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Introduction

Climate change represents one of the greatest challenges humanity has ever faced. The

unmistakable signs of climate change, such as global warming, rising sea and ocean tem-

peratures, rising global sea levels, decreasing Arctic sea ice, and melting glaciers, pose a

real and tangible risk to the future of the planet. The geographic extent of the problem

requires a planetary effort by everyone: from governments, which should pursue climate

policies in synergy with each other, to individuals who should respect the environment

in which they live. The scientific community is called upon to help both sides, not only

by bringing evidence of the changing climate, but also by supporting the processes of

adaptation and resilience to climate change.

One of the consequences that is increasingly being blamed for the problem of cli-

mate change and global warming is the possible increase in the frequency and magnitude

of extreme events, namely all those phenomena that, because of the statistical connota-

tion of the term "extreme," should be marked by certain exceptionality. Among these

phenomena, extreme precipitation events assume considerable importance, and it is par-

ticularly alarming what was reported in 2021 by the Intergovernmental Panel on Climate

Change within the "Sixth Assessment Report": the frequency and intensity of extreme

precipitation events are likely to have increased on a global scale in most regions, and it

is likely that the 21st century will see an increase in the frequency of intense rainfall in

many areas of the globe and, at the same time, a decrease in total rainfall. In light of this

statement, moreover, it is possible to perceive how the risk of further unbalancing of the

hydrological cycle is indeed possible. A decrease in total rainfall may lead to a further

increase in surface and atmospheric temperatures and in the frequency of hot extremes,

which, in turn, are among the causes of higher evaporative rates and increased relative

humidity in the air; this may further enhance an increase in the intensity and frequency

of extreme weather events, triggering floods and jeopardizing our society.

Given this premise, the research activity developed and presented in this doctoral

thesis is framed within the context of studying the effects of climate change on the extreme

precipitation regime. In particular, the thesis is divided into four chapters.

Chapter 1 will provide a description of climate change analyzed through the Kipling

method (i.e., 5W1H questions); starting from general concepts related to climate change,

1



2 | Introduction

it will be examined more in detail what is changing and the physical reasons for these

alterations; after this it will also be explored who and what is affected by these changes,

how long the climate is likely to change under the effect of global warming and what

policies have been undertaken to address this global issue. Finally, a more detailed de-

scription of the observed and projected changes in the extreme precipitation regime will

be provided.

Chapter 2 will be devoted to analyzing the changes in the extreme precipitation

regime for the Mediterranean area and, particularly, for Sicily. In particular a trend anal-

ysis based on quantile regression will be carried out, focusing especially on shorter duration

extreme precipitation events, which are particularly relevant in the urban environment.

The second part will focus on examining the potential consequences of the alterations in

the extreme precipitation regime from an engineering perspective. In particular, it will

be investigated how these potential changes affect the extreme value distributions used in

the design of hydraulic structures. Finally, since these short-duration intense events are

generally associated to convective systems, an algorithm for separating convective and

stratiform regimes will be implemented and used.

Chapter 3 will focus on the analysis of the changes in two characteristics of extreme

precipitation events, namely the magnitude and the seasonality. Since local changes are

often influenced by changes in the large-scale regime, in this case the analysis will be

conducted looking at the global scale, in order to provide a broader view of the state

of the climate. Using the projections of different Global Circulation Models (GCMs)

at different Shared Socioeconomic Pathways (SSPs) and Representative Concentration

Pathways (RCPs), it will be analyzed how these characteristics of precipitation extremes

might change at the end of the 21st century. Moreover, for the first time, changes in

the intensity and seasonal occurrence of the extremes will be examined using a peculiar

branch of copulae, namely bivariate statistical models capable of modeling the correlation

between linear (the magnitude) and circular (the seasonality) variables.

Finally, Chapter 4 will delve into the study of compound hydro-meterological events.

It will be studied whether and how heat stress event can be a precursor of summer flooding

across different areas of the globe. In this case, precipitation extremes will be considered

as a "masked" element in the compounding between heat stress and flood events. Indeed,

these two hazards are connected through atmospheric conditions leading to increased

convective available potential energy (CAPE) and stormy weather. Moreover, by using

the outcomes from several GCMs at different combination of SSPs and RCPs, it will be

examined whether the strength of this compounding is projected to increase or decrease

in the future, considering also the potential threats to society and the economy.
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1.1. 5W1H for Climate Change

Nowadays, there is probably no person in the world who has never heard of climate

change. This expression has entered in our everyday life through newspapers, television,

networks and so on, triggering completely different reactions, from fear (the so-called

eco-anxiety) to negationism. Regardless of individual’s point of view, some of the world’s

largest organizations have no doubt in defining what climate change is. During the 2021

United Nations Security Council, David Attenborough, who is among the world’s most

famous biologist and natural historian, defined climate changes as "the biggest threat to se-

curity that modern humans have ever faced", pointing out that continuing in this direction

is likely to see a collapse in global food security, in the availability of fresh water and so

on. In this case, it will be the poorest who will suffer first. This latter topic is particulary

relevant to the Food and Agriculture Organization (FAO), which in the report "Strategy

on Climate Change 2022-2031" stressed the urgency of addressing climate change, given

the 720-811 million of people facing hunger in 2020 and the increasing impacts of extreme

weather events on food security, nutrition and poverty. Last but not least, in the report

"Climate Change 2013: The Physical Science Basis" the Intergovernmental Panel on Cli-

mate Change (IPCC) stated that "the scientific evidence is unequivocal: climate change

is a threat to human wellbeing and the health of the planet. Any further delay in con-

certed global action will miss the brief, rapidly closing window to secure a liveable future".

More recently, the findings from IPCC Working Group I in the Sixth Assessment Report

(AR6) (Masson-Delmotte et al., 2021) underline the unequivocal climate crisis the planet

is currently facing and will continue to face in the coming decades. This crisis includes

the increasing risk in the occurrence of unprecedented heatwaves, intense precipitation,

prolonged droughts, wildfires, and tropical cyclones, with impacts projected to rise in all

regions across the globe. What is certain is that if no action will be taken to face climate

change, some climate tipping points might be reached (Lenton, 2011), resulting in strong

consequences for Earth, difficult or even impossible to revert (e.g., the ice melt in the

poles).

However, it is undeniable that addressing climate change issues in a comprehensive
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and precise manner poses significant challenges. Indeed, the intricate nature of the climate

system, coupled with the interdisciplinary range of topics and variables to be considered,

enhances the complexity of the subject even further. In this context, it may be useful to

draw inspiration from the methods used in problem-solving or project management, such

as the Kipling method. This method, also known as 5W1H, is a questioning approach

that answers all the basic elements within a problem (i.e., What, Who, When, Where,

Why, and How), providing a structured way to gather information, analyze situations, and

communicate effectively. Thus, applying it to the topic of climate change could provide

a clearer overall picture compared to a classical bottom-up or top-down approach, which

may be more useful in understanding the effects of climate change at a more detailed

scale.

Therefore, in the next paragraphs, the 5W1H method will be applied to climate

change. It is worth to emphasized that, due to the vastness of the topic, it is not possible

to encapsulate all the advances achieved over time. As much as possible, however, this

section will aim to be as clear and comprehensive as possible. Finally, the ultimate goal

will be a focus on extreme precipitation events in the context of climate change, as will

be seen in section 1.2.

1.1.1. What

Obviously, the first question worth answering is "what is climate change?". As

defined from the National Aeronautics and Space Administration (NASA), climate change

is "a long-term change in the average weather patterns that have come to define Earth’s

local, regional and global climates".

The first key information that can be extracted from this definition is inherent to

the difference between climate and weather. Indeed, while "weather" refers to short-term

atmospheric conditions at a given location, which may change daily or even hourly, "cli-

mate" represents the long-term behavior of the (averaged) weather conditions in a certain

geographic area. Mark Twain’s famous quote is often used (even if de-contextualized

from the original meaning) to provide a glaring example of how time is a key variable in

distinguishing the two concepts: "if you don’t like the weather in New England now, just

wait a few minutes". According to the World Meteorological Organization (WMO), the

length of the reference period to asses changes in climate should be 30 consecutive years,

and the organization also recommends to update the "Standard Normals" (i.e., a suite

of data products that provide information about typical climate conditions for thousands

of locations throughout the world) every 10 years. The term "Normals" also introduces

a fundamental notion in climate change-related studies, namely statistics. Although the
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term "change" inherently contains the concept of departing from something usual (or

normal), it is essential for this concept to have universal consensus. Thus, statistics offers

the required level of objectivity to achieve agreement on the presence of a genuine change.

Moreover, the use of the 30-year window allows to introduce an additional concept about

the nature of climate change. Indeed, if on the one hand it ensures that changes in weather

are not mistaken for significant changes in climate, on the other it implies that climate is

not static but has always been changing, not allowing to define an absolute mutation in

its status. The glacial periods cyclically experienced by Earth represent a clear example

of this dynamism. Thus, the aspect that distinguishes the natural changes from what is

observed today is our presence, namely the human impacts. To be more specific, it is

possible to consider climate change as the resultant of two components: the natural and

the anthropogenic climate change. The first component refers to all the natural phenom-

ena that contribute and have contributes to modify the Earth’s climate (such as volcanic

eruptions, Earth’s orbital changes, solar variations and so on), while the second one is

directly linked to the human-induced impacts, such as the emission of greenhouses gases,

land alteration, deforestation and so on.

From what has been seen so far, "time" has been the main subject in defining climate

change. However, the last piece of information in the definition of climate change is related

to the geographic scale of change, i.e., "space". Indeed, these changes may affect not only

the global climate, but can also be identified at smaller scales, such as regional or local.

However, these aspects will be explored in the where paragraph.

Once defined what climate change is, a second question that may arise is "what

is changing?". When considering this question, the first variable that typically comes

to mind is temperature. As stated by the IPCC AR6, the emission of greenhouse gases

(GHGs) induced by human activities, have unequivocally exacerbated global warming,

resulting in a 1.1çC rise in global surface temperatures in 2011-2022, compared with

the 1850-1900 baseline. This correlation is evident in Figure 1.1, where the differences

in the global surface temperature are represented together with the global atmospheric

concentration of carbon dioxide (CO2).

The consequences of this global temperature increase are several and affect different

components of the Earth’s climate system, such as the atmosphere, ocean, cryosphere

and biosphere. Anthropogenic global warming is the main driver of the global retreat of

glaciers since the 1990s and the decrease in Arctic sea ice area between 1979–1988 and

2010–2019. Between 2010 and 2016, grounding lines in West Antarctica, East Antarctica,

and the Antarctic Peninsula retreated at rates faster than 25 m·yr-1 in 22%, 3%, and 10%

of surveyed cases, respectively (Konrad et al., 2018). Regarding the mountain glaciers, it

has been observed a rapid glacier retreat across the European Alps, estimated in a loss
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Figure 1.1: From NOAA Climate.gov: Yearly temperature compared to the 20th-century average
(red bars mean warmer than average, blue bars mean colder than average) from 1850–2022 and
atmospheric CO2 amounts (gray line): 1850-1958 from IAC, 1959-2019 from NOAA ESRL.
Original graph by Dr. Howard Diamond (NOAA ARL), and adapted by NOAA Climate.gov.

of 39 km2
·yr-1 during the period 2000-2014 (Sommer et al., 2020). The loss of mass from

glaciers together with the ocean thermal expansion are the primarily responsible for the

global mean sea level rise, which has increased from 2.2 ± 0.3 mm·yr-1 in 1993 to 3.3

± 0.3 mm·yr-1 in 2014 (Chen et al., 2017). The increasing concentration of CO2 in the

atmosphere enhance its absorption by the oceans, leading to a decrease in pH levels and,

in turn, their acidification. This process can have significant effects on marine ecosystems,

disrupting the balance of marine food chains and impact the overall health of the oceans

(Doney et al., 2020). It has been demonstrated that human activities are undermining

about 75% of the world’s reefs (Spalding and Brown, 2015).

Anthropogenic climate change is also affecting the magnitude and the frequency

of many weather and climate extremes worldwide. Since 1950, rising global tempera-

tures have lead to more frequent and severe heat extremes, such as heatwaves (Perkins-

Kirkpatrick and Lewis, 2020) and heat stress events (Chen et al., 2020). Hot and dry

conditions have exacerbated the risk of wildfires, lengthening the fire weather season on a

large portion of the Earth’s surface (Jolly et al., 2015). The 2023 Canadian wildfires began

in March, and by October more than 6,500 fires had burned about 5% of Canada’s entire

forest area. As the planet warms, an imbalance in the hydrological cycle is becoming

increasingly evident. Higher temperatures are leading to greater evaporation rate from

land and oceans, exasperating the DIDWIW (i.e., Drier In Dry, Wetter In Wet) paradigm

(Feng and Zhang, 2015). Indeed, drying trends generally occur in arid regions, where the

https://www.climate.gov/news-features/climate-qa/if-carbon-dioxide-hits-new-high-every-year-why-isn%E2%80%99t-every-year-hotter-last
https://iac.ethz.ch/
https://gml.noaa.gov/ccgg/trends/data.html
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reduction of soil moisture increases the risk of more prolonged and severe drought con-

ditions (Trenberth et al., 2014). At the same time, a warmer atmosphere can hold more

water vapor, changing the heavy rainfall characteristics (i.e., frequency, intensity, duration

and so on) and increasing wetter trends especially in humid regions (Fowler et al., 2021).

These changes in intense rainfall are hardly compatible with the capacity of natural and

urban drainage systems, increasing the risk of catastrophic floods (Milly et al., 2002).

However, this is just a small part of what is changing due to climate change. Other

signatures of climate change are related to intensification of tropical cyclones (Emanuel,

2005), worsening air and water quality (Delpla et al., 2009), erosion of coastal areas

(Toimil et al., 2017), and so on.

1.1.2. Why

If paragraph 1.1.1 analyzes what is changing in the climate, it is now appropriate to

explore "why is the climate changing?". From what has emerged previously, one of

the major players is the rise in temperatures, which has been found to be highly correlated

with CO2 emissions (but also other GHGs have to be considered, such as water vapor,

H2O and methane, CH4). So the starting point needs to be the physical mechanism that

links these GHGs to temperature, namely the greenhouse effect. This phenomenon is a

natural process that has allowed the proliferation of life on our planet. Solar radiation

from the sun reaches the Earth and warms its surface. In response, the Earth emits heat

in the form of infrared radiation. Here is where GHGs come into play. These gases absorb

the outgoing infrared radiation and re-radiate it in all directions, including back toward

the Earth’s surface (Figure 1.2a). This action effectively traps heat within the Earth’s

atmosphere, slowing the loss of heat to space and maintaining temperatures at a level

suitable for life.

Starting from the Industrial Revolution in the late 18th century, human activities

have been altering the composition of Earth’s atmosphere, giving rise to the enhanced

greenhouse effect (Figure 1.2b). This phenomenon is driven by the excessive accumula-

tion of GHGs, primarily due to human activities. The most significant contributor to this

increase is the burning of fossil fuels for energy, industry, and transportation. Also de-

forestation results in the increased release of GHGs into the atmosphere. Healthy forests

play a crucial role in absorbing CO2 from the atmosphere, effectively serving as valuable

carbon sinks. However, when forests are cleared and subjected to deforestation, they

lose this crucial capacity, leading to the release of higher volumes of carbon into the at-

mosphere. As a result, the concentration of CO2 in the atmosphere has risen to levels

not seen in hundreds of thousands of years. With more CO2 (and GHGs) in the air,
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Figure 1.2: From MrGeogWagg: Representation of natural (a) and human enhanced greenhouse
effect (b)

heat passing through on its way out is more likely to be stopped, increasing the surface

temperature of Earth.

In paragraph 1.1.1 it has also been seen that the occurrence and intensity of extreme

events are changing. So it is reasonable to ask: "why are extremes becoming more

extreme and frequent?" Although this question may seem obvious, nevertheless it is

useful to examine it from a statistical point of view. As an example, the distribution of the

temperatures related to a certain period generally takes the form of a normal distribution.

For instance, the distribution shown in Figure 1.3a can be derived by considering the

daily temperatures for a 30-year window a certain location. Moreover, if these observed

temperatures refers to a period in the middle of the 20th, it is possible to conclude that

this distribution is representative for the past climate. In this case, the probability to have

cold or hot weather is described by the left and right tail of the distribution, respectively.

When this distribution is non-stationary or, in other words, when global warming

has a relevant effect on temperature, it implies alterations in either the mean and/or

variance of the resulting curve. Comparing the previous with the current temperature

distribution (which could be, for example, derived from the observations in the past 30

years at the same location), an increase in the mean temperature of the planet could lead

to a rightward shift in the distribution (Figure 1.3b). The effects of this shift may result

in a strong reduction in cold events and, at the same time, an increase in the frequency of

https://mrgeogwagg.wordpress.com/2015/06/24/greenhouse-effect-and-anthropogenic-warming/
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Figure 1.3: Modified from (Houghton et al., 2001): schematic showing the effect on extreme
temperatures when (b) the mean temperature increases, (c) the variance increases, and (d)
when both the mean and variance increase for a normal distribution of temperature (a)

hot weather (pink shaded area) and in the probability of recording even more extreme hot

events (red shaded area), that are not consistent with the previous climate distribution.

An alteration in the mean does not necessarily correspond to a change in variability

(or variance), despite the resulting impact may still be dangerous. Indeed, an increase in

variability without a change in the mean implies an increase in the probability of both

hot and cold extremes as well as the absolute value of the extremes (Figure 1.3c).

However, climate change hardly affect only one of these two parameters. Instead, it

is highly likely that alterations could manifest in both mean and variance. When both

these characteristics change (Figure 1.3d), this leads to more frequent hot events with

even more extreme high temperatures and fewer occurrences of cold events.
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1.1.3. Where

What one can reasonably ask is "where is the climate changing?". Although

climate change is an issue that the entire globe is experiencing, in fact, the greatest

impacts may affect a certain area more than another. This greatly depends on which

variable is being considered.

Considering the spatial trends in global average surface temperature between 1993

and 2022 (Figure 1.4), is it possible to observe that most of the planet is warming, except

for a few locations in the Southern Hemisphere oceans. To be more detailed, the Northern

Hemisphere is heating up at a faster rate than the Southern and this is primarily due to

the distribution of land and oceans in our planet. Indeed, the Northern Hemisphere has a

greater proportion of landmasses compared to the Southern Hemisphere, which has more

oceans. Due to their relevant heat capacity (i.e., thermal inertia), the oceans warm and

cool more slowly than landmasses and, as a result, the Northern Hemisphere experiences

more significant temperature variations, leading to more rapid warming trends.

Figure 1.4: From NOAA Climate.gov: trends in global average surface temperature between 1993
and 2022 in degrees Fahrenheit per decade. The map is based on data from NOAA Centers for
Environmental Information

https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature#:~:text=Earth's%20temperature%20has%20risen%20by,0.18%C2%B0%20C)%20per%20decade.
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However oceans also play a more active and dynamic role in redistributing the heat

absorbed by the sun. Ocean currents, such as the Gulf Stream, move vast amounts of

heat across the planet and transport warm water from the equator toward the Northern

Hemisphere. Since the oceans are confined by land masses, their heat transport is more

localized and channelled into specific regions, influencing regional climate patterns and

contribute to warming.

Focusing on the extremes and, particularly, on hot extremes, heavy precipitation and

agricultural and ecological drought, the Working Group I in the AR6 (Masson-Delmotte

et al., 2021) collected what the scientific community has produced over the years to

provide a comprehensive picture of the observed changes and the human contribution to

these alterations (Figure 1.5). Regarding hot extremes (Figure 1.5a), the report states

that average and extreme heat events are increasing in every region of the world and that

it is very likely that human activities have contributed on these trends. Regional increases

in hot extremes have been found in China (Sun et al., 2014; Chen and Sun, 2021) and

India (Kothawale et al., 2010; Joshi et al., 2020). Chen and Sun (2021) explored the

changes in two climate extreme indices that together measure hot and cold events (i.e.,

hottest day, TXx, the coldest night, TNn) over China. Both TXx and TNn respond

strongly to the rapid warming, being characterized by an increasing rate of 0.17 and 0.52
çC/10 years during 1961–2014, respectively. Joshi et al. (2020) showed that India has

witnessed an increase in the occurrences of hot days with higher temperatures in the

recent period (1976–2018) compared to the past (1951–1975). The study identifies robust

positive geopotential height anomalies at 500 hPa over northern India as crucial factors,

dynamically leading to subsidence, clear sky conditions, reduced precipitable water, and

depleted soil moisture, contributing to the heightened occurrence of hot extremes in recent

decades. Also United States (Smith et al., 2013; Mutiibwa et al., 2015), Europe (Stott

et al., 2016; Rousi et al., 2022), Africa (Vizy and Cook, 2012; Ceccherini et al., 2017)

and Australia (Perkins-Kirkpatrick et al., 2016) has been characterized by rises in the

occurrence and magnitude of hot extremes. Rousi et al. (2022) identified Europe as

a hotspot for heatwaves, experiencing trends that are three to four times faster than

the rest of the northern mid-latitudes over the past 42 years. This accelerated trend is

associated with changes in atmospheric dynamics, specifically an increase in the frequency

and persistence of double jet stream states over Eurasia. Over Africa, Ceccherini et al.

(2017) quantified heatwaves using the Heat Wave Magnitude Index daily (HWMId), which

combines the duration and intensity of extreme temperature events into a single numerical

index. They have found that HWMId related to maximum temperatures had the most

significant presence during 2006-2015. In this period, the frequency of extreme heatwaves

increased to 24.5 observations per year compared to 12.3 per year in the period from 1981



12 1| Chapter one

to 2005.

Figure 1.5: From (Masson-Delmotte et al., 2021): synthesis of assessed observed and attributable
regional changes for hot extremes (a), heavy precipitation (b) and agricultural and ecological
drought (c). The hexagons correspond to each one of the IPPC AR6 WGI reference regions

Differently from the hot extremes, changes in the pattern of heavy precipitation (Fig-
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ure 1.5b) and agricultural and ecological drought (Figure 1.5c), do not show a clear global

trend, but uncertainties are present for some regions, as well as low agreements in the

type of change (mainly due to differences in the methodology to define the heaviness of

the events, dataset and extension of the analysis). However, where present, trends al-

ways manifest a sign of growth, that is, intensification of extreme events and worsening

of drought conditions. Regarding extreme precipitation, especially the Northern Europe

(Cioffi et al., 2015; Zeder and Fischer, 2020), the central and eastern United States (East-

erling et al., 2017) and Asia (Chen and Sun, 2021) have experienced changes in the usual

patterns, despite the confidence in human contribution to the observed changes is not

always certain. A more detailed discussion on changes in precipitation extremes will be

addressed in the section 1.2.

1.1.4. When

From what has been seen so far, our planet has experienced significant changes in its

climate since the 1800s, with an acceleration especially in the last 50 years. Looking to the

future, "until when will climate change be something we have to worry about?".

To answer this question, it is first necessary to introduce the instruments that allow to

examine the projected state of the climate, namely Global (or General) Circulation Models

(GCMs, Figure 1.6a). GCMs are numerical models that describe the interactions among

the major components of the climate system (atmosphere, land surface, oceans, etc...)

through quantitative methods based on solving differential equations. These equations

are similar to the one used in Numerical Weather Prediction (NWP) models, including

terms for the conservation of mass, equations governing fluid flow and thermodynamic.

However, NWP models are used for weather prediction (namely for short-term prediction,

according to what has been explained in section 1.1.1), since they use high resolution

spatial grids and temporal time step and this would require huge computing resources in

order to be applied at the global scale.

In GCMs, the equations are numerically solved in a three dimensional grid over the

entire globe, typically characterized by a horizontal resolution that can reach 100 km (i.e.,

c 1 ç) and by several layers in the atmosphere and in the oceans. The temporal resolution

is generally daily, although some models are able to achieve sub-daily resolutions, such as

6 or 3 hours. Having these coarse spatial and temporal resolutions, GCMs usually contain

parameterizations (i.e., simplifications) for processes that occur on scales too small to be

resolved directly (i.e., convection).

These models are forced with scenarios that quantify the trajectory of the GHGs

concentration up to 2100. In particular, the IPCC AR5 introduced the Representative
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Concentration Pathways (RCPs), which consider the GHG concentrations in terms of ra-

diative forcing potentially reached in 2100, i.e., the warming effect on the Earth caused

by these concentrations (Figure 1.6b). The RCPs introduced are four, namely RCP2.6,

RCP4.5, RCP6, and RCP8.5, corresponding to a radiative forcing of 2.6, 4.5, 6, and 8.5

W/m2 in 2100. In addition to RCPs, the IPCC AR6 introduced the Shared Socioeconomic

Pathways (SSPs), that estimate GHG trajectories according to different climate policies

(Figure Figure 1.6c). Hence, SSPs are useful for understanding how human activities and

socioeconomic policies might influence GHG concentrations and, consequently, climate

change up to 2100. The five scenarios introduced by the IPCC AR6 are SSP1 (Sus-

tainability - "Taking the Green Road"), SSP2 ("Middle of the Road"), SSP3 (Regional

Rivalry - "A Rocky Road"), SSP4 (Inequality - "A Road divided") and SSP5 (Fossil-

fueled development - "Taking the Highway"). By combining the radiative forcing levels

and SSPs (Figure 1.6d), GCM models are able to provide a more comprehensive view of

how climate might respond in different socio-economic and emission situations. From the

latter panel it is also possible to observe that four scenarios are considered the top priority

in the experimental design (i.e., Tier 1), since they serve as a good comparison to RCPs

established in AR5. Moreover, the modelling centres are eventually allowed to explore

other scenarios (i.e., Tier 2), in order to range over other potential pathways. However,

it is worth mentioning that not all the combinations between radiative forcing levels and

SSPs are plausible (i.e., the white boxes). As an example, it would not be realistic to com-

bine SSP5, which favors the fossil-fuel development, with the low forcing scenario (e.g.,

1.9 W/m2), which would require stricter climate policies and strong mitigation measures,

resulting in reduced greenhouse gas emissions.

Finally, before answering the question raised at the beginning of the paragraph, it is

worth mentioning two important concepts in using these models, namely potential biases

and uncertainties in their climate projections. Being models, GCMs can be affected by

systematic errors in their output, mainly due to their limited spatial resolution, simplified

thermodynamic processes and physics or incomplete understanding of the global climate

system. Indeed, the atmosphere is a very complex system to model, as the interactions

that occur with the other components. To reduce these biases, two procedures are gen-

erally employed: the first one is based on correcting the outputs relative to the historical

baseline through observations (i.e., bias-correction methods), and the second one is based

on averaging the response of multiple GCMs, namely by creating an ensemble of GCMs.

Although these two procedures can be used together, it is clear that the former is much

more challenging and often struggles with the availability of sufficient recorded data. The

second, on the contrary, is always carried out and, as demonstrated by a large num-

ber of scientific publications, is often enough to return a signal consistent with the one
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Figure 1.6: Schematic of a Global Circulation Model (a, from Balaji et al. (2022)) and the
projected trajectories of Representative Concentration Pathways (b, from Wikipedia), Shared
Socioeconomic Pathways (c, from Deutsches Klimarechenzentrum), and their combination (d,
from Government of Canada website)

https://en.wikipedia.org/wiki/Representative_Concentration_Pathway#cite_note-1
https://www.dkrz.de/en/communication/climate-simulations/cmip6-en/the-ssp-scenarios
https://climate-scenarios.canada.ca/?page=cmip6-overview-notes
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observed. In addition to models error, a significant factor contributing to uncertainty

in long-term climate projections is the radiative forcing resulting from human-induced

emissions of GHGs. If on the one hand this uncertainty is partially coped by the dif-

ferent combinations of RCPs and SSPs that can be used, on the other it remains the

uncertainty dependent on how quickly each component responds (e.g., the atmosphere

responds quickly to various forcing conditions, the ocean takes much longer). This issue

is generally solved by performing more than one simulation, i.e., by creating different

realizations (e.g., simulations that differ only in their initial conditions) with different

initialization (e.g., simulations performed under the same conditions but with different

initialization procedures). These simulations are generally referred to as "variant" of a

certain GCM and denoted by abbreviation; such an example, in the GCMs included in

the Coupled Model Intercomparison Project Phase 6 (CMIP6), each individual variant

is characterized by four indices: r for the realization, i for the initialization, p for the

physics (i.e., identifying the physics version used by the model) and, f for the forcing (i.e.,

distinguishing runs conforming to the protocol of a single CMIP6 experiment, but with

different variants of forcing applied).

By using GCMs projection at different SSP-RCP scenarios, it is possible to obtain

the projected changes in the state of climate. Figure 1.7 depicts the future changes

in global surface temperature in comparison to the period 1850-1900. The horizontal

gray line represents the mean surface temperature observed during the period 2011-2020,

which is 1.1çC warmer than 1850-1900. The colored lines, on the other hand, show the

potential trajectories for temperature changes based on different scenarios. What emerges

from the figure is a clear distinction between changes related to worst-case and best-case

scenarios. For the scenarios with lower GHGs concentrations (i.e., blu lines) there could

be a slowdown in the temperature growth trend starting around 2030 and a subsequent

stabilization about +1.5çC with a small decrease until 2100. Completely different is the

trend expected in the worst-case scenarios (including even the intermediate one): in these

cases a maximum point in temperature changes might not be reached by 2100, with

projected increases up to 4çC in the very high emission scenario.

What is worth noting is that even by curbing GHG emissions into the atmosphere

today, the planet could suffer from what has already been produced for hundreds of

years. For this reason, as strongly urged by different research organizations, it is essential

that climate policies are swiftly implemented to mitigate the ongoing impacts of global

warming and pave the way for a sustainable and resilient future.
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Figure 1.7: From IPCC AR6: global surface temperature changes in çC relative to 1850–1900.
These changes were obtained by combining CMIP6 model simulations with observational con-
straints based on past simulated warming, as well as an updated assessment of equilibrium
climate sensitivity. Very likely ranges are shown for the low and high GHG emissions scenarios
(SSP1-2.6 and SSP3-7.0)

1.1.5. Who

Throughout the previous paragraphs, some of the impacts related to climate change

have been analyzed, as well as how the changing climate is projected to be an even more

serious issue for years to come. What has not been still explored is: who (entity/factor)

is affected by climate change impacts?.

Of course, climate change poses a range of threats to human health, affecting various

aspects of life. Rising average temperatures and the resulting increase in the frequency

and duration of heat waves will increase the risk of heat-related deaths (Zhao et al., 2016;

Im et al., 2018). Mora et al. (2017) identified a global threshold beyond which daily mean

surface air temperature and relative humidity become lethal. They found this deadly

threshold is currently exceeded for more than 20 days in a year in large area, jeopardizing

about the 30% of the global population. By the year 2100, this percentage is projected

to rise to around 48% under a low-concentration scenario, while 74% under a scenario of

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
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rising emissions.

In this light, Figure 1.8 from IPCC AR6 is meaningful, since it shows how the climate

has already changed and will change along the lifespan of three representative generations

(born in 1950, 1980 and 2020). A person born in 1950 entered a world that had seen

approximately 0.25çC of warming compared to the late 1800s. Today, a 70-year-old has

witnessed an increase of 0.85çC in temperature during its lifetime, that means approxi-

mately 0.12çC per decade. For someone born in 1980, the initial condition was already

worse, since the starting exposure was to approximately 0.4çC of warming above pre-

industrial levels. Over the last 40 years, someone from this latter generation experienced

0.75çC of warming, equivalent to an average rate of almost 0.19çC per decade.

Figure 1.8: From IPCC AR6: Observed (1900–2020) and projected (2021–2100) changes in global
surface temperature (relative to 1850-1900), which are linked to changes in climate conditions
and impacts, illustrate how the climate has already changed and will change along the lifespan of
three representative generations (born in 1950, 1980 and 2020). Future projections (2021–2100)
of changes in global surface temperature are shown for very low (SSP1-1.9), low (SSP1-2.6),
intermediate (SSP2-4.5), high (SSP3-7.0) and very high (SSP5-8.5) GHG emissions scenarios.
Changes in annual global surface temperatures are presented as ‘climate stripes’, with future
projections showing the human-caused long-term trends and continuing modulation by natural
variability (represented here using observed levels of past natural variability). Colours on the
generational icons correspond to the global surface temperature stripes for each year, with
segments on future icons differentiating possible future experiences.

Notably, the rate of warming for those born in 1980 was nearly 50% faster than for

those born in 1950. What is even more dramatic is that the last generation considered,

namely those born in 2020, have seen an average temperature already 1.1çC higher than

pre-industrial levels. Under higher emission scenarios, these individuals might experience

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
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average decadal warming rates about three times higher than those born in 1950 by the

time they reach the age of 70. However, in scenarios where warming is limited below 2çC

or 1.5çC, as seen in low and very low emission scenarios, the generation of the 2020s could

witness climate stabilization before reaching 30 years of age.

Although Figure 1.8 implies equality in exposure to global warming, different studies

have shown that certain segments of the population will suffer more from the climate crisis

(King and Harrington, 2018; Ahmadalipour et al., 2019). This is a reflection not only of

the asymmetric distribution of climate change impacts at the regional scale (as shown in

paragraph 1.1.3), but also of existing social inequalities that could be exacerbated under

the stress of climate change. As an example, by assessing the mortality risk related to

extreme heat stress for individuals aged over 65 across the Middle East and North Africa

region, Ahmadalipour et al. (2019) found that the poorest countries might experience

higher mortality risks compared to wealthier nations, even if their contribution to global

climate change is considerably lower.

Not only hot extremes, but also the increases in frequency and magnitude of other

extreme phenomena (i.e., heavy precipitation, drought, floods, and so on) might pose

a serious risk for human life. An increasingly warm climate could result in an increase

of the occurrence of longer and more intense droughts in the 21st century with relevant

implications in water availability for humans (but also for vegetation and agriculture,

which will be discussed later on) (Mosley, 2015). A growing body of evidence suggests

that climate change may alter the incidence of waterborne diseases, undermining the gains

made in public health and development during the past half-century (Levy et al., 2018).

Moreover, more extreme rainfall events could lead to severe floods, resulting in fatalities,

spreading the waterborne disease, disrupting access to hospitals and so on (Funari et al.,

2012; Tabari, 2020). All these aspects, in the long-term, could produce social and economic

frictions between population, leading to a growth of future risk of conflicts (Mach et al.,

2019).

However, humans are not the only ones affected. Climate change also poses a threat

to various ecosystems and the species that inhabit them. Indeed, climate change may

have an interaction with land-cover changes, exacerbating the risk of habitat loss and

fragmentation on biodiversity (Jetz et al., 2007; Mantyka-Pringle et al., 2015). Segan

et al. (2016) found that it is likely that climate change has influenced habitat losses in

more than 19% of ecoregions worldwide, and this number is projected to increase up to

44% under the worst-case scenario during the 21st century. Figure 1.9 (Pörtner et al.,

2022) depicts the risks of an increasingly irreversible losses, in terrestrial, freshwater,

cryospheric, coastal and open ocean ecosystems at different global warming levels. Under

the SSP5-8.5 scenario, these losses might also reach values higher than 90% for several



20 1| Chapter one

species of birds, mammals, reptiles, amphibians, marine fish, and so on, especially located

in the equatorial and tropical areas.

Figure 1.9: From IPCC AR6: risks of species losses as indicated by the percentage of assessed
species exposed to potentially dangerous temperature conditions, as defined by conditions be-
yond the estimated historical (1850–2005) maximum mean annual temperature experienced by
each species, at global warming levels of 1.5çC, 2çC, 3çC and 4çC

Climate and weather extremes may also undermine agriculture, threatening food

security. Indeed, agricultural yield strongly depends on weather conditions, crop and

soil management practices, the presence of pathogens and pests, and the occurrence of

extreme weather events. All these elements might be impacted by climate change. As an

example, high temperature can suppress plant immunity, leading to increased pathogen

infections (Singh et al., 2023). Lesk et al. (2016) quantify the global losses in cereal

production resulting from reported extreme weather disasters during 1964–2007. The

authors showed show that droughts and extreme heat significantly reduced national cereal

production by 9–10%. Moreover, they showed that production losses from droughts were

linked to decreases in both harvested area and yields, while extreme heat primarily led

to reductions in cereal yields. Looking at the future, Asseng et al. (2015) estimated that

the global wheat production might decrease by 6% for each çC of further temperature

increase, becoming more variable both in space and time.

1.1.6. How

Only one question in this paragraph, "how have we faced and how are we

facing climate change?". As awareness of anthropogenic influences on climate has

increased, so the need for policies to mitigate these effects and adapt to the changing

environment. There is a long history on the evolution of climate policies, full of milestones,

international agreements, and changes in public perception. In the following, the major

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
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climate negotiations will be briefly described, along with the main points introduced in

each of them. Additionally, a summarized chronological scheme is presented in Figure

1.10.

Figure 1.10: Major climate negotiations timeline

Stockholm Conference (1972) Although several climate change issues had already

emerged during the 20th century, the first real effort at the international level was

the 1972 UN Scientific Conference, also known as the First Earth Summit, held in

Stockholm. During this conference, a Declaration containing 26 principles concern-

ing the environment and development was adopted, delineating principles for the

preservation and improvement of the human environment. It is worth mentioning

Principle 6 of the Declaration, which states that: "The discharge of toxic substances

or of other substances and the release of heat, in such quantities or concentrations as

to exceed the capacity of the environment to render them harmless, must be halted in

order to ensure that serious or irreversible damage is not inflicted upon ecosystems.

[...]", pointing out the capacity of the environment to remediate to only part of the

pollution (of any kind) produced by humans.

Moreover, The UN Scientific Conference also emphasized the importance of climate

observations in order to gain insight into real changes in the environment, Indeed, as

stated by the 79th recommendation (out of 109) of the Action Plan, the WMO was

responsible to guide and coordinate the States involved in setting up a large global

newtwork (not less than 100 stations) for "monitoring properties and constituents

of the atmosphere on a regional basis and especially changes in the distribution and
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concentration of contaminants".

Geneve Conference (1979) The World Climate Conference in Geneva was one of the

first major meetings on climate change and it was sponsored by the WMO. This

Conference led to the establishment of the World Climate Programme, which was

characterized by four main milestones:

• research into the mechanisms of climate with the aim to clarify the relative

roles of natural and anthropogenic influences thanks to the development of

mathematical models for simulating the climate system;

• improving the acquisition and availability of a vast amount of meteorological,

hydrological oceanographic and pertinent geophysical data;

• application of knowledge of climate in planning, development and management;

• study of the impact of climate variability and change on human activities,

requiring the improvements in the understanding of the relationships between

climate and human society.

This Conference also set the stage for the establishment of the IPCC in 1988 through

the effort of the WMO and the United Nations Environment Programme (UNEP).

Montreal Protocol (1987) The Montreal Protocol stands as a landmark international

treaty designed to address the depletion of the ozone layer. It represents a col-

laborative global effort to mitigate the impact of human activities on the Earth’s

stratospheric ozone. The core objective was to control and eventually eliminate

the production and consumption of substances identified as Ozone-Depleting Sub-

stances (ODS). Chlorofluorocarbons (CFCs), halons, carbon tetrachloride, and other

chemicals detrimental to the ozone layer were targeted, and the due to its extensive

adoption and execution, it has often been hailed as a paradigm of successful interna-

tional collaboration. This aspect has also been proven by different modeling studies,

which have suggested that, if the Montreal Protocol had not been implemented, the

global mean temperatures would have raised by over 2çC by 2070 solely due to the

warming effects caused by ozone-depleting substances (Garcia et al., 2012; Barnes

et al., 2019).

Rio Conference (1992) On the 20th anniversary of the Stockholm conference, a second

Earth Summit (officially known as the United Nations Conference on Environment

and Development, UNCED) was held in Rio de Janeiro. The summit brought to-

gether heads of state, government officials, and representatives from various sectors

to discuss pressing issues related to sustainable development. The summit sought

to establish international agreements that would serve as the basis for global efforts

toward sustainable development. Among the most significant outcomes was the Rio

Declaration on Environment and Development (27 Principles), which articulated
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the basic principles guiding sustainable development initiatives. Among the central

points of this summit, there was also the formulation a comprehensive agenda (i.e.,

the "Agenda 21") to outlines global strategies for sustainable development. It ad-

dresses a wide range of environmental and social issues, emphasizing the need for

international cooperation to achieve sustainable development. The agenda includes

commitments not only to address climate change, but also to combat poverty, pro-

mote health and preserve biodiversity. It encourages the integration of environmen-

tal considerations into development planning at all levels and underscores the role

of various stakeholders, including governments, businesses, and citizens, in fostering

sustainability.

Kyoto Protocol (1997) The Kyoto Protocol implemented the objectives defined in

1992 by the United Nations Framework Convention on Climate Change (UNFCCC)

on reducing the greenhouse gas concentrations in the atmosphere. In particular,

all the industrialized countries that were members of the OECD (Organisation for

Economic Co-operation and Development) in 1992 should have "individually or

jointly, ensured that their aggregate anthropogenic carbon dioxide equivalent emis-

sions greenhouse gases (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons,

perfluorocarbons and sulphur hexafluoride) did not exceed their assigned amounts

reduction commitments[...] with a view to reducing their overall emissions of such

gases by at least 5 per cent below 1990 levels in the commitment period 2008 to 2012."

To facilitate compliance, the Kyoto Protocol incorporated flexibility mechanisms.

Emission trading allowed participating countries to trade emission allowances, fos-

tering cost-effective reductions. The Clean Development Mechanism (CDM) enabled

developed nations to invest in emission reduction projects in developing countries,

earning certified emission reduction credits. Joint Implementation (JI) permitted

collaborative emission reduction projects among the industrialized countries of the

OECD. Moreover, while developing countries were not assigned specific emission

reduction targets, the Protocol encouraged their voluntary mitigation actions. Fi-

nancial assistance and technology transfer were recognized as crucial for helping

developing nations adapt to climate change and reduce emissions.

However, the Protocol’s first commitment period (2008 - 2012) did not have the

desired effects. Indeed, the emissions of GHG dramatically increased between 1997

and 2012 (Rosen, 2015), mainly driven by countries not bound by the Protocol (e.g.,

China, who was considered a developing country, and United States, who did not

ratify the Protocol). Also, the European Union ability to meet its target was not due

entirely to an effective community policy, but more on the massive cuts by Germany

and the United Kingdom together with the absorption of low-emission territories in
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Eastern Europe (that reduce the EU overall emissions due to the flexible mechanisms

within the Protocol).

A second commitment period was agreed in 2012 to extend the agreement to 2020.

(i.e., the Doha Amendment to the Kyoto Protocol), setting a goal of reducing GHG

emissions by 18% compared to 1990 levels for participating countries. However,

it entered into force only in 31 December 2020, following its acceptance by the

mandated minimum of at least 144 states, although the second commitment period

ended on the same day.

Paris Agreement (2015) The Paris Agreement, adopted in 2015 during the 21st Con-

ference of the Parties (COP21) to the UNFCCC, sought to unite nations in a col-

lective effort to limit global temperature increase, adapt to the impacts of climate

change, and foster climate resilience. The heart of the Agreement is to keep the

global average temperature well below 2çC above pre-industrial levels. This am-

bitious target recognizes the severe consequences of exceeding the 2 çC threshold,

particularly for vulnerable countries and ecosystems. In addition to this, the Paris

Agreement promoted climate change adaptation and resilience themes, aligning fi-

nancial flows with low-emission and climate-resilient development.

Unlike the Kyoto Protocol, the Paris Agreement adopts a bottom-up approach, en-

couraging countries to set their own Nationally Determined Contributions (NDCs)

to emission reduction. This approach is designed for a more inclusive participation,

especially involving the developing countries, recognizing the different contributions

of each nations in assessing the global warming issue. Another crucial point in the

Paris Agreement is the transparency framework for achieving the goals: each coun-

try is required to report regularly on its emission and progress against the NDCs.

This transparency should increase accountability and facilitates a global assessment

process every five years to evaluate collective progress toward the Agreement’s goals.

The first assessment took place in 2018 during COP24 in Katowice (Poland), while

COP26 in Glasgow (UK) was anticipated as one of the most crucial conferences, as

many countries were expected to present new climate objectives following the first

five-year review cycle outlined in the Paris Agreement.

About eight years after the Paris Agreement, around 107 of the 177 countries (80.6%

of global emissions) have submitted a new or updated NDC with reduced total

emissions compared to their initial NDC.
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1.2. Extreme precipitation in a climate change con-

text

Defining an extreme event is not as simple as it would sound. From a terminology

perspective, the word "extreme" does not have an unambiguous definition, but other words

(e.g., "severe", "intense", "rare", "high-impact", and so on) are often used interchangeably

(Stephenson et al., 2008). For example, Camuffo et al. (2020) drew on the different

meanings of "extreme" that can be found in the Oxford Dictionary. In this case, four

definitions are reported:

• Very great. This definition is “quantitative”, being based on the intensity, or the

amount, i.e., a very high threshold.

• Not ordinary or usual. This definition is “frequency or time related”, being based

on the fact that the event, or its intensity, is rare and may occur again after a long

(return) period.

• Serious or severe. This definition might be interpreted in terms of “effectiveness

and impact”, i.e., leaving a dramatic impact on the society or the landscape. From

this point of view, every natural disaster is also an extreme event. However, this

definition might also be interpreted in terms of the quantitative concept (Very great).

• Far from moderate. This definition is “relative” to the normal occurrence, as it

indicates an event that departs from the normal distribution, and may be interpreted

as exceeding a certain percentile threshold, or departing from a typical distribution.

Although it may seem that these meanings can be universally comprehensive, Stephen-

son et al. (2008) states that the definition of "extreme" cannot have an absolute meaning,

but that its relativity is highly context-dependent. Referring to the "hydrological extreme

events", for instance, Morbidelli (2022) define them as "natural events that have the po-

tential for a significant adverse impact on lives, infrastructure, or the environment". This

definition, in fact, appears to be perfect when referring to extremes in the hydrological

field, since the concepts of hazard and risk of potential impacts turn out to be of central

importance. In other words, even a flood characterized by a low return period (i.e., not

exceptional from a statistical point of view) can be defined as extreme when it exposes

society to a major risk. Moving to the meteorological field, the IPCC (Seneviratne et al.,

2012) defines an "extreme climate or weather event" as “the occurrence of a value of a

weather or climate variable above (or below) a threshold value near the upper (or lower)

ends of the range of observed values of the variable”. Thus, in this case more emphasis is

placed on the magnitude of these events, which is also often related to a certain rarity in

the occurrence (as shown by the temperature distribution in Figure 1.3a).
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The definition provided by Seneviratne et al. (2012) also adds a second ambiguity,

more related to a methodological aspect: there is no unique threshold from which an event

can be defined as extreme or not. Obviously considering the probability distribution

of a generic variable, the smaller the portion of the tails that is considered, the more

"extremes" are the selected values. However, this often clashes with the availability of

long series of observations.

Focusing on precipitation, different methods can be used to define extreme events

and to study observed and projected changes in their characteristics, such as the Block-

Maxima (Pujol et al., 2007; Villarini, 2012; Westra et al., 2013; Wi et al., 2016), the Peak

Over Threshold (POT) (Villarini et al., 2011a; Tramblay et al., 2012; Wi et al., 2016)

and the indices developed by the Expert Team on Climate Change Detection and Indices

(ETCCDI) (Song et al., 2015; Panda et al., 2016; Gentilucci et al., 2020). It is clear that

each of these methods has strengths and weaknesses, and the choice of one or the other

method depends on the ultimate goal of the study. As an example, while block-maxima

consists of dividing the observation period into non-overlapping periods of equal size and

restricts attention to the maximum observation in each period, POT is based on selecting

all the values that exceeds a certain threshold (i.e., generally a certain high percentile).

When applied to extreme value theory, the block-maxima ensures that each selected event

is statistically independent from the others, while other conditions need to be defined for

this property to be respected in the POT, especially as the temporal resolution of the

series increases. On the other hand, POT returns larger sample size and, at the same

time, prevents that severe events are discarded just because they are contained in the

same block. The ETCCDI indices are mainly based on daily data and serve as a valuable

tool for comparing diverse regional studies worldwide, offering a seamless integration

of index data on a global scale (Morbidelli, 2022). However, some complications may

arise when dealing with sub-daily durations. Indeed, the physical phenomena that may

generate sub-daily extreme precipitation may be completely different, requiring other

indices to be analyzed (e.g., the sub-daily rainfall indices that Blenkinsop et al. (2018)

defined within the INTElligent use of climate models for adaptatioN to non-Stationary

hydrological Extremes - INTENSE project).

In addition to the different methodologies that can be used to extract precipita-

tion extremes, these events have a variety of different attributes that can be examined

(Stephenson et al., 2008). In other words, it is challenging to fully characterize changes

in the precipitation extremes using a single numerical value, since they can be defined

by a variety of different characteristics, such as magnitude, rate of occurrence, timing,

temporal duration, spatial scale and so on. As an example, over the years several scien-

tific papers have focused on extreme precipitation magnitude, exploring potential changes
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and dwelling on the physical explanation behind these. Other studies have focused more

on other aspects, such as changes in the occurrence and/or seasonality. Moreover, also

thanks to climate projections (see paragraph 1.1.4) an increasing number of publications

are examining potential future changes in these features due to the stress induced by

climate change and global warming.

Therefore, the following paragraphs will be devoted in analyzing the main works

based on the study of observed (paragraph 1.2.1) and projected (paragraph 1.2.2) changes

in the characteristics of extreme precipitation events.

1.2.1. Observed changes in precipitation extremes

From what has been observed in section 1.1, climate change and global warming have

a major effect on alterations in the characteristics of precipitation extremes. Different

areas of the globe have experienced an increase in the magnitude of extreme rainfall both

at daily (Donat et al., 2013; Westra et al., 2013; Sun et al., 2014) and sub-daily (Fowler

et al., 2021) duration, and there is growing evidence that the anthropogenic contribution

has been relevant to these alterations (Fischer and Knutti, 2015). Indeed, a warmer

atmosphere can induce higher evaporation rates (i.e., increasing the moisture availability)

and, at the same time, contain more water vapor (Westra et al., 2014). These aspects

necessarily increase the probability of having more severe rainfall events. The physical

explanation for this statement has to be necessarily traced back to the relationship that

scales water-holding capacity of a gas and its temperature, namely the Clausius-Clapeyron

(CC) equation. In particular, the equation expresses the saturation pressure of water

vapor as a function of absolute atmospheric temperature:

∂es

∂T
=

Lv(T )es
RvT 2

(1.1)

where es is saturation vapor pressure, T is the temperature in Kelvin, Lv(T ) is the water

specific latent heat of evaporation, and TRv is the gas constant of water vapor. A good

approximation of the CC equation, which unties the dependence of es on Lv(T ), is the

August-Roche-Magnus equation:

es = 6.1094 · exp
( 17.625T

T + 243.04

)

(1.2)

with T expressed in degrees Celsius. Equation 1.2 is useful to retrieve the specific humidity,

qv, i.e., the ratio between the mass of water vapor and the total mass of air (combination

of dry air and water vapor), at the saturation condition:
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qv,sat j 0.622
es

P
(1.3)

where 0.622 is the ratio between the gas constant for dry air and the gas constant for water

vapor, while P is the atmospheric pressure. Combining equation 1.2 and 1.3, it is possible

to observe that the saturation vapor pressure increases exponentially with temperature.

In particular, it increases by >7% per degree at 0çC and >6% per degree at 24çC (Westra

et al., 2014).

Considering the global scale, Westra et al. (2014) analyzed a high-quality dataset

(i.e., 8326 high-quality land-based observing stations with more than 30 years of record

over the period from 1900 to 2009) of annual maximum daily precipitation to evaluate

the presence of trends through a monotonic nonparametric test (i.e., the Mann-Kendall

trend test, see section 2.2.2 for further details) and a nonstationary generalized extreme

value analysis. The authors found that almost two-thirds of stations exhibited increasing

trends. Moreover, the nonstationary analysis revealed a statistically significant positive

association with near-surface atmospheric temperature, with a global median value rang-

ing from 5.9% to 7.7% K21.

More recently, Sun et al. (2021) analyzed trends in the annual maximum amount of

precipitation accumulated in 1 day (Rx1day) and in 5 consecutive days (Rx5day) over

almost 7500 stations from HadEX2 dataset. Over the 1950–2018 (i.e., the period with

the best spatial coverage), the authors found out that the stations showing increasing

trends (66%) are about twice as many as those showing decreasing trends (34%) for both

the indices (Figure 1.11). However, only a portion of these stations, mainly concentrated

in North America, Europe, and South Africa, showed a statistically significant increasing

trend (>9.1%) and an even smaller portion (>2.1%) showed a significant decreasing trend.

Moreover, following the framework provided by Westra et al. (2014), the authors used the

global mean surface temperature as a covariate to verify the association between changes in

extreme precipitation and temperature. Consistently with the previous work, the median

estimated sensitivity of extreme precipitation to warming over the global land areas with

station data is 6.6% and 5.7% per 1 K of temperature increase for Rx1day and Rx5day,

respectively.

What is worth emphasizing is that both Westra et al. (2014) and Sun et al. (2014)

have expressly stated to be careful in interpreting this results as solely a consequence of

CC relationship. Indeed the CC equation would suggest that with 2çC of global warming,

the world could expect 14% more moisture in the air and with 3çC of warming that would

be 21%, and so on. However, as stated by Adam (2023), this is not so straightforward.

The CC relationship only works fully over the oceans, where there is an unlimited supply
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of water.

Figure 1.11: From Sun et al. (2021): summary of Mann–Kendall trend analyses for the period
1950–2018 for 7293 stations with trends for Rx1day (a) and Rx5day (b), respectively. Light
blue open dots indicate non-significant increasing trends and light red open dots mark non-
significant decreasing trends. Dark blue and red filled dots indicate statistically significant
trends as determined by a two-sided test conducted at the 5% level

Over land, the scenario is different: if there is not 7% extra moisture available in

the soil, the air above will not absorb and retain that quantity of water, regardless of

temperature increase. Over land, the availability of water is finite, and for intense rain

events, it necessitates an air mass originating from over the ocean. Hence, other factors

has to be take into account, such as the atmospheric circulation, air instability, cloud size,

storm type and vertical speed and directional wind shear, to fully understand the physical
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phenomena underlying extreme precipitation. As an example, convective precipitation is

associated with the convective movement of warm moist air masses towards the cold layers

of the overlying atmosphere. It is also supported by contributions of energy and water

vapour from limited areas, carried by a convergent flow of air masses. Consequently,

increasing temperatures introduce more moisture into the air, amplifying the storm’s

intensity. This implies that the increase in rainfall from thunderstorms can often exceed

the scaling rate of the Clausius–Clapeyron relationship (Adam, 2023).

This aspect has already been demonstrated in some parts of the globe, and, par-

ticularly, in Europe (Lenderink and Van Meijgaard, 2008; Ali et al., 2021; Fowler et al.,

2021). Indeed, some studies have focused more on the apparent scaling (Bao et al., 2017;

Lenderink et al., 2021), namely on estimating the scaling proportion between extreme rain-

fall and dry (or wet) bulb temperature observations. In doing so, the importance of event

duration in this process has become evident: while daily extremes exhibit an apparent CC

scaling of approximately 7%, intense hourly and sub-hourly rainfall are characterized by

higher values, reaching also 2CC rate (i.e., 14% °C-1, the so-called "super-CC") in some

cases. For instance, by using a large dataset of hourly precipitation (i.e., about 7,000

hourly precipitation gauges over six global macro-regions), Ali et al. (2021) showed that

the scaling of hourly extreme precipitation in more than 60% of gauges follows at least the

CC rate at a regional scale, and often a super-CC rate at the gauge-level (Figure 1.12).

This is especially true for Europe, where the authors found that the scaling curves follow

2-CC beyond 12°C, confirming what Lenderink and Van Meijgaard (2008) observed for

Netherlands. However, also in this case, it is important to underline that these results may

change when other dynamical processes (i.e., large-scale circulation, storm type or changes

to long-term moisture transport patterns) are considered in the scaling approach (Pfahl

et al., 2017; Morbidelli, 2022). In this context, (Fowler et al., 2021) recently summarized

the new understanding of the feedback processes affecting rainfall extremes.

Despite changes in rainfall seasonality have not been explored as much as those

related to magnitude, the effects of significant variations can have serious consequences.

Substantial shifts in the timing of the wet season can have large impacts on plants and

vegetation, especially in semi-arid areas. Weltzin et al. (2003) suggest that shifts in

precipitation regimes may lead to severe impact to ecosystem dynamics, even stronger

than the increase in temperature driven by CO2. Ecosystems can be influenced by shifts

in the onset of the rainy season, since this marks some fundamental moments in the biotic

cycle (Feng et al., 2013). Potential changes in the timing of extreme precipitation are also

important in terms of storm water management and preparation against these events (Li

et al., 2021). For the generation of floods, a change to the frequency and timing of extreme

rainfall events may be as important as changes in magnitude and duration (Fowler and
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Kilsby, 2003).

Figure 1.12: From Ali et al. (2021): scaling rates (%K21) estimated using hourly precipitation
from the global subdaily rainfall (GSDR) data set (Lewis et al., 2019) and daily dew point
temperature from the HadISD data set (Dunn, 2019). Scaling is estimated using the binning
method (BM) at the 99th percentile for 7,088 gauges, which have at least 12 years of hourly
precipitation data. The number in blue indicates the number of gauges (NS) in each region
and the number in black indicates the median scaling (%K21) for each region. The numbers
below each panel indicate the percentage of gauges within each region, which show scaling rates
ranging from 0-0.5CC (green), 0.5CC-CC (yellow), CC-1.5CC (orange), 1.5CC-2CC (pink), and
greater than 2CC (red) respectively, where CC is 6.5%K21

Unlike magnitude and frequency, there is a lack of studies on changes in the sea-

sonality of extreme rainfall on a global scale. In addition, regional or local studies often

focus on the entire precipitation regime rather than the extremes. As an example, Pal

et al. (2013) identified a systematic shift in the year-to-year variations of the timing of

these wet and dry season over the United States in the period 1930 - 2009 (Figure 1.13).

The authors showed that the most significant shifts in timing occur in the Ohio River

valleys where the onset of the dry period during fall arrived up to 2–3 weeks earlier. They

also found contrasting shifts in the Southwest and the Northwest area. In particular, the

first exhibited positive shifts in the timing of the wet season representative of a delayed

summertime monsoon onset, while the second one showed a negative shift, representative
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of an earlier onset of spring (early winter) precipitation.

Figure 1.13: From Pal et al. (2013): trends of Julian days count from 1 January to the center of
the (a) wettest and (b) driest 91 day period in a given year (“shift in seasons”). Wettest (driest)
period is defined as the center of the 91 day period with the maximum (minimum) number
of precipitating days, allowing for overlap with the preceding/following year. Color bubbles
indicate location of the stations, sign, and significance of the trend estimates. The size (as well
as the shading) of the bubble is proportional to the magnitude of the trend. The percentages in
parentheses indicate fraction of the total number of stations having such trend category

Still focusing on the US, Mallakpour and Villarini (2017) examined the potential

shifting in the seasonality of annual maximum precipitation in the period 1948 - 2012

by investigating whether the day of the year at which the maximum precipitation occurs

has changed over time. However, the authors found out that only a small number of

points revealed a statistically significant trend in the day in which maximum annual

precipitation occurred, meaning that there is not enough evidence of any specific change

in the seasonality of annual maximum precipitation for the period considered.

Moving to a smaller spatial scale, Persiano et al. (2020) performed a detailed analysis

of possible changes in seasonality of sub-daily rainfall extremes in Emilia-Romagna region

(Italy) (Figure 1.14). The authors considered a dataset of annual maximum series of sub-

daily (1, 3, 6, 12 and 24 h) and sub-hourly (5, 10, 15, 20, 30, and 45 min) duration rainfall

depths, collected at >500 stations over the period 1931–2015. By applying a trend analysis

on the date of occurrence (expressed in terms of Julian date) for each duration over two

consecutive period (i.e., 1961-1989 and 1990-2015), the authors found out the presence of

a generalized delay in the mean timing of extreme events from late summer to autumn

for all the durations. This delay is more accentuated in the central-western part of the

Apennine, while an opposite behaviour is locally observed for some stations in the same

area for higher durations (i.e. 12 and 24 h).
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Figure 1.14: From Persiano et al. (2020): mean date of occurrence of rainfall annual maxima
for durations d = 1, 3, 6, 12, 24 h and time periods 1961–1989 and 1990–2015. Direction and
colour of the arrows indicate the average timing, while their length reflects the regularity of the
dates of occurrence within the year. Black-contoured arrows indicate stations where statistically
significant trends have been detected in the Julian date of occurrence over the period 1961–2015

The few studies on changes in the seasonality of extreme rainfall highlight how further

research is needed to fill the knowledge gap on this topic.

1.2.2. Projected changes in precipitation extremes

As shown in paragraph 1.1.4, climate models are a fundamental tool to project the

future response of the climate under the pressure of climate change and global warming.

In this context, different studies have shown that what has been observed in the past

regarding changes in extreme rainfall characteristics is likely to be projected into the
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future, obviously with different signals depending on the scenarios considered.

Focusing on the daily scale, Giorgi et al. (2014) analyzed the projected changed

in six hydroclimatic indices associated with different characteristics of the surface hy-

droclimatic regime, such as the mean daily precipitation intensity (SDII) or the heavy

precipitation index (R95). All the indices for the 21st century projections show a clear

picture of a predominant hydroclimatic response to global warming toward a regime of

more intense, shorter, less frequent, and less widespread precipitation events. The authors

also found out that this response is more pronounced and spatially consistent for tropical

than extratropical regions, suggesting that tropical convection plays a critical role in this

mechanism. Sillmann et al. (2013) provided an overview of projected changes in climate

extremes ETCCDI indices computed using the CMIP5 multimodel ensemble. According

to the authors, extreme precipitation exhibits a disproportionate increase compared to to-

tal wet-day precipitation (PRCPTOT). The analysis of changes in very wet days (R95p)

indicates a relevant uptrend in extreme precipitation across most regions, especially un-

der the RCP8.5 scenario. The Mediterranean region presents a slightly different behavior,

suggesting a decrease in total precipitation and an increase in longer dry spells, confirming

an intensification of drought conditions in this area (as already seen in Figure 1.5). A

slight increase in the projected R95p for this region, however, suggests that although dry

conditions become more severe, precipitation can be still extreme when it does occur.

There is a discrepancy between global-scale studies on future changes in daily and

sub-daily precipitation. This is mainly due to the high computational costs involved in

running GCMs at sub-daily time scales. This is reflected in not having a large number

of models and, consequently, in higher uncertainties in evaluating the results. However,

Morrison et al. (2019) evaluated projected changes in precipitation at both the daily and

sub-daily time scales (i.e., 3-hour). Evaluating the model accuracy with respect to the

observations over the historical period, the authors found the first difference between the

two temporal resolution: compared with the 3-hour resolution, the accuracy is greater for

daily precipitation. This may arise from the fact that current GCMs do not explicitly

resolve convective processes, which are a crucial information for the development of sub-

daily extreme precipitation. However, by selecting the ensemble that includes the models

with the best performances over the historical baseline, the authors showed that the

median maximum 3-hourly precipitation are projected to increase in the future, especially

moving towards the end of the 21st century (Figure 1.15).
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Figure 1.15: From Morrison et al. (2019): median maximum 3-hourly precipitation (mm) based
on an ensemble that includes CNRM-CM5, FGOALS-g2, MRI-CGCM3 and MRI-ESM1. The
results for the RCPs 2.6, 4.5 and 8.5 (Columns 2–4) represent the percentage differences between
the projected changes (2081–2100) and the historical period (1986–2005), normalized by the
historical period (1986–2005). Results are for annual precipitation (Row 1), DJF (Row 2),
MAM (Row 3), JJA (Row 4), and SON (Row 5)

In particular, the results based on RCP8.5 point to an increase in extreme precip-

itation of more than 50%, especially around the equator, in the midlatitudes and polar

regions. The stronger responses of precipitation extremes in the future at sub-daily scale

are consistent with the super CC scaling identified in other studies at the sub-daily scale,

compared with CC scaling at the daily scale (see paragraph 1.2.1).

If it is already difficult to find studies on observed changes in the seasonality of

rainfall extremes, the gap is even more evident moving to future projections. Probably,

one of the few studies is that of Marelle et al. (2018), who investigated changes in the

seasonal timing of extreme precipitation using global climate models from the CMIP5, in

1871–1900, 1976–2005, and 2071–2100 for an extreme future emission scenario (RCP8.5).

The authors showed that, while very little seasonality changes occurred during the past
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hundred years, by the end of the 21st century, extreme precipitation (quantified using the

Rx1d index) could substantially shift later in the year, in most regions from summer and

early fall toward fall and winter (Figure 1.16). If on the one hand, precipitation extremes

in the tropics and at middle and high latitudes tend to occur during summer and fall (JJA

and SON in the Northern Hemisphere; DJF and MAM in the Southern Hemisphere) and

in the Northern Hemisphere’s subtropics, during winter and spring (DJF and MAM), on

the other in the future this peak could change significantly in several regions, by up to

more than a month.

Figure 1.16: From Marelle et al. (2018): (a) Season of the multimodel median day of year
of extreme daily precipitation in the CMIP5 ensemble for 1976–2005. (b) Multimodeled me-
dian change in the median day of year of extreme daily precipitation between 1976–2005 and
2071–2100 (RCP8.5 scenario). On panel (b), black boxes indicate the location of the regions
selected for further analysis, and stippling indicates that more than 66% of models agree on the
sign of change. DJF = December–February; JJA = June–August; MAM = March–May; SON
= September–November

In particular, they found that extreme precipitation are projected to occur later in

the year (from summer and early fall toward fall and winter) in most land regions, such
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as the Northern Hemisphere’s polar regions, Europe, Africa, Central America, and South

America. On the contrary, Rx1day is projected to occur earlier in Central and Southwest

Asia and in a large part of North America.
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2.1. The Mediterranean area: a climate change hot

spot

Over the past years, the Mediterranean region (Figure 2.1) has been referenced as

one of the most responsive regions to climate change, so much to be defined as a primary

hotspot of climate change (Giorgi, 2006). Also, the Special Report on Climate Change and

Land (SRCCL) from the Intergovernmental Panel on Climate Change (Shukla et al., 2019)

has highlighted the Mediterranean as one of the most vulnerable regions in the world to the

impacts of global warming, mainly because of the significant exposure and vulnerability

of both human societies and ecosystems to these alterations. This is particularly evident

in Figure 2.1, from which it is possible to quantify how many million people live in the

Mediterranean basin, especially near the coasts. Moreover, due to its geographical location

and configuration, the ecological and human factors interact significantly, presenting a

relevant hazard for biodiversity, especially for the marine one (Coll et al., 2010).

One of the most evident consequences of climate change in the Mediterranean is

the rise in temperatures. The region is warming 20% faster than the global average

(Lionello and Scarascia, 2018), resulting in more frequent and severe heatwaves (Perkins-

Kirkpatrick and Lewis, 2020). The implications of these events are dramatics, such as the

70k heat-related deaths during the summer of 2003 (Robine et al., 2008) and the 60k in

2022 (Ballester et al., 2023). The future could be even more alarming considering that the

European population is increasingly aging (Harper, 2014), and it is precisely this segment

of the population that often suffers the worst consequences during heatwaves.

Concerning the hydrological cycle, rising temperatures are exacerbating water scarcity

issues in the Mediterranean area (Jiménez Cisneros et al., 2014; Noto et al., 2023b). The

increase in temperatures, coupled with higher evaporation rates and a reduction in the

annual total precipitation (Philandras et al., 2011; Mariotti et al., 2015), is impacting

the surface water balance, thus generating a decrease in surface runoff and in groundwa-

ter levels (Noto et al., 2023a). The resulting reduction in water supply might lead to a

decreasing in water availability for agriculture, industry, and households.

39
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Figure 2.1: From Ali et al. (2022): Topography and bathymetry (colour bar in metres), main
urban areas (population in thousands of people for 2020), container ports (millions of TEU
[twenty-foot container equivalent units] in 2017) and borders of the Mediterranean region

While it has been shown that the Mediterranean area is highly prone to water scarcity

and heat-related disasters, one of the most debated points is whether climate change is

leading to an increase in frequency and magnitude of heavy rainfall events. The detection

of significant trends in such a kind of events is crucial since, other than being an indicator

of a climate alteration, it could support political decisions to mitigate their effects (Ingold

and Fischer, 2014). For this reason, over the last decades, a great number of studies have

been aimed to detect the presence of trends in precipitation time-series over the Mediter-

ranean region. Although it would be highly important to study changes in the extreme

characteristics across the entire Mediterranean basin, this is quite challenging for differ-

ent reasons. First of all, the high geo-political fragmentation of the area makes retrieving

regional datasets extremely difficult. The case of Italy serves as a paradigm, since each

of the 20 regions (21 when considering the two autonomous provinces of Trentino-Alto

Adige), independently manages its meteorological network. Another problem lies in the

lack of consistency among the characteristics of different datasets, such as their length

and temporal resolution, as well as their spatial distribution. For all these reasons, with

the exception of a few studies that have attempted to gather data from multiple agencies
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(Alpert et al., 2002; Karagiannidis et al., 2009) or others that use reanalysis data or re-

gional climate ensemble simulations (Casanueva et al., 2014; Tramblay and Somot, 2018),

most of scientific literature is focused at a regional scale or at finer levels of detail (e.g.,

sub-region or basin scales).

Regarding the Iberian Peninsula, a great number of studies have been conducted to

investigate changes in extreme precipitation and the potential presence of climatic trends.

The overall signal for this area reveals a reduction in the precipitation extremes (Costa and

Soares, 2009; Gonzalez-Hidalgo et al., 2010), despite this message is completely reversed

in other works, mainly depending on the zone, the reference period and the methodologies

used. As an example, Bartolomeu et al. (2016) perform a spatial and temporal analysis on

some extreme precipitation indices (i.e., the precipitation fraction due to the 75th and 95th

percentile of the precipitation distribution, R75pTOT and R95pTOT, respectively) over

Portugal and Spain in the period 1986 - 2005. The authors used both the observational

datasets from these nations and the results obtained from the Weather Research and

Forecast (WRF) model forced by the ERA-Interim reanalysis data and the Max Planck

Institute Earth System Model (MPI-ESM). Regarding the R95pTOT, the authors found

positive statistical significant trends in the observational dataset, mainly located in the

north area of Portugal and in the south and central part of Spain. However, these re-

sults are partially confirmed by the ERA-driven simulation results, while are completely

reversed for the MPI-driven simulations, enhancing the difficulties in studying extreme

precipitation changes over this geographic area.

Moving eastward, a relevant intensification of the extreme precipitation has been

found by Ribes et al. (2019) in the Mediterranean France, regardless of the overall de-

creasing trends in total precipitation. The authors found a significant increase in the mean

intensity of annual maxima, estimated in +22% over the period 1951-2015. Moreover, the

non-linear upward trend exhibits a different behavior over time, with a faster change by

the end of the 20th century. The identified changes are coherent with the expected increase

suggested by the observed regional warming and Clausius–Clapeyron scaling. Focusing

on the same area and considering the yearly maxima of daily rainfall at point and on a

8x8 km2 regular grid, Blanchet et al. (2018) compare different non-stationary models to

test the significance of trends. Also their results indicate an increasing tendency in the

rainfall magnitude, with some local spot where the yearly maxima reached more than

+62 mm/day of changes in 20 year.

Alterations in intense precipitation can exhibit different characteristics in the eastern

Mediterranean, depending on the scale, severity, and region of interest (Hochman et al.,

2022). By analyzing different extreme precipitation indices in the period 1974 - 2016

for the Gaza Strip, Ajjur and Riffi (2020) found out that the majority of indices exhibit
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statistical significant trends. The trend directions align with those obtained by Nastos

and Zerefos (2008) for Greece, although statistical significance is lacking in this case.

As well as the eastern Mediterranean, the North African region is characterized by

significant uncertainties in the increase of extreme rainfall (Nouaceur, 2010; Nouaceur

and Murărescu, 2016). For instance, Khomsi et al. (2015) found out that the majority

of trends observed in heavy rainfall events show a positive direction with relatively weak

magnitudes in Morocco. However, the authors did not find any statistical significance in

the results obtained.

Regarding Italy, a great number of studies involving trend analysis have been applied

over the peninsula (Buffoni et al., 1999; Crisci et al., 2002; Libertino et al., 2019), its

southern part (Longobardi and Villani, 2010; Caloiero et al., 2019), and its main islands,

i.e., Sardinia and Sicily (Bonaccorso et al., 2005; Cannarozzo et al., 2006; Arnone et al.,

2013; Caloiero et al., 2019). The mechanisms that generate rainfall extremes can vary

significantly from one region to another. While the northern regions are prone to intense

convective storms enhanced by the orograpich uplift of humid air masses (Abbate et al.,

2022; Cassola et al., 2023), southern regions often experience heavy rainfall generated by

multiple factors (orography, moist convection, large-scale uplift along fronts) (Caccamo

et al., 2017; Lee et al., 2019).

Focusing on Sicily, which will be the region of interest of this Chapter, many studies

have involved the use of trend test for detecting changes in the extremes at several dura-

tions and evaluating their significance. As an example, Bonaccorso et al. (2005) applied

the Mann-Kendall trend test to Sicilian rainfall annual maxima at the canonical dura-

tions (i.e., 1, 3, 6, 12, and 24 hours) for those stations having more than 50 years of data.

The authors found a relationship between the trend direction and duration, highlighting

an increasing trend at the shortest time scale and an opposite behavior at the longest

ones. Arnone et al. (2013) used the same test to determinate the magnitude of trends

and thus identify changes in rainfall characteristics at the canonical durations for Sicily.

The authors found out that the percentage of gauges showing a positive trend tends to

decrease when duration increases, finding the maximum percentage at the 1-hour dura-

tion. For this reason, they guessed that a further increase in the percentage of stations

showing a positive trend and, consequently, of extreme events could be extrapolated to-

wards sub-hourly durations, enhancing the interest in studying the rainfall extremes in

the region.
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2.2. Insight for a semi-arid region: Sicily

Being the widest island of the Mediterranean area and lying in the heart of the

Mediterranean Sea, Sicily has a climate that can be considered as representative of an

area quite extensive of the Mediterranean. Moreover, due to its central position and

representing a transition area between the arid climate in North Africa and the continental

one that characterize Europe, Sicily might represent a ’laboratory’ to investigate changes

in the rainfall regime.

In this section, after a brief description of the geomorphology and the meteo-climatic

characteristics of Sicily, the framework used to verify changes in the extreme precipita-

tion characteristics will be analyzed. The first part will be devoted to a trend analysis

on extreme precipitation, especially those related to short-duration events, representing

one of the few works on this subject. The second part will focus on examining the poten-

tial consequences of these alterations from an practitioner perspective. In particular, it

will be investigated how these changes affect the extreme value distributions used to de-

sign hydraulic structures. Finally, since these short-duration intense events are generally

associated to convective systems, an algorithm for separating convective and stratiform

regimes will be carried out.

2.2.1. Area of study and dataset

Sicily island has an extension of about 25,700 km2 and a morphology that is charac-

terized by a mountain range along the longitudinal direction on the northern side (i.e., the

Peloritani, Nebrodi and Madonie mountains) and the Etna volcano on the eastern side

(Figure 2.2). Elevation ranges from 0 m a.s.l. to about 3,300 m a.s.l. in correspondence

of the volcano Etna. Precipitation across the island has a significant spatio-temporal

variability. The mean annual precipitation (MAP) over the whole island is about 715

mm, but it can significantly vary considering the southeast area (i.e., about 360 mm) and

the volcano Etna in the northern side (i.e., 1,900 mm) (Di Piazza et al., 2011; Caracciolo

et al., 2018). Concerning temporal variability, the greatest part of MAP occurs during the

winter seasons, while the summers are generally drier, despite severe storms may some-

times occur in this season, such as the one that hit Palermo on 15th July 2020 (Francipane

et al., 2021).
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Figure 2.2: Area of study overlaid on the digital elevation model

Sicily has different rainfall datasets. The oldest one is the regional database collected

by OA-ARRA (Osservatorio delle Acque – Agenzia Regionale per i Rifiuti e le Acque),

which consists of annual maxima (AMAX) rainfall for 1, 3, 6, 12 and 24 h duration, daily

rainfall and AMAX daily rainfall for about 350 rain gauges within the period 1929–2014).

In the past, these data have been largely used for analyzing the rainfall characteristics

(Arnone et al., 2013; Caracciolo et al., 2018) or the design rainfall estimation (Cannarozzo

et al., 1995; Noto and La Loggia, 2009; Forestieri et al., 2018). However, the temporal

resolution of this dataset does not allow to investigate all those phenomena that develop

and fade away rapidly. For this reason, the dataset used in this chapeter is the one

provided by the regional agency SIAS (Servizio Informativo Agrometeorologico Siciliano;

i.e., Agro-Meteorological Information Service of Sicily). SIAS rain gauge network consists

of 107 tipping bucket rain gauge stations rather homogeneously distributed across the

island (Figure 2.3) with an average density equal to about 250 Km2/gauge and covers

the period 2002-2023. In Table A.1 in the Appendix A the rain gauges names, IDs and

coordinates are listed. Data are retrieved with high temporal resolution (10 minutes)

allowing time aggregation when necessary. The time-series are characterized by a high

level of homogeneity, as declared by the SIAS Agency. The survey sites were chosen
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according to the WMO (World Meteorological Organization) standards and the strict

criteria used in data detection, management and validation provide a high degree of

uniformity over the whole island.

Figure 2.3: Spatial distribution of SIAS rain gauges

The SIAS rain gauges network has been firstly pre-processed in order to verify its

completeness. For the ith year, the percentage of missing data (Figure 2.4a) has been

computed as in equation 2.1, considering the ratio between the number of recorded data

and the number of expected data.

%ofMissingDatai =
#ofRecordedDatai
#ofExpectedDatai

· 100 (2.1)

As it is possible to observe, with the exception of about 10 stations that have been

in disuse since 2005 and about 10 other stations that were installed later, most of the

rain gauges have low missing data. The threshold of 30% has been chosen as the value

for considering as complete each year and Figure 2.4b shows the heatmap containing all

the valid years for each station (i.e., the red cells). By observing Figure 2.4a, it is also

possible to notice a constant percentage of missing data in 2011 (possibly due to a network

upgrade in that period). However, this percentage never exceeds the 30%, as shown in
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Figure 2.4b.

Figure 2.4: Completeness of the SIAS rain gauge network. Panel A shows the % of missing data
in each station (rows) for each year (column). In panel B the red cells represent all those years
for each station where the % of missing values is lower than 30%

The spatial distribution of the number of valid years is shown in Figure 2.5, while

Figure 2.6 displays the spatial distribution of the MAP computed from this network. The

MAP values are consistent with those previously reported above. Indeed the northeast-

ern area is the one characterized by the higher MAP, while it decreases moving to the

southwest. It is also worth noting that the regional MAP (715.7 mm) exactly matches

that historically recognized for Sicily.
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Figure 2.5: Spatial distribution of the number of valid years for the SIAS rain gauges

Figure 2.6: Spatial distribution of the mean annual precipitation values computed from the SIAS
network
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2.2.2. Asymmetric changes in the rainfall extremes magnitude

with duration

There is no doubt that to study the changes in rainfall characteristics it is necessary

to perform a robust statistical analysis of historical data. Over the years, one of the most

used methods to detect trends in precipitation has been the non-parametric Mann-Kendall

(hereinafter referred to as MK) test. It has largely been used also in trend detection for

extreme events, often coupled with different methods used for extracting extremes (i.e.,

see section 1.2).

However, it is possible to use other tests which, unlike the MK test, do not require

preliminary extraction of the extreme precipitation values. As an example, the quantile

regression (hereinafter referred to as QR) analysis (Koenker and Bassett Jr, 1978; Koenker,

2005) allows one to perform a linear regression on the whole data time-series, taking into

account those values greater than a selected quantile. This means that, if very high (low)

quantiles are considered, QR allows exploring the upper (lower) tail of the probability

distribution function of the data, allowing to check for potential asymmetries in their

behavior. QR method has been applied in the past to study trends at different temporal

and spatial scales for rainfall (Villarini et al., 2011b; Bartolini et al., 2014; Lausier and

Jain, 2018) and other climatic variables, such as temperature (Barbosa et al., 2011).

Lausier and Jain (2018) applied the QR method to the annual total precipitation at a

global scale, comparing results with those provided by a linear regression model. The

authors, who found different precipitation trends related to the mean (linear regression

model) and the median (QR model at 0.5 quantile) of time-series, asserted that a wrong

trend interpretation, deriving by using an easier method as simple linear regression, could

have implications for some environmental systems. Hence, they suggested to use a more

robust method, such as the QR. Lastly, by detecting trends for the lower and upper tails

of precipitation probability density function, they classified the whole planet into three

risk classes, with the aim to identify some strategies to deal with them. Bartolini et al.

(2014) started from two hourly rainfall datasets to look for trends in precipitation amount,

frequency, and intensity in two locations of Tuscany (Italy) by means of a QR method.

Results showed a tendency to a decrease of total rainfall and wet hours, occurring in

winter and spring, and to an increase of hourly average precipitation during wet hours.

With reference to rainfall at sub-daily timescale, some studies used the QR with the

aim to understand changes of sub-daily precipitation with temperature. For instance,

Adapted from: Treppiedi, D., Cipolla, G., Francipane, A. and Noto, L.V. (2021), ‘Detecting pre-
cipitation trend using a multiscale approach based on quantile regression over a Mediterranean area’,
International Journal of Climatology 41(13), 5938–5955.
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Van de Vyver et al. (2019) detected the scaling rates of sub-daily precipitation with dew

point temperature at various quantiles, highlighting a general increase of rainfall extremes

depicted by quantiles higher than 0.9, with dew point temperature in various cities of

Europe.

Starting from the above-mentioned conjecture of Arnone et al. (2013) but using the

QR methodology, in this section it has been investigated the possibility to identify sta-

tistically significant trends for Sicily at the sub-hourly durations; moreover, it was also

checked whether hourly and daily precipitation are characterized by the same behav-

ior, both in terms of trend direction and significance, thus verifying any asymmetry in

precipitation characteristics. Finally, the presence of any spatial patterns of trends in

magnitude is globally and locally verified through a spatial autocorrelation analysis based

on the Global Moran’s I Index (Moran, 1950) and the Local Moran (Anselin, 1995), re-

spectively. Despite the observation period here investigated is not enough long to infer

properly about climate change effects, the results may still be a further potential signal

that something is probably changing in Sicilian and, more in general, in Mediterranean

climate, as several studied have already pointed out over the years (Giorgi, 2006; Giorgi

and Lionello, 2008; Arnone et al., 2013; Forestieri et al., 2018).

2.2.2.1. Quantile regression vs. Mann-Kendall trend test

QR method, as introduced by Koenker and Bassett Jr (1978), can be considered

as a natural extension of the standard linear regression models, due to the possibility

to perform a regression on quantiles rather than just on the mean. The capability to

investigate, at any quantile level, the linear relationship between two or more variables

provides a more complete view of the statistical properties of a sample, also inspecting the

tails of its distribution. Furthermore, standard regression models are strongly influenced

by the presence of outliers, aspect that could be quite annoying especially in detecting

trends along time. The main difference between a simple linear regression and the QR

method is on the evaluation of coefficients. While in a classical bi-dimensional simple

linear regression the intercept and the slope of the regression line are evaluated through

the least square minimization problem, the QR model is based on a minimization of the

sum of the weighted absolute value of a difference between the ith observation (yi) and

the τ th quantile line β0(τ) + β0(τ)xi at xi):
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min
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(2.2)

From equation 2.2 it is possible to evince the dependency of the intercept, β0, and

the slope, β1, of the regression line on the quantile level τ , for any 0 < τ < 1. The role

of τ and (1 − τ) is to weight the vertical distances, that depend on the position of the

observations with respect to the τ th quantile line. In particular, points above the quantile

line are weighted by τ , while those below the quantile line are weighted by (1− τ), thus

meaning that the greater the considered quantile, the more relevant are points above

the quantile line in the evaluation of the slope and intercept of the regression line. To

evaluate the trends significance, the Student’s t-test has been applied to the QR results.

The test is here used to reject the null hypothesis, with a significance level of 0.05 and

0.1, that the slope of the quantile line is equal to zero. In order to have a measure of the

accuracy in estimating the slope and the intercept of the QR line, the standard error is

also computed with a sparsity method, known as "nid" (“not independently and identically

distributed error ”) (Koenker, 2004). This method, as considered by Koenker and Machado

(1999), allows one to estimate the sparsity function for data that are not independently

and identically distributed, assuming local linearity of the conditional quantile function

Q(τ |x) in x, where Q(·) indicates the conditional probability of the quantile τ given the

observed variable x. The "nid" method is sensitive to the presence of many equal values

in the analyzed dataset; indeed, such a condition could generate a singular matrix, from

which the algorithm cannot compute the standard error and, consequently, the confidence

interval. For further details on the QR method the reader is referred to Koenker (2005)

and Hao and Naiman (2007).

Unlike the QR method, the MK test is usually not applied to raw precipitation data

(i.e., time series of rainfall depth originally recorded by the gauges), but it is generally

used with specific datasets, such as annual maxima (Bonaccorso et al., 2005; Arnone

et al., 2013). The null hypothesis in the test indicates that the population from which

the sample is extracted has no trend, while the alternative hypothesis is that a trend

exists. To accept or decline the null hypothesis at a fixed significance level (i.e., αsig) a

comparison between αsig and a local significance level (i.e., p-value) is required. This last

term is obtained as follows:
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p− value = 2
[

1− Φ(|ZS|)
]

(2.3)

where Φ(·) is the CDF (Cumulative Distribution Function) of a standard normal variate.

The standardized test statistic, ZS, follows a standard normal distribution and can be

computed as reported below:

ZS =

ù

ü

ü

ü

ü

ú

ü

ü

ü

ü

û

S − 1

σ
if S > 0

0 if S = 0
S + 1

σ
if S < 0

(2.4)

In equation 2.4, σ is the variance of the standardized normal distribution function

followed by the Kendall’s S statistic, under the null hypothesis. The S statistic is com-

puted as the sign function of the difference between two consecutive observations, namely

xi and xj:

S =
n−1
∑

i=1

n
∑

j=i+1

sign(xj − xi) (2.5)

In the case of an auto-correlated series, the MK test could detect a trend even if

it is not real, as demonstrated by Von Storch (1999). For this reason, a pre-whitening

procedure is usually suggested, especially when the observed dataset is shorter than 50

elements (Yue and Wang, 2002). It consists in removing from each observation, xi, a

component given by the product of the previous one and the lag 1 serial correlation

coefficient. In literature, MK is quite often coupled with the Sen’s slope method (Almeida

et al., 2017; Güçlü, 2018), as an estimator of the trend magnitude. This latter assumes

that the slope of the regression line (i.e., β) is estimated as the median of the ensemble

of slopes derived by linking the pairs of consecutive observed data (Sen, 1968):

β =Median

(

xj − xl
j − l

)

∀l < j (2.6)

where xl is the l th observation antecedent the j th observation xj.

2.2.2.2. Pre-processing of the SIAS data

In order to avoid any misinterpretation in calculating trends, the original dataset from

SIAS was preprocessed by removing all those gauges with at least one year of missing data

in the period 2002 - 2019. While this condition may seem excessively strict, on the other

hand, it has been deemed necessary given the limited temporal coverage of the dataset
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compared to the three-decade period suggested by the WMO. This operation has led to

take into account only 72 stations whose name and ID are reported in Table A.2 (3rd

column) in the Appendix A.

Before proceeding with the QR analysis, it was necessary to carry out a further two

more operations. Firstly, in order to prevent a great number of null values from being

weighted in equation 2.2, all the zero precipitation values were removed from the dataset.

Moreover, to guarantee the correct sequence of rainfall in time, each record has been

previously associated to a “timestamp” that fixes its position in the timeline. Secondly,

since the “nid ” method is sensitive to the presence of many equal values, as stated in

paragraph 2.2.2.1, a Gaussian white noise (i.e., zero mean with a negligible standard

deviation, here fixed equal to 10-5 mm) was added to the original time-series. Indeed, the

raw 10-minute dataset includes plenty of values equal to the rain gauge resolution (i.e.,

0.2 mm) and its multiples that invalidate such a method.

Starting from the modified dataset, data have been aggregated to coarser time res-

olutions (20, 30, 40 minutes and 1, 3, 6, 12 e 24 hours), for the further trend analysis

detection with the QR. In order to leave unchanged the total precipitation amount at the

different durations, a moving window with the size of the chosen duration and that moves

with a time step equal to its size has been considered; at each step, all the data within the

window have been summed up to return the value of the aggregated precipitation (Figure

2.7). The use of the above-mentioned “timestamp” to fix the position of the 10-minute

record in the timeline, guarantees the correct sequence of rainfall in time also for the

coarser time resolutions. Moreover, in order to compare results with those obtained with

the MK analysis, the rainfall annual maxima for the previous nine durations have been

extracted as well (by using the rolling window method in this case).

Figure 2.7: Example of the aggregation procedure for 20 and 30-minute duration
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2.2.2.3. Precipitation trends through the QR method at the

gauge level

In order to obtain the slope (i.e., the trend magnitude) and the intercept for a various

range of quantiles, the R-package quantreg (Koenker, 2004) was used to apply the QR

method to the rainfall time-series generated as in paragraph 2.2.2.1. Although the QR

analysis was carried out for all the gauges displayed in Table A.2, for the sake of length,

only the results related to the station of “Palermo” are reported and discussed in this

paragraph. The significance of trends has been assessed by means of the Student’s t-test

with reference to all the stations under study. The results of such an analysis are reported

in paragraphs 2.2.2.4 and 2.2.2.5, where the procedure to identify the presence of spatial

patterns has been carried out as well.

In order to provide a full view of the rainfall behavior at different timescales ag-

gregations, Figure 2.8a, b, and c shows the results only for the shortest (10 minutes),

intermediate (1 hour), and longest (24 hours) durations, respectively. Gray points repre-

sent the hourly rainfall intensities, ih, obtained from aggregated rainfall depths, while QR

lines (colored-solid lines) for the quantile levels 0.25, 0.5, 0.9, 0.95, and 0.99 are shown

contextually to the ordinary least square (hereafter OLS) method line (black-dashed line).
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Figure 2.8: Graphic representation of QR lines (coloured-solid) and OLS line (black-dashed)
for the station of ‘Palermo’ at (a) 10-min, (b) 1-hr, and (c) 24-hr durations. In the lower right
panel, it is reported an exemplification of the annual increment of hourly intensity to compare
slopes of rainfall intensity at different durations

Results confirmed that, as the considered quantile level grows, the intercept value

grows as well. Indeed, for the highest quantiles, the highest rainfall intensity values have

more weight than other values in the QR procedure, as expressed by equation 2.2. This

behavior is not always valid for the slope since, depending on the data, there could be a

trend inversion at any quantile level.

From Figure 2.8, it is noteworthy to highlight that the OLS regression line is not

suitable to describe the behavior of extreme events, both in terms of high and low intensity

precipitation, since the sample includes a great number of ordinary low rainfall events

that affect the intercept of the regression line, thus pushing the regression line towards

low values of intensity.

By observing the slope of the regression lines, it is possible to make some inferences

about the trend magnitudes for the durations considered. In addition, to make possible

the comparison of the trend magnitudes provided by the slopes of the regression lines

at different durations, it was decided to refer the slope units to the annual increment of

hourly intensity (∆ih/year). A graphical representation of this transformation can be
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observed in the lower right panel of Figure 2.8.

With this regard, Figure 2.9 represents the variation of slope with quantiles for the

same durations shown in Figure 2.8. Black points are representative of the slope of

the regression lines for different quantile levels, while the gray bands delimit the 90%

confidence interval for the estimated slopes. The QR has been applied to 0.02 equal step

quantiles ranging from 0.02 to 0.98, together with the quantiles 0.95 and 0.99 in order to

extensively explore the relationship between slope and quantile. The slope of the OLS

regression line, which is constant at a fixed duration, is indicated using a red-solid line

whereas the related confidence intervals are displayed by means of some red-dashed lines.

In general, if one observes the results of QR analysis, an increasing (decreasing) trend

at the higher quantiles corresponds to the probability (with a certain level of significance)

to have more (less) severe events. With this in mind, from the three panels of Figure

2.9, it is possible to notice that for the lower quantiles the slope is always close to zero,

while it tends to generally increase for the higher quantiles. Such a behavior is mainly

due to the high number of low-intensity rainfall events which, for the lower quantiles,

have more weight than the higher intensities. Moreover, with reference to the slope of the

ordinary least square method (red – solid line in Figure 2.9), this is characterized by a

slope significantly different from those relative to the highest quantiles. Such a behavior

is not observable for the lower quantiles, which have points mostly within the confidence

interval of the mean (red – dashed lines). This certifies the fact that the ordinary least

square method is only representative of the average behavior of the sample and is not

effective to characterize any trend at higher quantiles, which correspond to heavy and

very heavy rainfall.

From the analysis of the confidence interval (gray bands in Figure 2.9), for each

duration and rain gauge analyzed, it can be observed that the standard error grows with

the quantile; this is mainly due to the reduced extent of the sample used in the QR

procedure for the higher quantiles.

For completeness, it is noteworthy to highlight the presence of some peaks in the

slope at the 10-minute duration for the higher quantiles (Figure 2.9a). This aspect can

be explained by comparing the shape of the empirical PDF of rainfall intensity data at

10-minute, 1-hour and 24-hour durations, as shown in Figure A.1 in the Appendix A.

In the case of the 10-minute duration (Figure A.1a), the PDF shows the highest peak

in correspondence of the gauge resolution (i.e., 0.2 mm) and several other peaks for the

multiples of the gauge resolution that become smaller and smaller as the multiple of the

gauge resolution increases. This reflects in weighting data in the QR procedure, thus

generating the spikes shown in Figure 2.9a. This aspect is lost at the higher durations

(i.e., 1-hour and 24-hour durations in A.1b and c, respectively) since data are aggregated
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and the empirical PDF of rainfall intensity assumes a smoother shape.

Figure 2.9: Slope of the regression lines versus quantile level for the station of ‘Palermo’ at (a)
10-min, (b) 1-hr, (c) 24-hr durations. Black points are representative of the slopes for various
quantiles, while the grey bands stand for the 90% confidence intervals. The figure also displays
the slope of the OLS regression line (red-solid line) and the related confidence intervals (red-
dashed lines) at the three considered durations

2.2.2.4. Effects of duration and quantile on precipitation trends

Following the conjecture provided by Arnone et al. (2013) about the existence of

trends in sub-hourly precipitation, a particular attention has been paid to identify eventual

positive trends for the events at the sub-hourly durations and for the higher quantiles.

Moreover, a further and most crucial aspect is linked to the fact that eventual positive

trends for these events would correspond to an increase in rainfall events with a short-

duration and high-intensity that, in certain cases (e.g., small catchments with low times

of concentration), could cause flash flood events and, as a consequence, higher risks of

economic damages and fatalities.

Figure 2.10 summarizes the QR results for all the considered rain gauges. It provides

the percentage of gauges showing a significant positive (red), negative (green), or non-

significant (gray) trend for the whole ensemble of considered durations and 0.2, 0.5, 0.9,

0.95, and 0.99 quantiles. Although not related to extremes, the 0.2 and 0.5 quantiles have
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been considered to provide a comprehensive view of the changes in the whole precipitation

distribution. The two columns of Figure 2.10 are representative of two different levels of

significance (i.e., αsig = 0.05 and αsig = 0.1, respectively).

Focusing on the lowest and intermediate quantiles, namely 0.2 and 0.5, respectively, it

is possible to notice that a high percentage of rain gauges show a non-significant trend for

all the considered durations for both the levels of significance. However, it is noteworthy

that a noticeable percentage of stations has a positive trend at the sub-hourly durations,

reaching the maximum value at the 10-minute duration (i.e., 26.4% and 33.3% for αsig =

0.05 and αsig = 0.1, respectively). As the duration increases, there is an increase of the

percentage of stations showing a negative trend and, at the same time, a corresponding

decrease of the percentage of gauges manifesting a positive trend. This is more evident for

the αsig = 0.1. When the percentages related to the shortest (10 minutes) and longest (24

hours) duration (Figure 2.10, top right panel) are taken into account, for instance, one can

observe that the first bin (10 minutes) provides about 33% of gauges characterized by a

significant positive trend and about 6% of gauges with a significant negative trend, while,

on the other hand, the last bin of the panel (24 hours) displays an opposite behavior

(about 4% with a significant positive trend and about 20% with a significant negative

trend). Furthermore, it seems that as the duration increases there is a reduction of the

very ordinary (i.e., 0.2 quantile) and ordinary (i.e., 0.5 quantile) long-duration events.

If these negative trends for the lower quantiles (e.g., 0.2) will persist especially at the

longer durations, they could result in an increased risk of dry conditions (Lausier and

Jain, 2018) with a reduction of available water resources, impacting, for instance, the

agricultural sector (Field, 2012), hence causing noticeable economic damages.
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Figure 2.10: Percentage of rain gauges characterized by a positive (red), negative (green), and
non-significant (grey) trend coming out from QR procedure at 0.2, 0.5, 0.9, 0.95, and 0.99
quantiles at all durations
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Regarding the higher quantiles (i.e., 0.9, 0.95, 0.99), as quickly as the duration de-

creases, it is possible to observe a clear increasing pattern of the percentage of rain gauges

with a positive trend. In particular, for the two highest quantiles (i.e., 0.95 and 0.99,

respectively) and both the significance levels (i.e., 26.4% and 33.3% for αsig = 0.05 and

αsig = 0.1, respectively), at least the 50% of the stations shows an increasing trend at

the 10-minute duration. Regarding the quantile level of 0.9, unless for the 10-minute du-

ration, which shows a percentage slightly lower than the other sub-hourly durations, the

increasing pattern of positive trends with the decreasing of durations is still maintained.

On the opposite, for the 24-hour duration, the stations with no-trend strongly prevail,

especially for 0.99 quantile level, where about 98% of stations reveal a non-significant

trend at αsig = 0.05. All of the previous considerations suggest an increase in rainfall

intensity provided by sub-hourly extreme events in Sicily, thus confirming what Arnone

et al. (2013) had already guessed for Sicily region and other studies had found for other

parts of the world (De Toffol et al., 2009; Adamowski et al., 2010). As already said at the

beginning of this section, such a condition could lead to an increase of flash floods, with

all of its consequences, but also to other consequences such as an increase in the soil loss,

due to its erosion, and a consequent decreasing in production of these soils as found by

Wei et al. (2009) in the North-West of China.

Differently from the case of the lower quantiles, in the last cases (i.e., 0.90, 0.95,

and 0.99) less than the 10% of stations show a negative trend at all the durations under

study; this percentage becomes smaller and smaller as quickly as the quantile increases.

Moreover, differently than for the positive trend, it is not possible to recognize any pattern

with duration. Furthermore, for the 0.99 quantile and αsig = 0.05, almost no station

reveals a significant negative trend at all durations.

In order to describe the variation of trend magnitudes with quantiles and durations,

Figure 2.11 reports, the empirical cumulative distribution function (ECDF) of the trend

magnitude for the gauges showing a statistically significant (positive and negative) trend

for αsig = 0.1 and the durations of 10, 30-minute and 1, 6 and 24-hour and the 0.2, 0.95

and 0.99 quantiles.

Firstly, it is worth to focus on the entity of the trend magnitude, which considerably

varies with quantiles. Indeed, at the 0.2 quantile (Figure 2.11a), it is possible to notice

that, for all the durations, the trend magnitude values are close to zero, so that hourly and

sub-hourly ECDFs, apart from those at 6 and 24-hour durations, cannot be distinguished.

An opposite behavior is illustrated in Figure 2.11b and c, related to the 0.95 and 0.99

quantiles, respectively. In particular, as the duration increases, the sample size becomes

even smaller, due to a general loss of statistical significance (see also Figure 2.9) and,

at the same time, the trend magnitude grows. Furthermore, as the quantile increases,
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the trend magnitude increases as well. As an example, focusing on the quantile 0.99 and

sub-hourly durations, it is possible to notice that the 75% of stations present a trend

magnitude greater than about 0.3 mm/h/year, which is approximately the maximum

magnitude value which characterizes the analyses carried out for 0.95 quantile.

Figure 2.11: ECDF of the trend magnitude for 10, 30min and 1, 6, and 24hr at (a) 0.2, (b) 0.95
and (c) 0.99 quantile. ECDFs are representative of the positive and negative trend magnitude
with a significance level of .1. The sample size for any quantile-duration combination is reported
in the legend

These findings confirm that the short-duration and high-intensity rainfall events are

occurring more frequently in Sicily, at least with reference to the considered period, thus

confirming that in the last years we are experiencing an increase in short-duration high in-

tensity rainfall events that could be probably a consequence of climate change, as affirmed
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by Field (2012).

The remaining ECDFs, related to all the durations and quantiles considered, are

reported in Figure A.2 in the Appendix A.

2.2.2.5. Spatial analysis of precipitation trends

In order to assess an eventual spatial distribution of the trends in Sicily, for each

rain gauge station, Figure 2.12 represents the magnitude, direction, and significance of

the trends detected with the QR approach. For the sake of clarity, the trend magnitude,

which is expressed as the annual increment of hourly intensity, is symbolized by a grad-

uated color, the trend direction is represented by the symbol orientation (i.e., positive or

negative), while the dimension of the triangle is related to three different classes of sig-

nificance level (i.e., ≤0.05; 0.05÷0.1; >0.1). The panels A, B, C, D, and E in Figure 2.12

represent the spatial distribution of detected trends for the quantiles 0.2, 0.5, 0.9, 0.95,

0.99, respectively, while the columns 1, 2, and 3 are relative to the durations of 10-minute,

1-hour, and 24-hour, respectively. For the sake of the length of this section, the plots re-

lated to all the other durations considered for the previous analyses are reported in are

reported in Figures A.3 and A.4 in the Appendix A. By observing this figure, it is possible

to notice that the number of stations showing a significant trend (positive or negative)

increases with the quantile level and decreases as the duration increases, thus confirming

what has been already shown in Figure 2.10. Moreover, it is possible to observe that the

trend magnitude values decrease moving from the higher to the lower quantile for each

duration. The low trend magnitudes, which have been obtained at the lower quantile

levels, are strictly connected to the high number of similar low rainfall intensity values

weighted in the QR process. For this reason, these trends are expected to be low but,

at the same time, not negligible, since they refer to very ordinary rather than extreme

events. Indeed, even small changes in events that frequently occur throughout the year

could lead to an important alteration of the local hydrological cycle.

In order to objectively identify the potential spatial clustered situations in the trend

magnitude, the spatial autocorrelation (hereafter SAC) analysis was carried out on those

rain gauges showing a significant trend with αsig = 0.1 (i.e., all the medium and large

colorful triangles in Figure 2.12) using the GeoDa software (Anselin et al., 2009).

Two different indicators, namely the Global Moran’s I and the Local Moran have

been used to perform a spatial autocorrelation (hereafter SAC) analysis in order to verify

the presence of specific patterns in the spatial distributions of the trend magnitude.
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Figure 2.12: Spatial distribution of the gauges under study and magnitude (colour), expressed
in mm · h−1 · year−1, direction (triangles orientation) and significance (triangle size, large for
αsig ≤ 0.05, medium for 0.05 < αsig ≤ 0.1 and small for αsig > 0.1) from QR at 0.2, 0.5, 0.9,
0.95, 0.99 quantiles for 10-min, 1- and 24-hr durations. The bold letters, A-E, stand for the
quantiles, while the bold numbers 1–3, denote the durations

The Global Moran’s I statistic (Moran, 1950) can be interpreted as an extension of

the autocorrelation coefficient, by means of a symmetric spatial weights’ matrix filled by

the inverse of the geographic distance between the pairs of points, where data are recorded.

The value of Moran’s I ranges from -1 to 1 (same as the autocorrelation). In order to

establish whether data are randomly distributed or not, the Moran’s I must be compared
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to its expected value, E[I]. In general, if I is less than E[I] data are dispersed, while

I values greater than E[I] indicate a clustered pattern. When I is close to its expected

value, instead, data tend to be randomly distributed across the points. However, since

SAC analysis is an inferential statistic, results must be interpreted on the base of null

hypothesis, stating that data are randomly distributed across points. Therefore, the p-

value and the Z -score of the analysis must be assessed. The null hypothesis cannot be

rejected if the p-value is not statistically significant, thus meaning that data are randomly

distributed across the points. On the other hand, for those cases in which the p-value

is statistically significant, i.e., the spatial distribution of the processed variable is not

the result of a random spatial process, a positive sign of the Z -score statistic reveals the

presence of a clustered pattern of the analyzed feature, while a negative one means that

the spatial pattern is dispersed.

The Global Moran’s I statistic is useful to conclude if the spatial distribution of a

given variable is globally clustered or not, but a local statistical analysis is necessary to

derive the geographical position of a cluster. To this regard (Anselin, 1995) introduced

a class of local indicators of spatial association, known as LISA. Among all the possi-

ble LISA, in this study the Local Moran has been applied. The link between the two

global and local indicators is that the global I can be seen as an average value (up to a

factor of proportionality) of local Ii, where the subscript i stands for the location of the

measurement. It is worth to mention that, even if the Local Moran reflects the presence

of significant local clusters, it does not mean that the global spatial distribution of the

feature needs to be necessarily clustered. The local clusters are identified by means of the

Moran scatterplot, in which points have (x; y) coordinates given by the original and the

spatially lagged variable, respectively. This scatterplot is divided into four quadrants, in

which the axes intersect in the centroid of the point cloud. The upper-right and the lower-

left quadrants refer to a positive spatial autocorrelation, representative of similar values

at geographically near location. On the opposite, the other two quadrants represent a

negative spatial autocorrelation, meaning that there are dissimilar values at neighboring

locations. Combining the information provided by the Moran scatterplot with an indica-

tion of significance, it is possible to make a classification into four classes. In particular,

significant clusters, identified in the upper-right and the lower-left quadrants, are denoted

as High-High (HH) and Low-Low (LL), while significant outliers, identified in the lower-

right and the upper-left quadrants, are denoted as High-Low (HL) and Low-High (LH),

respectively.

Table 2.1 shows the SAC analysis results in terms of Global Moran’s I estimated

value, Z -score, p-value and sample size, related to all the possible combinations between

durations and quantiles shown in Figure 2.12. It is important to remark that this analysis
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aims to determine whether the trend magnitude is globally clustered or not over the

island. In such a kind of analysis the sample size plays a very relevant role; Legendre and

Fortin (1989) suggest to apply the SAC analysis to samples composed of about 30 values,

in order to have a sufficient amount of data to reliably identify potential spatial patterns.

Nevertheless, this threshold is not a strict limit and, in fact, Griffith (2010) suggest a

minimum sample size of 25 elements.

The results of such an analysis are reported in Table 2.1, where the cases with a

p-value lower than 0.1 but a sample size smaller than 25 are indicated with an italic font,

while the cases with a p-value lower than 0.1 and a sample size greater than 25 data are

reported with a bold-italic font. Normal font face, instead, is related to the quantile-

duration combinations in which the p-value is higher than 0.1 and, consequentially, in

which the spatial distribution of the magnitude can be considered as the result of a

random spatial process.

Focusing on the lower (i.e., 0.2 and 0.5) and highest quantiles (i.e., 0.99), the results

of Table 2.1 indicate that no spatial patterns of the trend magnitude can be found at

any duration, given the resulting p-value and Z -score statistics. Indeed, regarding the

0.99 quantile and 10-minute duration, the p-value of the SAC analysis is higher than 0.1,

probably due to a great variability of the trend magnitude. Therefore, it is not possible to

assume that, globally, the distribution of the trend magnitude is significantly clustered.

On the contrary, when one observes the quantile 0.9 it is possible to highlight that for the

1-hour and 24-hour durations, the p-value is less than 0.1 and, contemporary, the Z -score

is positive. This means that the spatial distribution of the trend magnitude is clustered,

even though the result related to the 1-hour duration may be considered more reliable

than the 24-hour one due to the greater sample size.

Regarding the 0.95 quantile, while all the durations exhibit a p-value lower than

αsig = 0.1 only the 10-minute and 1-hour durations are characterized by a sample size

greater than 25. Furthermore, the Z -score is always positive, indicating that the trend

magnitude is clustered.

The results of the SAC analysis for the remaining quantiles and durations are reported

in Table A.3 in the Appendix A. With reference to all the durations under study, the

Global Moran’s I generally resulted in a spatially clustered distribution of the trend

magnitude especially for the higher quantiles. This behavior is particularly enhanced at

the 0.95 quantile for the whole ensemble of sub-hourly durations (i.e., 10, 20, 30, and

40 minutes), which are characterized by the greater sample sizes. Furthermore, for the

0.9 quantile, the same considerations are valid for the sub-hourly durations of 30 and 40

minutes.

In order to identify the clusters’ position, a Local Moran analysis (Anselin, 1995) has
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0.2 quantile 0.5 quantile
10 min 1 h 24 h 10 min 1 h 24 h

Moran’s I Index 0.0442 0.2722 0.0202 -0.0939 -0.5349 -0.2730
Z-score 0.5108 1.6065 0.4338 -0.4451 -1.4191 -0.9623
p-value 0.6095 0.1082 0.6645 0.6562 0.1559 0.3359
Sample Size 28 17 17 25 12 14

0.9 quantile 0.95 quantile
10 min 1 h 24 h 10 min 1 h 24 h

Moran’s I Index 0.0854 0.1494 0.6666 0.2766 0.1744 0.4674
Z-score 1.3501 2.1511 3.5955 2.9122 1.7659 2.8604
p-value 0.1770 0.0315 0.0003 0.0036 0.0774 0.0042
Sample Size 24 28 15 44 26 17

0.99 quantile
10 min 1 h 24 h

Moran’s I Index 0.0501 -0.1462 0.3266
Z-score 1.0981 -0.3092 0.8874
p-value 0.2722 0.7571 0.3749
Sample Size 43 14 5

Table 2.1: Global Moran’s I estimated value, Z -score, p-value, and sample size for 0.2, 0.5, 0.9,
0.95, and 0.95 quantiles and 10-min, 1- and 24-hr durations. All cases in which the p-value is less
than 0.1 but the sample size is less than 25 are indicated with an italic font, while those cases in
which the p-value is less than 0.1 and the sample size is greater than 25 are written in bold-italic
font. Normal font face is related instead to those cases in which the spatial distribution of the
trend magnitude is the result of a random spatial process (p-value greater than 0.1)

been applied at the same samples and for the same duration-quantile combinations used

in 2.12. In particular, panels a to c in Figure 2.13 show the results for 95th percentile at

10-minute, 1-hour, and 24-hour duration, respectively. This quantile has been chosen as

representative mainly because the sample size criterion is satisfied both for 10-minute and

1-hour duration (i.e., 44 and 26 locations), while the sample size is the largest among those

relative to the 24-hour duration (i.e., 17 points), even if it is smaller than 25 elements.

However, for the sake of completeness, Figure A.5 in the Appendix A shows the

results relative to 0.2, 0.5, 0.90, and 0.99 quantiles at 10-minute, 1-hour, and 24-hour

duration.

In Figure 2.13, red and blue circles are relative to HH and LL clustering cases,

respectively, and characterized by a p-value lower than 0.1. The significant outliers,

instead, are marked with the diamond shape and filled with pink (HL) or light blue (LH)

colors. Therefore, the crosses represent those locations in which the significance level

exceeds 0.1.
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It is worth to mention that for all the panels in Figure 2.13 it is possible to distinguish

two significant clusters. In particular, in the south-east there is a HH cluster, while the

northern-west part is characterized by a LL cluster. Looking at the dimension of these

two clusters, it is possible to observe as their extension changes with the duration. At the

10-minute duration (Figure 2.13a), for instance, a relevant number of stations composes

both the clusters (i.e., 8 and 12 sites for the LL and HH, respectively). Moreover, by

comparing this panel with the correspondent one in Figure 2.12 (i.e., panel D1) it is

possible to notice that the HH cluster includes those stations characterized by the highest

values of trend magnitude. Therefore, the LL cluster is composed by a group of gauges

where the trend magnitude is moderately positive. Starting from this consideration, it is

worth to highlight that the acronyms HH and LL do not necessarily refer to a cluster of

gauges in which an increasing or a decreasing trend is observed.

Focusing on the 1-hour and 24-hour durations (i.e., Figure 2.13b and c, respectively),

both the clusters reduce their dimension. Furthermore, the LL cluster seems to be more

confined in the north-west side of the island. Looking at the trend magnitude of the

gauges forming the LL cluster (panels D2 and D3 in Figure 2.12, respectively), it is also

possible to observe that, in this case, they match with a decreasing trend magnitude

cluster (i.e., except for the upper-left point in LL cluster of Figure 2.13c).

Looking at the Figure A.5 in the Appendix A, it is worth to focus that, when the HH

and LL clusters are visible, their location is, more or less, the same of that highlighted

in Figure 2.13. This consideration is not valid for 0.2 quantile at 1-hour duration, where

different clusters can be detected.

Figure 2.13: Local Moran analysis for the 0.95 quantile at (a) 10-min, (b) 1-hr, and (c) 24-
hr duration. The LISA is applied to both the positive and negative trend magnitudes with a
significance level of 0.1. Red and blue circles are relative to high-high (HH) and low-low (LL)
clustering cases, respectively, and characterized by a p-value lower than 0.1. The significant
outliers are marked with light blue and pink diamonds for low-high (LH) and high-low (HL)
clustering cases, respectively. The crosses represent those locations in which the significance
exceed the level of 0.1
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2.2.2.6. Mann–Kendall test for rainfall annual maxima trends

This section shows the results of the MK method, applied to the pre-whitened an-

nual maxima extracted by the SIAS dataset, as well as a qualitative comparison with

the QR method results, with the aim to explore the advantages and drawbacks of both

methodologies in trends detection.

As an example, the results of such an analysis for the rain gauge of Palermo are

shown in Figure 2.14, where the subplot a) shows the annual maxima extracted for the

durations of 10 minutes, 1 hour, and 24 hours, while the remaining plots show the results

regarding the trend-duration dependency (Figure 2.14b) and the spatial variability of

trends magnitude, direction, and significance (Figure 2.14c). The magnitude, in this case,

is obtained through the Sen’s slope method and represents the variation of rainfall annual

maxima per year (mm/year).

Focusing on canonical durations, it is possible to observe two different behaviors

between positive and negative trends with duration. Indeed, as the duration increases,

the percentage of stations characterized by a negative trend becomes greater, while the

one featured with positive trend decreases. In particular, at the 24-hour duration, these

percentages reach 18% and 0% for negative and positive trend, respectively. Regarding the

sub-hourly durations, instead, no patterns with duration are noticeable. In any case, it is

worth to observe that the majority of the rain gauges is characterized by a non-significant

trend.

Although it is not possible to make a direct comparison between the results obtained

with the QR and MK methods because of the different information they work with, it

may be useful to highlight some differences, strengths and weaknesses of the two methods.

First of all, focusing on the data, since the MK test works with the annual maxima (i.e.,

only a value of rainfall per year), it might be unsuitable to work with short datasets

(i.e., few years of observed data) since it would return results statistically not significant.

Moreover, working with annual maxima implies that all the rainfall depths slightly lower

than the annual maxima, despite the fact that could be even higher than the annual

maxima of other years, are discarded from the analysis.

In the QR method, instead, all data are processed to extract information about

trends, even if only those exceeding the threshold related to the examined quantile are

weighted in a more significant way. Nevertheless, by looking at the ECDFs of the aggre-

gated time-series, related to 10-minute, 1-hour and 24-hour duration, for “Palermo” rain

gauge, it is possible to observe that about 1,200, 470, and 100 values are above the 95th

percentile, respectively. Moving to the 99th percentile, the number of observations above

this percentile drops to about 240, 90 and 20, respectively, but, in any case, higher than
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those used in the MK procedure that are 18 values (i.e., the annual maxima) for each of

the considered durations. This could be the main reason why the QR approach is able to

detect a consistent number of stations featured by a positive trend for the 0.95 and 0.99

quantile (i.e., about 57% and 56% at αsig = 0.1, respectively), while this information is

not captured by the MK procedure.

With reference to the spatial patterns (Figure 2.14b), most of the stations shows a

non-significant trend at all durations. Since the maximum number of rain gauges showing

a significant trend is equal to seven (at 1-hour duration), the SAC analysis has not been

carried out to avoid inconsistent and/or unreliable results. For all of these reasons, the

QR could be a valid alternative to the MK procedure to detect trend in extreme rainfall,

especially when the period under study is short. It is further worth to highlight that, also

in the QR procedure, the loss of significance recorded especially at the longest duration

could be attributable to a too small sample size.

Figure 2.14: Annual maxima for the rain gauge of ‘Palermo’ of the SIAS data set at 10-min,
1-hr, 24-hr duration (a), spatial distribution of magnitude, direction and significance of trends
(b), and percentage of stations having a negative (green), positive (red), or non-significant (grey)
trend obtained through the MK test (c)
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2.2.3. Larger and more frequent extremes affect the reliability

of design rainfall

As shown in section 2.2.2, it is evident that the last two decades have been char-

acterized by an increase in rainfall intensity in Sicily, particularly concerning the higher

quantiles and shorter durations. The consequences associated with these increasingly in-

tense phenomena can be various, affecting both the social and the economic sphere. For

instance, the pluvial floods triggered by extreme rainfall events in the eastern of the region

caused more than 13 fatalities in November 2018; the urban pluvial flood in July 2020

brought Palermo to its knees, fortunately with no fatalities (Francipane et al., 2021). Also

agriculture is often plagued by these intense phenomena: during winter 2023 the damages

to agricultural production were estimated at over € 1.8 M, while damages to the farm

structures amounted to € 2.2 M in an area of 239 hectares in the center of Sicily, as stated

by the Sicilian Regional Agency. From an engineering perspective it is fundamental to

question whether the growing occurrence and severity of such events is exposing the sus-

ceptibility of the existing infrastructures towards a state of “physiological insufficiency”

(Debortoli et al., 2017; Kumar et al., 2021). This implies that what was designed decades

ago may no longer be safe today, since the stress induced by climate change has turned

what was once considered "extreme" into more frequent. The other side of the coin is

even more dramatic: persisting in using the same methodologies for hydraulic structure

design could potentially lead to an increasing risk of failure in the future, consequently

exposing the population to greater risks. In terms of hydrological risk, the rise in the

frequency of the most intense phenomena implies considering the non-stationarity of their

occurrence and, in turn, of the classical frequency distribution parameters with which

these events are modelled (Cheng and AghaKouchak, 2014). This means that the concept

of the return period should be revised to something that can no longer be considered a

fixed entity but instead must vary over time.

Rainfall Depth–Duration–Frequency (DDF) curves are the instruments that are widely

used in hydrology to estimate the design storm for urban drainage systems, water resources

management, and flood risk assessment (Yu et al., 2017; Andimuthu et al., 2019). These

curves provide precipitation quantiles for specific durations and return periods, and are

typically expressed as a power-law:

Adapted from: Treppiedi, D., Cipolla, G., Francipane, A., Cannarozzo, M. and Noto, L. V. (2023),
‘Investigating the reliability of stationary design rainfall in a mediterranean region under a changing
climate’, Water 15(12), 2245

https://www.regione.sicilia.it/la-regione-informa/maltempo-caltanissetta-ragusa-ok-iter-aiuti-imprese-agricole-colpite#:~:text=Acqua%20e%20vento%20hanno%20danneggiato,un'area%20di%20239%20ettari
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h(d, T ) = a(T ) · dn(T ) (2.7)

which describes the variation of the critical rainfall depth h(d, T ) as the duration of the

event d changes and once the return period T is assigned, meaning that the parameters

a(T ) and n(T ) are known. These curves are obtained by carrying out a statistical analysis

of historical rainfall data (e.g., annual maxima or precipitation exceeding a fixed thresh-

old) to identify the relationship between the depth (or intensity), duration, and frequency

(or exceedance probability) of rainfall events. These analyses estimate statistical param-

eters for a time series of a hydrological variable by assuming that the recorded series is

stationary, which means that its statistical properties do not exhibit any trends, shifts,

or periodicity (Scala et al., 2022). Moreover, the more extensive is the observed dataset,

the more accurate and reliable are the DDF curves. Indeed, the probability distribution

functions commonly used to rely on high-order sample statistic parameters can be esti-

mated with confidence only if the available sample series has a significant length and the

data source is reliable.

Recent studies have shown that the traditional approach of using stationary DDF

curves may not be adequate for the design of hydraulic works or assessing hydrological

risk in the context of possible climate change signals (Cook et al., 2020; Kourtis and

Tsihrintzis, 2021, 2022). Changes in climate are altering weather circulation patterns,

which are connected to precipitation fields (Cipolla et al., 2020) and may potentially lead

to an increase in the frequency of occurrence and intensity of extreme rainfall events

(Nissen and Ulbrich, 2017; Myhre et al., 2019).

The main objective of this section is to verify if quantiles (or DDFs) obtained through

a stationary regional approach, which will be described in the next paragraph, can be

suitable to describe the precipitation regime of the last two decades in the Sicily region.

In particular, it has been conducted a comparative analysis for different durations and

return periods between the rainfall quantiles calculated with the regional approach by

Forestieri et al. (2018) and those estimated with an at-site analysis conducted on the

SIAS dataset. The analyses provide a useful benchmark to verify the influence of the last

two decades on the rainfall regime of this area.

2.2.3.1. Regional Depth Duration Frequency curves for Sicily

Constructing reliable DDF curves is impossible without a sufficiently extensive rain-

fall dataset. However, it can be difficult to find time series long enough to ensure a robust

estimation of the distribution parameters. Furthermore, DDF curves are typically derived

from measurements taken at a specific location (e.g., a rain gauge) and so they may not be
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applicable to other sites without rainfall data. To address these issues, a regional analysis

approach is often employed (Borga et al., 2005; Forestieri et al., 2018), which divides the

study area into different levels of regionalization based on geographic and hydrological

homogeneity. This hierarchical procedure is designed to capture the spatial variability of

various parameter statistics and is calibrated using available data from the entire study

region, even for ungauged areas or those sites that do not have long enough records.

For Sicily, the most up-to-date and valid regionalization analysis of heavy rainfall

available is the one developed by Forestieri et al. (2018). This study used data recorded

in the period 1928–2010 by the rain gauge network of the Autorità di Bacino (AdB)

del Distretto Idrografico della Sicilia (i.e., Basin Authority of the Sicilian River Basin

District), consisting of about 300 rain gauges uniformly distributed throughout the island.

Specifically, the study started from a sub-division of the region into homogeneous zones

through the selection of some supporting variables, such as meteo-climatic variables and

site characteristics, followed by the identification of the probability distribution that best

describes the precipitation quantiles for fixed duration, the analysis and modeling of the

spatial variability of regional parameters, and, lastly, the creation of quantile maps for

fixed return period and duration. In particular, the quantile expression is:

Hi,r(d, T ) = µi(d) · hr(d, T ) (2.8)

where Hi,r(d, T ) represents the precipitation quantile for a certain duration and return

period related to the ith location belonging to a homogeneous region r. Hereafter, this will

be referred to as hreg for the sake of simplicity. The term µi(d) in 2.8 represents a scale

factor identified for fixed duration at each location of the region, and hr(d, T ) indicates

the regional growth curve, evaluated as a function of the return period and depending on

the homogeneous zone where the area of interest falls. in Forestieri et al. (2018), Sicily is

divided into six homogeneous regions (Figure 2.15a), which were obtained by means of a

cluster analysis aiming to group areas characterized by similar precipitation features (e.g.,

the average annual maxima rainfall depth with duration d, or the mean annual number

of dry days) together. To derive the growth curve, for each homogeneous region, different

statistical distributions were fitted to the annual maxima, such as the three-parameter

log-normal distribution (LN3), the generalized extreme value (GEV) distribution, and the

two-component extreme value (TCEV) distribution. Among them, the TCEV provided

higher accuracies. The scale factor, µi(d) was instead evaluated through a power-law, as

follows:

µi(d) = a24 ·
( d

24

)n

(2.9)
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in which a24 and n are two parameters obtained by means of a linear regression between

MAP and the median value of 24h extreme rainfall depth and n, respectively. The study

provided a spatial distribution of these two parameters for the whole Sicily region (Figure

2.15b and c).

Figure 2.15: Homogeneous regions (a) and spatial distribution of values of the parameter a24
(b) and n (c) from Forestieri et al. (2018)

2.2.3.2. Regional Quantile Exceedance Detection

Original 10 min SIAS time series were initially aggregated by means of a rolling

window, which moves in a 10 min step, with an amplitude equal to different reference

durations (i.e., 1, 3, 6, 12, and 24 h), thus generating what from now on will be referred

as aggregated data series. The station names and IDs are reported in Table A.2 (4th
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column) in the Appendix A. After that, at the points where the SIAS gauges are located,

regional rainfall quantiles (hreg) were calculated according to the methodology developed

by Forestieri et al. (2018). In particular, the TCEV distribution parameters have been

used for the assessment of the regional growth curve, while the spatial distributions of

a24 and n (Figure 2.15b and c) for the evaluation of the scale factor. The hreg have been

derived for the reference durations and the return periods of 5, 10, and 20 years. It was

decided to consider a maximum return period of 20 years since SIAS data length is equal

to 21 years, spanning the period from 2002 to 2022, which is not sufficient to apply a

reliable probabilistic model for a return period greater than that.

Once the SIAS aggregated data series and the hreg samples were available, it was

possible to assess how many times the former exceeded the corresponding hreg for each

reference duration and return period. In order not to consider exceedances resulting

from statistically dependent events of the aggregated data series, a selection criterion

has been defined. In particular, two events of the aggregated data series are statistically

independent if their interarrival time is at least 24 h. It is here noteworthy to highlight

that such a condition might be too conservative for 1 h duration events. Many papers,

indeed, agree on the fact that short-duration and high-intensity rainfall events can be

associated with convective precipitation (Westra et al., 2014; Feloni et al., 2019; Treppiedi

et al., 2023), which dissipates very quickly. Therefore, it is likely that more convective

cells may develop in the surroundings of the rain gauge within 24 h, forming independent

events. For this reason, considering interarrival times less than 24 h, it may be possible

to achieve even more enhanced results (in terms of the number of exceedances of hreg) at

short durations. Another aspect that has been investigated is whether to consider more

exceedances in the same year or to consider only the maximum exceedance. Since hreg
have been obtained from a set of annual maxima, thus from a sample composed of one

single value per year, for a homogeneous comparison it has been imposed the condition

that if more exceedances of hreg occur in the same year, only the maximum value is

considered. This basically corresponds to considering the exceedance of the SIAS annual

maxima with respect to hreg. This at-site comparison has been carried out for all the

SIAS rain gauges to obtain a spatial representation of the number of hreg exceedances.

The results of this procedure are depicted in Figure 2.16. The upper panel of this

figure shows the at-site comparison between the aggregated data series of the SIAS rain

gauge named “Palermo” and the hreg relative to a 5-year return period and 1 h duration.

Looking at the figure, it is possible to highlight that the hreg (i.e., dashed blue line in the

figure) was exceeded nine times. Within a 20-year time window and with reference to a

5-year return period, this value is more than double the expected exceedances relative to

stationary conditions, which is equal to 4.
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Figure 2.16: At-site comparison between the hreg for the 1 h duration and the 5-year return
period and the aggregated data series of the SIAS rain gauge named “Palermo” (upper panel)
and spatial distribution of the number of exceedances for different durations (rows) and return
periods (columns) over the entire region (lower panel)
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Particularly, the focus on the events that occurred during 2005 in the upper panel

shows that if two or more exceedances occur in the same year, only the greatest one,

as compared to the hreg, is considered. In the lower panel of Figure 2.16, the spatial

distribution of the number of exceedances of the SIAS aggregated data series with respect

to hreg for different durations (rows) and return periods (columns) is shown. To different

degrees, the outcomes described for the station of “Palermo” are also marked all over

the region. With reference to the return period of 5 years (first column), almost all the

gauges present an exceedance largely higher than that expected in 20 years, even reaching

more than 12 in eastern Sicily. Although this result is remarkable for all the reference

durations, it is evident how the number of exceedances is on average higher throughout

the lowest durations (e.g., 1 and 3 h). For the 10-year return period, similar conclusions,

although in a less evident way, can be drawn, keeping in mind that this time an average

of two exceedances of the quantile is expected in the considered 20-year time window.

Looking instead at the results related to the 20-year return period, fewer gauges show a

few exceedances of hreg higher than the expected, although this aspect is most likely due

to the limited length of the SIAS annual maxima time series (i.e., 21 years from 2002 to

2022), as already stressed in the beginning of this section.

Once the number of hreg exceedances is known, it was possible to compare it with the

expected number of exceedances that is likely to occur under a stationary occurrence of the

extremes. In other words, if Y is a random variable denoting the number of exceedances

of a fixed rainfall depth in a n-year period, its Probability Density Function (PDF) is

given by a binomial distribution as in the following:

P (Y = y) =

(

n

y

)

py(1− p)n−y (2.10)

where p is the exceedance probability, which is equal to the inverse of return period

p = T−1. The PDF of the binomial distribution, which is valid only if the probability of

more than one occurrence per year is null, provides the probability that y T-year events

occur exactly in n successive years. Assuming T = 5, the mode value is 4 in a period

of 20 years. The comparison between the PDFs of the binomial statistical distribution

(i.e., histogram in blue) and of the number of hreg’s exceedances (i.e., histogram in red) is

shown in Figure 2.17, for the reference durations (rows) and return periods (columns). In

each plot small panel representing the cumulative distribution functions for the binomial

and the empirical distributions is also added, in order to make the comparison easier in

terms of probabilities.
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Figure 2.17: Probability density functions of the binomial statistical distribution, in blue, and
of the number of hreg exceedances, in red, for the reference durations (rows) and return periods
(columns). The small panels represent the respective cumulative distribution function

From the comparison of the two PDFs, it can be observed that, especially at the lower

durations and return periods, the peak (e.g., mode values) of the empirical distribution

of the hreg’s exceedances is shifted towards higher values of exceedances with respect to
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the mode of the binomial distribution, while for longer durations these differences are

less emphasized. To be clearer, considering a 5-year return period within a 20-year time

window and under stationary conditions, the mode of the binomial distribution would

correspond to 4 exceedances. However, at 1 and 3 h durations, for instance, the peaks of

the empirical distribution are, respectively, 6 and 7 exceedances. This means that, over

the whole region, for these durations and return period, the SIAS aggregated data series

tend to exceed more than expected the corresponding hreg.

2.2.3.3. Revision of the return periods defined with the regional

approach

Given that the previous analysis resulted in a number of exceedances of the hreg

remarkably higher than the expected value, especially at the lower durations and return

periods, a spontaneous question arises: how can these results be translated in terms of

changes in the return period of extreme events?

To do this, rainfall annual maxima for the reference durations in the period 2002–2022

have been extracted from the SIAS aggregated data series. Then, for each rain gauge, the

Gumbel (Extreme value type I—EV1) distribution (Gumbel, 1941) has been fitted to the

annual maxima sample. The Cumulative Distribution Function (CDF) of the EV1 has

the following formulation:

F (h) = exp

(

− exp

(

−
hT − ν

α

))

(2.11)

where α and ν are the location and scale parameters, respectively. The EV1, which is a

statistical distribution function simpler than those used by Forestieri et al. (2018), has

been applied here due to the limited sample size (i.e., 21 values).

The goodness of fitting for the EV1 to the SIAS annual maxima has been verified by

means of the Kolmogorov–Smirnov (K–S) test (Massey Jr, 1951), using the one sample

version. The null hypothesis affirms that the sample data is drawn from the specified

distribution. The test identifies the maximum difference between the empirical and the

theoretical CDFs and rejects the null hypothesis if this is greater than a critical value,

which depends on the significance level (typically 0.05) and the number of data points of

the empirical CDF. Alternatively, it calculates a p-value as a function of the maximum

vertical difference between the empirical and the theoretical CDFs and compares it with

the chosen significance level. The null hypothesis is rejected if the p-value is less than the

significance level, and in this situation the sample data is not drawn from the specified

distribution. If the p-value is greater than the significance level, the null hypothesis cannot
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be rejected; thus the sample data is drawn from the selected distribution. Figure 2.18

shows, for the reference durations, the spatial distribution of the pp-value resulting from

the application of the K–S test with a significance level of 0.05. As it is possible to note,

this resulted in an overall good fitting of the distribution function to the annual maxima.

In particular, it can be inferred that for most of the stations it is not possible to reject,

with a sufficient degree of significance, the null hypothesis, according to which the data

sample belongs to the theoretical distribution used. The high p-values achieved all over

the region made it possible to use the Gumbel distribution to estimate theoretical rainfall

quantiles from the SIAS annual maxima.

Figure 2.18: Spatial distribution of p-value for the K–S test for the reference durations. High
p-values indicate greater significance in not rejecting the null hypothesis that the sample belongs
to the theoretical EV1 distribution

Given the generally positive outcome from the K–S test, we could fit the Gumbel

distribution to the SIAS annual maxima. Rainfall quantiles have been extracted for

reference durations and the return periods of 5, 10, and 20 years as:

h(d, T ) = b(d)− a(d) · ln

(

ln

(

T

T − 1

))

(2.12)

where a(d) and b(d) represent the parameters of the statistical distribution function es-

timated by means of the Maximum Likelihood Estimation (MLE) at each considered

duration and T represents the return period. Since the fitting of the EV1 distribution has

been carried out separately for each rain gauge, 72 values of the a(d) and b(d) parameters

for each reference duration have been computed, which allowed to obtain the precipitation
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quantiles for the three selected return periods and the reference durations. For the sake

of simplicity, hereafter h(d, T ) computed from the SIAS annual maxima are indicated as

hSIAS.

Hence, a comparison between the two sets of return periods associated to the regional

and the SIAS quantiles (i.e., hreg and hSIAS, respectively) has been carried out. In other

words, the return period of hreg (i.e., the imposed 5, 10, or 20 years for which hreg is

derived), which can be called Treg, has been compared with the return period, derived by

inverting equation 2.12 and imposing h(d, T )=hreg, here referred to as TSIAS. Given that

the parameters of the EV1 distribution (i.e., a(d) and b(d)) are calculated with the SIAS

annual maxima, which refer just to the last two decades (i.e., from 2002 to 2022), such

a comparison makes it possible to highlight if rainfall events characterized by a certain

Treg, expressed with reference to data mainly recorded in the last century (i.e., from 1928

to 2010), have been occurring more (or less) frequently in the last twenty years.

Pooling the TSIAS achieved for all the 72 gauges, we derived the corresponding em-

pirical distribution functions for all the reference durations and the three Treg values.

Considering that under the stationary condition of extremes occurrence, the mode of

the empirical distribution functions of TSIAS should match the corresponding Treg, any

difference between them can be considered as the result of a different frequency of oc-

currence of events. In other words, if precipitation extremes have become more frequent

in recent decades in the Mediterranean area, as many studies affirm (Varouchakis et al.,

2018; Noto et al., 2023a), potentially as a climate change effect, it is to be expected that

their return period (i.e., the mode of TSIAS statistical distribution) is lower than Treg.

Figure 2.19 shows the empirical distribution functions of the TSIAS. The results highlight

that, especially for the shortest durations and lower return periods, the peaks of these

distributions are sharply shifted toward lower return periods than those expected with

the regional approach by Forestieri et al. (2018). With reference to the last century, in the

last 20 years the greatest proportion of events characterized by a Treg of 5 years occurred

more frequently and, consequently, are characterized by a lower return period (i.e., the

greatest part of the empirical density distribution falls before the 5-year return period).

This result is less evident as the return period increases, since it is most likely affected by

the limited length of the SIAS annual maxima series (i.e., 21 years from 2002 to 2022).

Figure 2.20 shows a spatial representation of what is reported in Figure 2.19. For all

the reference durations and return periods, the new return periods of the hreg calculated

with the Gumbel distribution fitted to the SIAS annual maxima (i.e., TSIAS) are shown in

correspondence with each of the SIAS rain gauges. Looking at Figure 2.20, it is possible

to note that, especially at low durations and for the 5-year return period, almost all the

gauges show a return period lower than the expected value of 5 years, which is indicated
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with the red color on the map.

Figure 2.19: Empirical density distribution of the TSIAS of all 72 considered SIAS rain gauges,
compared to the corresponding Treg (red dashed line). Results are expressed for all the reference
durations (rows) and the return periods of 5, 10, and 20 years (columns)

This aspect is increasingly being missed as the duration increases. When the return

period increases, a similar behavior is less noticeable, although this aspect, as previously
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specified, most likely depends on the limited length of the SIAS annual maxima series.

Figure 2.20: Spatial representations of the TSIAS for the 72 considered SIAS rain gauges. Results
are expressed for all reference durations (rows) and the Treg of 5, 10, and 20 years (columns)

Looking at the spatial distribution of these values, the return periods lower than the

expected one (i.e., TSIAS<Treg) are almost everywhere for the shorter durations and the
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lower return periods, while they tend to be more localized along the coasts and especially

in the southeastern part of the region as the duration and the return period gradually

increase. These results agree with those of several recent studies on the intensification of

extreme precipitation in the Mediterranean area, especially for the short durations, i.e.,

hourly and sub-hourly (Arnone et al., 2013; Treppiedi et al., 2021). This could be poten-

tially linked to global warming, as the increase in surface and atmospheric temperature,

as well as the frequency of heatwaves, may cause a change in the Clausius–Clapeyron

relationship (Pumo et al., 2019). Indeed, increased temperature enables the air to retain

a greater amount of water vapor, consequently leading to the atmosphere becoming more

unstable, favoring increasingly frequent intense and short-lived convective phenomena.

What has been obtained should raise awareness of the need to consider the non-

stationarity of the return period in the design of hydraulic works or other purposes related

to the hydrological and geological risk. Future research in this area will be crucial for

improving the performance of water management and hydro-logical risk detection in a

climate change context, especially considering the not reassuring predictions about the

occurrence of extremes in the future.
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2.2.4. Convective or stratiform? A partitioning algorithm to

separate the rainfall regimes

Up to now, this chapter mainly focus on changes in the characteristics of the rainfall

regime in Sicily. Sections 2.2.2 and 2.2.3 have revealed a clear increase in intense precipi-

tation associated with higher quantiles and shorter durations. However, it is appropriate

to inquire about the physical mechanism underlying these intense - short-duration phe-

nomena and whether, as hydrologists, we can recognize and study it.

As expressed in section 1.2, the Clausius-Clapeyron relationship is the key equa-

tion that allows to correlate the amount of water vapor holds by the atmosphere with

temperature. In other words, the water-holding capacity of the atmosphere increases by

approximately 6–7% for every 1°C rise in temperature, meaning that, the higher the air

temperature, the higher the probability of having a water content sufficient to generate

a more or less significant precipitation event. Despite other mechanisms contribute to

the generation of extreme precipitation events, it has also been show as intense hourly

and sub-hourly rainfall can be characterized by higher rate of the apparent CC scaling

(Lenderink et al., 2017; Fowler et al., 2021). In this context, since event duration and in-

tensity are strictly related to the mechanisms that generate the precipitation, a topic that

has often been a source of interest is the one related to the classification of precipitation

into stratiform and convective components (Tremblay, 2005; Ruiz-Leo et al., 2013; Feloni

et al., 2019; Cipolla et al., 2020) and, consequently, to the identification of convective

events (Tremblay, 2005; Feloni et al., 2019; Sottile et al., 2022) and the detection of any

trend in their characteristics (Rulfová et al., 2014; Llasat et al., 2021). At the spatial scale

starting from the radar echoes, Houze Jr (1997) defines the convective regime as the pre-

cipitation associated with young and active atmospheric convection. In this condition, the

strong updraft that condenses a large amount of water in the air generates cumulus and

cumulonimbus clouds and the related precipitation is generally characterized by short-

duration and high-intensity (Llasat, 2001; Berg et al., 2013; Westra et al., 2014). On the

other hand, stratiform precipitation occurs in a different atmospheric condition, namely

when the convection is weak and the air motions are lower, thus producing precipitation

events with opposite characteristics to the previous. Although the physical mechanisms

that generate convective and stratiform precipitation have been widely discussed in the

past, separating the two regimes is not trivial. Indeed, the convective and stratiform

Adapted from: Treppiedi, D., Cipolla, G., and Noto, L. V. (2023), ‘Convective precipitation over a
mediterranean area: From identification to trend analysis starting from high-resolution rain gauges data’,
International Journal of Climatology 41(13), 5938–5955
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precipitation could occur separately or as a part of the same complex of clouds, not al-

lowing a net distinction between the regimes (Houze Jr, 1997; Tremblay, 2005; Rulfová

and Kyselỳ, 2013; Kyselỳ et al., 2016).

Nevertheless, over the years the issue of a correct distinction between precipitation in

convective and stratiform components has been carried out from different points of view.

The first attempts to deal with such a separation were mostly concerned with the spatial

aspect of the problem, i.e., to distinguish between convective and stratiform regions using

weather radar imagery or remote sensing techniques (Steiner et al., 1995; Reudenbach

et al., 2001; Rigo and Llasat, 2004; Sandford et al., 2017).

Concerning the distinction of precipitation regimes on the base of ground observa-

tions, Tremblay (2005) analyzed precipitation data of about 3500 rain gauges collected

by the World Meteorological Organization (WMO) at the global scale, setting up an al-

gorithm for the classification of convective and stratiform precipitation components. The

study revealed that the relationship between cumulative precipitation and its intensity

can be described by a negative exponential law, independently from the period under

study and the time step used to cumulate the raw rainfall data. Starting from this find-

ing, Tremblay (2005) based the classification of the total precipitation into convective

and stratiform components by assuming that the exponential curve corresponds with the

stratiform component, while the difference between the total precipitation and exponential

curves provides the convective component; moreover, the author define a rainfall inten-

sity threshold to classify, at the gauge scale, as convective (stratiform) all the events with

an intensity higher (lower) than that threshold. Ruiz-Leo et al. (2013) applied a similar

algorithm to the 6-hour rainfall data recorded from 1998 to 2008 by twelve rain gauges

located on the north-eastern Mediterranean coast of Spain. The authors confirmed the

above-mentioned assumption of Tremblay (2005), namely that an exponential distribution

is observed when the total rainfall depth is represented versus the rainfall intensity. Con-

sidering both the annual and the seasonal convective precipitation, the application of a

trend analysis reveals a significant increase in such a variable in the autumn. Feloni et al.

(2019) applied the same approach presented in Tremblay (2005) to 6-hour rainfall time

series of thirty-two rain gauges in the Attica region (Greece), obtained by aggregating

the original 10-minute rainfall time series in the period 2005-2015. The authors identified

the critical intensity thresholds for each year under study, to detect the convective events

and evaluate the annual fraction of convective rainfall. Moreover, results were validated

using some indices representative mainly of the convective component, such as the light-

ning activity, which is very common in presence of cumulonimbus clouds that generate

convective events. The validation procedure highlights how the separation algorithm is

characterized by high performance in classifying the correct type of precipitation, thus
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providing a useful tool to identify convective rainfall in gauged sites. Starting from the

rainfall annual maxima at fixed durations (1, 3, 6, 12, and 24 hours) for Sicily (Italy),

Cipolla et al. (2020) developed a criterion to classify annual maxima between convective

and stratiform, also taking into account a third class containing mixed/unresolved events,

by means of two reanalysis indexes, namely the Convective Available Potential Energy

(CAPE) and the Vertical Integral of Divergence of Moisture Flux (VIDMF) retrieved by

the ERA-Interim archive. The authors found that, in general, at 1-hour duration, the

percentage of convective events predominates in the other classes of events mainly in the

summer season, while the percentage of stratiform tends to increase at 24-hour duration

during the winter period. The significant percentage of mixed/unresolved annual maxima,

which is recognized at all durations, highlights the presence of many rainfall events which

could be classified as both convective and stratiform events or do not show a sufficiently

clear distinction between the two classes. In this section, starting from the SIAS (Servizio

Informativo Agrometeorologico Siciliano) database for Sicily in the period 2002-2020 (see

5th column of Table A.2 in the Appendix A), 20-minute precipitation time series have been

created from the original rainfall time series and then used to (i) separate the convective

and the stratiform precipitation at a 5-day scale according to the framework proposed

by Tremblay (2005), (ii) determine a critical threshold able to identify the predominant

convective events at at-site scale in the whole period under study and, (iii) investigate

the spatial pattern relative to the occurrence and the percentage of convective events and

their possible trend.

2.2.4.1. The partitioning framework

The framework used to separate the stratiform and the convective component of pre-

cipitation on a monthly scale, proposed by Tremblay (2005), involves different steps. The

first one consists of defining an empirical total precipitation distribution, PT (I), consid-

ering a specific average time interval ∆τ . Then, a negative exponential curve is fitted to

model the stratiform precipitation component, PS(I). The convective component, PC(I)

is therefore defined by the difference between the total precipitation and the stratiform

components. A detailed explanation of this procedure can be found in the following

paragraphs.

The total precipitation distribution. Starting from the data manipulation, the

original 10-minute rainfall time-series have been aggregated to the 20-minute resolution

by dividing the whole period into not overlapping 20-minute intervals and cumulating

the rainfall depth within them; in this way, the amount of rainfall that occurred in
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20 minutes, namely an average intensity of precipitation (e.g., mm·20min-1) has been

derived. Compared to the original 10-minute resolution, the choice of 20-minute time

resolution increases the probability that single-cell thunderstorms peaks are included in

a single interval since individual cell life cycle is generally between 30 and 60 minutes

(https://www.nssl.noaa.gov/education/svrwx101/thunderstorms/types/). At the

same time, the high resolution of the available dataset is maintained, being a novelty

compared to the previous studies (Tremblay, 2005; Ruiz-Leo et al., 2013; Feloni et al.,

2019), in which time-series have been used with a frequency of 6 hours. Indeed, while

considering 6-hour intervals could be a good compromise when convective and stratiform

contributions are analyzed at a global scale, such as in Tremblay (2005), it is necessary to

use finer resolution when the studied area is limited, such as in the case of Sicily. There

is also evidence that convective precipitation can develop in time intervals significantly

shorter than six hours (Llasat, 2001; Hardwick Jones et al., 2010; Berg et al., 2013).

As mentioned before, obtaining the empirical total precipitation distribution is essen-

tial to distinguish the stratiform component and, consequently, also the convective one.

To derive the monthly PT (I), a pre-processing procedure is required.

The first step aims to remove the dependency of the data on the location of the

rain gauges, the separation between the two regimes takes place on a spatial scale de-

fined by the available ground observations. For example, Tremblay (2005) applied the

algorithm on a global scale, while the goal of this study is to work at a higher spatial

resolution, defined over Sicily. Nevertheless, our study area is larger than the one used by

Ruiz-Leo et al. (2013) (i.e., a part of the Spanish Mediterranean coast and the Balearic

Island) and Feloni et al. (2019) (i.e., the Attica peninsula). To move from an at-site

to a regional scale, the data recorded by all the gauges in the same 20-minute interval

(i.e., corresponding with ∆t) needs to be gathered on the base of their rainfall intensity.

With this purpose, an intensity bin size, namely ∆I, is used to define a certain number

of intensity classes, obtained by dividing the intensity range of variability by ∆I. Hence,

the empirical total precipitation distribution PT (I) for the considered time interval ∆t

is obtained by grouping and cumulating the rainfall data according to the intensity class

to which they belong. More specifically, the latter PT (I) describes how the total rainfall

depth is distributed with the intensity, in a specific ∆t. It is important to specify that

such a distribution is derived for the region under study as a whole as previously stated

(e.g., no spatial information is included in the empirical total precipitation distribution

PT (I)).

Before applying the partitioning algorithm, it is necessary to choose an average time

interval, ∆τ , to which the analysis is referred. The first way may consist in considering

a ∆τ equal to the time-series resolution ∆t, such as in Tremblay (2005), thus providing

https://www.nssl.noaa.gov/education/svrwx101/thunderstorms/types/
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four empirical distributions per day for further partitioning (∆t = ∆τ = 6 hours). On the

other hand, it is possible to choose ∆τ > ∆t, such as the year (Ruiz-Leo et al., 2013; Feloni

et al., 2019), or a 5-day scale here proposed. More specifically, 30-day months are divided

into 6 identical intervals, while the last one contains i) one day more in the case of 31-day

months or ii) two days less in the case of February (or one day less for the leap years).

This kind of subdivision has been preferred to a constant 5-day window so that each

interval falls within a specific month, and therefore it allows for analyzing the monthly

behavior of the considered variables. To obtain the 5-day empirical PT (I), it is necessary

to select all the 20-minute distributions within the considered ∆τ (i.e., 5 days in our case)

and aggregate them at the same intensity classes. Through this aggregation procedure,

the number of distributions per year is reduced from 26,280 (e.g., 72 distributions per day

for a total of 365 days) to 72 (e.g., six per month).

The partitioning algorithm. According to Tremblay (2005), an exponential structure

can be always detected by looking at total precipitation distributions, regardless of the

∆τ . Indeed, the total precipitation depth tends to decrease exponentially as the rainfall

intensity class increases. From a statistical point of view, this is mainly connected to the

relationship between the probability of occurrence of the rainfall events and their related

severity. Indeed, the total volume of rain associated with events that occur frequently with

lower intensities is probably higher compared to the one connected to a single very intense

event. As explained by Tremblay (2005), this is a consequence of the fact that the rainfall

intensity strictly depends on the residence time of particles in the clouds and, in turn,

the probability of observing a certain residence time can be modelled with an inverse

exponential distribution. Moreover, Tremblay (2005) has shown that this exponential

structure mainly prevails in correspondence of classes with lower intensity, while the total

precipitation distribution generally exhibits an irregular behavior for the higher intensities,

as if some local peaks are superimposed to an exponential curve. Since it is realistic to

assume that in these anomalies the convective component is significant, especially when

the intensity of rainfall is relevant, it is possible to associate the exponential structure to

the stratiform component and the anomalies with the convective one.

Starting from the previous considerations, for a certain ∆τ , the convective component

of the precipitation can be obtained by subtracting a pure exponential curve from the total

precipitation one:

PC(I) = PT (I)− PS(I) = PT (I)− a · e−b·I (2.13)

where PT (I) is the total precipitation distribution, PC(I) and PS(I) are the convective

and the stratiform component, respectively, while a and b are the parameters needed to
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model the latter. Since the above-mentioned distributions have been defined as time scale

dependent, it is worth highlighting that each term in equation 2.13 is a function of the

∆τ fixed. For the 5-day scale approach, 72 couple of parameters (namely a and b) must

be derived per year.

Since mathematical modeling cannot be separated from the physical phenomenon,

these parameters need to be estimated after defining a series of constraints. Indeed,

a stratiform component greater than the total precipitation would result in a negative

convective component, which has no physical meaning. For this reason, the curve should

pass through the relative minima of PT (I) or, when it is not possible, it must be fixed

equal to PT (I), meaning that there is no convective contribution in the considered intensity

class.

Model dependencies. Before delving into the results, it is useful to focus the attention

on some dependencies of the partitioning algorithm. The ability of the model to differen-

tiate between the stratiform and the convective component of the precipitation depends

not only on the ∆I, as highlighted by Ruiz-Leo et al. (2013) and Feloni et al. (2019), as

well as the sample size and the ∆τ as originally pointed out by Tremblay (2005).

Since ∆I represents the resolution required to describe the total precipitation dis-

tribution, a greater intensity bin size may result in an excessively smooth curve, thus

reducing the accuracy of the algorithm in identifying convective rainfall. On the con-

trary, even if one may think that the smaller this value, the greater the capability of

the algorithm to separate the two regimes, and since the exponential curve is forced to

pass through the minima of PT (I), an excessive number of local peaks or anomalies fol-

lowing Tremblay (2005) could lead to an overestimation of the convective component.

To overcome this issue, Ruiz-Leo et al. (2013) proposed a criterion useful to choose ∆I

according to a parameter, derived from the standard deviation of precipitation intensity

and the number of no-null precipitation data for all the gauges considered. Nevertheless,

this empirical method for choosing ∆I has been probably calibrated for the annual ∆τ ,

leading to unrealistic results in the case of lower ∆τ . This is especially true for the driest

months, in which the standard deviation is high and the resulting ∆I is excessively wide

to separate the regimes. Since in this work a high-resolution dataset is used, four different

values of ∆I have been tested. In particular, it has been fixed equal to 0.6, 1, 1.4, and

1.8 mm·20min-1 and then applied to discretize the total precipitation distribution PT (I)

for each 5-day interval.

Another parameter that influences the algorithm is the ∆τ . In particular, Tremblay

(2005) proved that, for fixed sample numerosity, the greater the ∆τ (e.g., 6 hours, 1

day, 1 month, 1 year), the smoother the total precipitation distribution PT (I), tending
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to a perfect exponential distribution. From a statistical point of view, this evidence is

explained by the fact that a higher ∆τ value implies that a greater number of events are

aggregated in each intensity class and, at the same time, that it is likely that low-intensity

events occur more frequently than high-intensity ones.

The opposite effect could be reached by considering, for a fixed ∆τ , a lower sample

size. This could occur if data are aggregated using a higher time window (e.g., using the

1-hour or 6-hour time resolution to obtain the hourly or the hexa-hourly rainfall time-

series, instead of the 20-minute resolution) or even if a decreasing number of stations is

available. As an example, Ruiz-Leo et al. (2013) and Feloni et al. (2019) were forced to

choose the annual ∆τ because of the small number of rain gauges involved (i.e., 12 and

11 on average, respectively) even if the authors do not explicitly mention this aspect in

their works, while, on the opposite Tremblay (2005) was able to apply the algorithm for

a 6-hour ∆τ because of availability of a global rain gauges network. For this reason, the

5-day ∆τ can be considered as a good trade-off between sample size and average time

interval in the case of this work, as indicated from the analysis over different time averaged

periods conducted by Tremblay (2005). Indeed, the use of a higher ∆τ (e.g., the month)

could result in excessive smooth empirical total precipitation distribution PT (I), while

choosing a lower ∆τ (e.g., the day) could lead to an opposite behavior and to a higher

probability of not having rainfall depth within the fixed ∆τ , particularly during the driest

months.

Detection of convective events. As previously mentioned, the spatial information of

the precipitation is lost during the derivation of the empirical total precipitation distri-

bution, PT (I), and the consequent partitioning technique. Indeed, since the separation

between the convective and the stratiform regimes is carried out at the regional scale,

it does not allow to identify for each rain gauge those events characterized by the pre-

dominance of the convective component. To overcome this limit and pass from a regional

to an at-site classification of the two components, Tremblay (2005) introduced a critical

intensity threshold (hereinafter Icr), representing the value of intensity from which the

convective component begins prevailing on the stratiform one. In other words, starting

from the results of the separation for the fixed ∆τ the Icr threshold splits the inten-

sity domain into two parts: a first part where the stratiform prevails on the convective

component for I<Icr, and a second one where the convective is predominant for I>Icr.

Consequently, Icr is defined as the first intensity value that ensures:

PC(Icr) > PS(Icr) (2.14)

As pointed out by Ruiz-Leo et al. (2013), this criterion could lead to an important
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underestimation of the threshold, mainly because PC(I) could be locally greater than

PS(I) for lower values of intensity, due to the exponential fitting. Therefore, this criterion

has been subsequently modified by Ruiz-Leo et al. (2013) and Feloni et al. (2019). In

particular, Ruiz-Leo et al. (2013) suggested that this threshold should be fixed when the

convective component represents 60% of the total cumulative precipitation since Houze Jr

(2014) found that this percentage can be considered a characteristic of the convective rain-

fall in a Mesoscale Convective System (MCS). Nevertheless, it has been noticed that in

Europe these organized complexes of cumulonimbus are characterized by different features

(e.g., size and duration) compared to other parts of the world (Rigo and Llasat, 2007;

Kolios and Feidas, 2010; Michaelides et al., 2018) and are mainly continental (Morel and

Senesi, 2002; Kolios and Feidas, 2010), suggesting that also other types of a thunder-

storm (e.g., single- and multi-cell storms) need to be considered in deriving Icr for Sicily.

Feloni et al. (2019), instead, shifted the previous threshold from 60% to 50% of the total

cumulative precipitation.

Nevertheless, considering cumulative convective precipitation among the intensity

classes may misrepresent the results of the separation algorithm, since the convective and

the stratiform amount of rainfall strictly depends on the intensity class to which they

belong, as shown in equation 2.13. Moreover, the convective rainfall corresponding to

higher intensity is certainly associated with a different atmospheric mechanism than the

one related to lower intensity values. For such reasons, a different method for obtaining

Icr is proposed in this paper. In particular, it has been noticed that the median value

of the percentage of convective rainfall for a certain month and intensity increases as

the intensity values increase, as a result of the partitioning procedure. Therefore, it is

possible to set the monthly Icr as the first intensity from which the median percentage

of convective exceeds a certain value, which would mark it out as predominant on the

stratiform regime (e.g., 50% or 75% whose effects are assessed in the next section).

2.2.4.2. Data pre-processing and total precipitation distribution

The pre-processing of data, as described in the previous section, is fundamental to

derive the empirical total precipitation distribution PT (I). In particular, the 20-minute

rainfall intensity time series of all the gauges have been combined and gathered in rainfall

intensity classes, whose width ∆I has been fixed in 0.6, 1, 1.4, and 1.8 mm·20min-1.

As an example, Figure 2.21 shows a comparison between the cumulative precipitation

heatmap (i.e., a 2-D matrix where the magnitude of the variable of interest in each cell

is represented through a color scale) for a) February and b) September of the year 2006,

considering 1)∆I=0.6 mm·20min-1 and 3)∆I=1.8 mm·20min-1, which are the upper and
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lower bounds of the interval analyzed. Considering a generic 20-minute time interval (on

the x-axis), for each intensity class (on the y-axis), the colors from red to blue represent

the total precipitation recorded by all the rain gauges within that class. The black color,

instead, is used to mark those time intervals in which no events in the intensity class

have been recorded. The sub-panels inside each heatmap provide a zoom of a specific

day (i.e., 23rd February 2006 and 15th September 2006) for 2)∆I=0.6 mm·20min-1 and

4)∆I=1.8 mm·20min-1. Panel c) and d), instead, show the 20-minute total precipitation

distribution for two dates (i.e., black color for 15:00 of the 15th of September 2006 and red

color for 17:00 of the 23rd of February 2006) related to ∆I=0.6 mm·20min-1 and ∆I=1.8

mm·20min-1, respectively, while the gray dashed line is the perfect agreement line. In other

words, the black and red curves are representative of two columns of the above heatmaps,

and the single rainfall events lying on the perfect agreement line are characterized by the

same value of intensity and cumulative precipitation. For both months and especially at

the lower ∆I (panels a1 and b1), three different regions can be identified as a function

of intensity; indeed, focusing on the lower intensity, it is possible to notice that the blue

prevails on the other colors and even on the black, meaning that the total precipitation

is generally low but, at the same time, it is more frequent across the month. As a

result of the heatmap definition procedure, these total precipitation values consider a

high number of very low intensity events that are recorded in the entire region during

the month. As the intensity increases, the total precipitation assumes greater values

but with a lower occurrence frequency, thus defining an intermediate region where the

yellow color is noticeable, especially in some spikes, representing those temporal intervals

in which the whole region was interested in more severe rainfall events. Finally, in the

zone characterized by the higher values of intensity, the rainfall events are particularly

rare, and black becomes the main color (i.e., no-occurrence). Moreover, these events are

generally due to single high-intensity precipitation, as it is visible also in panel c) and

d), and they are probably dominated by a convective component. It is also important to

highlight that these kind of spikes in the heatmaps are more frequent in September rather

than in February, as featured by the daily enlargements. From a physical point of view,

this is probably caused by the different climatic conditions in these two months, which

implies that a seasonality in the occurrence of convective/stratiform events needs to be

analyzed.

The effect of the selection of a wider ∆I is evident moving from panel 1) to panel

3) for both months. Indeed, with a higher ∆I, the resolution of the heatmap worsen,

even if the global appearance is maintained. Moreover, as a result of a wider intensity

class, the maximum total precipitation is likely not to be found in the higher intensity

classes, as it is possible to notice in the daily zooms and, contemporary, in panels c)
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Figure 2.21: Precipitation intensity heatmap for a) February and b) September of the year
2006 at 1)∆I=0.6 mm·20min-1 and 3)∆I=1.8 mm·20min-1. The colorbar indicates the total
precipitation values, while black color indicates no rainfall records. The sub-panels inside each
heatmap provide a zoom for 23rd Feb. 2006 and 15th Sep. 2006 for 2)∆I=0.6 mm·20min-1 and
4)∆I=1.8 mm·20min-1. The 20-minute precipitation distribution related to the 15:00 of the 15th

Sep. 2006 (black curve) and to the 17:00 of the 23rd Feb. 2006 (red curve) are depicted for c)
∆I=0.6 mm·20min-1 and d)∆I=1.8 mm·20min-1
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and d). Indeed, while for ∆I=0.6 mm·20min-1 the maximum value (i.e., about 40 mm)

occurs in mid-September with an intensity equal to 40 mm·20min-1, the highest total

precipitation for ∆I=1.8 mm·20min-1 (i.e., about 60 mm) occurs the 23rd of February

with an intensity value of 3.6 mm·20min-1. As depicted in panels c) and d), this aspect is

strictly connected to the ∆I width: considering the smaller ∆I (panel c), the single high-

intensity event (about 40 mm·20min-1) recorded on the 15th of September 2006 (the black

curve) corresponds to the maximum value of the total precipitation; by enlarging the ∆I

to 1.8 mm·20min-1 (panel d), the events recorded on the 23rd of February 2006 (the red

curve) and characterized of intensity around 3.6 mm·20min-1 fall into the same class, so

that a total precipitation value greater than 40 mm is achieved. Furthermore, focusing on

panels c) and d) it is possible to notice that the 20-minute total precipitation distributions

are excessively discrete and do not always follow a negative exponential curve for both

∆I=0.6 mm·20min-1 and ∆I=1.8 mm·20min-1, not allowing the partitioning procedure as

stated in Tremblay (2005).

For this reason, the heatmaps shown in Figure 2.21 can be considered a practical

instrument to understand whether it is possible to use the partitioning algorithm directly,

or it is first necessary to set a higher ∆τ . In the case of this work, after fixing ∆τ equal

to the 5-day scale, the total precipitation within each 5-day window has been aggregated

for each intensity class (i.e., across the rows of the heatmap).

The results of such a procedure are shown in Figure 2.22, where the 5-day total

precipitation heatmaps related to the year 2006 are presented, in a similar manner to

Figure 2.21, for a) ∆I=0.6 mm·20min-1 and c) ∆I=1.8 mm·20min-1. The same figure

shows the 5-day PT (I) related to the periods 1) 21-25 January, 2) 11-15 June, 3) 26-

31 August, and 4) 21-25 November and for three different ∆I: a) 0.6 mm·20min-1, b) 1

mm·20min-1 and, c) 1.8 mm·20min-1.

As it is possible to observe from the heatmaps a) and c), the aggregation procedure

generates a monthly total precipitation distribution generally decreasing with the inten-

sity, in clear contrast with the 20-minute PT (I) shown in panels c) and d) of Figure 2.21.

It is worth to observe that this behavior is more evident for the 5-day intervals related

to the winter months (i.e., from December to March), where a high PT (I) at the lower

intensities is due to a high number of low-intensity events, which typically occur in such

a period. On the contrary, the ones within the months from May to August are generally

drier and, for this reason, the 5-day PT (I) in the lower intensity classes assumes smaller

values if compared to those in the winter months. However, a pattern decreasing with the

intensity is maintained.

These aspects are enhanced by looking at the distributions for the four 5-day intervals

shown in panels a1-a4, b1-b4, and c1-c4. As an example, passing from January to June
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and August, it is possible to notice an important reduction in the integral of the curves

which represents the total rainfall recorded in the considered time interval, despite some

spikes in correspondence of higher intensities are present. In other words, even if the

amount of low-intensity precipitation clearly decreases in June, and August, this does not

happen with the high-intensity events. This can be considered a consequence of the fact

that these months are generally drier but, at the same time, they are proportionally more

characterized by high-intensity events. Finally, concerning the 5-day interval related to

November, the general behavior of the total precipitation distribution is more similar to

the one in January, even if some high-intensity spikes can be identified between 5 and

15 mm·20min-1. Passing from the first to the third column of Figure 2.22, the main

consequence of a wider ∆I is that the total precipitation distribution becomes smoother

and smoother. Furthermore, by observing the PT (I) curves related to 21-25 November

(i.e., panels a4 – c4), it is noteworthy that the maximum value of PT (I) is not always

reached in the first intensity class. This aspect, in general, tends to become less important

or disappear as ∆I increases.
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Figure 2.22: Precipitation intensity heatmap for the year 2006 at the 5-day scale a) ∆I = 0.6
mm·20min-1 and c) ∆I = 1.8 mm·20min-1. The colorbar indicates the total precipitation values,
while black color indicates no rainfall records. The remaining panels show the PT (I) for 1) 21-25
January, 2) 11-15 June, 3) 26-31 August, and 4) 21-25 November combined with a) ∆I = 0.6
mm·20min-1, b) ∆I = 1 mm·20min-1, and c) ∆I = 1.8 mm·20min-1
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2.2.4.3. Partitioning procedure

The application of the partitioning algorithm to the 5-day precipitation distribution

allows classifying the percentage of convective and stratiform components considering all

the intervals in the period 2002 – 2020. Figure 2.23 shows the results of the algorithm de-

scribed in Section 2.2.4.1 when applied to the same cases of Figure 2.22, namely 1) 21-25

January, 2) 11-15 June, 3) 26-31 August, and 4) 21-25 November of the year 2006, for a)

∆I=0.6 mm·20min-1, b) ∆I=1 mm·20min-1, and c) ∆I=1.8 mm·20min-1. The black and

the red solid lines represent the total precipitation distribution and its stratiform com-

ponent represented by the negative exponential curve, respectively, while the convective

amount of rainfall for each class of intensity is depicted with the gray bars.

Figure 2.23: Results from the application of the partitioning procedure for the same combinations
between 5-day interval and ∆I depicted in Figure 2.22. The black lines represent the 5-day
total precipitation distribution, while the red lines stand for the stratiform component (i.e., the
negative exponential curve). The gray bars, instead, quantify the convective amount of rainfall
for each class of intensity

The negative exponential curve has been fitted through a nonlinear weighted pro-
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cedure. In particular, the curve is constrained to the absolute maximum and the first

absolute minimum (i.e., the first value equal to zero in the majority of cases) of the total

precipitation distribution. Then, a decreasing weight is assigned to the relative minima

between the two points previously defined.

At a first sight, the results seem to confirm that the algorithm is not significantly

affected by the ∆I considered. Indeed, by observing the convective bars for the whole

panels, it is possible to notice that these are mainly located in the right part of the

total precipitation distribution, namely that there is a predominant convective rainfall

at high rainfall intensity classes. This aspect confirms what Tremblay (2005) affirmed

about the characteristics of convective precipitation, such that for a certain duration

(i.e., 20 minutes in the case of this study) it is likely that the convective precipitation is

generally characterized by higher intensity values. Moreover, this aspect is enhanced for

the 5-day windows in the driest months (i.e., June and August), confirming what other

authors have found about a greater occurrence of convective events during the summer

months. As an example, Sottile et al. (2022) found a seasonality in the percentage of

convective events in Sicily, with the highest ones from May to October, despite the authors

used a different framework and pre-processing of data. Concerning other regions in the

Mediterranean Muñoz-Díaz and Rodrigo (2006) indicate the important role of local and

convective processes in the summer and autumn seasons for Spain, as well as Nastos et al.

(2014) suggest that these seasons are more interested in convective events due to the high

lightning activity.

Nevertheless, it is also possible to affirm that a lower ∆I would be excessively close

to the resolution of the gauges used (i.e., 0.2 mm·20min-1 for the SIAS network) and,

during the aggregation procedure, an excessively jagged pattern of the total precipitation

distribution would be generated, resulting in a difficult fitting of a negative exponential

curve. This aspect would determine, in turn, an overestimation of the convective com-

ponent especially for the lower intensities, since a great number of local peaks result in

overfitting of the negative exponential law, as highlighted by Ruiz-Leo et al. (2013). In-

deed, too much low ∆I lead to a greater variability of PT (I) even for low intensity values,

thus resulting in an increased probability that no values are present in that classes. This

aspect tends to excessively raise the b parameter of the negative exponential curve, and,

in turn, to generate a high convective amount at all intensities, misrepresenting the out-

come of the algorithm. On the other side of the spectrum, the wider the ∆I, the greater

the probability that the PT (I) is over-discretized. Evidence of this aspect can be no-

ticed considering the 21-25 January interval for all the considered ∆I (i.e., panels a1, b1,

and c1). Indeed, considering panel a1 (e.g., 0.6 mm·20min-1), there is an almost perfect

overlap between PT (I) and the negative exponential curve, while moving to c1 (e.g., 1.8
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mm·20min-1) the fitting has been avoided, since forcing the curve for less than 4 points

would have probably led to unrealistic results. Focusing on panel b1, instead, it is possi-

ble to observe that the differences between PT (I) and the negative exponential curve are

caused by the mathematical framework of the algorithm and result in an overestimation

of the convective amount of rainfall in the first class of intensity, as suggested by Ruiz-Leo

et al. (2013). For this reason, a consequence of the choice of a wider ∆I is the decreasing

capacity of the algorithm to separate the regimes at the lower intensity class. Ruiz-Leo

et al. (2013) and Feloni et al. (2019) suggested calculating the percentage of convective

rainfall as the integral of the area between the total and the stratiform curve. Here a

different procedure is suggested, taking into account the differences between various in-

tensity classes or, in other words, giving importance to the atmospheric processes that

support the formation of convective rainfall. In particular, considering a generic 5-day

distribution, the percentage of convective rainfall can be derived as the ratio between

convective and total precipitation for each intensity class considered. Once this process

has been repeated for all the 5-day distributions in the period 2002 – 2020, it is possible

to have a sample of convective rainfall percentages for all the intensity classes taken into

account. Figure 2.24 shows the median value of the percentage of convective rainfall as

a function of the intensity class, for fixed the month (e.g., the panels) and the ∆I (e.g.,

the colors); one can observe that the median value tends to increase moving from low to

higher intensities, and this occurs regardless of the month. There is a clear correlation

between the highest intensities reached and the months analyzed; in particular, from June

to November, months have been interested in events characterized by higher intensities

(i.e., even more than 30 mm·20min-1), that are generally classified as convective according

to the algorithm here proposed, since the corresponding median percentage of convective

rainfall is about 100%. On the contrary, the maximum intensities that characterize the

months from December to May are definitely lower, with exception of a few isolated sit-

uations. About the differences among the various ∆I, it is worth noticing that they are

significant from June to November while becoming negligible from January to May and

in December. The greater variability in the summer/autumn months could be due to the

presence of a smaller number of rainfall data recorded, which may reduce the sensitiv-

ity of the algorithm in separating the two regimes, especially when high values of ∆I are

considered, as stated in Section 2.2.4.1 where the model dependencies have been analyzed.
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Figure 2.24: Median percentage of convective rainfall with respect to the intensity class, as a
function of the month (e.g., the panels) and the ∆I (e.g., the colors). In particular, red, green,
blue and purple curve stands for 0.6, 1, 1.4 and, 1.8 mm·20min-1, respectively

2.2.4.4. Detection of convective events

Once the median values of the percentage of convective rainfall have been identified

for each class of intensity, it is possible to derive a median value of the critical intensity

threshold Icr for each month and for each ∆I considered. As introduced in Section 2.2.4.1,

the monthly Icr has been derived as the first intensity value which ensures that the median

values of the percentage of convective rainfall exceeds a certain limit (hereinafter λ). In

particular, two λ have been tested, namely the 50% and 75%. In other words, the monthly
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Icr can be considered a simple method that allows detecting, at the site scale, those events

in which the convective component is predominant at the 50% and 75% on the median

behavior. The use of these two thresholds, instead of 50% only, has been preferred to

consider the uncertainty caused by a binary classification of rainfall regimes. Figure

2.25, which reports the monthly Icr values for a) λ=50% and b) λ=75% and 1) ∆I=0.6

mm·20min-1, 2) ∆I=1 mm·20min-1, 3) ∆I=1.4 mm·20min-1 and, 4) ∆I=1.8 mm·20min-1,

highlights that the monthly Icr increases as the λ increases, since an event is likely to be

classified as convective with more confidence at the higher intensities. Focusing on ∆I=0.6

mm·20min-1, a seasonality in the Icr can be observed regardless of the λ considered. As an

example, focusing on panel a1, it is worth to notice that the Icr is lower in July (i.e., about

2.5 mm·20min-1), while it doubles in January (i.e., about 5 mm·20min-1). Indeed, it is

likely that the convective component is predominant even for lower intensity values during

the summer period when it is favored by higher air temperature and relative humidity.

This behavior is identifiable also in panel b1, but with higher intensity values, as previously

mentioned. Icr decreases from January to July, where it reaches the minimum for all the

λ and then it increases towards the winter months. As opposed to the pattern shown for

0.6 mm·20min-1, the seasonal behavior disappears moving to the higher ∆Is and λ. In

particular, if on the one hand, it is possible to recognize a similar pattern for λ=50% and

the others ∆Is (i.e., panels a2, a3, and a4), the inter-seasonal variability of Icr appears

excessively high considering λ=75%. As previously introduced, this behavior is due to a

loss of sensitivity of the algorithm in identifying convective rainfall as the ∆I parameter

increases, which could lead to a mis-classification of convective events (i.e., classifying as

convective events that may be mainly stratiform or vice versa).
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Figure 2.25: Monthly median critical intensity threshold Icr values for a) λ=50% and b) λ=75%
considering 1) ∆I=0.6 mm·20min-1, 2) ∆I=1 mm·20min-1, 3) ∆I=1.4 mm·20min-1 and, 4)
∆I=1.8 mm·20min-1

Considering the results shown in Figures 2.24 and 2.25, therefore, the monthly median

Icr values for ∆I=0.6 mm·20min-1 have been chosen for the at-site classification and so

used to identify the convective events in the 20-minute time-series for all the gauges

considered. In particular, all the events characterized by rainfall depth greater than the

corresponding monthly median Icr values are considered as convective, while the others

are supposed to be mainly stratiform. Nevertheless, a further consideration when defining

convective events needs to be carried out. Differently from the previous works where the

time series are characterized by a 6-hour time resolution, the data here used have a higher
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temporal frequency (i.e., 20-minute), implying that continuous exceedances of Icr may

refer to the same convective event. To preserve the condition of independence for the

identified events, it has been imposed that the two consecutive convective events must be

separated by a minimum duration of 1 hour to be considered independent (Sottile et al.,

2022). Once this aggregation procedure is applied, for each convective event is possible

to derive i) the peak of the event (i.e., as the maximum value recorded) and ii) the total

convective precipitation (i.e., the sum of all the values that exceed Icr).

Figure 2.26 summarizes the results obtained through this detecting procedure. In

particular, panel a displays an example of the aggregation procedure for the Catania

rain gauge. As it is possible to observe, considering the Icr value for λ=50%, ∆I=0.6

mm·20min-1 and the related month, two different convective events can be identified on

the 16th of November 2018. With this in mind, by considering the ensemble of the ground

stations that have worked continuously since 2006, panels b1 and b2 show the at-site

annual average number of events classified as convective considering λ=50% and λ=75%,

respectively; panels c1 and c2, instead, show the at-site annual average percentage of

convective rainfall for the same λ. Both latter variables have been obtained by averaging

the annual values for each station and, for sake of completeness, their spatial distribution

in each year considered is reported in Figure A.6 - A.9 in the Appendix A.

On the base of the average occurrence of convective events (i.e., panels a1 and a2),

Sicily could be divided into two zones: the west and central part of the island, generally

interested by few convective events in a year (i.e., from five to about ten on average

for λ=50%, but this number decreases considering panel a2), and the east side, where

most of these kinds of events are concentrated. In particular, by looking at the eastern

and the north-eastern zone it is worth to notice that an important number of stations is

characterized by more than 10 convective events per year on average.



2| Chapter two 103

Figure 2.26: Example of the aggregation procedure (panel a) related to 16th of November 2018
for Catania rain gauge considering the Icr value for λ=50%, ∆I=0.6 mm·20min-1 and November.
The other panels show the spatial distribution of b) the average annual occurrence of convective
events and c) the average annual percentage of convective rainfall for 1) λ=50% and 2) λ=75%,
obtained by considering the monthly median Icr related to 0.6 mm·20min-1

Moving to the spatial distribution of the average annual percentage of convective

rainfall (panels b1 and b2), a similar pattern can be observed. Even in this case, most of
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the gauges with the highest average annual percentage of convective rainfall for each λ are

in the eastern part of the island. This outcome was partially expected due to the presence

of the Etna volcano and the Peloritani and Nebrodi mountains in this area; indeed, the

warm and humid air coming from the south, especially during the summer, runs into this

orographic barrier and cools rapidly as it lifts, thus generating convective heavy rainfall

(Caccamo et al., 2017), as depicted in Figure. Nevertheless, this result is alarming since

the catchments in the Peloritani mountains have morphological characteristics that make

convective events even more dangerous, increasing the risk of flash floods or debris flows

(Aronica et al., 2012; Arnone et al., 2016).

Figure 2.27: Representation of the orographic effect that generates convective rainfall in the
northeastern area of Sicily

The results’ consistency has been verified by comparing them with Sottile et al.

(2022) outcomes. It is worth to specify that Sottile et al. (2022) used classification of the

rainfall regimes into four classes (i.e., ‘definitely convective’, ‘possible convective’, ‘slightly

convective’, and ‘stratiform’) and, for this reason, it has been first necessary to relate these

categories to a binary classification. In particular, the ‘definitely convective’ and ‘possible

convective’ events are here considered as belonging to the convective regime, while the

other to the stratiform one. To ensure a coherent comparison, the only rain gauges
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common to both works (i.e., 40 stations) have been selected over the same operating period

(i.e., 2002-2018). Figure 2.28 provides a comparison between a) the monthly absolute

number of convective events and b) the monthly percentage of convective precipitation

using λ=50% and λ=75% depicted by the red and green curves, respectively, and the

outcomes obtained from Sottile et al. (2022) identified by the blue curve.

As it is possible to observe from both the panels, the seasonal behavior of the two

variables is caught and maintained from the proposed approach. More specifically, for both

the classifications, panel a shows that the highest values in the occurrence of convective

events occur in September/October (i.e., from about 700 to 1200 convective events per

month affect Sicily in the period 2002-2018). Moving to panel b, instead, the highest

percentages of convective rainfall affect the summer season (i.e., from 50% to 60%). The

apparent contrast between the position of the peaks in the latter panels is justified by

the fact that the greater number of convective events generally recorded in the autumn

is balanced by a greater amount of stratiform precipitation; summer months, instead,

are generally drier, but the limited number of events that characterize these seasons are

probably predominantly convective. Another aspect that deserves to be considered is that

the curves related to Sottile et al. (2022) lie between λ=50% and λ=75% for almost every

month. In particular only one point is outside the shaded area in panel a (i.e., the one

related to June), even if the local pattern, i.e., the presence of a peak in June, is captured

by the proposed method.
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Figure 2.28: Comparison between a) the monthly absolute number of convective events and b)
the monthly percentage of convective precipitation using λ=50% and λ=75% (i.e., the red and
green curve, respectively) and the outcomes obtained from Sottile et al. (2022) (i.e., the blue
curve). The gray shaded area represents the differences between the two λ

2.2.4.5. At-site and regional trend analysis

Once the regimes are separated, a trend analysis on the peaks of convective events

and on the total convective precipitation has been applied in order to verify if significant

changes in these proxies occurred in the last twenty years. To do this, the Mann-Kendall

trend test (see Section 2.2.2.1) has been applied at-site. The evaluation of trends have

been also conducted at the regional scale trough the Regional Kendall Test (Douglas

et al., 2000; Cannarozzo et al., 2006; Helsel and Frans, 2006). The Kendall’s S statistic is

evaluated through equation 2.5 at each location and then the average, Sm, is computed.

The p-value is finally derived from equation 2.3 after that the regional standardized test

statistic, ZR, is obtained as follow:

ZR =

ù

ü

ü

ü

ü

ú

ü

ü

ü

ü

û

Sm − 1

σSr

if S > 0

0 if S = 0
Sm + 1

σSr

if S < 0

(2.15)
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where σSr
takes into account the sample numerosity at each gauge through nl:

σSr
=

√

√

√

√

m
∑

l=1

nl(nl − 1)(2nl + 5)

18
(2.16)

Figure 2.29 shows the Mann-Kendall trend analysis results, carried out using a level of

significance equal to 0.1, for the peak of convective events (i.e., panels a1 and a2) and the

total convective precipitation (i.e., panels b1 and b2), considering λ=50% and λ=75%. In

all the panels, the cross symbol points out the gauges where no significant trend has been

detected, while the colored triangles pointing up (pointing down) represent the gauges

interested by a significant increasing (decreasing) trend. Observing the findings of the

trend analysis, it is possible to notice that about 90% of the gauges are characterized by

the absence of any trend for both the variables considered. Nevertheless, when detected,

the general behavior of the significant trend is related to an increase in the considered

variable, as evidenced in Section 2.2.2 and in previous works Arnone et al. (2013) albeit

with different methods and datasets. Moreover, considering panels a1 and b1, two possible

clusters of sites showing increasing trends are maintained for both the variables: the

largest one connects the north-west to the south-east corner, while the second one is

related to the Peloritani area (i.e., the north-east zone). The Regional Kendall test

has been applied to check if a general behavior in the trend direction can be identified

through the whole region. It has been obtained that the null hypothesis (i.e., no trend

detected) has been rejected for the peak of convective events considering λ=50% and

λ=75%, considering a level of significance equal to 0.05 and 0.1, respectively. Hence,

there is evidence for a significant concordance in the trend signs considering the whole

region. Indeed, the most of stations shows a positive sign, even if for the at-site Mann-

Kendall test it is significant only for only a limited number of them. In the case of the

total convective precipitation, instead, it has been found that a positive trend can be

identified for λ=50% (i.e., level of significance equal to 0.05), while it is not significant

for λ=75%. The associated p-values are reported in the bottom-left corner of each panel

in Figure 2.29.
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Figure 2.29: Trend analysis results for a) the peak of convective events and b) the total convective
precipitation for 1) λ=50% and 2) λ=75%. The cross symbol stands for the gauges where no
significant trend has been detected, while the colored triangles pointing up (pointing down)
represents the gauges interested by a significant increasing (decreasing) trend. The p-value from
the Regional Kendall test is shown in the bottom-left corner of each panel



3| Chapter three

3.1. A global perspective on past and future changes

in rainfall characteristics

As previously mentioned, heavy precipitation events are becoming more intense and

frequent (Pörtner et al., 2022), exacerbating known impacts and emphasizing new ones.

Severe storms can directly affect agriculture, triggering a cascade of events that can induce

crop failure, worsen poverty, starvation, and conflicts across the globe (Rosenzweig et al.,

2002; Raleigh and Kniveton, 2012; Abiodun et al., 2017; W.H.O., 2018). They also pose

a significant threat for public health, increasing the possibility of waterborne disease

(Checkley et al., 2000; Curriero et al., 2001; Thomas et al., 2006; Khan et al., 2015). All

these impacts are enhanced when extreme rainfall events are the driver for flooding. As an

example, the flood induced by the extraordinary rainfall during the 2022 monsoon season

stroke Pakistan with brutal violence, killing more than 1,700 people and exceeding USD

30 billion of damages and economic losses. These effects are felt in terms of the global

economy, especially for the high-income countries (Kotz et al., 2022).

Therefore, it is no surprising that changes in the characteristics of extreme precipita-

tion events have been extensively investigated across different spatial and temporal scales

(Westra et al., 2014; Donat et al., 2016; Fowler et al., 2021). Among these characteristics,

intensity is probably the one that have found their most widespread use in the work of the

scientific community, while fewer studies are present for seasonality, as already mentioned

in section 1.2. However, these features have always been treated separately, examining

changes in one or the other and ruling out the possibility that they may be two sides of

the same coin.

3.1.1. Magnitude or seasonality: why choose one?

In the analysis of a precipitation time series (e.g., the one shown in Figure 3.1a), the

study of extreme events is typically carried out by selecting all the exceedances above a

specific percentile. By choosing, for instance, the 99th percentile and representing the POT

(red points), different conclusions can be drawn depending on what is being examined.

109
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If the intensity of the events is considered and represented over time (Figure 3.1b), trend

tests can be performed, as in Section 2.2.2. The magnitude is also the variable used in the

Extreme Value Theory (EVT) for modeling the right tail of the distributions and deriving,

for example, the DDF (or IDF) curves (as in section 2.2.3). However, by examining Figure

3.1b, it is not possible to draw conclusions about the seasonality of extreme events. If,

at this point, the intensity of events is neglected and the day of the year when they

occur is considered (Figure 3.1c), it is possible to provide additional information about

the timing of these events. A clustering of points between April and November is evident

from the last figure, showing a marked seasonality of rainfall extremes for the considered

time series.

Figure 3.1: Example of time series for daily rainfall precipitation (a). Exceedances of the 99th

percentile (red points) represented as function of time (b) and as day of occurrence of the
events(c)
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Up to now, there is an implicit assumption of stationarity in the process. The sea-

sonality of precipitation extremes is generally not projected to change when the main

focus is on the magnitude and vice versa. The understanding of the projected changes in

these events is predicated on the assumption that they will continue to occur in the same

season (or with the same intensity), and, consequently, also the management of the water

resources and response to their impacts is based on this supposition. What if extreme

precipitation at a given location tends to be generally associated with, say, extratropical

cyclones that occur during the cold months, but in the future tropical cyclones during

the warm months become more intense and dominant? Are these two characteristics

independent of each other, or are they actually two sides of the same coin? If so, the

approaches typically used may overlook a fundamental part of the problem. Indeed, a

different perspective of the problem arises when the two quantities in Figure 3.1 are rep-

resented together, as in Figure 3.2. The latter combines the occurrence of the events (i.e.,

the position on the circle) with their severity (i.e., the position along the radius).

Figure 3.2: Bivariate representation of the magnitude (i.e., position along the radius) and the
seasonality (i.e., position on the circle) for the precipitation POT in Figure 3.1

From this representation, it is possible to observe that most of the exceedances are

concentrated between May and July, albeit with lower values for the magnitude. On the

opposite, the months between July and September are characterized by a smaller number

of events but associated with higher intensity. Therefore, the bivariate study of these two
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variables can provide a "third perspective", helping not to overlook the information that

can be gleaned from their combined picture.

3.2. A joint projected change in magnitude and sea-

sonality of extreme precipitation events

Despite the importance of this topic and its potential implications in terms of water

resources management and ecosystem health, there is no study that examines these two

extreme precipitation characteristics jointly despite their potential dependence. A first

attempt to test whether this dependence exists or not is to examine the correlation between

the intensity of the extreme precipitation and the month in which the events occur.

To achive this goal, the Multi-Source Weighted-Ensemble Precipitation version 2

(MSWEP V2) (Beck et al., 2019) has been used as reference dataset for the period 1979

– 2014. This is a global gridded product with a 0.1-degree spatial and daily time resolu-

tion, derived by merging quality-controlled gauges, satellites, and reanalysis precipitation

estimates. For each pixel, the 99th percentile of the precipitation distribution has been

selected as the threshold to detect extreme precipitation events.

Figure 3.3 highlights the monthly percentages of extreme precipitation events (i.e.,

the number of extreme events in a certain month referred to the total) together with their

magnitude (i.e., the median value of the events exceeding the 99th percentile), highlighting

how the extreme events are distributed or concentrated during the year. The white-to-

purple scale represents the percentage of events in the month, while the white-to-green

characterizes the magnitude of the median of the events exceeding the threshold. Hence,

the greener (more purple) the color, the greater (lower) the magnitude of the precipitation

event in a given month, and at the same time, the lower (higher) the number of extreme

events that characterize it. Dark colors represent high percentages and high magnitudes

of these events, while totally white pixels indicate that no events occurred during the

study period (i.e., 1979-2014).

By starting to analyze the patterns from a univariate perspective, it is easy to rec-

ognize areas where there is not a dominant season, with large precipitation extremes that

can occur throughout the year. This is the case, for instance, for the southeastern United

States, where large precipitation events can occur during almost any month due to extra-

tropical cyclones, tropical cyclones, and mesoscale convective systems. This is also the

case for South America, especially across the Amazon Forest and equatorial and tropical

regions, because of the seasonal migration of the Intertropical Convergence Zone (ITCZ)

driven by the combined interaction between the South Pacific Ocean Dipole (SPOD) and
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Figure 3.3: Bivariate representation of the monthly correlation between the percentages of
events that exceed the 99th percentile of the at-site distribution and their median value at a
global scale over the 1979-2014 period. The white-to-purple scale represents the percentage of
events in the month, while the white-to-green characterizes the magnitude of the median of
the events exceeding the threshold. Hence, the greener (more purple) the color, the greater
(lower) the magnitude of the precipitation event in a given month, and at the same time, the
lower (higher) the number of extreme events that characterize it. Dark colors represent high
percentages and high magnitudes of these events, while totally white pixels indicate that no
events occurred during the study period
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the El Niño Southern Oscillation (ENSO) (Guan et al., 2023). Similar to South America,

equatorial Africa is characterized by the presence of extreme precipitation throughout

the year due to the ITCZ that determine the two rainy seasons in the region (Nicholson,

2018). Finally, the Mediterranean area and Central Europe exhibit a similar behavior: in

addition to the extreme precipitation that can occur during the wet season from October

to March, intense precipitation events can also occur during the boreal summer due to

convective phenomena (Llasat et al., 2021) favored by high values of convective available

potential energy that time of the year (Riemann-Campe et al., 2009).

On the other side of the spectrum, some regions are characterized by a strong synchro-

nism between the frequency and the magnitude of extremes, such as Russia or continental

China, where the highest values are concentrated between July and August, despite the

magnitude of the precipitation extremes in these regions is lower than other areas. This

is also the case for Saharan Africa, where most events occur between May and August,

but with an intensity close to zero. Areas with a strong precipitation seasonality are also

located in India, the Indochinese Peninsula and the Chinese coast, with events concen-

trated between June and September due to the monsoon. For these areas, as well as for

southern Africa and northern Australia in the austral summer, there is a high frequency of

occurrence of extreme events coupled with large intensities; there are other regions, such

as central America, central and western United States, Canada and central and southern

Australia, where the dependence of these two precipitation characteristics is not strong,

highlighting the need of a joint analysis.

3.2.1. How to model the bivariate dependence

Based on the results in Figure 3.3, the seasonality and magnitude of extreme pre-

cipitation events exhibit regional variability; however, these two variables are also clearly

connected, requiring them to be analyzed together rather than independently to get the

full picture of how this hazard is projected to change.

In achieving this goal, two considerations must be addressed. The first one is related

to the nature of these two different variables: while the rainfall depth can be studied

through the linear statistic principles (being the variable potentially defined between 0

and ∞), the occurrence (i.e., referred as the day of the year when the event occurs)

needs a circular approach to be properly defined (Fisher, 1995). Thus, a complexity

arises from this first consideration: how is it possible to model these two quantities in a

bivariate statistical space? Indeed, the statistical instruments generally used in hydrology

or climatology to model the dependence between two (or more) variables, namely copulae,

have been widely employed for features that are not characterized by periodicity, such as
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temperature and precipitation (Piani and Haerter, 2012; Lazoglou and Anagnostopoulou,

2019), precipitation and floods (Xie and Wang, 2013), and so on. However, a peculiar

branch of copulae (i.e., circular-linear copulae) have been recently developed in ecology,

representing a useful tool for application in other disciplines. Therefore, the next two

sub-paragraphs will be devoted to provide more information on circular statistic, which

is a cornerstone in this research, and insights about the methodology behind the circular-

linear copulae.

3.2.1.1. Circular statistics for periodic variables

Circular statistics (Fisher, 1995; Pewsey et al., 2013), often referred to as ’directional

statistics’, is a particular branch within the field of statistics. It has been designed for

the analysis of data that can be quantified in angles, directions, or any other form of

periodic time measurements. Unlike classical statistics, where variables are arranged on

a linear support, the one for circular data is the unit circle. Hence, after defining the

origin and the direction of rotation (e.g., clockwise or counterclockwise) circular data are

usually expressed in radians or degrees. When dealing with wind direction, for instance,

circular statistics takes into account that an angle of 0ç and 359ç are only 1ç apart, while

attempting to analyze this in a linear manner would suggest a significant separation of

359ç.

Pewsey et al. (2013)’s popular example on the flight of homing pigeons clarifies what

risks are faced in not using it. Assuming that the angles measured when four homing

pigeons take flight are 10ç, 20ç, 340ç, and 350ç respect to the geographic north, it would

be reasonable to conclude that the preferred direction for these animals to take flight is

approximately north. However, without using circular statistics, this simple conclusion

could be misleading. Indeed, the arithmetic mean of these angles is 180ç, resulting in the

completely opposite direction.

From what has just been shown, it is not possible to apply the arithmetic mean to a

sample of circular data, but it is necessary to use an alternative that takes into account

the periodicity of the data. Considering a sample of n circular observation (θ1, θ2, ...θn)

and working in the unit circle ranging between 0 and 2π (but keeping in mind that any

angle θ corresponds to θ + 2π · p, where p = ±1,±2, ...), it is possible to define a mean

resultant vector, having length R and direction θ, defined as follows:

R = (a2 + b2)
1

2 ∈ [0, 1] (3.1)

θ = atan2(b, a) (3.2)
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where
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arctan(b/a) if a > 0

arctan(b/a) + π if b ≥ 0, a < 0

arctan(b/a) if b < 0, a < 0

arctan(π/2) if b > 0, a = 0

arctan(−π/2) if b < 0, a = 0

undefined if b = 0, a = 0

(3.4)

Hence, for circular data the sample mean direction, θ, and length, R, are the most

commonly used measure of location and concentration, respectively (Pewsey et al., 2013).

However, such as in linear statistics, the median is a robust alternative to the mean

when the sample is skewed. In the case of the circular statistics, the sample median

direction, θ̃, is defined as any angle ψ for which half of the data points lie in the arc

[ψ, ψ + π) and the majority of the points are nearer to ψ than to ψ + π. This definition

implies that R remains the same as the one defined for the circular mean, but also that

the median direction depends on whether the length of the sample is even or odd. In

particular, this direction will correspond to one of the data points if the sample size is

odd; when it is even, it is taken to be the mean of those data points immediately to its

left and right (Pewsey et al., 2013). In general, the sample median direction is obtain by

minimizing the dispersion measure:

d(ψ) =
1

n

n
∑

i=1

{π − |π − |θi − ψ||} (3.5)

As an example, in Figure 3.4 the two metrics are computed for a sample of wind

directions (Agostinelli and Lund, 2023) and represented on a circular plot.
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Figure 3.4: Example of circularized data with the length and the direction of the sample mean
(blue) and sample median (red) vectors. The wind dataset is available in the circular package
(Agostinelli and Lund, 2023) in R

Slightly complicating the homing pigeons example, what would be the consequences

of using the wrong approach in modeling the variable distribution? For instance, Figure

3.5 shows the histogram of the wind directions shown in Figure 3.4 (although this can be

extended to any other directional variable) ranging from 0 to 2π. The variable has been

considered once linear and once circular, and for both cases it was computed an empirical

probability density function with a smoothing kernel. As it is possible to observe, when

the wind directions are treated using the linear statistic (i.e., red line), two different

peaks are identified. However, according to the circular approach (i.e., blue line), there

is actually only one peak, since the values close to 2π represent the left shoulder of the

total distribution.
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Figure 3.5: Example of empirical probability density function for wind directions treated as a
linear (red line) and circular (blue line) variable. The wind dataset is available in the circular

package (Agostinelli and Lund, 2023) in R

As well as for sample moments, the theoretical distributions must also be suitable for

modeling the circular nature of the variables. In particular, their periodicity determines

two main implications (Pewsey et al., 2013): the first one is that the definition of a circular

distribution function strictly depends on the definition of initial direction, orientation and

units of measurement used; the second one regards the fact that the distribution needs

to be periodic, since an angle θ corresponds to θ + 2π · p, where p = ±1,±2, .... Hence, a

circular distribution function, F (·), can be specified as the function given by:

F (θ) = P (0 < Θ ≤ θ), 0 ≤ θ ≤ 2π (3.6)

F (θ + 2π)− F (θ) = 1, −∞ < θ <∞ (3.7)

In equation 3.6 it is easy to recognize the usual definition of a distribution function

for a random variable in the linear statistic, while equation 3.7 is the condition that
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guarantees the periodicity of the circular distribution.

Among all circular unimodal distributions, one of the most widely used is the von

Mises-Fischer (vMF) distribution (Fisher, 1995), The vMF distribution, which can be

defined one the (p− 1)-sphere in R
p, has the following probability density function:

f(x|µ, κ) = cp(κ)e
κµT

x (3.8)

where x is a p-dimensional random vector, µ is the mean direction vector and κ is the

concentration parameter (κ ≥ 0), which describes the degree of concentration of the unit

vectors around the mean direction µ. The normalizing constant cp(κ) is given by:

cp(κ) =
κp/221

(2π)p/2Ip/221(κ)
(3.9)

where Ip(·) is the modified Bessel function of the first kind and order p. When p = 2,

the vMF distribution degenerates in the von Mises (vM) distribution (von Mises, 1918),

which represents its bi-dimensional case and can be considered a circular analogue of the

normal distribution.

f(θ|µ, κ) =
1

2πI0(κ)
eκ cos(θ2µ) (3.10)

One of the major limits in using the vMF of the vM distribution is their unimodality.

This apparent restriction, however, can be solved by using a finite number of mixtures of

these distributions (Mardia, 1975; Banerjee et al., 2005). Remaining in the bi-dimensional

case and considering a mixture of N vM distributions, the resulting distribution is char-

acterized by the following probability density function:

f(θ|{αj, µj, κj}
N
j=1) =

N
∑

j=1

αjf(θ|µj, κj) (3.11)

where each f(θ|µj, κj) is a vMF density function defined by its directional mean (µj) and

concentration parameter (κj) and scaled according to a mixture proportion (αj). It is

obvious that (αj ≥ 0) and
∑N

j=1 αj = 1. Since no analytical solution exists for equation

3.11, the parameters {αj, µj, κj}
N
j=1 are computed via maximum likelihood estimates under

the expectation maximization framework (Banerjee et al., 2005; Veatch and Villarini,

2020).

Equation 3.11 can be applied while considering a potentially high number of mixtures.

However, the "optimal" number is not known a priori, and an excessively high value may

increase the risk of overfitting. To ensure improvements in the model performance while

reducing this risk, the Bayesian Information Criterion (BIC) (Schwarz, 1978) can be
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employed:

BIC = k ln(n)− 2 ln(L̂) (3.12)

where k is the number of parameters estimated by the model, n is the sample size and L̂

is the maximized value of the likelihood function of the model. In particular, the optimal

number of mixtures is the one that results in the lowest BIC (Veatch and Villarini, 2020).

3.2.1.2. Circular-linear copulae

As introduced before, copulae are "functions that join or couple multivariate distri-

bution functions to their one-dimensional marginal distribution functions" (Nelsen, 2006).

In other words, they represent an useful instrument to describe the inter-relation between

two or more random variables (Schmidt, 2007).

From the mathematical point of view, being X and Y two random variables, a bi-

dimensional (or bivariate) copula, C(x, y), is a cumulative distribution function (CDF)

with uniform marginals. Since it is a 2-dimensional CDF, its domain will vary between

[0, 1]2, namely [0, 1]. Sklar’s theorem (Sklar, 1959) provide an essential property for de-

scribing the joint distribution of X and Y using their specified marginal distributions

together with a copula. Indeed, for any multivariate distribution FX,Y (x, y), there exists

a copula that fully characterizes the dependence structure between its marginal distribu-

tions, FX(x) = P (X ≤ x) = u, and FY (y) = P (Y ≤ y) = v:

FX,Y (x, y) = C(FX(x), FY (y)) = C(u, v) (3.13)

Sklar’s theorem is not only valid for CDF, but also the probability density function

(PDF) of a joint distribution can be obtained through the copula:

fX,Y (x, y) = c(u, v) fX(x) fY (y) (3.14)

where fX(x) and fY (y) indicate the marginal PDFs of X and Y , respectively, and c(u, v)

is the copula density, defined as:

c(u, v) =
∂2C(u, v)

∂u∂v
(3.15)

Among all the classes of copulae, the Archimedeans are the most widely used, espe-

cially for their simplicity in being constructed and the wide range of families of copulae

which belong to this class (Nelsen, 2006). In particular, the following equations represent

the mathematical structure of the Gumbel (Émile and Gumbel, 1960), Clayton (Clayton,
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1978) and Frank (Frank, 1979) copula, which are those considered in this Chapter and,

therefore, need to be introduced.

Gumbel: Cθ(u, v) = exp
(

−
[

(−ln u)θ + (−ln v)θ
]1/θ

)

(3.16)

Clayton: Cθ(u, v) =
(

max{u2θ + v2θ − 1, 0}21/θ
)

(3.17)

Frank: Cθ(u, v) = −
1

θ
ln
(

1 +
(e2θu − 1)(e2θv − 1)

e2θ − 1

)

(3.18)

As it is possible to observe, the copulae listed above are all monoparametric (i.e.,

θ). In Figure 3.6, an example of the three copulae generated with random parameter is

shown.

Figure 3.6: Example of Gumbel (a), Clayton (b) and Frank (c) copula generated with random
parameter

More detailed information on these families of copulas, as well as on their generators,
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the range of the parameter, and some special and limiting cases can be found in (Nelsen,

2006).

Up to now the two variables X and Y have been implicitly assumed to be linear,

without any periodicity in their values or distributions. What would happen if one of

them were instead a circular variable? Suppose X remains a linear variable, while the

variable Y is replaced with Θ, defined on the unit circle between 0 and 2π. According to

what explained in paragraph 3.2.1.1, the PDF of this variable needs to be 2π-periodic.

This means that, while the domain of a linear-linear copula is the unit square (i.e., [0, 1]2),

the one related to a circular-linear copula is the surface of a cylinder, characterize by unit

height (i.e., the support for the linear variable) and unit circle (i.e., the support for the

circular variable). Hence, according to Theorem 5 in Johnson and Wehrly (1978), the

probability density function in equation 3.14 for a circular-linear copula can be written

as follows:

fΘ,X(θ, x) = 2πg
(

2π(FΘ(θ)− FX(x))
)

fΘ(θ)fX(x) (3.19)

where fX(x) and fΘ(θ) are the marginal density on the line and on the circle, respec-

tively, FX(x) and FΘ(θ) their cumulative distribution distribution functions and g(·) a

2π periodic density function on the circle.

Equation 3.19 represents one of the possible way to generate circular-linear copu-

lae. However, Hodel and Fieberg (2021, 2022) develop a second approach that allows to

obtain copulae with densities not only periodic, but also symmetric respect to the circu-

lar variable. This approach is based on combining two (or more) linear-linear copulae,

considering the properties introduced in Nelsen (2006). In particular any convex linear

combination of copulae is a copula and the orthogonal reflections of a copula density with

respect to the lines u = 0.5 or v = 0.5 are also the density of the copula. Hence, the

authors introduced two new types of copulae:

• Rotated copulae (RC): obtained from the arithmetic mean between any linear-

linear copula C(u, v) and its othogonal reflection along the line u = 0.5 (i.e., assum-

ing that u refers to the circular variable):

CDF: CRC(u, v) = 0.5[C(u, v) + v − C(1− u, v)] (3.20)

PDF: cRC(u, v) = 0.5[c(u, v) + c(1− u, v)] (3.21)

Figure 3.7 depicts a schematic representation on how these copulae are built. More-

over, the PDF of the rotated Clayton and Gumbel copula are shown.
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• Rectangular patchwork of copulae (RPC): in this case the domain of the

copula is divided into rectangular regions, Ri. The situation treated by Hodel and

Fieberg (2021) is the case of two rectangles that are symmetric about u = 0.5:

R1 = [u1, u2]× [0, 1]

R2 = [1− u2, 1− u1]× [0, 1]
(3.22)

with 0 ≤ u1 < u2 ≤ 0.5. Hence, the patchwork-copula is periodic and symmetric

in u if C2 is the orthogonal reflection of C1 with respect to u = 0.5 and if the two

rectangles (i.e., R1 and R2) cover the entire unit square. In this case, the CDF and

the PDF of a patchwork copula can be written as:

CDF: CRPC(u, v) =

ù

ú

û

0.5C1(2u, v) if u, v ∈ R1

0.5(v − C1(2u− 1, v)) + 0.5v if u, v ∈ R2

(3.23)

PDF: cRPC(u, v) =

ù

ú

û

0.5c1(2u, v) if u, v ∈ R1

0.5c1(2− 2u, v if u, v ∈ R2

(3.24)

As for Figure 3.7, Figure 3.8 shows a schematic representation on how rectangular

patchwork of copulae are created. The PDF of the rotated Clayton and Gumbel

copula are also represented.
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Figure 3.7: Example of rotated circular-linear copulae. The PDFs of the rotated Clayton and
Gumbel copula is shown in a 2-D and 3-D visualization
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Figure 3.8: Example of rectangular patchwork of copulae. The PDFs of the rotated Clayton,
Frank and Gumbel copula is shown in a 2-D and 3-D visualization

For further details on the mathematical and statistical framework of copulas, see

Hodel and Fieberg (2022) and the cylcop package (Hodel and Fieberg, 2021) in R.
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3.2.2. Precipitation datasets and data pre-processing

While the MSWEP-V2 has been used as reference dataset (see the beginning of this

section), the Global Circulation Models (GCMs) projections provided by the Coupled

Model Intercomparison Projects Phase 6 (CMIP6) (Eyring et al., 2016) are used to assess

the future changes in the precipitation characteristic. All the models whose nominal res-

olution is ∼100 km (∼1°) and that have the historical and the future scenario (i.e., SSP1-

2.6, SSP2-4.5, SSP3-7.0 and, SSP5-8.5) experiments available for precipitation have been

selected. In particular, nine models (i.e., CESM2-WACCM, CMCC-CM2-SR5, CMCC-

ESM2, EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2, and

TaiESM1) meet these conditions and the ‘r1i1p1f1’ variant (see section 1.1.4 for further

details) has been chosen for each of these. The period for the historical experiment

matches the one used for the reference (i.e., 1979-2014), while last 36 years of the 21st

century (i.e., 2065 – 2100) have been considered for the future scenarios. Moreover, since

the reference data and GCM outputs have different spatial resolutions, the MSWEP-V2

has been upscaled to the GCMs resolution by means of bilinear interpolation.

For each pixel, the 99th percentile of the precipitation distribution has been considered

as the threshold to detect extreme precipitation events. Since the focus on extreme

precipitation, it has been examined whether it was necessary to consider all landmasses

or limit the study area to those zones characterized by more intense precipitation. To

do this, the Köppen – Geiger climate classification map has been considered. In the

Köppen – Geiger climate classification, climates are divided into five main group; each

of these main groups is further subdivided into subgroups based on seasonal rainfall and

temperature. The resulting zones are marked by an alphabetical code, in which the first

letter represents the main group (i.e., tropical - A, arid - B, temperate - C, continental

- D, and polar - E), while the others are related to the subgroups. As an example, Af

refers to a tropical climate (A) characteristic of the rainforests (f), while Dwa refers to a

continental climate (D) characterized by dry winter (w) and hot summer (a). Figure 3.9

shows a recent improvement of the Köppen – Geiger climate classification map presented

in Beck et al. (2018).
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Figure 3.9: From Beck et al. (2018): Present-day (1980–2016) (a) and future (2071–2100)
(b) Köppen-Geiger climate classification maps. The acronyms stand for: Tropical rainforest
(Af), monsoon (Am), savannah (Aw); Arid desert - hot (Bwh), desert-cold (BWk), steppe-hot
(BSh), steppe-cold (BSk); Temperate dry summer - hot summer (Csa), dry summer - warm
summer (Csb), dry summer - cold summer (Csc), dry winter - hot summer (Cwa), dry winter
- warm summer (Cwb), dry winter - cold summer (Cwc), no dry season - hot summer (Cfa),
no dry season - warm summer (Cfb), no dry season - cold summer (Cfc); Cold dry summer -
hot summer (Dsa), dry summer - warm summer (Dsb), dry summer - cold summer (Dsc), dry
summer - very cold winter (Dsd), dry winter - hot summer (Dwa), dry winter - warm summer
(Dwb), dry winter - cold summer (Dwc), dry winter - very cold winter (Dwd), no dry season -
hot summer (Dfa), no dry season - warm summer (Dfb), no dry season - cold summer (Dfc) no
dry season - very cold winter (Dfd); Polar tundra (ET), Polar frost (EF)

This map has been derived by using an ensemble of four high-resolution, topographically-
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corrected climatic maps and it has been downscaled up to ∼1km spatial resolution. The

advantage of using this product is that it also provides future conditions (2071 – 2100)

derived from an ensemble of 32 climate model projections under the RCP8.5 scenario,

allowing to evaluate the future changes the considered variables in light of the different

climate zones.

Hence, the box plots of the extreme precipitation events for the reference dataset

has been computed for each climate type and the outcomes are shown in Figure 3.10.

In this figure, rows are representative of the five main climate groups, while the sub-

climate spatial distributions are depicted on the left together with the box plots of the

corresponding threshold values in the right column. Each box ranges from the 25th to the

75th percentile and the median is depicted with the black solid line; the whiskers show

the 5th and the 95th percentile as the minimum and the maximum value, respectively.

As it is possible to observe, the box plot median values are relevant especially for the

Tropical and the Temperate climatic zones, while they slightly decrease Cold and Polar

areas. However, focusing on the the Arid climate, it is possible to observe that the 50% of

the extreme precipitation events are below 5 mm while the 3rd quartile is below 10 mm in

the “Arid, desert, hot” (Bwh) and the “Arid, desert, cold” (Bwk). Hence, these areas have

been removed in order to avoid unrealistic results, since the connotation of "extreme" is

lost for precipitation events.
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Figure 3.10: Value of the 99th percentile of the precipitation distribution for different climates
according to a future Köppen – Geiger climate classification map (Beck et al., 2018). Rows are
representative of Arid, Tropical, Temperate, Cold, and Polar classification, while the sub-climate
spatial distributions are depicted on the left together with the box plots of the corresponding
threshold values in the right column
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3.2.3. GCMs validation and statistical framework

Based on what reported in paragraphs 3.2.1.1 and 3.2.1.2, here for the first time

circular-linear copulae are used to model the bivariate dependence between the intensity

and time of occurrence of precipitation extremes, as well as to derive future changes in

these joint characteristics.

The rainfall depth, h (mm), has been analyzed through standard linear statistics

(i.e., being a variable with support from 0 and ∞), while the day within a year in which

a given event occur, d (day), has been shaped through circular statistics because of

its periodic nature. First, the seasonal variable has been circularized, as explained in

paragraph 3.2.1.1 by converting the days of the year into angles. At this point, it has been

possible to compute the empirical (u,v) probabilities for both features. Then, five different

circular-linear copulae, derived from a linear combination and a rectangular patchwork of

Archimedean copulae (i.e., Gumbel, Clayton and Frank copulae), has been used to model

their bivariate dependence. This analysis has been performed on a pixel-by-pixel basis

for the reference dataset and the Akaike Information Criterion (AIC) has been used as

performance metric to select the best copula. In particular, since this parsimony provides

an estimate of the discrepancy to the “true model”, the copula with the smallest value has

been selected. Figure 3.11 shows a schematic representation of the statistical framework.

In this case, a rotated Clayton copula has been chosen as the best circular-linear copula

to shape the bivariate dependence between the magnitude and the seasonality of the

extremes.

Figure 3.11: Empirical (u,v) points overlayed to the best selected copula according to the Akaike
Information Criterion. u refers to the circular variable, while v to the linear one. The viridis
colors represent the copula density. In particular the density decreases as the colors change from
yellow to purple
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To verify if the GCM historical experiments can capture the statistical dependence

between the two variables, a bootstrap approach based on the AIC has been developed.

Indeed, the AIC is an estimator of relative quality (i.e., test different models for a given

set of data) and it cannot be directly used in an "absolute" sense. Hence, the procedure

applied to each pixel is explained in the following and outlined in Figure 3.12:

Figure 3.12: Outline of the AIC bootstrap approach

1. one thousand random samples is generated from the best copula selected for the

reference data;

2. for each sample, which has the same size as the original one, the AIC is recomputed,

allowing to derive a reference AIC distribution for each pixel of the dataset;

3. the reference best copula is then fitted to the extremes extracted from the historical

experiment of the nine GCMs and the corresponding AIC are computed;
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4. if these AIC values are between the 2.5 and the 97.5 percentiles of the reference AIC

distribution, then there is not enough evidence to reject the null hypothesis that the

GCM data are extracted from the same copula as the reference data. Hence, it is

possible to consider this as a case in which the GCM can reproduce the statistical

dependence in the reference data. Although a two-sided test for the AIC may seem

counterintuitive, it has been used in this case as the sole objective is to validate the

historical experiment of the GCMs.

The results of this procedure are shown in Figure 3.13, where the panels indicate the

IPCC reference regions (Stocker et al., 2014) (see Figure B.1 in the Appendix C for more

details), while the bars refer to the nine GCMs analyzed. The red color indicates the

percentage of pixels where there is not enough evidence to reject the null hypothesis that

the GCM outputs can be extracted from the same copula as the reference data. As it is

possible to notice from this figure, the possibility to not reject the null hypothesis of the

test is always higher than 75% for all IPCC zones, reaching more than 90% in most of the

cases. For this reason, it is possible to conclude that globally the GCMs can capture the

precipitation characteristics in the reference data and can be used to assess the projected

changes in the magnitude and seasonality of precipitation extremes.
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Figure 3.13: Results of the AIC bootstrap approach for the validation of the GCMs. The panels
indicate the IPPC zones, while the bars refer to the nine GCMs analyzed. The red color indicates
the percentage of pixels where there is not enough evidence to reject the null hypothesis that
the GCM outputs can be extracted from the same copula as the reference data

Once the reference best copula has been used for the validation procedure between ref-

erence dataset and historical experiment, the copula fitting procedure has been reapplied

for each GCM and experiment. Indeed, even if it is not possible to reject the hypothesis

that the precipitation extremes from the GCMs are extracted from the reference best

copula, there may be one that better fits the data according to the AIC.

After this step, the marginal distributions of the two variables have been fitted.

More specifically, the Generalized Pareto Distribution (GPD) has been considered as the

marginal distribution for the rainfall depth, while a mixture of N von Mises distributions

(vMD) has been chosen to model the marginal distribution of the circular variable. The

choice of these two distributions is motivated by the fact that the GPD is often used in

the case of POT values, whereas mixtures of vMD allow for greater flexibility in modeling

more than one peak, where present, in the seasonality of the extremes. However, the

goodness-of-fit of the GPD distribution has been evaluated through the application of the

Anderson-Darling test where the significance of the test is computed by means of a Monte

Carlo approach (Choulakian and Stephens, 2001).
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Figure 3.14: Example of the procedure followed to derive the bivariate dependence between
magnitude and occurrence of precipitation extremes. In the top right panel, the empirical (u,v)
points are overlayed to a circular-linear copula. The other panels show the linear (bottom-right)
and the circular (top-left) marginal distribution. The empirical CDF is depicted in black, while
the theoretical GPD and vMD with red color

Regarding the circular variable, since it is not possible to know a-priori the optimal

number of mixtures for the vMD, this number has been tested ranging from one to four,

and at the end the model with the lowest Bayesian Information Criterion (BIC) has

been chosen (Veatch and Villarini, 2020, 2022). Figure 3.14 shows a representation of

the described procedure. From this figure it is possible to observe that the marginal

distributions can capture well the shape of the empirical CDF.

3.2.4. Future changes in the bivariate dependence

Once the bivariate dependence and the marginal distributions are known, it is possible

to quantify the variation in the characteristics of the extremes. Indeed, the combination

between copula and its marginal distributions can be used as "stochastic extreme precip-

itation generator". Hence, for each experiment and GCM, one million random (u,v) pairs

have been generated from the selected copula of every single pixel.

Transforming these values to the original units through the marginal distributions,

(h,d), it is possible to obtain a sample of rainfall depth, h, per each day, d, of the year.



3| Chapter three 135

These extreme daily data samples have been used to compute the empirical cumulative

distribution function conditioned to the date (ECDF(h|d)), providing for each day of the

year the exceedance probability of the precipitation extremes.

Given the need to find a way to condense this large amount of information, the

median value of the daily ECDF(h|d), h50(d), has been used as a proxy for the extreme

value that might occur in that day. An example is shown in Figure 3.15, in which the

red line indicates the h50(d) and is superimposed onto the 2-D density of the generated

rainfall depth.

Therefore, the maximum of the daily median values has been considered as the refer-

ence rainfall depth (H50) that may happen on a specific day (D(H50)) of the year according

to the bivariate statistical structure derived from the data.

Once these values are defined for each pixel (i) in each GCM (m) and experiment

(hist and SSP ), we can quantify the future changes in the magnitude (∆Ri,SSP ) and

seasonality (∆Si,SSP ) of precipitation extremes, compared to the historical experiments,

by computing the following quantities:

∆Ri,SSP = 100 ·
H50i,SSP

−H50i,hist

H50i,hist

(%) (3.25)

∆Si,SSP =
D(H50)i,hist −D(H50)i,SSP

30
(month) (3.26)
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Figure 3.15: Example of exceedances of the 2-D density generated from the selected copula
and marginal distributions. As for Figure 3.11, the density decreases as the colors change from
yellow to purple. The red line indicates the median daily extreme precipitation depth h50(d).
The red dot corresponds to the maximum of the h50(d) and represents the reference precipitation
depth (H50) that is projected to occur on a specific day (D(H50)) of the year according to the
developed bivariate model

where:

• H50i,SSP
and H50i,hist represent the average of the H50 among the nine GCMs (m):

H50i,SSP
=

1

N

N∑

m=1

H50i,SSPm
(3.27)

H50i,hist =
1

N

N∑

m=1

H50i,histm
(3.28)

• D(H50)i,SSP and D(H50)i,hist represent the the circular mean of the D(H50) among

the nine GCMs (m):

D(H50)i,SSP = circular.mean(D(H50)i,SSPm
) (3.29)

D(H50)i,hist = circular.mean(D(H50)i,histm) (3.30)
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It is worth emphasizing that the change in seasonality is considered by taking into

account the dominant mode, as expressed by equation 3.5. For both the quantities the

average value among the GCMs has been computed to reduce the uncertainty associated

with any individual model. Moreover, it is worth noting that, while in the case of H50i,SSP

and H50i,hist it is possible to use the linear way to compute the average among the models,

for D(H50)i,SSP and D(H50)i,hist is important to compute the circular mean. In Figure

3.16 we show a schematic representation of the meaning of ∆Ri,SSP and ∆Si,SSP on the

circular-linear plane.

Figure 3.16: Example of how ∆Ri,SSP and ∆Si,SSP are derived, starting from the historical and
SSP average values (blue dots)

Figure 3.17 shows the projected changes in the characteristics of the extreme precip-

itation for the 2065-2100 period with respect to the historical baseline (1979–2014) across

the four different SSPs. To display the results in a concise and visible way, a bivariate

circular palette has been developed to display the changes in seasonality ∆S (i.e., change

in color) and the changes in magnitude ∆R (i.e., change in brightness). Positive (neg-

ative) percentages for ∆R indicate an increase (decrease) in the intensity of the future

extreme events compared to the past, while positive (negative) values for the ∆S indicate

a backward (forward) shift in seasonality.

Globally, the results suggest that climate change is expected to make precipitation

extremes more intense compared to the past. However, the changes in the magnitude are

particularly tied with the emission scenario, moving from an increment that ranges from
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0 to 50% in the case of the SSP1-2.6, to values up to 100% for highest emission scenario.

The areas that are expected to experience the largest changes are mainly located in India

and in the Bay of Bengal, pointing to a strengthening of monsoon in the future (Menon

et al., 2013; Katzenberger et al., 2021).

Similar large changes in magnitude are projected for the equatorial Africa, consistent

with other published results (Diem et al., 2019; Jiang et al., 2021). These increases are

large, and are expected to lead to even larger impacts considering that they are projected

to occur in the upper tail of the precipitation distribution, jeopardizing the reliability of

the infrastructures designed in the past (Nissen and Ulbrich, 2017) and posing a serious

threat to human life and global economy.

The results so far are just one side of the coin. Indeed, the potential changes in

the time of the year in which these events occur represent the other side of the coin.

There are large areas of the world exhibiting large temporal shift in the H50, such as

South America, Southern and Eastern United States, Central Africa, Central Europe,

India, China, Indochinese Peninsula and Indonesia. These findings are generally consis-

tent regardless of the SSPs considered, even though there are asymmetries moving from

SSP1 and SSP2 (i.e., the scatterplots that are relatively symmetric around the no-change

value) to SSP3 and SSP5 (i.e., there is a shift towards negative values). From a physical

point of view, this forward shift (i.e., extreme events occurring later in the season) might

be the result of a longer duration of the rainfall season driven by global warming, thus

increasing the risk of extreme precipitation events to last for longer periods (Pfleiderer

et al., 2019). Indeed, a global increase in air temperature might lead to higher evapora-

tion rates from the oceans, enhancing their contribution in the global hydrological cycle

(Findell et al., 2019); moreover, rising temperatures play a fundamental role in the latent

heat flux that is responsible for storm intensification (Pendergrass, 2018). The changes in

seasonality are particularly evident across the Amazon Forest and the southeastern part

of South America, where there are shifts ranging from 15 days up to 3 months later in

the season, larger than what shown in Marelle et al. (2018) (possibly because of different

methodologies and model resolution); one possible explanation for our results is the po-

tential impact of climate change in the seasonal precipitation related to ENSO (Grimm,

2011). Indonesia is another region exhibiting a particularly strong forward shift in the

occurrence of precipitation extremes; this is in agreement with what (Supari et al., 2017)

observed in the historical data regarding an increasing trend for some precipitation indi-

cators (i.e., monthly maximum 1-day precipitation and annual total precipitation divided

by the number of wet days in the year) during the months that follow the recognized wet

season. While the general tendency is towards precipitation extremes to occur later in the

year, there are locations like Thailand, the Bay of Bengal, Philippines, and the eastern
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coast of Greenland, where these events are expected to occur earlier in the year (Marelle

et al., 2018).

The southeastern United States and central Africa exhibit large shifts in the sea-

sonality of the precipitation extremes, with the seasonality of extreme precipitation that

exhibits both positive and negative shifts within these regions. Looking back to Figure

3.3, these areas have already been recognized as not having a clear dependence of the

extremes with the season. Hence, is it possible that these large changes in seasonality

(i.e., on the order of months) belong to areas where it would be too reductive to consider

a single mode in the seasonality of heavy precipitation? In other word, is it possible

that these important shifts are due to changes from one dominant physical mechanism

to another? To answer this question, the results of the analyses have been stratified by

the number of von Mises distributions mixtures selected. Indeed, requiring more than

one mixture in modeling the seasonal component implicitly means assuming that the ex-

tremes are not seasonally clustered, but that multiple modes (i.e., physical processes that

generate intense precipitation) can be identified in their annual distribution. Figure 3.18

shows the percentage of pixels characterized by a given number of mixture components

and the corresponding values of ∆S for the different SSPs.

For small changes in seasonality (i.e., ∆S around 0), the greatest part of pixels are

characterized by a single mode (i.e., season) or two. However, the picture changes as

the ∆S values increase, with a transition towards a larger contribution by 2- and 3-

component distributions compared to the single mode. While the number of pixels with

large changes in seasonality increases moving from SSP1–RCP2.6 to SSP5–RCP8.5, the

picture does not change across the different scenarios, suggesting that this is a behavior

that is not dependent on SSP considered. Hence, these results point to large changes in

seasonality that are not so much tied to an extension of a given season or to a complete

reversal of the seasonal characteristic of extreme precipitation, but rather to the shifts in

extreme precipitation across different generating mechanisms. This is particularly true

for locations (e.g., southeastern United States, central Africa) that are characterized by

different weather systems responsible for extreme precipitation events (i.e., mesoscale

convective systems, tropical cyclones, oscillation of the ITCZ).



3| Chapter three 141

Figure 3.18: Projected changes in seasonality as a function of seasonal components. Percentage
of pixels characterized by one, two or more than three von Mises distributions per discrete values
of ∆S (in months) for SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-RCP8.5 scenario.

3.2.5. Final considerations on the changes in the characteristics

of precipitation extremes

In this chapter, two primary precipitation characteristics, namely intensity and sea-

sonality, have been jointly analyzed for the first time. What has been found points not

only to an increase in the magnitude of the extreme precipitation events, but also to

changes in their seasonality, leading to potentially serious impacts across different sec-

tors and spheres of our lives, from human health to economy and ecology. The bivariate

circular-linear model appears to be the proper way to highlight that there are poten-

tially large changes regarding the expected occurrence of extreme precipitation events,
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especially for high emission scenarios. These findings highlight to the need to develop

mitigation and adaptation strategies and water resources planning that are flexible to

account for the occurrence of extremes for periods out of the expected season. Indeed,

these findings may raise different questions. How should the management of hydraulic

infrastructures (e.g., dams, detention basins, etc.) change in this scenario? Are the cli-

mate change adaptation and resilience strategies implemented so far reliable in this case?

What could be the consequences for the agricultural and industrial sectors? Moreover,

based on the SSP scenarios, the intensity of the precipitation extremes is expected to be

exacerbated globally from SSP1 (i.e., “sustainability”) to SSP5 (i.e., “fossil fueled devel-

opment”), emphasizing the importance that actual policies and behaviors could have in

addressing future climate change issues. Finally, these results point to the need to con-

sider the characteristics of extreme precipitation events in a more holistic way, accounting

for the potential interdependencies among them.



4| Chapter four

4.1. Compound events for an improved risk assess-

ment

The Earth’s climate and hydrology systems are intricate, interconnected, and highly

dynamic. Climate change, driven by various natural and anthropogenic factors, is caus-

ing shifts in weather patterns, precipitation regimes, and temperature extremes across the

globe (Masson-Delmotte et al., 2021). At the same time, the study of the impacts and

consequences of climate change on hydro-meteorological variables represents a challenge

for the scientific community, given the growing awareness of the global public opinion

about the climate crisis and the increasing availability of data and computational re-

sources. While the emphasis is generally focused on a single hazard (e.g., heat stress,

extreme precipitation, floods, droughts), their compounding effects under climate change

have been the subject of a growing number of studies (Wahl et al., 2015; Zscheischler

et al., 2018, 2020; Ridder et al., 2020), leading to a better understanding and an improved

assessment of the risk associated with the occurrence of these extremes (Leonard et al.,

2014; Zscheischler and Seneviratne, 2017; Bevacqua et al., 2019). As an example, Figure

4.1 shows the the number of publications on the topic of compound events since 1992.

The curve, which considers only publications in the field of Earth Sciences, Environmen-

tal Sciences, Atmospheric Sciences, and Engineering, exhibits a clear exponential trend,

indicative of the growing interest and attention to this topic.

143
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Figure 4.1: From app.dimensions.ai: Number of publications per year on the topic of compound
events. The number of publications was filtered considering only those in the following macro
areas: Earth Sciences, Environmental Sciences, Atmospheric Sciences, Engineering

Compound events refer to the simultaneous or sequential combination of multiple

climatic or hydrological drivers and/or hazards, that can lead to more significant societal

or environmental risk (Zscheischler et al., 2018, 2020; Masson-Delmotte et al., 2021). In

other words, it has been realized that the complexity of the climatic and atmospheric

system, as well as the interactions between intense phenomena and surface impacts, can

hardly be totally explained by considering a single driver. On the contrary, by combining

multiple phenomena and/or hazards it is easier to provide a clearer and more comprehen-

sive picture of the resulting impacts and risks. The contributing events can have similar

characteristics (clustered multiple events) or can grasp to different types (Seneviratne

et al., 2012; Zscheischler et al., 2020). This aspect has been emphasized across a wide

spectrum of hazards, including droughts (Vogel et al., 2021), heatwaves (Geirinhas et al.,

2021), wildfires (Moftakhari and AghaKouchak, 2019), coastal extremes (Wahl et al.,

2015), and floods (Zhang and Villarini, 2020).

A schematic representation of a compound event is provided by Zscheischler et al.

(2020) and shown in Figure 4.2. From this figure it can be seen that there are four

key elements that constitute such an event: modulator, driver, hazard and impact. The

modulator represents the large-scale climatological system that regulate the mechanisms

of compound events. In compound events, therefore, knowledge of climatology is crucial

because it is precisely the modulators that determine the frequency and location of the

drivers. In turn, the drivers represent the physical phenomena that result from them,

https://app.dimensions.ai/discover/publication


4| Chapter four 145

such as storms, tropical cyclones, cold fronts, and so on. If this first part of the scheme

related to compound events defines the "physical" aspect, the second part is inherently

connected to the "probabilistic" one. In fact, the study of climatic drivers is fundamental

when there is a real hazard, namely that they have the potential to trigger one or more

impacts (e.g., economic, social, or in terms of human lives).

Figure 4.2: From Zscheischler et al. (2020): Overview of elements in the climate and weather
domain that make up a compound event

Anthropogenic climate change is able to affect all elements that constitute compound

events, directly conditioning climatology (and thus modulators) by amplifying the mag-

nitude of drivers, increasing the hazard of events, and exposing society to more impacts.

Hence, one aspect worth highlighting is how climate change alters the representation of

the hydro-meteorological variables involved in the compounding. As depicted in Figures

1.3b and c, a potential effect of climate change is to create alterations in the mean and

variance of the variable’s distribution, thereby resulting in an increase (or decrease) in the

frequency and magnitude of the events in the distribution’s tails. However, what is shown

in these figures refers to a single variable, namely to a univariate space. Since compound

events refer to a combination between multiple phenomena, it is necessary to consider

the bivariate (or multivariate) distributions to correctly estimate the response in the total

risks. Figure 4.3 (Zscheischler et al., 2020) helps to clarify this key point in the theory

of compound event. In an equilibrium system with no external pressures, the probability

distributions of two generic drivers/hazards could be the red for drivers/hazards 1 and the

gray for drivers/hazards 2. The occurrence probability of the compound event of a cer-

tain intensity is necessarily represented in a two-dimensional space, specifically depicted

by the gray contour lines at the center of each panel. If one now imagines altering this

equilibrium state by modifying the statistics of only one of the two distributions (e.g.,

due to the future effects of climate change), the final picture might be dramatic. Indeed,

a shift in the mean of the distributions of driver/hazard 2 (panel a) it would translate to
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an increase (or decrease) in the probability of occurrence of more (or less) intense events,

from a univariate perspective.

Figure 4.3: From Zscheischler et al. (2020): Hypothetical responses in the probability of com-
pound events (shift of the bivariate distribution from grey to red) arising from a shift in the
mean of driver or hazard 2 (panel a), an increase in the variability of driver or hazard 2 while
holding correlation between the variables constant (panel b) and an increase in the strength
of the dependence between driver or hazards 1 and 2 (panel c). The dashed line represents a
moderate impact threshold, assumed constant for both present and future climates. The dotted
line represents a threshold surpassed only under altered climate conditions. The colored areas
indicate events with moderate (light shading) and substantial (darker shading) impacts

However, by combining this response with the one from the second driver/hazard, the

joint distribution of the compound shifts, leading to a wider spectrum of consequences.

First of all, even if the statistical properties of driver/hazard 1 have not changed, the
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compound events might occur more frequently and cause higher impacts, as depicted

by the colored area above the dashed line (i.e., representing the threshold of moderate

impacts of the compound). Moreover, this strengthen in the compounding might lead

to the rise of new compound events, which could result in impacts with unprecedented

magnitude (i.e., the dark red area).

A changes in the variance of driver/hazard 2 (panel b), generates similar conse-

quences. In this case the resulting bivariate distribution under the altered scenario is

wider than the original one, mainly driver by the the fattening of the tails of the driver/-

hazard distribution. If the cases depicted up to now imply an alteration in the statistical

properties of the driver/hazard distributions, a third scenario can arise when climate

change strengthen the dependence between the variables (panel c). This might happened,

for instance, in the case of a shift in the temporal occurrence of a driver/hazard: even if

its resulting distribution does not change, the possibility of it occurring concurrently with

another phenomenon exacerbates the overall risk of the compound event.

Another example from Zscheischler et al. (2018) helps to clarify how the risk per-

spective change when considering different hazards (Figure 4.4).

Figure 4.4: Modified from Zscheischler et al. (2018): The hypothetical distribution of tem-
perature and humidity in the present climate (green), a future climate with a shift in mean,
variability and correlation between the drivers (Future 1, blue) and a future climate with an
increase in dependence in the upper tail of both drivers (Future 2, purple). The intensity of
Hazard 1 increases towards the upper right of the climate space (a). The same climate distri-
butions as in a for Hazard 2, which increases towards the lower right of the climate space (b)
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Temperature and humidity are the climatic drivers and the green lines in the panels

represent the 50th and 80th percentiles of the bivariate distribution in an hypothetical

present climate. If two different future scenarios are considered (i.e., it might be two

different future projections with distinct climate forcing) and some changes in the mean,

variance and dependence happen, the future distributions might evolve in those depicted

by the blue and the purple lines. Up to now there is nothing new from what is shown in

Figure 4.3. The different perspective emerges when linking the compound event to the

hazards that may result and the direction in which its intensity varies: the same projected

distribution increase both the heat stress (panel a) and fire (panel b) hazards. Indeed, the

hypothetical future climate is characterized by hotter and more humid conditions, which

are responsible for an increasing occurrence of heat stress events. Hence the heat-related

hazard has to worsen moving towards the top-right corner of the climate space. At the

same time, the future distributions seem to spread toward the bottom-right corner, where

the fire hazard is higher since the occurrence of hot and dry conditions is increased.

Due to the complexity of the topic, Zscheischler et al. (2020) made an attempt to

simplify the modeling framework by tracing compound events to four potential types: pre-

conditioned event, multivariate event, temporal compounding event and, spatially com-

pounding event.

In a preconditioned event (Figure 4.5a), a pre-existing weather-driven or climate-

driven condition exacerbates the impacts of a climatic impact-driver. An example might

be the water storage deficit in Central Europe during the drought of 2019 (Boergens et al.,

2020). In this case, the 2018 drought severely affected the soil moisture levels and the

winter between these two events could not sufficiently recharge the deep storages, leading

to higher water availability deficit in 2019.

The impacts from a multivariate event (Figure 4.5b), result from the interaction of

multiple climate drivers and/or hazards in the same geographical region. A pragmatic

example was the flood that hit Ravenna in 2015. This event was led by the co-occurrence

of severe rainfall generated by a low-pressure system and a storm surge driven by south-

easterly winds over the Adriatic sea (Bevacqua et al., 2017). A similar example can be

what happened in New Orleans in 2005 (Dykstra and Dzwonkowski, 2021). Storm surges

and river flooding caused by Hurricane Katrina’s strong winds and exceptionally heavy

rainfall led to more than 50 failures of the levees and flood walls that were supposed to

protect the city, exacerbating the impact of the resulting floods.
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Figure 4.5: From Zscheischler et al. (2020): Typologies of compound events: a) preconditioned
event, b) multivariate event, c) temporally compounding event, d) spatially compounding event
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Temporally compounding events (Figure 4.5c), refer to a series of successive hazards

affecting a specific geographical region, resulting in an impact that is either intensified

when compared to a single hazard. This can be the case of the so called "hot and dry"

and "hot and wet" events, in which one or more heatwaves set the stage for subsequent

dry or wet conditions, such as droughts (Mazdiyasni and AghaKouchak, 2015) or intense

rainfall (Sauter et al., 2023), respectively.

Finally, in the spatially compounding events (Figure 4.5d), events occurring in mul-

tiple interconnected locations combine their effects to produce a greater impact. As an

example, simultaneous heatwaves and floods occurring in different area of the world may

induce synchronous crop failure constituting a potential risk to global food security (Ko-

rnhuber et al., 2020; Mehrabi et al., 2022).

Among compound events, heat stress was recently found to be a precursor of summer

flooding across the central United States (Zhang and Villarini, 2020) with these two haz-

ards that were connected through atmospheric conditions leading to increased convective

available potential energy (CAPE) and stormy weather. After an in-depth discussion on

the elements of this compounding, the next section will explore whether their resulting

risk is relevant in other regions of the globe. Moreover, by using the outcomes from several

Global Circulation Models (GCMs) at different Shared Socioeconomic Pathways (SSPs)

and Representative Concentration Pathways (RCPs), it will be examined whether the

strength of this compounding is projected to increase or decrease in the future, consider-

ing the potential threats to society and the economy.
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4.2. Climate change exacerbates the compounding of

heat stress and flood

Heat stress and flood impacts have been studied extensively because of their signifi-

cant societal and economic impacts. Both these two natural disaster have been responsible

for million of fatalities during the last century, as shown in Figure 4.6. Moreover, it has

been demonstrate that significant increasing trend in the number of death due to heat

waves and floods occur in different area of the world (Mazdiyasni et al., 2017; Franzke

and Torelló i Sentelles, 2020), requiring substantial effort from populations to adapt and

be resilient in a changing climate. (Pörtner et al., 2022)

Figure 4.6: From Our World in Data: Global deaths from disasters over the period 1900 - 2020.
The size of the bubble represents the estimated annual death toll

More than a climatic or atmospheric variable, heat stress is generally recognized as

https://ourworldindata.org/natural-disasters
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an indicator of work-related physical discomfort (i.e., occupational heat stress). Indeed, it

is a condition that occurs when the body’s temperature-regulating system (i.e., primarily

sweating) are overwhelmed by excessive heat and humidity, resulting in heat stroke, heat

exhaustion and other negative impacts on human health (Kovats and Hajat, 2008; Zander

et al., 2015; McGregor and Vanos, 2018). However, since the factors that contribute

to heat stress are mainly high air temperatures and humidity, over the years its use

has encouraged the contamination of medical studies with climate, environmental, and

social research (Alahmad et al., 2022; Fan et al., 2022; Chapman et al., 2022). For

instance, urban areas are recognized as particularly subjected to dangerous heat stress

events (Oleson et al., 2015; Luo and Lau, 2018), due to several factors (e.g., weak air

circulation, emissions from vehicle, presence of commercial and residential buildings, and

so on) that contributes to the urban heat island effect (Stone Jr, 2012).

Heat stress itself is also responsible for major negative impacts on livestock produc-

tion. The effects are evident on various aspects such as feed consumption, production

efficiency (such as milk yield or weight gained), growth rate, egg production, and repro-

ductive efficiency (Daramola et al., 2012). Not only livestock, but also the productivity of

agricultural crops is drastically reduced when heat stress events occur during the repro-

ductive period (Teixeira et al., 2013). The 2010 Euro-Russian heatwave and the following

wildfires resulted in a 25% decrease of the annual crop production, leading to a total

loss of more than $15 billion to the local economy (Barriopedro et al., 2011; Katsafados

et al., 2014) and an increasing of more than 50% in the cost of wheat on the international

market (FAO, 2011). When referred to areas of the globe where population is expected to

growth and and where there might be an increasing demand for food availability, all these

consequences might exacerbate poverty, food insecurity and starvation (Rahimi et al.,

2021; Hasegawa et al., 2021). Finally, there is also evidence that heat stress may influence

human behavior (e.g., migration) much more than other natural hazards (Mueller et al.,

2014).

If these negative aspects alone were enough to explain how much impactful heat stress

is, a wide spectrum of worst-case scenarios may arise when heat stress can be considered

as a driver for summer flooding. For instance, agriculture can be highly undermined

during a flood, leading to a reduction in yield or even a loss of the entire crop (Posthumus

et al., 2009; Bremond et al., 2013). Livestock is also a vulnerable target because it can

perish or experience indirect consequences (e.g., disease, lack of food), resulting in an

increased risk of poverty (Deen, 2015). Moreover, flooded roadways can complicate the

access to the medical infrastructure, leading to the inability to provide early medical care

or interrupting patients’ treatments during these events (Tomio et al., 2010; Yusoff et al.,

2017).
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The physical mechanism behind the compounding of heat stress and flood events

is described in details in Zhang and Villarini (2020) and depicted in Figure 4.7. High

humidity and temperatures in the lower troposphere generally provide the source of mois-

ture and the dynamical forcing to increase atmospheric instability (i.e., CAPE). Indeed,

as the temperature near the surface increases, the difference between the lower and the

upper troposphere favours the vertical movement of the air masses, namely convection.

If during this process the environmental lapse rate is greater than the dry-adiabatic lapse

rate, the atmosphere is "absolutely unstable", generating the conditions favorable for

the development of thunderstorms, severe weather, and convective cells. However, high

temperatures alone do not guarantee atmospheric instability: humidity (but also relative

wind conditions at different layers of the atmosphere) plays a crucial role, since it pro-

vides the amount of water that might turn into precipitable water. The resulting intense

precipitation event led to an increasing risk of flooding, which could cause all the impact

previously described.

According to the typologies shown in Figure 4.5, this kind of events can be traced back

to both the "preconditioned" and the "temporally compounding" categories. Indeed, if

on the one hand heat stress can be seen as a pre-existing climate condition that intensify

the magnitude of intense precipitation and floods, on the other the whole process is

characterized by a clear time evolution.

For the sake of knowledge, other studies that considered the link between the two

hazards used only temperature, rather than heat stress, as the modulator for the com-

pound. For instance, Chen et al. (2021) show that northwestern and southern China has

been increasingly affected by sequential flood – heatwave (i.e., a flood event followed by

a heatwave within a certain temporal interval) during the period 1960 – 2019, mainly

driven by increases in temperature. Gu et al. (2022) reversed the order of the previous

compounding, analyzing the projected changes in the compound of flooding and hot ex-

tremes at a global scale. However, the physical processes connecting high temperature

with flooding are much less clear than what described in Zhang and Villarini (2020) due

to the lack of focus on humidity as the link between these two hazards. As previously

highlighted, high temperatures combined with high relative humidity are together the two

key components for severe rainfall events and, in turn, for flooding. Therefore, there is

a need to connect floods and heat stress beyond the central United States and to other

areas of the globe, as well as to assess how their nexus may change because of climate

change.
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Figure 4.7: Physical mechanism behind the compounding of heat stress and flood

In a climate change context, there is a high probability that the impacts of these two

hazards could worsen. In terms of heat stress, the projected increases in temperature are

expected to lead to an increased capacity of the atmosphere to hold water vapor (Fowler

et al., 2021), with negative impacts in terms of heat stress conditions (Mora et al., 2017;

Coffel et al., 2017; Pörtner et al., 2022; Vargas Zeppetello et al., 2022). While there is a

general agreement in terms of the projected changes in heat stress, much more uncertain

are the projected changes in flooding (Arnell and Gosling, 2016; Kundzewicz et al., 2017),
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with large regional variability (Hirabayashi et al., 2013; Blöschl et al., 2019). Despite

these uncertainties, there is an overall consensus that the impact of disastrous river floods

is projected to increase in the future (Merz et al., 2021).

Therefore, after a first paragraph where the data and the methodology are presented,

the section will be divided into 3 main parts. In the first one, the areas of the globe which

have experienced compounding between heat stress and flooding are identified. After

this, the projected changes in these compound events are assessed using global climate

models (GCMs) from the Coupled Model Intercomparison Project (CMIP6) (Eyring et al.,

2016) and different Shares Socio-economic Pathways (SSPs). Finally, the outcomes are

combined with a global dataset related to the projected future changes in the population

of urban agglomerations (Kii, 2021) to quantify the projected changes in human exposure

to the risk of the analyzed compound at the end of the 21st century.

4.2.1. How to compound heat stress and flooding: data, meth-

ods and remarks

The datasets used belong essentially to two categories: reference datasets and climate

models. The use of a reference dataset is crucial when examining the outputs of GCMs,

since these are numerical models that may have systematic errors (biases) (Oreskes et al.,

1994). As already shown in paragraph 1.1.4, these biases are potentially caused by a

wide range of factors, such as simplification in the thermodynamics and physics processes

(Wehrli et al., 2018) or coarse spatial resolution where it is not possible to resolve small-

scale phenomena (e.g., convective storms), especially in regions with complex topography

(Rhoades et al., 2018). Therefore, before making inferences about future projections, it

is essential to validate the GCMs considering an historical baseline.

In terms of reference data, which cover the 1979 – 2014 period, 2-m air temperature

and relative humidity from Multi-Source Weather (MSWX) (Beck et al., 2022) have been

used to compute the wet bulb temperature. This is a global gridded product with a

0.1-degree spatial and daily time resolution, derived by rescaling and bias correcting the

ERA5 reanalysis (Hersbach et al., 2020) through high-resolution data, including station

observations, satellite imagery and model output. For runoff, the 0.25-degree National

Aeronautics and Space Administration’s Global Land Data Assimilation System Version 2

(GLDAS-2) (Rodell et al., 2004; Li et al., 2018) daily dataset has been used, in which the

fluxes of the land surface are reproduced through satellite and ground-based observation.

The total runoff has been obtain as the sum of the baseflow-groundwater and storm surface

runoff. Since the products have different spatial resolutions, the MSWX products have

been upscaled to the GLADS resolution by means of bilinear interpolation.
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The GCMs have been chosen from the CMIP6 (Eyring et al., 2016). In particular,

those with available data for the required variables (i.e., total runoff, near-surface air

temperature and near-surface relative humidity) and whose nominal resolution is ∼100

km (∼1ç). In particular, the historical and the future scenario (i.e., SSP1-2.6, SSP2-4.5,

SSP3-7.0 and, SSP5-8.5) experiments have been considered for seven models (i.e., CMCC-

CM2-SR5, CMCC-ESM2, EC-Earth3, INM-CM4-8, INM-CM5-0, MPI-ESM1-2-HR and,

NorESM2-MM), and only the ‘r1i1p1f1’ member has been considered. The time period for

the historical experiment matches the one used for the reference (i.e., 1979-2014), while

the last 36 years of the 21st century (i.e., 2065 – 2100) have been selected for the future

scenario experiments. A schematic summary of the characteristics of the datasets used is

shown in the Figure 4.8.

Figure 4.8: Characteristics (e.g., source, spatial resolution, and analysis period) for both refer-
ence dataset and GCMs
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To derive both heat stress (HS) and extreme runoff (ER) events a pixel-by-pixel peak-

over-threshold (POT) approach has been applied to the reference data and the GCM

historical experiments. Figure 4.9 shows an example of the POT procedure. For the

1979 - 2014 period, heat stress events have been define as those days exceeding the 95th

percentile of the at-site wet bulb temperature distribution (Zhang and Villarini, 2020)

(Figure 4.9a). The wet bulb temperature (Twb; units: çC) has been computed by using

the following empirical formulation (Stull, 2011; Karwat and Franzke, 2021):

Twb = T · arctan
[

0.151977 · (RH + 8.313659)
1

2

]

+ arctan(T +RH)+

− arctan(RH − 1.676331) + 0.00391838 ·RH
3

2 ·

· arctan(0.023101 ·RH)− 4.686035

(4.1)

where T (çC) is the air temperature, and RH (%) the relative humidity. The use of wet

bulb temperature to define heat stress events has another positive effect in addition to

considering humidity in the compounding. Indeed, from the GCMs point of view it has

been shown that the combination of these two variables produce less uncertain results

than treating them in a separate form (Fischer and Knutti, 2013).

To identify POT runoff events (Figure 4.9b), the procedure was slightly different.

Indeed, unlike heat stress events, runoff peaks exhibit high temporal correlation even

at the daily scale. Therefore, using a percentile threshold derived from the empirical

distribution would increase the likelihood of not having statistical independence among

the identified events. Hence, for each pixel it has been fixed a threshold to have, on

average, two events per year, with two peaks separated by at least 7 days (Lang et al.,

1999).

Finally, the same thresholds computed for the historical period have been used to

identify future heat stress/extreme runoff events. Of course, while the sample size remains

the same for the historical baseline, the number of events for both variables might changes

in the future, depending on the variability and trends characterizing different regions of

the globe.
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Figure 4.9: Example of peak-over-threshold to extract heat stress (a) and extreme runoff (b)
events from the reference datasets and the historical experiments of GCMs

Before describing the procedure to compound the extremes, some considerations need

to be made regarding the areas that could be more prone to these events. Indeed the use of
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POT does not guarantee to focus on areas particularly susceptible to heat stress events or

for which it makes sense to talk about runoff phenomena. For this reason, three conditions

have been set to identify the areas where the compound heat stress - flooding may occur:

1. the 95th percentile of the Twb threshold in the reference data is at least 20çC. This

criterion allows to focus on areas where heat stress would have negative societal

and economic impacts and where it is feasible to expect humidity to be the main

physical driver for flooding;

2. the Arid desert or Arid steppe zones are masked using the already mentioned Köppen

– Geiger climate classification map (Beck et al., 2018) because of our focus on

humidity.

3. the analyses has been restricted to the “summer” months of June-July-August (JJA)

for the northern hemisphere and December-January-February (DJF) for the south-

ern hemisphere because this is the season that mostly experiences heat stress events.

The areas that meet these three conditions are depicted in Figure 4.10. As it is possible

to observe from the figure, the eastern part of the United States, the majority of Europe,

Russia and the continental China (i.e., the Tibetan Plateau) are not considered in the

analysis because of the limit on the 95th percentile of the wet bulb temperature.

Figure 4.10: Spatial distribution for the 95th percentile of the wet bulb temperature. The
colorbar is related to those area in which the 95th percentile is greater than 20çC, while the light
grey area represents the pixels in which this threshold is not exceeded. The present and future
Köppen - Geiger arid desert/steppe zones are shown in gray and dark gray, respectively

This does not mean that these areas could not be subjected to this kind of compound

event, but that the occurrence might be so rare as to be related only to exceptional events.

On the other side, the Saharan and large part of the southern Africa, the United Arab
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Emirates, the central Australia and, the northern Mexico are not considered due to the

second limitation. Although temperatures in these areas are frequently high and above

the fixed threshold, the air tends to be dry and flood events are very rare, if not virtually

impossible.

Among the remaining areas, India and eastern China, are characterized by the highest

values of the 95th percentile of the wet bulb temperature distribution. Regarding India,

it can be attributed to the anomalous inflow of marine air from the Arabian Sea into

the Indus Valley, accompanied by large positive humidity anomalies and moderate warm

temperature anomalies (Monteiro and Caballero, 2019). For China, the high air tempera-

ture and humidity condition that led to heat stress events are generally concomitant with

anomalous high-pressure and notable water vapor flux convergence (Wang et al., 2019).

By looking at Figure 4.10, it is also possible to notice that the equatorial zone is

missing (i.e., 15çS to 15çN). This happens as a consequence of the third condition. In-

deed, the percentage of summer heat stress (%ofHSsummer) is highly correlated with the

latitude. This quantity has been defined as follows:

%ofHSsummer = 100 ·

ù

ü

ü

ú

ü

ü

û

NHS(JJA)

NHS(TOT )

if Lat > 0ç

NHS(DJF )

NHS(TOT )

if Lat < 0ç
(4.2)

where NHS(JJA) and NHS(DJF ) refers to the number of heat stress events occurring during

summer, while NHS(TOT ) is the total number of heat stress events. Looking at its spatial

distribution Figure 4.11a, it is possible to notice that %ofHSsummer decreases moving

from the tropics to the Equator, with almost 100% of these events occurring during June-

July-August (JJA) in the United States east of the Rocky Mountains and eastern China.

Indeed, by narrowing the analysis to the summer months, the frequency of heat stress

events in the equatorial area is drastically reduced, since it is plausible that extreme heat

and humidity exhibits there a shifted seasonality.
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Figure 4.11: Spatial variability of the percentage of summer heat stress events (a) and extreme
runoff (b). The summer period includes June, July, and August (December, January, and
February) for the northern (southern) hemisphere. The percentage is computed as the ratio
between the number of heat stress/extreme runoff events that occurred during the summer and
the total number of events

This strong dependence on latitude is less apparent for the percentage of summer

extreme runoff (Figure 4.11b), defined as:

%ofERsummer = 100 ·

ù

ü

ü

ú

ü

ü

û

NER(JJA)

NER(TOT )

if Lat > 0ç

NER(DJF )

NER(TOT )

if Lat < 0ç
(4.3)

where NER(JJA) and NER(DJF ) refers to the number of heat stress events occurring during

the boreal and austral summer, respectively, while NER(TOT ) is the total number of heat

stress events. Indeed, while the occurrence of heat stress is dominated by air temperature
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and humidity and exhibits a clear seasonality, flood seasonality is more complex with a

high spatial variability.

After extracting the POT events for both variables from the reference data and

GCMs and for the historical and future periods, the compound heat stress – flooding

events have been characterized. In particular, it is considered a compounding when a

heat stress occurs within 3 days before the occurrence of the runoff peak (Zhang and

Villarini, 2020). Since the GCMs’ spatial resolution is ∼1ç, for the reference data an a

heat stress event might occur in a centered 5×5 kernel to have similar spatial resolutions

for both products. Figure 4.12 clarifies this difference for the reference (panel a) and

GCMs experiments (panel b).

Figure 4.12: Representation of the criterion to compound heat stress and flooding events for the
reference (a) and the GCMs experiments (b)

By counting the number of runoff peaks that are anticipated by an heat stress event,

it is possible to compute the percentage of the compounding (%ofCompHS,ER) as follows:

%ofCompHS,ER = 100 ·
NER±HS

NER

(4.4)
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where NER±HS is the number of extreme runoff preceded by an heat stress, while NER is

the total number of extreme runoff detected.

4.2.2. Historical response and GCMs validation

As expressed in paragraph 4.2, the first step has been to verify the strength of the

compounding in the reference dataset. Figure 4.13 shows the percentage of the of com-

pound heat stress – runoff in the areas selected. Based on the reference data, the com-

pounding between heat stress and floods is strong in the mid-latitudes, such as the central

and eastern United States, the central-eastern part of the South America, and the area

between India and eastern China. For instance, ∼50-75% of the extreme runoff events

in the central United States were preceded by a heat stress event, consistent with the

extremely hot and humid weather conditions across the area during those decades (Ray-

mond et al., 2017; Zhang and Villarini, 2020), with this percentage that decreases moving

from the center to the south. This decreasing percentage in this area may also be the

result of using pixel runoff instead of discharges. Indeed, when a heat stress event creates

the atmospheric conditions for intense rainfall and then flood, the compounding must

necessarily be upstream in the basin. When the runoff propagates downstream, the cor-

relation with the heat stress is lost. In East Asia and South America, where high values

of wet bulb temperatures are often present (Wang et al., 2019; Sun et al., 2019; Ning

et al., 2022), heat stress tends to be a weather precursor for most of the summer flood

events. Moreover, India and China are characterized by monsoons which periodically

strike this region between June and July (Monteiro and Caballero, 2019). Hence, in the

context of the compounding, high values of Twb can intensify the rainfall induced by these

phenomena, exacerbating the resulting floods.

The compounding between these two hazards also interests areas in southern Africa

and along the east coast of Australia. Although these land portions are small in com-

parison to the masked area, they face a significant risk due to the substantial population

residing there. Europe is not identified as an area where heat stress precedes floods

because the 95th percentile of the heat stress distribution is generally below 20çC. Never-

theless, except for the southeast and the east coast of the United States and the central

part of the south America, the percentage of summer runoff events in the other areas is

higher than 30-40%, reaching about 100% in northeastern China.
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Figure 4.13: Spatial distribution of the percentage of compound heat stress – runoff based on the
reference data. The study period is 1979-2014. The gray shaded areas represent “Arid desert”
or “Arid steppe” zones (according to the global Köppen – Geiger classification) or the regions
where the 95th percentile of the wet bulb temperature distribution does not exceed 20çC and,
therefore, are excluded from the analyses

The results shown in Figure 4.13 highlight the regions where the compounding of

heat stress and floods plays an important role in the historical record; such results can

be also used to evaluate the GCMs’ performance. Figure 4.14 shows the outcomes for

the seven models considered; the top-left panel refers to the reference dataset (i.e., the

same of Figure 4.13) and it is shown with the aim to facilitate the comparison. First,

the extension of the domain is similar for all the models and the reference data. With

the exception of those areas classified as arid that are a-priori removed, this means that

the 95th percentile of the wet bulb temperature distribution exceeds 20çC approximately

in the same areas both for reference dataset and CMIP6 historical experiments. Overall,

the models capture the observed results both in terms of regional extent and strength

of the compounding. For the southern hemisphere, the models reproduce the spatial

patterns occurring in the reference data well, with the exception of INM-CM4-8 and

INM-CM5-0, exhibiting a tendency to overestimate the compounding in central Brazil

and South Africa. In the northern hemisphere, the models perform well in East China,

with a slight underestimation in eastern India. The performance in the United States is

generally good, with a slight tendency towards underestimating the strength of the heat

stress-flood compounding, especially for MPI-ESM1-2-HR.
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Figure 4.14: Spatial distribution of the percentage of compound heat stress – runoff. The results
in the top-left panel are based on the reference data, while the remaining panels show the results
for the historical runs of seven CMIP6 GCMs

As shown in the Figure 4.14, individual models exhibit biases that could be relevant.

However, a completely different perspective arises when an ensemble of GCMs is created.

Specifically, a pixel-by-pixel average of the composition percentage has been performed,

and the results are displayed in the Figure 4.15. Based on the previous findings, the

analysis has been limited to five subzones, each depicted in the figure’s panels. The

two degrees of color transparency are used to distinguish regions where at least four

GCMs agree on the presence of compounding (i.e., no transparency) from regions where

the average response is more uncertain (i.e., transparency). By comparing this average

with the reference, it is possible to notice the ensemble significantly reduces the intra-

model uncertainties, both in the percentage and in the geographical extension of the

compounding. The signal reduction in the southeastern United States as well as near

the east coast of China are realistically captured by the ensemble. The bias remains

particularly significant only along the east coast of India.
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Figure 4.15: Averaged percentage of compound heat stress – runoff for the GCMs historical
experiments. The color transparency is used to distinguish those areas in which at least four
GCMs agree with the presence of compounding (i.e., no transparency) from those where the
response of GCMs is more uncertain (i.e., transparency)

4.2.3. Future evolution of the compounding

Based on the results in Figure 4.15, it is possible to conclude that the GCM ensemble

can reproduce the compounding between heat stress and floods in the reference data, and

that they can be used for the assessment of future conditions (Figure 4.16). Compared to

the historical simulations (top row in Figure 4.16), the compounding of heat stress and

runoff is projected to increase for all the SSP scenarios. For all the identified subzones,

most extreme runoff events are expected to be preceded by a heat stress event. Focusing

on the United States, under the SSP1-2.6 the percentage increases in all pixels, with an

almost constant value around 50%, with even higher values along the Gulf Coast. Moving

from SSP1-2.6 to SSP5-8.5, the percentage of flood events preceded by a heat stress event

increases further, approaching 75-100% across the United States for SSP5-8.5.

In South America, the stronger compounding is in the southern part of the conti-

nent, while it is projected to be exacerbated more in the northern part under the SSPs

considered here. This pattern reversal is present in East Asia as well, where the projected
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percentages of compounding decrease moving from the Indochinese Peninsula to north-

eastern China. Also considering the east coast of India, where the percentage is lower

with respect to the other areas up to SSP2-4.5, the compounding increases to values close

to 100% under the worst-case scenario.

Figure 4.16: Averaged percentage of compound heat stress – runoff for the GCMs historical
experiments and the SSPs. The rows show the results for the different experiments, while the
columns for the different regions. The historical simulations (top row) focus on the 1979-2014
period, while the future conditions on the 2065-2100 period. The color transparency is used to
distinguish those areas in which at least four GCMs agree with the presence of compounding (i.e.,
no transparency) from those where the response of GCMs is more uncertain (i.e., transparency).
The shaded gray areas are excluded because of future arid conditions based on the Köppen –
Geiger zones or because the threshold for the wet bulb temperature is lower than 20çC

In general, this increase is driven by the expected rise in heat stress, because of higher

temperatures and relative humidity, which may trigger or facilitate extreme rainfall events

(Hardwick Jones et al., 2010; Westra et al., 2014). Regardless of the region, the strength

of the compounding always increases moving from SSP1-2.6 to SSP5-8.5. There is also an

expansion of the regions where compounding will be important due to the increase in the

95th percentile of the wet bulb temperature distribution beyond 20çC. This is particularly
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evident for the United States and East Asia. On the other hand, Australia and South

Africa show a reduction in the interested areas due to the expansion of the arid zones under

the future projections (Beck et al., 2018). Overall, the percentages drastically increase

across much of the domains, confirming the global trend in exacerbating the expected

compounding of heat stress and extreme runoff events.

The reason for this global strengthening in the compounding ha been also investi-

gated. For each experiment the ratio between the number of heat stress events preceding

an extreme runoff event, NER±HS, and the total number of heat stress events, NHS has

been computed; the changes moving from the historical simulations to the different SSPs

have been quantified and shown in Figure 4.17.

Figure 4.17: Averaged changes in the future frequency of heat stress events preceding floods
compared with the historical experiments. The red color (i.e., increasing changes) indicates
those areas where in the future there may be more heat stress events preceding floods, while the
blue color (i.e., decreasing changes) represents a reduction in these changes. The rows show the
results for all the SSPs considered, while the columns for the different regions

The major positive changes interest the central and the southeastern area of the

United States, consistent with the findings by Zhang and Villarini (2020). Focusing on the

East Asia, an increase in the frequency of heat stress events modulating floods is projected

to occur in eastern India, Bangladesh, Japan, and part of the Indochinese peninsula. In

general, the other zones characterized by a similar behavior are mainly located in the

coastal areas of China, Australia, Brazil, and Uruguay. This outcome might also be more
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dramatic when considering additional hazards that may impact these areas, such as the

co-occurrence of storm surges and/or the effects of tropical cyclones (Wahl et al., 2015;

Kim et al., 2023), which could further enhance the overall impacts of these events.

On the other side of the spectrum, the reason why there are large areas where there is

a decrease in the frequency of heat stress events preceding extreme runoffs (i.e., the blue

areas in Figure 4.17) has been also investigated. Since this result may seem counter to

what found in Figure 4.16, namely a large increase in the compounding, the future changes

in the frequency of the individual components, i.e., heat stress and extreme runoff events,

for each SSP has been examined. For both variables the ratio between the number of

events in the future scenarios and in the historical experiment has been computed. This

means that values greater (lower) than one imply an increase (reduction) in the frequency

of the events (i.e., heat stress and extreme runoff). Figure 4.18 confirms what has been

already mentioned in the beginning of section 4.2, namely that there is an asymmetry in

the projected increase of these two hazards.

Indeed, while there is a strong rise in the future number of heat stress events, the

distribution of extreme runoff events changes but less sharply. For instance, the heat

stress distributions for all the subzones shift toward higher values of the ratio as the

greenhouse gas emissions increase. The shift in the mode (or in the modes in the case

of Australia) of the distributions progressively increases by 0.5 ÷ 1 moving from SSP1

to SSP5. Focusing on the extreme runoff, instead, this increase is more moderate. Even

though the distributions are almost centered on the no-changes value (i.e., the dashed

horizontal line equal to one) for the SSP1, it is possible to observe an overall shift moving

to SSP5, especially for East Asia, South America, Australia and South Africa. In this

case, what it is worth noticing is that these shifts are often coupled with a fattening of

their right tail for all the subzones. So, even if there are some pixels where the number of

extreme runoff events is projected to remain the same or decreases, in others this number

is twice or some time three times as large. For what has been seen so far, this explains the

apparent inconsistency between Figure 4.16 and 4.17. However, climate change affects not

only the frequency but also the magnitude of the events. In a warming climate, extreme

rainfall events are projected to become more intense (Fowler et al., 2021), and this may

propagate to the flood impacts, despite with more uncertainties and regional differences

(Do et al., 2020). Hence, all the areas found in Figure 4.16 are worth considering in the

compounding of heat stress and flooding, since heat stress phenomena, even when not

modulating floods directly, can still exacerbate flood impacts.
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Figure 4.18: Distributions of the ratio between the number of events (heat stress in pink and
extreme runoff in blue) in the future scenarios and in the historical experiment. The rows show
the results for the different SSP scenarios
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To quantify how the strength of the compounding between heat stress and floods

varies under the different scenarios, the empirical cumulative distribution functions

(ECDFs) for the different GCMs, regions and GCM experiments are shown in Figure

4.19. Moving from the historical run to SSP5-8.5, the ECDFs all shift towards higher

compounding values, consistent with the results in Figure 4.16. In South America, South

Africa, East Asia and Australia, the median of the distributions is twice as large in SSP1-

2.6 compared to the historical run, reaching almost 100% for SSP5-8.5. Moreover, the

differences between the curves for the four SSPs tend to be generally small compared

to the historical simulations, which is troublesome considering how different these are in

terms of climate policies. Furthermore, the ECDFs for most of the SSP5-8.5 are almost

vertical and close to 100%, indicating that under that scenario, almost all flood events

are projected to be preceded by a heat stress event. The results for North America are

qualitatively similar to the other regions, even though there is a weaker gradient from the

historical run to SSP5-8.5.

Due to a projected warmer and wetter climate, larger and new areas can be affected

by more frequent and intense heat stress events. According to the future projection,

Europe and parts of western Asia (i.e., Russia) could become a hot spot for this type

of compounding (Figure 4.20). This expansion is due to an increase in the projected

distribution of the wet bulb temperature, which implies higher values of the 95th percentile

of the wet bulb temperature distribution and exposes these regions to high heat stress

levels (Karwat and Franzke, 2021; Freychet et al., 2022). Although the INMs and MPI-

ESM1-2-HR models do not show these areas as potentially affected the compounding

because the 95th percentile of the wet bulb temperature distribution does not reach the

20çC-threshold, the other GCMs show that a high percentage of extreme runoff events

may be preceded by heat stress. This is particularly true under SSP5-8.5, leading to

higher risk of having human life and economic losses in the future for such areas.
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Figure 4.19: Empirical cumulative distribution functions for the percentage of compounding
heat stress – runoff. The results for the GCMs are summarized on the rows, while the regions
are on the columns. The red line represents the historical experiments (1979 – 2014), while the
other colors are related to the SSP projection (2065 – 2100)
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Figure 4.20: GCMs outcomes in the compounding of heat stress – runoff for Europe and western
Asia. The first column represents the historical experiment for the seven GCMs (one per row),
while the other columns correspond to the future expansion of the affected areas according to
the different SSPs. The shaded gray area represents what is described in Figure 4.13

4.2.4. A growing risk to the future population

To provide a clearer insight related to the population that may be exposed to com-

pound heat stress - runoff events in the future, the previous results have been intersected

with the projected population of urban agglomerations. These results have been obtained

by Kii (2021) by using an urban growth model in the context of the SSPs trajectory.

Fore sake of completeness, Figure C.1 in the Appendix C shows the spatial distribution of

urban agglomerations by the population scale different scenarios. The projection of the

population for SSP1-2.6 for the year 2010 has been compared with the historical exper-

iment outcomes, while the expected population at 2100 at the different SSPs has been

used for the projected results in the compounding.

To intersect the results, only the cities within a radius of 100 km from the centroid of

the pixels in which more than four GCMs agree with the presence of compounding have
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been considered. Figure 4.21 shows the number of people (i.e., in million) who already live

or might live in areas characterized by a certain percentage of the compounding according

to the GCMs experiments. The majority of the population is currently concentrated

within areas that are impacted by 20 – 35% of the compound and the distribution is

positively skewed, ranging from 0 to 80%. According to the SSP scenarios, at the end of

the 21th century an increasing number of people is projected to live in areas characterized

by high values of the compound of heat stress and runoff. Moreover, the higher the

emissions, the greater the shift of these distributions towards high percentages. Indeed,

under the SSP2-4.5, SSP3-7.0 and SSP5-8.5, most of the population is expected to live

in areas characterized by 100% of extreme runoff following heat stress. Furthermore,

the overall impact can be higher since only non-rural areas have been considered, where

heat stress events alone generally strike harder due to the urban environment (Zhao et al.,

2014; Li et al., 2020).

Figure 4.21: Population exposed to the compounding of heat stress – runoff for the GCMs
historical experiment and SSP scenarios. Colors from yellow to purple represent the number of
people that might be exposed to a certain percentage of compound heat stress – runoff events,
while dark gray is representative of no data values
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4.2.5. Final considerations on the heat stress - flooding com-

pound events

In this chapter, the projected changes in the compounding of heat stress and flooding,

which could represent a serious concern for human health, economy, and society, have been

analyzed, identifying the areas of the globe where these two hazards are connected. The

main findings can be summarized as follows:

• in the mid-latitudes, heat stress tends to precede most of the summer floods, repre-

senting a weather precursor for these events; large areas in the central and eastern

United States, the central-eastern part of the South America, India, the eastern

China and the east coast of Australia and South Africa are particularly involved in

this type of compounding;

• the GCMs’ ensemble from the CMIP6 reproduces the compound of heat stress and

runoff over the period 1979–2014 reasonably well, especially when their average is

considered;

• considering the wet bulb temperature instead of the dry bulb temperature and the

relative humidity in a separate form reduces the uncertainty in the modulator of the

compound; moreover, both the POT procedure to identify the extreme runoff and

the use of the percentage as a proxy for the compounding are useful in reducing the

systematic biases that can affect individual models;

• there is an asymmetry in the future growth of the number of heat stress and extreme

runoff events, with the first featuring increases at a faster rate than the second one;

this is mainly due to the fact that the forcings used to simulate the climate scenarios

at different SSP-RCP directly affect temperature and relative humidity, while the

runoff is also constrained by the land component;

• the SSP projections for the end of the 21st century show an increase in the percent-

age of the compounding in the different subzones considered, reaching up to 100%

in large areas of United States, South America, India and China, and setting the

stage for a growing risk in societal and economic related issues;

• the potential societal impacts of this compound hazard are projected to impact a

large segment of the population living in urban areas.

Based on the SSP projections, the strengthening of the compounding is expected

to exacerbate regardless of the scenario and to expand to areas where it did not play

a major role in the past (e.g., Europe and Russia). This is alarming, given the large

differences between SSP1 (i.e., “sustainability”) and the SSP5 scenarios (i.e., “fossil fueled

development”) in terms of sustainable turnaround in policies and behavior; it can be also

considered as a further proof of how difficult it is to counteract the inertia of climate
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change. Even being able to curb the CO2 emissions abruptly, several future generations

would continue to experience the effects of global warming (Gillett et al., 2011; Frölicher

et al., 2014). Therefore, these results highlight the importance of the need to immediately

act to mitigate future climate impacts, and to adapt and increase our resilience against

these events in response to climate change.



Conclusion

For about fifty years climate change has been, and still today is, one of the most relevant

and debated topics for the scientific community. The signals, impacts, and effects of

climate change appear to be obvious and we have been hearing more and more about

matters such as global warming, rising of oceans and seas temperature, rising of global

sea level, decreasing of arctic sea ice extent, melting of glaciers, increasing of extreme

events (e.g., heavy rainfall events and/or droughts), and so on.

The research activity developed and presented in this doctoral thesis is framed within

the context of studying the effects of climate change on the extreme precipitation regime.

This topic is of central importance not only in the context of research, but also for a multi-

tude of other purposes. From an engineering perspective, for example, knowing whether,

how, and where extreme precipitation events are changing would allow to improve the

state-of-the-art of the modeling frameworks and the design criteria that can increase the

resilience of hydraulic infrastructure for years to come. A clear and comprehensive un-

derstanding of these phenomena could bridge the gap between the research community

and civil society, aiding and supporting the latter in advancing rapidly toward the climate

change adaptation phase. Moreover, governments could and should also benefit from this

knowledge, so as to define clear objectives on climate policies to be pursued at national

and international levels, establishing a synergy between society and stakeholders.

At the academic level, there is a large scientific literature on the effects of climate

change on extreme rainfall events. Most of these papers have recently supported the find-

ings of the "Sixth Assessment Report" (AR6) published in 2021 by the Intergovernmental

Panel on Climate Change (IPCC). This report is lapidary in stating that the frequency

and intensity of extreme precipitation events are likely to have increased on a global scale

in most regions with a good network of observations, suggesting that, on a continental

scale, especially North America, Europe, and Asia have been particularly prone to these

changes. Indeed, the increase in the frequency and magnitude of extreme events is one

of the consequences that is most attributed to climate change and, therefore, needs to be

further investigated.

Given this premise, the study of changes in extreme precipitation characteristics

was initially conducted focusing on Sicily. The island, being located in the center of
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the Mediterranean area, can be considered an outpost for researching the signatures of

climate change. In addition, it has an almost unique characteristic, namely the presence of

the Sicilian Agrometeorological Information System (SIAS) precipitation database, which

consists of about 100 rain gauge stations, homogeneously distributed throughout the

regional territory, that have been recording data at 10-minute temporal resolution since

2002. This has made it possible to focus on intense precipitation events at the sub-hourly

scale. In particular, by applying the quantile regression technique to the rainfall series

aggregated at different time scales, it has been observed that especially extreme rainfall

at short durations exhibit increasing and statistically significant trends for most of the

island.

From these considerations a question arises: can the concept of stationarity (under-

lying the definition of return time) still be a cornerstone in hydrological modeling? To

answer this question, the rainfall Depth-Duration-Frequency (DDF) curves derived from

this new dataset were compared with those from the last regional frequency analysis car-

ried out for the island. This last was conducted from data collected mainly in the past

century. Again, there was a noticeable underestimation of the shortest return periods (5

and 10 years) at the lowest durations, which perfectly matches the apparent "physiolog-

ical insufficiency" of the drainage systems that has been observed in recent years among

Sicilian cities.

The intense short-lived phenomena that generally induce flash floods in urban envi-

ronments are triggered by highly energetic convective processes that are exhausted in a

very short time. Nevertheless, they are able to pour large volumes of rain on the ground.

For this very reason, the last step in the local study of extreme rainfall involved the im-

provement and the application of a statistically based algorithm for separating convective

and stratiform precipitation. In this case, it was observed that the highest amounts of

convective rainfall characterized the areas of Catania and Messina, given the presence of

the Peloritani and Etna mountains. Indeed, these orographic barriers enhance the uplift

of warm and humid air masses coming from North Africa, which, cooling rapidly, spill

large amounts of water in these areas.

However, local changes in the characteristics of extreme rainfall are often influenced

by changes in the large-scale regime. In other words, it is appropriate to know what is

happening on a global scale in order to have a complete picture of the phenomena being

studied on a regional or local scale. Furthermore, in order for people to be prepared

for the concepts of adaptation and resilience to climate change, it is necessary that the

study be conducted in parallel on two different time fronts: the past and the future.

While it is obvious that the evolution of the past climate can be reconstructed through

observations, it is more complex to think about how one can assess the climate condi-
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tion in the middle or, even, the end of the century. In this case, what can be used are

the outputs of the global climate models (GCMs). The latter are physical-mathematical

models that describe the interactions among the major components of the climate system

(atmosphere, landmasses, oceans, etc...) through quantitative methods based on solv-

ing differential equations. These models are forced by combining scenarios that define

specific greenhouse gas concentrations in the atmosphere (Representative Concentration

Pathways, RCPs) and scenarios that represent different future socioeconomic pathways

(Shared Socioeconomic Pathways, SSPs). The RCPs quantify GHG concentrations in

terms of radiative forcing, i.e., the warming effect on the Earth caused by these concen-

trations, while SSPs are useful for understanding how human activities and socioeconomic

policies might influence GHG emissions and, consequently, climate change. Their com-

bination provides a more comprehensive view of how climate might respond in different

socio-economic and emission situations.

Starting from these considerations and using the outputs of different GCMs, it has

been analyzed how the characteristics of precipitation extremes might change at the end

of the 21st century. The analysis has been conducted focusing not only on the intensity of

events, but also considering the seasonality of the rainfall regime, which is crucial for water

resource management. Representing two sides of the same coin, changes in the intensity

and seasonal occurrence of heavy rainfall have been studied using a peculiar branch of

copulae, namely bivariate statistical models capable of modeling the correlation between

linear (the magnitude) and circular (the seasonality) variables. Globally, it has been

observed that as the climate scenario worsens, extreme events may not only become more

severe by the end of this century but that they may also occur with greater frequency

later in the season. Moreover, for some areas, such as the southeastern United States

and central Africa, this shift in the regime of extremes could be due to changes in the

predominant weather systems that generate extreme precipitation events.

Among the main causes of the increase in the magnitude and frequency of extreme

rainfall, it has been shown that global warming plays a key role. In fact, according to

the Clausius-Clapeyron relationship, an increase in air temperature leads to an increased

capacity of the air to hold water vapor and, at the same time, increases the possibility

of convection in the atmosphere. These phenomena, therefore, could induce intense pre-

cipitation and, in turn, even more destructive flood events. In the context of research on

compound events, i.e., events that include the combination of two or more meteorological

or climatic phenomena occurring simultaneously or in close succession, the last part of

this thesis is based on the compounding of heat stress and flood events. Specifically, it

has been observed how heat stress preceded extreme runoff events in large areas of the

United States, Asia, South America, and Australia between 1979 and 2014. Examining
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the outputs of an ensemble of GCMs, this correlation is likely to be exacerbated in the

future regardless of the RCP-SSP scenario, mainly due to future temperature increases.

By intersecting these results with future projections for population growth in major urban

centers, it has been possible to observe how a large segment of the global population could

be subjected to increasing risk from these compound phenomena in the future.
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Table A.1: SIAS rain-gauges list with WGS84 coordinates and heights

Station Name ID Longitude Latitude Height

Agrigento Scibica 683 13.55 37.34 225

Agrigento Mandrascava 684 13.64 37.24 40

Aragona 685 13.62 37.46 305

Bivona 686 13.42 37.6 350

Cammarata 687 13.74 37.63 379

Monte Cammarata 688 13.61 37.62 1600

Canicattì 689 13.77 37.36 475

Licata 690 13.89 37.16 80

Sambuca di Sicilia 691 13.02 37.66 300

Naro 692 13.78 37.29 290

Ribera 693 13.27 37.44 30

Sciacca 694 13.04 37.59 90

Caltanissetta 695 14.05 37.43 350

Delia 696 13.93 37.35 360

Gela 697 14.33 37.16 70

Butera 698 14.11 37.14 54

Mazzarino 699 14.21 37.3 480

Mussomeli 700 13.83 37.56 375

Riesi 701 14.09 37.28 300

S. Caterina Villermosa 702 14.1 37.58 630

Sclafani Bagni 703 13.85 37.71 497

Adrano 704 14.82 37.68 400

Bronte 705 14.79 37.75 424

Catania 706 15.07 37.44 10

Continued on next page
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Table A.1 – continued from previous page

Station Name ID Longitude Latitude Height

Riposto 707 15.2 37.69 50

Linguaglossa 708 15.13 37.83 590

Maletto 709 14.87 37.83 1040

Mazzarrone 710 14.56 37.1 300

Mineo 711 14.73 37.32 205

Paternò 712 14.85 37.52 100

Pedara 713 15.05 37.64 803

Ramacca Pollaci 714 14.81 37.38 50

Randazzo 715 14.98 37.89 680

Caltagirone 716 14.59 37.24 260

Aidone 717 14.47 37.45 350

Enna 718 14.18 37.52 350

Gagliano Castelferrato 719 14.5 37.7 580

Leonforte 720 14.38 37.61 340

Nicosia 721 14.42 37.76 700

Piazza Armerina 722 14.37 37.32 540

Caronia Buzza 723 14.49 38.03 50

Caronia Pomiere 724 14.49 37.9 1470

Cesarò Vignazza 725 14.68 37.84 820

Cesarò Monte Soro 726 14.69 37.93 1840

Fiumedinisi 727 15.38 38.04 440

Leni (Salina) 728 14.83 38.56 315

Messina 729 15.56 38.26 420

Militello Rosmarino 730 14.67 38.04 460

Mistretta 731 14.34 37.86 690

Taormina 732 15.23 37.85 60

Naso 733 14.79 38.11 468

Novara di Sicilia 734 15.14 38.03 750

Patti 735 15.02 38.14 88

Pettineo 736 14.29 37.97 210

San Fratello 737 14.62 37.96 1040

San Pier Niceto 738 15.36 38.13 460

Torregrotta 739 15.36 38.19 26

Alia 740 13.75 37.74 560

Continued on next page
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Table A.1 – continued from previous page

Station Name ID Longitude Latitude Height

Caltavuturo 741 13.91 37.79 810

Camporeale 742 13.1 37.91 460

Castelbuono 743 14.09 37.97 430

Contessa Entellina 744 13.04 37.73 200

Corleone 745 13.25 37.8 450

Lascari 746 13.92 38 55

Mezzojuso 747 13.5 37.85 390

Misilmeri 748 13.44 38.03 160

Monreale Vigna Api 749 13.2 38.03 612

Palermo 750 13.33 38.13 50

Partinico 751 13.09 38.07 120

Gangi 752 14.19 37.82 833

Petralia Sottana 753 14.01 37.63 720

Polizzi Generosa 754 14 37.83 650

Termini Imerese 755 13.61 37.97 350

Ragusa 756 14.68 36.96 650

Comiso 757 14.59 37.02 220

Ispica 758 14.99 36.73 30

Modica 759 14.9 36.88 300

Santa Croce Camerina 760 14.5 36.84 55

Scicli 761 14.68 36.76 51

Acate 762 14.4 36.98 60

Augusta 763 15.15 37.28 90

Siracusa 764 15.16 37.06 90

Francofonte 765 14.89 37.25 100

Lentini 766 14.93 37.34 50

Noto 767 15.06 36.85 30

Pachino 769 15.1 36.68 50

Palazzolo Acreide 770 14.87 37.06 640

Calatafimi 772 12.88 37.86 299

Castellammare del Golfo 773 12.89 38.01 90

Castelvetrano 774 12.85 37.65 120

Erice 775 12.59 38.03 590

Marsala 776 12.57 37.8 120

Continued on next page
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Table A.1 – continued from previous page

Station Name ID Longitude Latitude Height

Mazara del Vallo 777 12.68 37.68 30

Salemi 778 12.72 37.82 280

Trapani Fontanasalsa 779 12.55 37.94 50

Trapani Fulgatore 780 12.66 37.95 180

Montalbano Elicona 1380 14.97 37.99 1250

Giuliana 1381 13.23 37.63 260

Prizzi 1382 13.43 37.72 990

Agira 1383 14.5 37.62 467

Antillo 1384 15.26 37.98 796

Calascibetta 1385 14.23 37.67 650

Monreale Bifarera 1386 13.37 37.88 730

Ramacca Giumarra 1404 14.63 37.48 263

Pantelleria 1424 11.95 36.79 161

Linguaglossa Etna Nord 1444 15.03 37.79 1875

Table A.2: SIAS rain-gauges used in Section 2.2.2, 2.2.3 and 2.2.4

Station Name ID Section 2.2.2 Section 2.2.3 Section 2.2.4

Agrigento Scibica 683 X X X

Agrigento Mandrascava 684 X X X

Aragona 685 X X X

Bivona 686 X X X

Cammarata 687 X X X

Monte Cammarata 688 X

Canicattì 689 X X X

Licata 690 X X X

Sambuca di Sicilia 691 X

Naro 692 X

Ribera 693 X X X

Sciacca 694 X

Caltanissetta 695 X X X

Delia 696 X X X

Gela 697 X

Continued on next page
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Table A.2 – continued from previous page

Station Name ID Section 2.2.2 Section 2.2.3 Section 2.2.4

Butera 698 X

Mazzarino 699 X X X

Mussomeli 700 X X X

Riesi 701 X X X

S. Caterina Villermosa 702 X

Sclafani Bagni 703 X X X

Adrano 704 X

Bronte 705 X X X

Catania 706 X X X

Riposto 707 X X X

Linguaglossa 708 X X X

Maletto 709 X X X

Mazzarrone 710 X X X

Mineo 711 X X X

Paternò 712 X X X

Pedara 713 X X X

Ramacca Pollaci 714 X

Randazzo 715 X X X

Caltagirone 716 X X X

Aidone 717 X

Enna 718 X X X

Gagliano Castelferrato 719 X

Leonforte 720 X

Nicosia 721 X X X

Piazza Armerina 722 X X X

Caronia Buzza 723 X X X

Caronia Pomiere 724 X

Cesarò Vignazza 725 X X X

Cesarò Monte Soro 726 X

Fiumedinisi 727 X X X

Leni (Salina) 728 X

Messina 729 X X X

Militello Rosmarino 730 X X X

Mistretta 731 X X X

Continued on next page
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Table A.2 – continued from previous page

Station Name ID Section 2.2.2 Section 2.2.3 Section 2.2.4

Taormina 732 X

Naso 733 X X X

Novara di Sicilia 734 X X X

Patti 735 X X X

Pettineo 736 X X X

San Fratello 737 X X X

San Pier Niceto 738 X X X

Torregrotta 739 X X X

Alia 740 X X X

Caltavuturo 741 X

Camporeale 742 X X X

Castelbuono 743 X X X

Contessa Entellina 744 X X X

Corleone 745 X X X

Lascari 746 X X X

Mezzojuso 747 X X X

Misilmeri 748 X X X

Monreale Vigna Api 749 X X X

Palermo 750 X X X

Partinico 751 X X X

Gangi 752 X X X

Petralia Sottana 753 X

Polizzi Generosa 754 X X X

Termini Imerese 755 X X X

Ragusa 756 X X X

Comiso 757 X X X

Ispica 758 X X X

Modica 759 X

Santa Croce Camerina 760 X X X

Scicli 761 X X X

Acate 762 X X X

Augusta 763 X

Siracusa 764 X X X

Francofonte 765 X X X

Continued on next page
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Table A.2 – continued from previous page

Station Name ID Section 2.2.2 Section 2.2.3 Section 2.2.4

Lentini 766 X X X

Noto 767 X

Pachino 769 X X X

Palazzolo Acreide 770 X X X

Calatafimi 772 X

Castellammare del Golfo 773 X X X

Castelvetrano 774 X

Erice 775 X X X

Marsala 776 X

Mazara del Vallo 777 X X X

Salemi 778 X X X

Trapani Fontanasalsa 779 X X X

Trapani Fulgatore 780 X X X

Montalbano Elicona 1380 X

Giuliana 1381 X

Prizzi 1382 X

Agira 1383 X

Antillo 1384 X

Calascibetta 1385 X

Monreale Bifarera 1386 X

Ramacca Giumarra 1404 X

Pantelleria 1424 X

Linguaglossa Etna Nord 1444 X
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Figure A.1: Empirical PDFs of rainfall intensity data for Palermo’s station at a) 10-minute, b)
1-hour and c) 24-hour durations
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Figure A.2: Empirical CDFs of the trend magnitude for 10, 20, 30, 40 minutes and 1, 3, 6, 12
and 24 hours at a) 0.2, b) 0.5, c) 0.9, d) 0.95 and e) 0.99 quantile. ECDFs are representative of
the positive and negative trend magnitude with a significance level of 0.1. The sample size for
any quantile-duration combination is reported in the legend of each panel
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Figure A.3: Spatial distribution of the gauges under study and magnitude (color), expressed in
mm/h/y, direction (triangles orientation) and significance (triangle size) from QR at 0.2, 0.5,
0.9, 0.95, 0.99 quantiles for 20-minute, 30-minute and 40-minute durations. The bold letters,
A-E, stand for the quantiles, while the bold numbers 4-6, indicate the durations
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Figure A.4: Spatial distribution of the gauges under study and magnitude (color), expressed in
mm/h/y, direction (triangles orientation) and significance (triangle size) from QR at 0.2, 0.5,
0.9, 0.95, 0.99 quantiles for 3-hour, 6-hour and 12-hour durations. The bold letters, A-E, stand
for the quantiles, while the bold numbers 7-9, indicate the durations
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Table A.3: Global Moran’s Index estimated value, Z -score, p-value and sample size for 0.2, 0.5,
0.9, 0.95, and 0.99 quantiles and for the whole durations under study. All cases in which the
p-value is less than 0.1 but the sample size is less than 25 are indicated with an italic font,
while those cases in which the p-value is less than 0.1 and the sample size is greater than 25
are written in bold-italic font. Normal font face is related, instead, to those cases in which the
spatial distribution of the trend magnitude is the result of a random spatial process (p-value
greater than 0.1)

0.2 quantile

10 min 20 min 30 min 40 min 1 h 3 h 6 h 12 h 24 h

Moran’s I 0.0442 -0.0368 0.0332 -0.4138 0.2722 -0.0475 -0.1668 0.1224 0.0202

Z-score 0.5108 0.0983 0.4965 -2.4335 1.6065 0.2671 -1.0277 0.8337 0.4338

p-value 0.6095 0.9217 0.6195 0.0150 0.1082 0.7894 0.3041 0.4045 0.6645

Sample Size 28 20 24 20 17 15 19 12 17

0.5 quantile

10 min 20 min 30 min 40 min 1 h 3 h 6 h 12 h 24 h

Moran’s I -0.0939 0.2174 0.0687 -0.2110 -0.5349 0.1059 0.3401 0.0665 -0.2730

Z-score -0.4451 1.0868 0.7761 -0.0413 -1.4191 1.0091 1.9193 0.6519 -0.9623

p-value 0.6562 0.2771 0.4377 0.9670 0.1559 0.3129 0.0549 0.5145 0.3359

Sample Size 25 18 12 6 12 16 22 17 14

0.9 quantile

10 min 20 min 30 min 40 min 1 h 3 h 6 h 12 h 24 h

Moran’s I 0.0854 0.0679 0.3226 0.3245 0.1494 0.2432 0.2036 0.4244 0.6666

Z-score 1.3501 1.3555 3.0707 3.7794 2.1511 2.9731 1.9076 2.9303 3.5955

p-value 0.1770 0.1753 0.0021 0.0002 0.0315 0.0029 0.0564 0.0034 0.0003

Sample Size 24 36 37 37 28 23 18 17 15

0.95 quantile

10 min 20 min 30 min 40 min 1 h 3 h 6 h 12 h 24 h

Moran’s I 0.2766 0.2718 0.1517 0.1777 0.1744 0.0783 0.1407 0.5767 0.4674

Z-score 2.9122 2.8582 2.1174 2.5842 1.7659 0.8967 1.8056 5.0331 2.8604

p-value 0.0036 0.0043 0.0342 0.0098 0.0774 0.3699 0.0710 0.0000 0.0042

Sample Size 44 46 36 34 26 16 15 16 17

0.99 quantile

10 min 20 min 30 min 40 min 1 h 3 h 6 h 12 h 24 h

Moran’s I 0.0501 0.3047 -0.0260 0.2727 -0.1462 -0.1967 1.2306 0.1711 0.3266

Z-score 1.0981 2.7095 0.1715 1.8055 -0.3092 -0.4255 3.3606 1.2302 0.8874

p-value 0.2722 0.0067 0.8638 0.0710 0.7571 0.6705 0.0008 0.2186 0.3749

Sample Size 43 29 25 22 14 13 10 5 5



A| Appendix: supplementary material for Chapter two 193

Figure A.5: Local Moran analysis at 0.2, 0.5, 0.9, 0.95, 0.99 quantiles for 10-minute, 1-hour and
23-hour durations. The bold letters, A-E, stand for the quantiles, while the bold numbers 1-3,
indicate the durations. The LISA is applied to both the positive and negative trend magnitudes
with a significance level of 0.1. Red and blue circles are relative to High-High (HH) and Low-Low
(LL) clustering cases, respectively, and characterized by a p-value lower than 0.1. The significant
outliers are marked with light blue and pink diamonds for Low-High (LH) and High-Low (HL)
clustering cases, respectively. The crosses represent those locations in which the significance
exceed the level of 0.1
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Figure A.6: Spatial distribution of the occurrence of convective events (expressed as number of
convective events in a year) extracted by using the monthly median Icr for 0.6 mm·20min-1 and
considering λ=50%. Each panel is representative of a different year in the period 2002 – 2020.
The colored points depict the gauges interested by at least one convective event, the circle-cross
symbol stands for the working gauges where no convective events have been detected, while the
plus sign symbolizes the not working stations in that year
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Figure A.7: Same of Figure A.6 but for the annual percentage of convective rainfall
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Figure A.8: Spatial distribution of the occurrence of convective events (expressed as number of
convective events in a year) extracted by using the monthly median Icr for 0.6 mm·20min-1 and
considering λ=75%. Each panel is representative of a different year in the period 2002 – 2020.
The colored points depict the gauges interested by at least one convective event, the circle-cross
symbol stands for the working gauges where no convective events have been detected, while the
plus sign symbolizes the not working stations in that year
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Figure A.9: Same of Figure A.8 but for the annual percentage of convective rainfall
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Figure B.1: Intergovernamental Panel on Climate Change WGI reference regions from the
Fifth Assessment Report (AR5) (Stocker et al., 2014)
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Figure C.1: From Kii (2021): Spatial distribution of urban agglomerations by the population
scale for 2010 (a) and projections for 2100 under scenarios SSP1 (b) and SSP2 (c) respectively
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