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Abstract. Bessel multipliers are operators defined from two Bessel sequences of
elements of a Hilbert space and a complex sequence, and have frame multipliers
as particular cases. In this paper an estimate of the spectral radius of a Bessel
multiplier is provided involving the cross Gram operator of the two sequences. As
an upshot, it is possible to individuate some regions of the complex plane where
the spectrum of a multiplier of dual frames is contained.
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1. Introduction

Bessel multipliers, as introduced in [2], are operators in Hilbert spaces which have been
extensively studied [5, 11, 24, 25], occur in various fields of applications [4, 14, 21]
and include the class of frame multipliers [9, 10, 12, 19, 22]. Recently, in [10], given a
frame multiplier some regions of the complex plane containing the spectrum have been
identified. In order to present the main contributions of this paper, which follows the
line of [10], we need to give some definitions and preliminary results.

A Bessel sequence of a separable Hilbert space H (with inner product ⟨·, ·⟩ and norm
∥ · ∥) is a sequence φ = {φn}n∈N of elements of H such that∑

n∈N
|⟨f, φn⟩|2 ≤ Bφ∥f∥2, ∀f ∈ H

for some Bφ > 0 (called a Bessel bound of φ). A sequence φ = {φn}n∈N is a frame for
H if there exist Aφ, Bφ > 0 such that

Aφ∥f∥2 ≤
∑
n∈N

|⟨f, φn⟩|2 ≤ Bφ∥f∥2, ∀f ∈ H. (1.1)

Given two Bessel sequences φ = {φn}n∈N, ψ = {ψn}n∈N of H and m = {mn}n∈N a
bounded complex sequence (in short, m ∈ ℓ∞(N)) it is possible to define a bounded
operator Mm,φ,ψ on H in the following way

Mm,φ,ψf =
∑
n∈N

mn⟨f, ψn⟩φn f ∈ H.

This operator is said the Bessel multiplier of φ, ψ with symbolm. It thus consists of three
processes: analysis through the sequence ψ, multiplication of the analysis coefficients by
m and synthesis processes by φ. When φ and ψ are frames, Mm,φ,ψ is called a frame
multiplier.
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Since a Bessel multiplier is a bounded operator, its spectrum is contained in some
disk and, more precisely, the following bound has been given.

Proposition 1.1 ([10, Proposition 1]). The spectrum σ(Mm,φ,ψ) of any Bessel multiplier
Mm,φ,ψ is contained in the closed disk centered the origin with radius supn |mn|Bφ

1
2Bψ

1
2 ,

where Bφ and Bψ are Bessel bounds of φ and ψ, respectively.

A special case occurs when φ and ψ are dual frames, i.e. two frames satisfying the
condition1

f =
∑
n∈N

⟨f, ψn⟩φn, ∀f ∈ H. (1.2)

In this setting it was possible to find more precise regions where the spectra are contained,
as stated in the following result.

Proposition 1.2 ([10, Propositions 2 and 3]). Let φ,ψ be dual frames for H with upper
bounds Bφ, Bψ, respectively, and let m ∈ ℓ∞(N).

(i) If m is contained in the disk of center µ with radius R, then σ(Mm,φ,ψ) is contained
in the disk of center µ with radius RBφ

1
2Bψ

1
2 .

(ii) If m is a real sequence, then σ(Mm,φ,ψ) is contained in the disk of center

1

2
(sup
n
mn + inf

n
mm)

with radius
1

2
(sup
n
mn − inf

n
mm)Bφ

1
2Bψ

1
2 .

(iii) If ψ is the canonical dual2 of φ, then σ(Mm,φ,ψ) is contained in the closed convex
hull of m.

One of the two main results of this paper, which is right below, gives an estimate of
the spectral radius of a Bessel multiplier in terms of the cross Gram operator Gφ,ψ [3]
of φ and ψ which is recalled in Section 2. A direct consequence is an improvement of
Proposition 1.1.

Theorem 1.3. Let φ,ψ be Bessel sequences of H with cross Gram operator Gφ,ψ and
let m ∈ ℓ∞(N). Let Mm be the multiplication operator by m on ℓ2(N). Then Mm,φ,ψ

and MmGφ,ψ have the same spectral radius

r(Mm,φ,ψ) = r(MmGφ,ψ). (1.3)

In particular, the following bound holds

r(Mm,φ,ψ) ≤ sup
n

|mn|∥Gφ,ψ∥. (1.4)

Therefore, the spectrum of any Bessel multiplier Mm,φ,ψ is contained in the closed disk
centered the origin with radius supn |mn|∥Gφ,ψ∥.

1or, equivalently, the condition f =
∑
n∈N

⟨f, φn⟩ψn for every f ∈ H.

2among all the dual frames of φ there is a special one called the canonical dual; the definition is
given in Section 2.
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Theorem 3.4, concerning dual frames, is instead the counterpart of Proposition 1.2
which involve the cross Gram operator. Both in Theorems 1.3 and 3.4 the constant
Bφ

1
2Bψ

1
2 present in Propositions 1.1 and 1.2 is substituted by the norm ∥Gφ,ψ∥ of Gφ,ψ.

Since the inequality ∥Gφ,ψ∥ ≤ Bφ
1
2Bψ

1
2 always holds, Theorems 1.3 and 3.4 improve in

fact Propositions 1.1 and 1.2. In connections to the main results, throughout the paper
we will discuss some remarks and examples.

2. Preliminaries

We denote by ℓ2(N) (respectively, ℓ∞(N)) the usual spaces of square summable (respec-
tively, bounded) complex sequences indexed by N.
Given two Bessel sequences φ and ψ of H the following operators can be defined (see
[3, 6]):

• Cφ : H → ℓ2(N), defined by Cφf = {⟨f, φn⟩}, is the analysis operator of φ.
• Dφ : ℓ2(N) → H, defined by Dφ{cn} =

∑
n∈N cnφn, is the synthesis operator of φ.

• Sφ : H → H, Sφ = DφCφ is called the frame operator of φ; the action of Sφ is

Sφf =
∑
n∈N

⟨f, φn⟩φn f ∈ H.

• Gφ,ψ : ℓ2(N) → ℓ2(N), Gφ,ψ = CψDφ, is the cross Gram operator of φ and ψ which
acts as Gφ,ψ{cn} = {dk}, where dk =

∑
n∈N cn⟨φn, ψk⟩. In other words, Gφ,ψ can

be associated to the matrix (⟨φn, ψk⟩)n,k∈N.
Moreover, Cφ and Dφ are one the adjoint of the other one, Cφ = D∗

φ, and ∥Cφ∥ =

∥Dφ∥ ≤ Bφ
1
2 where Bφ is a Bessel bound of φ. Consequently, Sφ is a positive self-

adjoint operator and it is also invertible with bounded inverse S−1
φ on H. We recall that

in the introduction we gave the definition of dual frames. A frame φ always has a dual
frame, namely the sequence {S−1

φ φn}n∈N, which is the so-called canonical dual of φ.
Finally, we note that, introducing the operators Dφ and Cψ, it is possible to write

Mm,φ,ψ = DφMmCψ where Mm is the multiplication operator by m on ℓ2(N), defined
by Mm{cn} = {mncn} for {cn} ∈ ℓ2(N).

3. Proofs of the main results

Theorem 1.3 concerns the spectral radius of a Bessel multiplier. For a bounded operator
T : H → H, we write σ(T ) for the spectrum and r(T ) := sup{|λ| : λ ∈ σ(T )} for
the spectral radius (see, for instance, [7, 20, 23]). The spectral radius represents then
the radius of the smallest disk centered in the origin and containing the spectrum.
Propositions 1.1 and 1.2 can be restated in terms of spectral radius. For example, we
can say that for any Bessel multiplier Mm,φ,ψ we have r(Mm,φ,ψ) ≤ supn |mn|Bφ

1
2Bψ

1
2 .

For the proof of Theorem 1.3 below we are going to use some classical results about
the spectral radius (see e.g. [7, Proposition 3.8]): for every bounded operator T : H → H
we have

r(T ) = lim
N→+∞

∥TN∥
1
N , (3.1)
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and
r(T ) ≤ ∥T∥. (3.2)

Proof of Theorem 1.3. If Bφ = 0, Bψ = 0 or m ≡ 0, then (1.4) trivially holds, because
both the operators Mm,φ,ψ and MmGφ,ψ are null. So we can assume that Bφ, Bψ > 0
and that m is not identically null.
Since Mm,φ,ψ = DφMmCψ and Gφ,ψ = CψDφ, then for N ≥ 2 we have

MN
m,φ,ψ = (DφMmCψ)

N = Dφ(MmCψDφ)
N−1MmCψ = Dφ(MmGφ,ψ)

N−1MmCψ.

Therefore,
∥MN

m,φ,ψ∥ ≤ ∥(MmGφ,ψ)
N−1∥∥Mm∥∥Cψ∥∥Dφ∥.

Thus, by (3.1),

r(Mm,φ,ψ) = lim
N→+∞

∥MN
m,φ,ψ∥

1
N ≤ lim

N→+∞
(∥(MmGφ,ψ)

N−1∥∥Mm∥∥Cψ∥∥Dφ∥)
1
N

= lim
N→+∞

∥(MmGφ,ψ)
N−1∥

1
N lim
N→+∞

(∥Mm∥∥Cψ∥∥Dφ∥)
1
N = r(MmGφ,ψ).

For the reverse inequality we observe that

(MmGφ,ψ)
N+1 =MmCψDφ(MmGφ,ψ)

N−1MmCψDφ =MmCψM
N
m,φ,ψDφ.

Hence, with an analog calculation as before we find that r(MmGφ,ψ) ≤ r(Mm,φ,ψ), so in
conclusion (1.3) is proved. Lastly, (1.4) holds because by (1.3) and (3.2) we have

r(Mm,φ,ψ) = r(MmGφ,ψ) ≤ ∥MmGφ,ψ∥ ≤ ∥Mm∥∥Gφ,ψ∥ = sup
n

|mn|∥Gφ,ψ∥.

Remarks 3.1. (i) Inequality (1.4) may be strict. In fact, let {en} be an orthonormal
basis of H, φ = {en}, ψ = {1

2e1, 2e2,
1
2e3, 2e4, . . . } and m = {2, 12 , 2,

1
2 , . . . }. A

trivial calculation shows that Mm,φ,ψ is the identity operator, so r(Mm,φ,ψ) = 1,
while supn |mn|∥Gφ,ψ∥ = 4.

(ii) A Riesz basis φ for H is the image of an orthonormal basis {en} of H through an
bounded operator with bounded inverse defined on H [6]. A Riesz basis φ is, in
particular, a frame for H and it has a unique dual ψ (the canonical one) which is
a Riesz basis too. Moreover,

⟨φn, ψk⟩ = δn,k =

{
1 n = k

0 n ̸= k.

Therefore, if φ is a Riesz basis for H and ψ is its canonical dual, then Gφ,ψ is the
identity operator on ℓ2(N) and so ∥Gφ,ψ∥ = 1. Anyway, for this choice of φ,ψ,
(1.4) is an immediate consequence of the fact that σ(Mm,φ,ψ) is the closure of
{mn : n ∈ N} (see [9, Proposition 4]).

(iii) Since Gφ,ψ = CψDφ, we always have

∥Gφ,ψ∥ ≤ ∥Cψ∥∥Dφ∥ ≤ Bφ
1
2Bψ

1
2 . (3.3)

Therefore, Theorem 1.3 is finer than Proposition 1.1. Moreover, if φ = ψ, then
Gφ,φ = CφDφ = D∗

φDφ is a positive self-adjoint operator, so ∥Gφ,φ∥ = ∥Dφ∥2.
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Besides with (3.3) it is possible to estimate the norm of Gφ,ψ with some other con-
siderations which we discuss below.

Remarks 3.2. (i) An estimate of ∥Gφ,ψ∥ can be given if

sup
k∈N

∑
n∈N

|⟨φn, ψk⟩| ≤ Γ1 and sup
n∈N

∑
k∈N

|⟨φn, ψk⟩| ≤ Γ2. (3.4)

Indeed, by Schur test (see for instance [15, Lemma 6.2.1]), we have ∥Gφ,ψ∥ ≤ Γ
1
2
1 Γ

1
2
2 .

(ii) Let φ,ψ be Bessel sequences of H such that ⟨φn, ψk⟩ = 0 for n, k ∈ N with |n−k| >

d. As particular case of the previous remark, if
d∑

i=−d
sup
n

|⟨φn, ψn+i⟩| ≤ Γ (where,

with an abuse of notation, we mean ψ−d+1, . . . , ψ−1, ψ0 = 0) then ∥Gφ,ψ∥ ≤ Γ.
(iii) Another use of conditions (3.4) can be made in the context of localized frames

[1, 8, 16, 17].

In what follows we give another example where in particular it is possible to exactly
calculate the norm of the cross Gram operator.

Example 3.3. Let G be a countable locally compact abelian group equipped with the
discrete topology. We write the group operation of G in the additive notation and we
denote by Ĝ the dual group of G (i.e. the multiplicative group of the characters on G).
Since G is discrete, then Ĝ is compact (see [13, Proposition 4.4]). Moreover, we will
choose the Haar measure on G to be the counting measure; hence by [13, Proposition
4.24], |Ĝ| = 1.

Let τ be a unitary representation of G on H. In particular, let us assume that τ is dual
integrable [18], i.e. there exist a Haar measure dξ and a function [·, ·] : H×H → L1(Ĝ, dξ)
such that

⟨χ, τgη⟩ =
∫
Ĝ
[χ, η](ξ)e−g(ξ)dξ ∀g ∈ G, χ, η ∈ H, (3.5)

where e−g(x) is the character induced by −g, namely e−g(ξ) = e−2πi(g,ξ), and (·, ·) is
the duality between G and Ĝ. The function [·, ·] is called the bracket function. Classical
examples (treated for instance in [6, 15]) of this framework are

• G = Zd, Ĝ = Tn, H = L2(R), (τkf)(x) = (Tkf)(x) = f(x− k) for k ∈ Zd and

[χ, η](ξ) =
∑
k∈Zd

χ̂(ξ + k)η̂(ξ + k), ξ ∈ Rd, χ, η ∈ L2(Rd),

where χ̂ and η̂ are the Fourier transforms of χ and η, respectively;
• G = Zd × Zd, Ĝ = Tn, H = L2(R), (τ(k,l)f)(x) = (TkMlf)(x) = e2πil·xf(x− k) for
(k, l) ∈ Zd × Zd and

[χ, η](x, ξ) = Zχ(x, ξ)Zη(x, ξ), x, ξ ∈ Rd, χ, η ∈ L2(Rd),

where Zχ(x, ξ) =
∑

k∈Zd e−2πik·ξχ(x− k) is the Zak transform of χ ∈ L2(Rd).
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After introducing this setting, we now consider two special sequences3. More precisely,
let χ, η ∈ H be such that φ = {Tgχ}g∈G and ψ = {Tgη}g∈G are Bessel sequences4 of H.
As we are going to see, the norm ∥Gφ,ψ∥ can be exactly calculated in terms of [χ, η].
Indeed, for any complex sequences {cg}g∈G , {dg}g∈G ∈ ℓ2(G) we have

⟨Gφ,ψ{cg}, {dg}⟩ = ⟨CψDφ{cg}, {dg}⟩ = ⟨Dφ{cg}, Dψ{dg}⟩

=

〈∑
g∈G

cgTgχ,
∑
g∈G

dgTgη

〉
=

∑
g,h∈G

cgdh⟨Tgχ, Thη⟩

=
∑
g,h∈G

cgdh⟨χ, Th−gη⟩ =
∑
g,h∈G

cgdh

∫
Ĝ
[χ, η](ξ)eg−h(ξ)dξ

=

∫
Ĝ
[χ, η](ξ)

∑
g,h∈G

cgdheg−h(ξ)dξ

=

∫
Ĝ
[χ, η](ξ)

∑
g∈G

cgeg(ξ)
∑
h∈G

dheh(ξ)dξ.

(3.6)

By the Pontrjagin duality theorem and by [13, Corollary 4.26], {eg}g∈G is an orthonormal
basis of L2(Ĝ, dξ). This fact, together with (3.6), implies that the Gram operator Gφ,ψ
can be reduced to the multiplication operator by [χ, η] on L2(Ĝ, dξ). Hence, we conclude
that

∥Gφ,ψ∥ = sup
{cg},{dg}̸=0

|⟨Gφ,ψ{cg}, {dg}⟩|
∥{cg}∥∥{dg}∥

= sup
ξ∈Ĝ

|[χ, η](ξ)|,

i.e. the essential supremum of [χ, η] (see [20, Example 2.11 - Ch. III]). Thus, by Theorem
1.3, given a bounded complex sequence m = {mg}g∈G we have

r(Mm,φ,ψ) ≤ sup
g∈G

|mg| sup
ξ∈Ĝ

|[χ, η](ξ)|.

We now move to prove the result for dual frames. In particular, it provides regions
containing the spectrum which are smaller than the disk of Theorem 1.3.

Theorem 3.4. Let φ,ψ be dual frames for H and let m ∈ ℓ∞(N).
(i) If m is contained in the disk of center µ with radius R, then σ(Mm,φ,ψ) is contained

in the disk of center µ with radius R∥Gφ,ψ∥.
(ii) If m is real, then σ(Mm,φ,ψ) is contained in the disk of center

1

2
(sup
n
mn + inf

n
mm)

with radius
1

2
(sup
n
mn − inf

n
mm)∥Gφ,ψ∥.

3In this example, the sequences are indexed by the countable set G in contrast to the setting of the
rest of the paper. However, this does not change the validity of Theorems 1.3 and 3.4 since the series
defining a multiplier is unconditionally convergent so the ordering of a Bessel sequence is not relevant
(see [6, 15]).

4This happen if and only if [χ, χ] and [η, η] are bounded above a.e. in Ĝ, see [18, Section 5].
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(iii) If ψ is the canonical dual of φ, then σ(Mm,φ,ψ) is contained in the closed convex
hull of m.

Proof. To prove statement (i), let us consider a disk of center µ with radius R containing
the sequence m. By (1.2) we have

Mm,φ,ψ − µI =
∑
n∈N

(mn − µ)⟨f, ψn⟩φn =Mm−µ,φ,ψ,

where withm−µ we mean the sequence {mn−µ}. Therefore applying (1.4) toMm−µ,φ,ψ,
we obtain

r(Mm,φ,ψ − µI) ≤ sup
n

|mn − µ|∥Gφ,ψ∥ ≤ R∥Gφ,ψ∥,

which means that σ(Mm,φ,ψ) is contained in the disk of center µ with radius R∥Gφ,ψ∥,
because σ(Mm,φ,ψ) = {λ+ µ : λ ∈ σ(Mm−µ,φ,ψ)}.

Statement (ii) is a consequence of (i) taking µ = 1
2(supnmn + infnmm) and R =

1
2(supnmn − infnmm). Finally, statement (iii) was proved in [10, Proposition 2].

By (3.3) we can make a similar observation of Remark 3.1(iii), that is Theorem 3.4
is stronger than Proposition 1.2. We conclude with a comment for the case of a frame
and its canonical dual.

Remark 3.5. Let φ and ψ be dual frames. Making use of inequality (1.4) (taking
mn = 1 for every n ∈ N), we find that ∥Gφ,ψ∥ ≥ 1.
If, in particular, ψ is the canonical dual of φ, then

⟨φn, ψk⟩ = ⟨φn, S−1
φ φk⟩ = ⟨S− 1

2
φ φn, S

− 1
2

φ φk⟩.

In other words, Gφ,ψ is equals to the Gram operator of the canonical tight frame χ :=

S
− 1

2
φ φ of φ, which is a Parseval frame (i.e. it satisfies condition (1.1) with Aχ = Bχ = 1,

see [6, Theorem 6.1.1]). Thus, for the initial observation and for Remark 3.1(iii), if φ is

a frame, ψ is its canonical dual and χ = S
− 1

2
φ φ, then we have 1 ≤ ∥Gφ,ψ∥ = ∥Dχ∥2 ≤

Bχ = 1, so ∥Gφ,ψ∥ = 1.
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