has polynomial growth if and only if exp(V) = 1.
In [11] it was proved that for any associative algebra A the PI-exponent exp(A) exists and is an integer.

In case of finite dimensional Lie algebras, in [25] it was shown that the PI-exponent also exists and it is an
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integer. The same conclusion was achieved in [13, 14] for special simple Jordan algebras. In particular, the
authors proved that the exponent of such an algebra J equals the dimension of J over its center.

Recall that since F is algebraically closed, any finite dimensional special simple Jordan algebra is isomor-
phic to one of the following:

1. M
(+)
n , the n× n matrix algebra with respect to the Jordan product ◦.

2. H(Mn, t), the Jordan algebra of n × n symmetric matrices under transpose involution, with multi-
plication ◦.

3. H(M2n, s), the Jordan algebra of 2n × 2n symmetric matrices under symplectic involution, with
multiplication ◦.

4. Bn = F ⊕ V, the Jordan algebra defined by a nondegenerate symmetric bilinear form 〈·, ·〉 on the
n-dimensional vector space V. Here the multiplication is defined as follows: for all α+u, β+ v ∈ Bn,
(α+ u) ◦ (β + v) = (αβ + 〈u, v〉) + (αv + βu), α, β ∈ F, u, v ∈ V.

If J is not simple, than it is well-known that it has a Wedderburn–Malcev type decomposition, i.e., there
exist simple unitary subalgebras A1, . . . , Ak of J such that

J = A1 ⊕ . . .⊕Ak +R,

where R = Rad(J) is the radical of J. Since we deal with Jordan algebras, we have that R is a strongly
nilpotent ideal, thus there exists an integer T ≥ 1 such that any product of elements of J containing at least
T elements of R must be zero. One can find a proof of this decomposition for instance in [21].

We fix a basis B = B0 ∪B1 of J such that B0 is a basis of R and B1 is the union of bases of A1, . . . , Ak,
respectively. In what follows any product of elements of B will be called a monomial of J. Next we define
the height of a monomial as follows.

Let M = M(a1, . . . , am, b1, . . . , bn) be a non-zero monomial of J where a1, . . . , am ∈ B1 and b1, . . . , bn ∈
B0. Then the height of M is

ht(M) = dimF (Ai1 + . . .+Aim)

where ai1 ∈ Ai1 , . . . , aim ∈ Aim . Since J is a finite dimensional algebra, we can define the integer

d = max {ht(M)|0 6= M ∈ J} .
In [9, Theorem 3] it was proved that d = exp(J).

3. The variety generated by UJ2(F )

The variety generated by UJ2 = UJ2(F ) was extensively studied in the past years. For instance, in
[1, 3, 18] a basis for the graded identities, the corresponding cocharacter sequence and the Gelfand–Kirillov
dimension were found. Moreover, in [2] it was proved that var(UJ2), endowed with any grading, has the
Specht property, i.e. the T -ideal of any subvariety if finitely generated.

In this section we prove that var(UJ2) has almost polynomial growth, i.e. it grows exponentially but
every proper subvariety grows polynomially, by following the lines of [22]. We will improve the original proof
by dealing with the free Jordan algebra instead of the free special Jordan algebra as the author did.

From now to the end of the section, if we omit the brackets in a monomial, then we are assuming them
left-normalized, hence

x1x2x3 · · ·xn = (· · · ((x1x2)x3) · · · )xn.
Moreover, recall that an associator between three elements a, b and c of a Jordan algebra J is defined as
(a, b, c) = (ab)c− a(bc). We can define by induction an associator between more than three elements of J by
left-normalizing the brackets. Thus (a, b, c, d, e) = ((a, b, c), d, e) and so on. Notice that this definition makes
sense only if the number of elements inside the associator is odd.

We can summarize the results of [18] about ordinary polynomial identities in the following Theorem.

Theorem 3.1. Let UJ2 be the Jordan algebra of 2× 2 upper triangular matrices over an infinite field F of
characteristic different from 2 and 3. Then:

1) Id(UJ2) = 〈(x1x2, x3, x4)− (x1, x3, x4)x2 − (x2, x3, x4)x1, (x1, (x2, x3, x4), x5)〉T .
2) A basis of J (X) modulo Id(UJ2) is given by the following set:
{(xk, xi1 , xi2 , . . . , xir )xj1 . . . xjs | k ≤ i1 ≤ i3 ≤ . . . ≤ ir, k ≤ i2, j1 ≤ . . . ≤ js, r + s+ 1 = n, r even} ,
for all n > 1.
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3) cn(UJ2) = (n− 2)2n−2 + 1, hence exp(UJ2) = 2.

Since in our case charF = 0, then we can consider only multilinear polynomials and so we have to translate
the basis of the relatively free algebra appearing in the previous theorem in these terms.

In order to prove the main result of this section, we need the following technical lemma.

Lemma 3.1. The following identity holds in every Jordan algebra:

(x1, x2(x3x4), x5) ≡ (x1, x2, x5)x3x4 + (x1, x3, x5)x4x2 + (x1, x4, x5)x3x2 − (x1, x2, x5, x3, x4).

Proof. We start by recalling that for all Jordan algebras, the following identity holds

(3.1) (x1, x2x3, x4) ≡ (x1, x2, x4)x3 + (x1, x3, x4)x2.

Let us use (3.1) to expand (x1, x2(x3x4), x5).

(x1, x2(x3x4), x5) ≡ (x1, x2, x5)(x3x4) + (x1, x3x4, x5)x2

≡ (x1, x2, x5)(x3x4) + (x1, x4, x5)x3x2 + (x1, x3, x5)x4x2.
(3.2)

Moreover, it is clear that

(3.3) (x1, x2, x5, x3, x4) = (x1, x2, x5)x3x4 − (x1, x2, x5)(x3x4).

Thus, by putting (3.3) in the right-hand side of (3.2), we get

(x1, x2(x3x4), x5) ≡ (x1, x2, x5)x3x4 + (x1, x3, x5)x4x2 + (x1, x4, x5)x3x2 − (x1, x2, x5, x3, x4),

as claimed. �

We can now prove the following theorem that states that var(UJ2) has almost polynomial growth.

Theorem 3.2. Let V = var(UJ2) be the variety of Jordan algebras generated by UJ2. Then for any proper
subvariety U ⊂ V, cn(U) ≈ qnk, for some positive integer k and q > 0.

Proof. Let f be a multilinear polynomial identity of U such that f /∈ Id(UJ2). Then, according to 2) of
Theorem 3.1, we can write

f =
∑
i2,I,J

αi1,I,J(xk, xi1 , xi2 , . . . , xir )xj1 . . . xjs (mod Id(UJ2)),

where r + s + 1 = n and r even. Moreover, for any fixed r and s, k < i1 < i3 < i4 < . . . < ir, k < i2,
j1 < j2 < . . . < js, I = {i1, i2, . . . , ir} and J = {j1, j2, . . . , js}.
In this sum, let us consider the associators with maximal length, say rmax, and among them, the ones with
x2 in the third position of the associator. Write
(3.4)

f =
∑
I,J

αI,J(xk, xi1 , x2, . . . , xirmax
)xj1 . . . xjsmin

+
∑
i2,I,J

αi2,I,J(xk, xi1 , xi2 , . . . , xir )xj1 . . . xjs (mod Id(UJ2)),

where r ≤ rmax.
Substitute now the associator (x2, xn+1, xn+2) into (3.4) instead of the variable x2. Notice that we get as a
consequence, a polynomial f ′ in which the maximal length of the associators is rmax + 2. Moreover, due to
the identities of UJ2, one can easily verify that with the previous substitution, the first sum of f corresponds
in f ′ to a linear combination of polynomials of the type (x2, xn+1, xn+2, xi1 , x1, xi3 , . . . , xirmax

)xj1 . . . xjsmin
.

Here also recall that (a, b, c) = −(c, b, a).
Concerning the second sum of f, it turns out that we have two possibilities. If x2 lies in the third position
of an associator of length r ≤ rmax, then we get in f ′ an associator of length r+ 2. If x2 stands either inside
an associator in the second position or in a position starting from the fourth or in a tail, then this summand
becomes zero since (x1, (x2, x3, x4), x5), (x1, x2, x3)(x4, x5, x6) and (x1, x2, x3, x4, (x5, x6, x7)) are identities
of UJ2. Thus,

f ′ =
∑
I,J

αI,J(x2, xn+1, xn+2, xi1 , xk, xi3 . . . , xirmax
)xj1 . . . xjsmin

+
∑
i1,I,J

αi2,I,J(x2, xn+1, xn+2, xi1 , xk, xi3 . . . , xir )xj1 . . . xjs (mod Id(UJ2)).
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Let us now consider in the first sum of f ′ a variable appearing at least in one of the associators of length
rmax + 2 but not in all of them, say xi. By using the identities of UJ2, let us move xi to the second-last
position of the associators and substitute it with xi(xn+4xn+5), in order to obtain a new consequence f ′′. By
Lemma 3.1, it is clear that in f ′′ we get a sum of elements with associator of maximal length rmax + 4 and
the number of such elements is strictly less then the number of elements of f ′ with associator of maximal
length rmax + 2. By induction, we finally get a consequence f̄ which has exactly one associator of maximal
length,

f̄ = (x2, xn+1, xn+2, xi1 . . . , xit)xj1 . . . xjm +
∑
K,L

βK,L(x2, xn+1, xn+2, xk1 . . . , xkr )xl1 . . . xls (mod Id(UJ2)),

where r < t. Thus, since f̄ ∈ Id(U), it is trivial that

(x2, xn+1, xn+2, xi1 . . . , xit)xj1 . . . xjm = −
∑
K,L

βK,L(x2, xn+1, xn+2, xk1 . . . , xkr )xl1 . . . xls (mod Id(U)).

This implies that any polynomial of J (X) which is a linear combination of summands in which appear
associators of length greater or equal to t, can be written modulo Id(U) as linear combination of summands
with associators of shorter length. Notice that if such xi does not exist, then in f ′ there is already just one
associator of length rmax + 2, thus the previous argument applies.
By taking into account the previous remark, one gets the following upper bound for the codimension sequence
of U :

cn(U) ≤ 1 +

t−1∑
k=2

(k − 1)

(
n

k

)
+

n∑
k=n−m+t+1

(k − 1)

(
n

k

)
≈ qnh, q > 0,

where h = max{t− 1,m− t− 1}. Thus U has polynomial growth and we are done.
�

4. Polynomial growth and special Jordan varieties

In this section we shall prove the main theorem of this paper. In fact, we show that the growth of a
variety V is polynomially bounded if and only if UJ2 /∈ V. As a consequence, we will get that UJ2 is the
only finite dimensional special Jordan algebra generating a variety of almost polynomial growth.

We start with the following simple remark.

Remark 4.1. UJ2 ∈ var(H(M2, t)).

Proof. Notice that H(M2, t) ∼= B2, where B2 = F ⊕ V is the Jordan algebra of a symmetric nondegerate
bilinear form with dimF V = 2. Moreover, it is also clear that UJ2 ∼= J2, where J2 = F ⊕ V ′ is the Jordan
algebra of a symmetric degenerate bilinear form of rank 1 with dimF V

′ = 2.
If we denote by Jn = F ⊕ V ′ the Jordan algebra of a symmetric degenerate bilinear form of rank n− 1 and
dimF V

′ = n, then in [20] it was proved that for all n ≥ 2, Bn−1 has the same polynomial identities of Jn,
thus in particular, Id(B2) = Id(J3). Since J2 is a subalgebra of J3, we have Id(J2) ⊇ Id(J3) = Id(B2), hence
J2 ∼= UJ2 ∈ var(B2) = var(H(M2, t)) and we are done. �

Let us now investigate the structure of a finite dimensional special Jordan algebra J in case UJ2 /∈ var(J).
To this end, recall that we fixed {1, a, b} as basis of UJ2, where 1 = e11 + e22, a = e11− e22 and b = e12 with
a2 = 1 and ab = b2 = 0.

Lemma 4.1. Let V be a variety of special Jordan algebras generated by a finite dimensional algebra J,
V = var(J). Moreover, let

J = A1 ⊕ . . .⊕Am +R,

where R = Rad(J), be the Wedderburn–Malcev decomposition of J. If UJ2 /∈ var(J), then Ai ∼= F for all
1 ≤ i ≤ m.

Proof. By contradiction, let us suppose that there exists Ai not isomorphic to F. Thus, according to the

classification of the finite dimensional special simple Jordan algebras, either Ai ∼= M
(+)
n or Ai ∼= H(M2n, s)

or Ai ∼= H(Mn, t) or Ai ∼= Bn.
5



For each possibility, we shall prove that UJ2 lies in the variety generated by Ai. Since var(Ai) ⊆ var(J), we
will reach the contradiction.

– Suppose that Ai ∼= M
(+)
n , n > 1, then denoting by D the subalgebra generated by e11, e12 and e22,

one gets trivially that D ∼= UJ2, then UJ2 ∈ var(Ai), a contradiction.
– If Ai ∼= H(M2n, s), n > 1, by setting D = 〈e11+en+1,n+1, e22+en+2,n+2, e12+en+2,n+1〉 we have that
ϕ : UJ2 → D such that ϕ(e11) = e11 +en+1,n+1, ϕ(e22) = e22 +en+2,n+2 and ϕ(e12) = e12 +en+2,n+1

is an isomorphism of Jordan algebras. As in the previous case, this implies a contradiction. Notice
that if n = 1, then H(M2, s) ∼= F and we have nothing to prove.

– Let Ai ∼= H(Mn, t), n ≥ 1. It is clear that inside Ai we have a copy of H(M2, t), so by Remark 4.1
we get UJ2 ∈ var(H(M2, t)) ⊆ var(Ai), a contradiction.

– Finally, let us suppose Ai ∼= Bn, n > 1. By Remark 4.1, UJ2 ∈ var(B2) and, since B2 is a subalgebra
of Bn, for all n > 1, then var(B2) ⊆ var(Bn). Hence UJ2 ∈ var(Bn), a contradiction.

Thus for all 1 ≤ i ≤ m we must have Ai ∼= F and we are done. �

In what follows we investigate the relation between each simple component of J and its radical.

Lemma 4.2. Let V be a variety of special Jordan algebras generated by a finite dimensional algebra J,
V = var(J), and let

J = A1 ⊕ . . .⊕Am +R,

where R = Rad(J), be its Wedderburn–Malcev decomposition. If UJ2 /∈ V, then (AiR)Ak = 0 for all
1 ≤ i, k ≤ m and i 6= k.

Proof. By the previous Lemma, we have that Ai ∼= F for all 1 ≤ i ≤ m. Suppose by contradiction that there
exist i 6= k such that (AiR)Ak 6= 0, hence (air)ak 6= 0 for some ai ∈ Ai, ak ∈ Ak and r ∈ R.
First notice that if ei and ek are the unit elemets of Ai and Ak, respectively, then ((eiai)r)(ekak) 6= 0. Since
Ai ∼= Ak ∼= F, then now one can consider ai and ak as scalars, thus ((eiai)r)(ekak) = aiak(eir)ek 6= 0. Hence,
without loss of generality, we may assume that (air)ak 6= 0 with a2i = ai and a2k = ak.
Let t ≥ 1 be the largest integer such that (aiR)ak ⊆ Rt and let D = J/Rt+1. It is clear that D ∈ var(J).
If one sets C as the subalgebra of D generated by ai + ak +Rt+1, ai − ak +Rt+1 and (air)ak +Rt+1, then
we claim that ϕ : C → UJ2 such that ϕ(ai + ak + Rt+1) = e11 + e22, ϕ(ai − ak + Rt+1) = e11 − e22 and
ϕ((air)ak +Rt+1) = e12 is an isomorphism of algebras. To this end, remark that such elements are linearly
independent since ai and ak are orthogonal elements of the semisimple part of J and (air)ak /∈ Rt+1 by
construction. Moreover, let us verify that C and UJ2 have the same multiplication table according to the
action of ϕ.
It is clear that (ai + ak + Rt+1)2 = a2i + a2k + Rt+1 = ai + ak + Rt+1. Moreover, it is also trivial that
(ai − ak + Rt+1)2 = a2i + a2k + Rt+1 = ai + ak + Rt+1 and that (ai + ak + Rt+1)(ai − ak + Rt+1) =
a2i − a2k +Rt+1 = ai − ak +Rt+1.
Let us now compute the product among ai + ak + Rt+1 and (air)ak + Rt+1 by using the speciality of the
Jordan algebra J. From now on, we denote by xy the Jordan product among two elements of J and by
x · y the associative product in the associative enveloping algebra of J. It is clear that xy = 1

2 (x · y + y · x).
Recall that if ai and ak are orthogonal elements in J, then by [15, Chapter 2, Section 2], ai and ak will be
orthogonal also in the associative enveloping algebra of J. Thus for instance,

(air)ak =

[
1

2
(ai · r + r · ai)

]
ak =

1

4
(ai · r · ak + ak · r · ai) = (akr)ai.

Notice that

ai[(air)ak] = ai

[
1

2
(ai · r + r · ai)ak

]
= ai

[
1

4
(ai · r · ak + ak · r · ai)

]
=

1

8
(a2i · r · ak + ak · r · a2i )

=
1

2
(a2i r)ak =

1

2
(air)ak.

(4.1)

With similar arguments one can also prove that

(4.2) ak[(air)ak] =
1

2
(a2kr)ai =

1

2
(akr)ai.
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Now, by using equations (4.1), (4.2), we get that

(ai + ak +Rt+1)((air)ak +Rt+1) = ai[(air)ak] + ak[(air)ak] +Rt+1 =
1

2
[(a2i r)ak + (a2kr)ai] +Rt+1

=
1

2
[(air)ak + (akr)ai] +Rt+1 =

1

2
[(air)ak + (air)ak] +Rt+1

= (air)ak +Rt+1.

Moreover, we get that

(ai − ak +Rt+1)((air)ak +Rt+1) =
1

2
[(air)ak − (akr)ai] +Rt+1 = Rt+1.

Finally, since ((air)ak)2 is an element of Rt+1, it is clear that ((air)ak)2 + Rt+1 = Rt+1. Thus ϕ is an
isomorphism of Jordan algebras.
Hence, UJ2 ∈ var(C) ⊆ var(D) ⊆ var(J), a contradiction. This implies that (AiR)Ak = 0 for all 1 ≤ i, k ≤ m
and i 6= k as claimed. �

Varieties as in Lemma 4.2 have also the following simple property.

Proposition 4.1. Let V = var(J) a variety of special Jordan algebras as in Lemma 4.2. If (AiR)Ak = 0
for some 1 ≤ i, k,≤ m, i 6= k, then

1. (air1)(akr2) = −(air2)(akr1),
2. ai(r1(akr2)) = −ak(r1(air2)),

for all ai ∈ Ai, ak ∈ Ak and r1, r2 ∈ R.

Proof. Statement 1. can be easily proved by noticing that

(air1)(akr2) + (air2)(akr1) = [(air1)ak]r2 + [(air2)ak]r1 + [ai(r1r2)]ak.

The proof of the latter equality is a straightforward computation by using the multiplication in the associative
enveloping algebra of J , so we omit it.
Moreover, if one considers the identity (3.1) and makes the substitution x1 = r1, x2 = ak, x3 = r2 and
x4 = ai, then recalling that (AiR)Ak = 0, we get 2. �

We are now in a position to prove the main theorem.

Theorem 4.1. Let V be a variety of special Jordan algebras generated by a finite dimensional algebra J,
V = var(J). Then V has polynomial growth if and only if UJ2 /∈ V.

Proof. Suppose first that cn(V) ≈ qnk, for some positive integer k and q > 0. Since in [18] it was proved
that var(UJ2) has exponential growth, it is clear that UJ2 /∈ V.
Conversely, let us assume that UJ2 /∈ V. If J = A1⊕ . . .⊕Am+R is the Wedderburn–Malcev decomposition
of J, then by Lemma 4.1, Ai ∼= F for all 1 ≤ i ≤ m. Furthermore, by Lemma 4.2, (AiR)Ak = 0 for all
1 ≤ i, k ≤ m and i 6= k.
Let d = exp(J) = max{ht(M)|0 6= M ∈ J}. In [9, Lemma 5] it was proved that in case of finite dimensional
algebra with strongly nilpotent radical, there exist constants C, k such that cn(J) ≤ Cnkdn, for all n ≥ 1.
Thus by contradiction let us assume d ≥ 2.
Since Ai ∼= F for all 1 ≤ i ≤ m, by [9, Lemma 6] there exist t ≥ 0 and a monomial M(x1, . . . , xd+t+l) such
that

M = M(a1, . . . , ad+l, b1, . . . , bt) 6= 0,

for some a1, . . . , ad+l ∈ B1, b1, . . . , bt ∈ B0, l ≥ 0, where B1 is the union of the bases of A1, . . . Am, B0 is a
basis of R and a1, . . . , ad belong to distinct simple components Ai1 , . . . , Aid , respectively. As in the proof of
Lemma 4.2, we can assume a2i = ai, for all 1 ≤ i ≤ d+ l.
Let us consider the polynomial

f = (x1x2, x3, x4)− x1(x2, x3, x4)− x2(x1, x3, x4)

and let us suppose that f is an identity of J. Thus, for all ai ∈ Ai, ak ∈ Ak and r1, r2 ∈ R, if one sets
x1 = ai, x2 = r1, x3 = ak and x4 = r2 in f, then

(air1)(akr2) = ai(r1(akr2))− ai(r2(akr1)).
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The previous one plus statements 1. and 2. of Proposition 4.1 allow us to write M = ai0M
′ = aj0M

′′, for
some i0 6= j0 and M ′,M ′′ non-zero monomials (here recall that d ≥ 2).
Let t ≥ 0 be the largest integer such that M ∈ Rt and let D = J/Rt+1. If j ∈ J, we shall denote by j̄
the image of j in D. Now let I be the ideal of D generated by M ′ −M ′′ and 2M −M ′. Remark that by
construction, M, M ′ and M ′′ are not zero in D.
If we set C as the subalgebra of D/I generated by ai0 + aj0 + I, ai0 − aj0 + I and M ′ + I, then it is
easily proved that ϕ : C → UJ2 such that ϕ(ai0 + aj0 + I) = e11 + e22, ϕ(ai0 − aj0 + I) = e11 − e22 and

ϕ(M ′+ I) = e12 is an isomorphism of Jordan algebras. Indeed, a straightforward computation, as the one in
Lemma 4.2, shows that the generators of C are linearly independent and they have the same multiplication
table as the ones of UJ2.
Hence UJ2 ∈ var(C) ⊆ var(D) ⊆ var(J), a contradiction. Notice that if f is not an identity of J and if there
exist ai ∈ Ai, ak ∈ Ak and r1, r2 ∈ R, such that

b = (air1)(akr2)− ai(r1(akr2)) + ai(r2(akr1)) 6= 0,

then by considering J ′ = J/Q, where Q is the ideal of J generated by b, the previous arguments apply.
Thus d = exp(J) = 1 and, by Lemma 5 of [9], J has polynomial growth. �

As a consequence we have the following corollaries.

Corollary 4.1. The algebra UJ2 is the only finite dimensional special Jordan algebra generating a variety
of almost polynomial growth.

Corollary 4.2. There is no variety of special Jordan algebras generated by a finite dimensional algebra of
intermediate growth between polynomial and exponential.
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