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Abstract
We discuss a scheme for macrorealistic theories of the Leggett–Garg form (Leggett and Garg
1985 Phys. Rev. Lett. 54 857). Our scheme is based on a hybrid optomechanical system. It seems
reasonable to test these inequalities with an optomechanical system, since in an optomechanical
cavity it is possible to create non-classical states of the mirror through a projective measurement
on the cavity field. We will present the protocol to generate such non-classicality for a general
optomechanical cavity and after we will carry out a theoretical test for one of the possible
formulations of these inequalities using a hybrid optomechanical system. Specifically, the
inequality will be investigated for an harmonic oscillator coupled to a two-level system, which
replaces the light field of the cavity. The aim is to reproduce, with this system, the evolution of a
single spin-1/2 for which the inequality is violated; this is achievable through the conditioning
of the two-level system which will be used as an ancilla.

Keywords: Leggett–Garg, optomechanics, foundations, temporal correlations

(Some figures may appear in colour only in the online journal)

1. Introduction

Contrarily to what one might naively believe, the observation of
distinct quantum superpositions is an insufficient step to exclude
a realistic picture at the macroscopic level. Temporal Bell-like
inequalities such as those originally proposed by Leggett and
Garg [1] provide the avenue to ascertain the presence of mac-
roscopic quantum coherence in the state of a given system.

Such inequalities make use of the framework built around
two assumptions that, together, define classical (macroscopic)
reality. The first claims that measurements can be made on a
system without affecting its subsequent evolution. This

embodies the ‘non-invasive measurability’ assumption. The
second states that, at any instant of time, the system itself will
be in a well-defined state among those it has available, thus
providing the ‘macroscopic realism’ assumption. The simul-
taneous validity of such assumptions constrains very strongly
the values that the two-time auto-correlation function of sui-
tably chosen observables of the system can take.

The values taken at different times by such function can
be organized in the form of inequalities [1], akin to Bell’s
ones, providing benchmarks for any dynamics conforming to
our classical intuition. The violation of such inequalities rules
out the framework defined by the two assumptions above and
that is commonly intended as macrorealism. The exper-
imental falsification of macrorealistic inequalities has been
recently reported in setups based on linear optics [2, 3],
nuclear magnetic resonance [4–6], superconducting quantum
circuits [7], spin impurities in silicon [8], a nitrogen-vacancy
defect in diamond [9], and a single atom loaded in an
optical lattice and subjected to quantum-walk dynamics
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[10, 11]. Macrorealistic arguments have been used in [12] to
investigate non-classicality of excitation-transfer processes in
light-harvesting complexes. Experimental tests of the LG
inequalities, going beyond two-level systems, have been
implemented with continuous modular variable measurements
of the motional degree of freedom of a trapped ion [13].

However, to date, the falsification of macrorealistic
inequalities has addressed nearly exclusively microscopic sys-
tems. A test fit to address non-classical features in the dyna-
mical evolution of genuinely mesoscopic/macroscopic systems
is not only much needed but also fundamentally interesting: the
macroscopicity of a system increases with the mass of the
system itself and with the degree of distinguishability of the
components of a superposition state, which might require, for
instance, large spatial separations achievable only in truly large-
scale systems. Only few recent efforts have moved in this
direction, using dichotomic measurement of oscillators [14].

A promising avenue towards the narrowing of the exper-
imental falsification of macrorealistic theories is provided by
quantum optomechanics, where the motion of massive
mechanical systems is driven, controlled and detected by their
suitably arranged coupling to optical modes of a cavity [15].
Schemes for the preparation of large-size superposition states of
the mechanical system have been drawn [16, 17]. Progress
towards the control of hybrid systems embedding effective two-
level systems into otherwise standard optomechanical platforms
offer additional leverage potential for the engineering of non-
classical states of massive mechanical systems [18–23].

This paper addresses precisely this point by proposing a
scheme that, by making use of controlled dynamics in a
hybrid optomechanical system and a special information
encoding protocol inspired by coherent state-based quantum
computing [24], is able to falsify macrorealistic inequalities of
the Leggett–Garg (LG) form.

The remainder of this manuscript is organized as follows:
in section 2 we review the arguments behind the construction of
a LG-like inequality for a single spin-1/2 particle. This will
provide the benchmark system for the analysis that we present
in later sections. Section 3 introduces the hybrid optomecha-
nical platform that we use to test macrorealism in the dynamics
of a genuinely massive mechanical system. We discuss both the
effective dynamical map operated on the mechanical system
and the special encoding of information that we propose to
make our scheme akin to the spin-1/2 case of section 2. The
falsification of a macrorealistic inequality is then discussed in
section 4. Finally, in section 5 we draw our conclusions.

2. LG inequalities

Here, we briefly discuss the form of the macrorealistic
inequality addressed in our study and provide an explicit
example based on the dynamics of a simple spin-1/2 particle.

Starting from the assumptions of non-invasive measur-
ability and macrorealism per se, Leggett and Garg predicted
that the two-time autocorrelation functions for a dichotomic
observable Q̂ (whose only measurement outcomes are

Î + -Q t 1, 1i( ) { }) of any physical system are constrained to
satisfy the LG inequality [1]

º + + - K C C C C 2. 101 12 23 03∣ ∣ ( )

Here, Cij is the two-time correlation function between two
measurements at discrete times ti and tj, defined as

å å=
= =

C Q Q P . 2ij
Q Q

i j ij
Q Q

1 1

,

i j

i j ( )

Here, Pij
Q Q,i j is the joint probability of obtaining the outcomes

= Q 1i ( = Q 1j ) at the time ti (tj). Equation (1) thus
entails a sequence of measurements performed at times
ti (i=1,..,3). In fact, the measurement at the initial time t0
can be absorbed in the process of initial state preparation, and
thus bypassed. Any classical (and thus macrorealistic)
dynamics results in a function K that satisfies equation (1)
whose violation signals the departure from the framework set
by the assumptions underpinning macrorealism. Suitable
quantum dynamics violates the macrorealistic constraint, as
will be explicitly shown in section 2.1. A simple derivation of
the constraint set by equation (1) is given in reference [25],
while in [26] the links between divisibility of the underlying
dynamics and the violation of temporal Bell-like inequalities
akin to equation (1) have been investigated.

2.1. Example: falsification of macrorealistic theories using a
two-level system

Let us now provide a benchmark example of quantum
dynamics that violates the macrorealistic boundary. For the
purpose of this work, it is enough to consider a simple two-level
system (such as a spin-1/2 particle) evolving according to the
Hamiltonian ws=H x

ˆ ˆ and probed by the dichotomic obser-
vable s=Q z

ˆ ˆ . Heresjˆ ( j=x, z) is the j-Pauli matrix of the two-
level system and ω is the frequency splitting between the logical
states  ñ1∣ such that  ñ =  ñQ 1 1ˆ∣ ∣ . We assume the initial
state of the system to be + ñ1∣ , although any other initial state
would result in the same conclusions as the following.

The two-time autocorrelation function Cij reads explicitly

= + - -

= - + -

= - + - -

++ -- +- -+

+ + + - + - - - + -

+ + + - + + - - + -

C P P P P

P P P P P P

P P P P P P1 . 3

ij ij ij ij ij

j ij ij j ij ij

j ij ij j ij ij

( ) ( )

( ) ( )( ) ( )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

Here we have streamlined the notation by setting
º abP Pij

Q Q
ij

,i j with α, β=±1. Moreover, Pi is the prob-

ability to have outcome ±1 at time ti, while a bPij
∣ is the

conditional probability to get outcome α at time ti provided
that outcome β was obtained at measurement time tj. We have
used the completeness relation of probability + =+ -P P 1i i .

While, in principle, the instants of time at which the
measurements should be performed are entirely arbitrary, it is
convenient to take equally spaced values of tj ( j=0,..,3)
and call w t- = D+t tj j1( ) . Under such conditions, we have

t= = = DC C C cos 201 12 23 ( ) and t= DC cos 603 ( ), so that

t t tD = D - DK 3 cos 2 cos 6 . 4( ) ∣ ( ) ( )∣ ( )

The plot of K(Δτ) against the—so far undetermined—value of
Δτ is given in figure 1, which reveals the existence of time
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windows within which tD ÎK 2, 2 2( ) [ ]. The shortest time
at which the maximum violation of the macrorealistic bound
is achieved is Δτ=π/8. This is remarkable as, for this value,
the state resulting from the evolution t= D -ts- De Icosi x ( )ˆ

t sDi sin x( ) ˆ is + ñ - - ñi0.924 1 0.383 1∣ ∣ , i.e. a state with
quantum coherence—defined in terms of the l1-norm of coher-
ence [27]—as small as 0.708.

We will use this example as a benchmark for the protocol
based on optomechanical dynamics illustrated in section 3.

3. Dynamics and control of a hybrid optomechanical
system

In this section we will first illustrate the hybrid optomecha-
nical setting that we will use for the design of the test of
macroscopic realism at the core of this work. We will then
draw a comparison between the dynamics resulting from the
form of control that we propose and what has been described
in section 2.1.

3.1. A hybrid optomechanical system

Although various controlled-coupling schemes can be con-
sidered, depending on the specific platform that one aims to
manage, the system that we consider here is based on the
tripartite coupling between a three-level atom in a Λ config-
uration, a single-mode optical cavity pumped by a laser field
at frequency ωp and the movable mirror of an optomechanical
cavity [18]. The atom is driven by an external field at fre-
quency ωi that enters the cavity radially, as in figure 2. We
label + ñ - ñ1 , 1A A{∣ ∣ } the states belonging to the fundamental
atomic doublet and ñe A∣ the excited state. The atomic trans-
ition + ñ « ñe1 A A∣ ∣ (- ñ « ñe1 A A∣ ∣ ) is guided, at rate Ω (g), by
the radial field (the cavity field). The detuning between each
transition and the respective driving field is δ, while

w wD = -c p is the cavity-pump detuning. The movable
mirror is schematized as a harmonic oscillator with

frequency ωm, coupled to the cavity field through radiation-
pressure [15]. We assume the conditions d gW g e  
with ge the decay rate from the atomic excited state, such
that an off-resonant two-photon Raman transition is
realized. In the rotating frame defined by the operator
w w w+ ñá + - ñá--+a a e e 1 1p i A Aˆ ˆ ∣ ∣ ∣ ∣† , where â (â†) is the

annihilation (creation) operator of the cavity field and b̂ (b̂†)
is the corresponding operator of the mirror, the Hamiltonian
of the system reads = + + + + +H H H H H Hsys A R M C MC

ˆ ˆ ˆ ˆ ˆ ˆ
HCP
ˆ , where

d w= ñá = = DH e e H b b H a a, , , 5A A M m Cˆ ∣ ∣ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

c= +H a a b b , 6MCˆ ˆ ˆ ( ˆ ˆ) ( )† †

= W ñá+ + - ñá +dH e ge a e h c1 1 . . 7R A
i t

Aˆ ∣ ∣ ˆ ∣ ∣ ( )†

Here, HA
ˆ is the atomic part of the energy, HR

ˆ is the Raman
Hamiltonian, HM

ˆ (HC
ˆ ) is the free Hamiltonian of the mirror

(cavity field) and HMC
ˆ is the radiation-pressure term.

Finally, HCP
ˆ is the cavity-pump interaction. We also take
cD g, , so that both the atomic excited state and the

cavity field are only virtually populated and can be elimi-
nated from the dynamics of the system. This leads to the
effective Hamiltonian

h= + ñá+ +H b b1 1 . 8eff A Mˆ ∣ ∣ ( ˆ ˆ) ( )†

with h c d= W Dg2 2 2 2. This derivation can be found in
reference [18]. Through the two-photon Raman transition,
the virtual quanta resulting from the atom-cavity field
interaction are transferred (by the bus embodied by the
cavity field) to the mechanical system. Therefore, the state
of the latter experiences a displacement (in phase space)
conditioned on the state of the effective two-level atomic
system resulting from the elimination of the excited state.
Remarkably, this mechanism allows for the independent
preparation of the atomic and mechanical subsystems: the
mechanism in equation (8) can be turned off by a suitably
large two-photon Raman detuning δ.

Figure 1. Leggett–Garg function K against the time interval Δτ. The
function is periodic in time with period π/2, and the macrorealistic
bound of 2 is violated in the time interval 0<Δτ<0.598 31.
Maximum violation ( =K 2 2 ) is achieved for Δτ=π/8.

Figure 2. Panel (a) shows the scheme of principle for the engineering
of the effective interaction Hamiltonian in equation (8): an
optomechanical cavity embeds a three-level atom whose energy
scheme is shown in panel (b). The parameters entered in the figure
are introduced in the body of the manuscript. The energy difference
between states + ñ1 A∣ and - ñ1 A∣ is w-+. We show the symbol used for
an acousto-optic modulator (AOM) that can be used to generate the
radial field (driving one of the atomic transitions) directly from the
pump that drives the optomechanical cavity.
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3.2. Time evolution map

Having introduced the effective model that we aim at
exploiting, we now describe the controlled map that will be
used to mimic the dynamics of the spin-1/2 particle illu-
strated in section 2.1.

We assume the initial state of the atomic two-level sys-
tem to be an arbitrary superposition y ñ = - ñ +-c 1A A0∣ ∣

+ ñ+c 1 A∣ of the energy states  ñ1 A∣ ( + =- +c c 12 2∣ ∣ ∣ ∣ ), while
the analogous state of the mechanical system is the coherent
state añM∣ (with a Î  being the amplitude of the coherent
state). Such states can be engineered with large purity using
pulsed-driving schemes as in references [16, 28].

First, the propagator t
ˆ generated by equation (8) reads

h= Ä - ñá- + - Ä + ñá+ I i t1 1 1 1 9t M A M A
ˆ ∣ ∣ ˆ ( ) ∣ ∣ ( )

with m m- = - + i i b bexpM
ˆ ( ) [ ( ˆ ˆ)]†

the displacement operator
of amplitude m-i along the momentum axis in the single-
oscillator phase space. As anticipated, this dynamics realizes a
conditional shift of the mechanical state, depending on the state
of the two-level system. Using the non-commutative nature of
displacement operators of different amplitudes and the Camp-
bell–Baker–Haussdorff formula, we have m a- = iM M

ˆ ( ) ˆ ( )
a m- m a- i eM

i Reˆ ( ) [ ], which gives us the evolved state of the
atomic-mechanical compound

y a a
a h

ñ = - ñ

+ + - ñh a
-

+
-

 c

c e i t

, 1,

1, . 10
t AM AM

i t
AM

0

Re

ˆ ∣ ∣
∣ ( )[ ]

Equation (10) is a so-called micro-macro state that displays, in
general, quantum entanglement between the microscopic
degrees of freedom of the two-level system and the macroscopic
ones of the mechanical mode. The degree of A-M entanglement
of the evolved state, as measured by the von Neumann entropy
of the reduced state of the atom, is independent of the choice of
α but only determined by the initial degree of coherence
between the atomic states and the degree of distinguishability of
añM∣ and a h- ñi t M∣ . This ultimately boils down to the value
taken by the displacement amplitude. In order to set a bench-
mark, we take = =- +c c 1 2 , call h=G t and get the von
Neumann entropy

å= - + +
=

- -S G
s

e
s

e
1

2 2
log

1

2 2
.

11

vN
s

G G

1

2
2

22 2⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( )

( )

Even moderate values of t lead to significant entanglement
(see figure 3): for instance, we have S 1 0.72vN ( )  .

Such strong quantum correlations between the two-level
system and the mechanical one is the key to the emulation of
the dynamics in section 2.1. While tracing out the two-level
system results in the incoherent mixture of coherent states

a a a a= ñá + - ñá -- + c c iG iG , 12M M M
2 2ˆ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

which exhibits no quantum feature, the conditional mechan-
ical state achieved by projecting the two-level system onto
+ ñ = + ñ + - ñ1 1 2x A A∣ (∣ ∣ ) reads

y a añ = ñ + - ña
- +

-N c c e iG 13M
iG

M∣ ( ∣ ∣ ) ( )

with a= + +- + - +
- -N c c c c G e2 cos 2 G2 2 2 1 22[ ( ) ] . For a

sufficiently large value of the displacement G, states añM∣ and
a - ñiG M∣ are quasi-orthogonal ( a aá - ñ = -iG e G2 2∣ ∣ ∣ 
0.11 for G=1.5). Therefore, the combination of the joint
unitary evolution of the A-M compound and projection of the
state of the two-level system onto + ñx A∣ transfers the coher-
ences that were initially in the state of A to the mechanical
mode. This is the key for mimicking the performance at the
basis of the test of macrorealism illustrated in section 2.

In what follows, we call t̂ the dynamical map applied to
the initial state of both the mechanical system and the two-
level system. The map, resulting from the concatenation of
operations illustrated above, gives the time-evolved state of
the mechanical system

y y= P ñá Ä+   t tr 0 14M A t A M t0 0xˆ ( ) [ ˆ ˆ ∣ ∣ ˆ ( ) ˆ ] ( )†

with P+x
ˆ the projector onto + ñx A∣ and  a normalization

constant necessary in light of the projective operation. This
map depends only on the actual time interval in which the
system evolves. In this analysis we fixed the value of G
meaning that we set a time t so that the actual dynamics of the
mirror depends only on the coefficients of the ancillary state.

4. Macrorealistic test

In order to compute the LG inequality we need to find cor-
relation functions for different time intervals. Our proposal
shares the same interaction mechanism as the one in [29].
However, it differs from it significantly, in that our protocol
relies on the intuition that the macrorealistic inequality should
be violated if the LG function, for the mechanical oscillator,
reproduces the dynamic of a spin-1/2 particle whose evol-
ution in time is governed by the x-Pauli operator, as shown in
section 2.1. We accomplish such a goal using the two-level
system as an ancilla that assists our scheme at each stage of
the macrorealistic test for the oscillator and it is fundamental
in obtaining a violation of LG inequality. In reference [29], a
superposition of macroscopically distinguishable states is
created with the same effective Hamiltonian as in
equation (8), but the inequality is tested by performing

Figure 3. Von Neumann entropy SvN of the reduced state of the two-
level system resulting from equation (10), plotted against the
displacement amplitude h=G t for =c 1 2 .
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measurements on the two-level system, whose state carries
along a signature of non-classicality for the mechanical
oscillator.

We proceed step by step to illustrate the features of our
analysis.

4.1. Auto-correlation function in time intervals t0� t1 and t0� t3

The initial state is chosen as a product of a coherent state añM∣
for the mechanical oscillator and the following coherent
superposition for the two-level system

y t tñ = + ñ + - ñsin 1 cos 1 ; 15A A A0∣ ( ∣ ∣ ) ( )

here the coefficients are chosen to be dependent on a para-
meter τ which can be manipulated so that the mechanical
system will mimic at all times the dynamics of the spin
described in section 2.1. With such a choice of initial state of
the two-level system, the dynamical map of equation (14)
consists of the single Kraus operator

t t= + -  I iGcos sin , 16t M M1
ˆ ( ˆ ( ) ( )

so that j j= = ñá  t 0M t M t t t M1 1 1 1 1
ˆ ( ) ˆ ˆ ( ) ˆ ∣ ∣

†
with

j t a t añ = ñ + - ña- e iGcos sin 17t M M
iG

M11
∣ ( ∣ ∣ ) ( )

with t a= + - - G e1 sin 2 cos 2 G
1

2 12[ ( ) ( ) ] . It is straight-
forward to check that this state is similar to the one obtained
at time t1 in the case of a spin-1/2 particle. First, using
the same notation as in section 2.1, the latter reads
f ñ = D + ñ - D - ñt i tcos 1 sin 1t1∣ ∣ ∣ . Second, in light of the
quasi-orthogonality of sufficiently displaced coherent states,
we can assume the following logical encoding of a quasi-spin
particle into the space spanned by the coherent state com-
ponents of equation (17) as follows

a añ + ñ - ñ - ñiG1 , 1 . 18M L M L∣ ⟶ ∣ ∣ ⟶ ∣ ( )

Here, the subscript L stands for the logical two-level system
that we have invoked. Notice that similar encodings represent
the building blocks of coherent state quantum computing

[30]. Finally, as we will see in the remainder of our analysis,
the presence of the extra relative phase between the logical
states is inessential for the success of our test.

With such encoding, the observable of choice for the
construction of the two-time auto-correlation functions
entering the LG function akin to equation (1) would be given
by + ñá+ - - ñá-1 1 1 1L L∣ ∣ ∣ ∣ . This implies the ability to dis-
criminate between añM∣ and a - ñiG M∣ , which can be done as
discussed in [24] (cf. section 4.3)

We can now compute the probabilities to build the two-
time correlation functions. We have

= = - =+ - +P P P1, 1 0. 190 0 0 ( )

The conditional probability to obtain outcome +1L at time t1
provided we obtained the same outcome at t0 is

a a a a
j a

t t

= á ñá ñ

= á ñ

= +a

+ +

- -





P

e sin cos . 20

M t M M

M t M

iG

10
2

1
2 2G

1

1

2
2

∣ ˆ (∣ ∣ )∣
∣ ∣ ∣

∣ ∣ ( )

∣

This expression shows that a sufficiently large distinguish-
ability of the coherent state components of j ñt1

∣ (i.e. a faithful
encoding of a two-level system) gives t+ +P cos10

2∣ , thus
reproducing the result valid in the spin-1/2 case. Notice that
the value of G at which this occurs depends on the amplitude
α of the initial coherent state of system M. This is shown in
figure 4, where we address the features of + +P10

∣ against both τ
and G.

Needless to say, the conditional probability to find-1L at
t1 once +1L has been achieved at t0 is obtained by con-
servation of total probability as = -- + + +P P110 10

∣ ∣ . The two-
time correlation function from the initial time t0 and the time
t1 is thus given by the overall expression

t a t t

a t
= - +

+ +

+

-

-
C

e G

e G
1 2

sin 2 cos 2 sin cos

1 cos 2 sin 2
.

21

01

2 2G

G

2
2

2
2

[ ( ) ( ) ]
( ) ( )

( )

Figure 4. (a) Conditional probability + +P10
∣ plotted against τ for α=0.1 and G=0.5 (dashed orange line), G=1.0 (dotted purple line), and

G=2 (dot-dashed blue line). The solid red curve shows the behaviour of the analogous conditional probability for the case of a spin-1/2
particle discussed in section 2.1. (b) We study the convergence of + +P10

∣ towards the benchmark tcos 2( ) form of such conditional probability
as G grows for a = 1.
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For G 1 , the correlation function in equation (21)
tends to tcos 2( ), thus recovering that of the simple spin-1/2
model. Notice that the evaluation of the two-time auto-cor-
relation function for the time period -t t0 3 proceeds along
lines that are very similar to those followed in order to
evaluate C01. In fact, it is enough to change t t 3 and

G G3 in equation (21) to get C03.

4.2. Auto-correlation function in time intervals t1� t2 and t2� t3

For the next time interval, we need to reset the initial state of
the two-level system, while system M is in the state given in
equation (17). The state at the instant of time t1 is thus

t a t a yñ + - ñ Ä ña- e iGcos sin 22iG
M A1 1( ∣ ∣ ) ∣ ( )

with y ñ = + ñ + - ñt tA B1 1A A A1∣ ∣ ∣ . The coefficients tA and
tB depend on the value of τ and will be determined by

imposing the constraint that the evolved state of M at t2 must
have the same shape of the one for the spin-1/2 particle, that
is f ñ = D + ñ - D - ñt i tcos 2 1 sin 2 1t2∣ ( )∣ ( )∣ .

Proceeding as done in section 4.1 we get to the reduced
state of the mechanical system M at time t2

j t a t a

t t a

ñ = ñ + - ñ

+ + - ñ

t t
a

t t
a

-

-

 B A e iG

A B e iG

cos sin 2

cos sin .

23

t M M
iG

M

iG
M

1 2
2

2
∣ [ ∣ ∣

( ) ∣ ]
( )

The explicit form of t A,2 and Bτ is straightforward to
obtain by ensuring the normalization of y ñA1∣ and j ñt M2

∣ and
imposing the condition

t t=tB cos cos 2 , 241 2 ( ) ( )

which would render equation (23) analogous to the corresp-
onding one in the spin-1/2 case. Such expressions are too
cumbersome to be reported here.

The presence of a - ñiG2∣ in equation (23) paves the
way to considerations on the logical encoding chosen for our
scheme, which we now arrange in such a way that the fol-
lowing positive valued operator measurement is considered

a a a aP = ñá P = - ñá+ - I, 25ˆ ∣ ∣ ˆ ∣ ∣ ( )

with P+ˆ the projector onto the logical + ñ1 L∣ state.
The two-time autocorrelation function between t2 and t3

can be computed in a way analogous to what has been done in
the previous time interval, making use of the following con-
ditional probabilities and their complements

t t= +a+ + - -P e sin cos , 26iG
21 1 2

2 2
2G2

2( ) ( )∣

t

t

= -

+ -

a+ - - - -

-

P e e e

e

sin

sin 2

2
1 . 27

iG G G
21 1 3

2 2 2 2

2
G

2 2

2
2

∣ ∣ ∣( ) ( )
( ) ( ) ( )

∣

Calculations for the last time interval, t2–t3 have been
done following the same procedure illustrated above. The
corresponding expressions are, however, not informative
enough to be reported here, and we thus omit them.

4.3. Results of the test

The LG function K can finally be computed to test the
inequality

= + + - K C C C C 2 2801 12 23 03∣ ∣ ( )

against the coupling parameter G. Larger values of G mean
that the encoded basis of coherent states is more similar to an
orthogonal basis, thus making function K similar to the one
for the spin-1/2 particle. The main difference between the
two cases rests in the existence of a natural dichotomic
observable upon which to perform measurements in the latter
case, which is not the case for a harmonic oscillator.

Notwithstanding such fundamental difference, the LG
function for the harmonic oscillator in figure 5 closely resembles
the spin-1/2 case even for moderate values of G. Function K
shows a periodicity of π in each plot, while in the previous case
the period was π/2; this is due to the difference in the correlation
functions involved in its definition. The violation of the macro-
realistic inequality at short evolution times shown in figure 5
signals the non-classical character of the statistics sampled in
order to construct the conditional probabilities entering K.

It is worth mentioning that the correlation function that we
need to reconstruct the LG function could be inferred by per-
forming measurements on a probing cavity field. A possibility is
to use a double-optomechanical cavity with the mechanical
oscillator in a membrane-in-the-middle configuration, as sug-
gested in [31]. A second possibility is to use a single cavity, as in
figure 2, and a second mode with a polarization that is ortho-
gonal to the one of the field used to mediate the interaction
between the two-level ancilla and the mechanical oscillator in
our scheme. By arranging suitable conditions of adiabatic fol-
lowing between mechanical oscillator and probing light field, as
illustrated in [31], one can map the temporal behaviour of the

Figure 5. Plot of the Leggett–Garg function for the oscillator when
the integrated coupling constant is G=5. The value of the
parameter α=1 has been chosen from these calculations. The
maximum value K=2.36 is reached for τ=0.37.
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relevant operators of the mechanical oscillator onto that of the
probing field. Noticeably, the scheme works under the
assumption of large damping rate for the probing field mode.
The measurement scheme would thus be robust against the
cavity dissipation rate. Measurements of temporal correlations
on the latter, and the calibration of the noise affecting the cavity,
would thus result in the possibility to infer the violation of the
LG inequality.

The last ingredient of the measurement scheme consists
of the distinction between coherent states, which enables the
logical encoding invoked in our work. Such distinction can be
done using the probing optical field upon which we would
write the state of the mechanical oscillator and interference of
its coherent state to a reference one at a 50:50 beam splitter,
following the protocol illustrated in reference [24]. Schemes
for the direct tomography of the mechanical state have also
been put forward [32].

4.4. Open system dynamics

In order to account for the potentially detrimental effects due
to the unavoidable environmental action, we have conducted
an investigation including mechanical dissipation. This has
been done by assuming Markovian damping in a cold
environment at a rate κ, resulting in the master equation

k
= - + - -


   

d

dt
i H b b b b b b,

2
2 , 29eff

ˆ [ ˆ ˆ ] ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ) ( )† † †

where ̂ is the state of the system. We solved equation (29)
using the quantum unravelling approach [33]. This involves
dividing the time interval into very small time steps of length
δt. A random number between 0 and 1 is generated at the start
of each time step and we calculate the value of the function

d d k j j= á ñp t b b , 30AM AM∣ ˆ ˆ ∣ ( )†

where jñ∣ is the state of the atom and mechanical oscillator at
this stage of the evolution. The value of this function will always

be much smaller than 1 because it depends on the small time
step δt. If the random number is greater than δp, which it will be
in most cases, then the system evolves according to a modified
Hamiltonian, which for this system reads

k
= +H H

i
b b

2
. 31effQUˆ ˆ ˆ ˆ ( )†

Since the time steps are very small, we can evolve the system
according to the time evolution operator

d d= ~ -d-U t e I iH t. 32iH t
QUQUˆ ( ) ˆ ˆ ( )ˆ

If the random number is less than δp, then a quantum jump
occurs. Here, the quantum jump operator is k b̂, so when this
acts on the state of the system the mechanical oscillator effec-
tively loses one excitation. After each time step the state must be
renormalized. We evolved the system in this way until a certain
final time and obtained a trajectory, or a possible outcome of this
process. We repeated this many times and collected many tra-
jectories before averaging over them to obtain the solution of
equation (29). Once we obtained the state of the system at time t,
we projected the state of the two-level system onto + ñx A∣ and
found the reduced state of the mechanical oscillator as in
section 3.2.

The results of this approach are shown in figures 6(a) and
(b), where we study the decay of the probability + +P10

∣ as a
paradigmatic instance of the effects of the mechanical damping.
Large values of G, despite ideally making the mechanical state
components more distinguishable, imply larger evolution times
of the mechanical oscillator and thus more chances of environ-
mental action. This results in the spoiling of the damping-
affected + +P10

∣ with respect to the ideally closed case scenario.
This has an effect over the values taken by the LG function K, as
studied in figure 6(b): the range of values of τ within which we
would observe a violation of the LG inequality is shrunk (while
the amplitude of violation is slightly reduced). Moreover, at
sufficiently large values of G we lose the violation of the mac-
rorealistic inequality altogether.

Figure 6. (a) We show the conditional probability + +P10
∣ against the values of G for a unitary evolution (red dashed line) and a conservative

value of k h = -10 3 (blue solid line). (b) Leggett–Garg function K against τ for the ideal unitary dynamics (red solid line) and k h = -10 3

with G=2 (blue dots). The red squares show the value taken by K at t p= 10 for k h = -10 3 and G=2.5, 3, 3.5 (growing as shown by
the arrow). The dashed horizontal line shows the classical macrorealistic bound and the shaded region highlights the range of values of τ
where the LG inequality is violated. Assuming that η lies between 1 and 100 Hz [18], the value of κ/η suggests a quality factor Q=ω/κ in
the range 10 107 9– which is experimentally feasible [15].
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5. Conclusions

We have proposed a method to violate a macrorealistic LG-
like inequality in a hybrid optomechanical setting. By making
use of the control allowed by the engineered interaction
between a mechanical oscillator and an ancillary two-level
system, we have shown a protocol able to mimic closely the
features of the conditional probabilities entering the LG
function of a spin-1/2 particle. The success of our scheme
relies on the ability of the ancilla-oscillator interaction to
generate coherent superpositions of distinguishable mechan-
ical states, whose features are adjusted to achieve a significant
violation of the classical macrorealistic bound. We have
assessed the robustness of the violation to the effects of
environmental damping, showing that it strongly depends on
suitable arrangements of the ancilla-oscillator interaction
time. The scheme is robust against a residual thermal char-
acter of the initial preparation of the mechanical oscillator as
far as the width of the Wigner function of the initial thermal
state in phase space is smaller than the value of G. By
exploiting a logical encoding reminiscent of the one used in
the context of coherent state-based quantum information
processing, our proposal contributes to the endeavours for the
design of viable routes toward the observation of non-clas-
sical effect at the mesoscopic and macroscopic scale.
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