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Abstract

This thesis is dedicated to the study of identical particles and to the exploitation of their
indistinguishability as a useful quantum resource for quantum information protocols.

We begin by reviewing the main implications of dealing with systems of identical par-
ticles (Chapter 1). In particular, we recall the standard, label-based first quantization
approach to identical particles, we highlight the issues it raises in evaluating the quan-
tum correlations between them, and we discuss alternative approaches providing different
solutions. The notion of spatial indistinguishability is here introduced together with the
related spatially localized operations and classical communication framework, in relation
to the concepts of no which-particle, no which-way, and no which-spin information. We
proceed with the presentation of the main manuscripts published during my PhD studies
at Università degli Studi di Palermo. These include a review and generalization to the
many-body scenario of the above mentioned tools (Chapter 2), a theoretical design and
experimental implementation of an optical setup exploiting spatial indistinguishability of
identical constituents to directly measure their exchange phase (Chapter 3), the analysis of
spatial indistinguishability as a resource to protect entanglement between identical qubits
from the detrimental action of local noise (Chapter 4), the development of a protocol for
the robust distillation of entangled states exploiting interferometric effects between two
identical bosonic qubits (Chapter 6), its extension to fermionic qubits (Chapter 7), and
a generalization of this scheme for the robust generation of generalized bosonic singlet
states (Chapter 8). Also, an original chapter (Chapter 5) tackles an issue emerging with
the previously introduced notion of spatial indistinguishability, sets it in relation with the
occurrence of interferometric effects, and propose a solution which overcomes the problem
and opens the way for new investigations. Chapter 5 shall be useful to better understand
the physics underlying the results of the successive Chapters 6-8.
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Indistinguishability of identical
particles as a genuine quantum resource

for quantum information processing

2



Chapter 1

Introductory remarks

In the first chapter of this thesis we introduce the main concepts about identical parti-
cles which will provide the main building blocks of the following work. In particular, in
Section 1.1 we present the notion of identical particles and the problem of the exchange
degeneracy affecting them, discussing the nature and the range of applicability of the sym-
metrization postulate introduced to fix it. In Section 1.2 we show how the symmetrization
postulate leads to problems when trying to assess the entanglement of identical particles
using the same tools employed for nonidentical ones, and discuss different approaches
proposed in the literature to solve the issue. While doing so, we introduce the concept
of spatially indistinguishable particles and the spatially localized operations and classical
communication framework, which play a main role in the rest of this thesis. Finally, in
Section 1.3 we present the notions of no which-particle information, no which-way infor-
mation, and no which-spin information, and discuss how these can be exploited within
the above framework to activate quantum resources exploitable in operational protocols.

The whole content of this chapter is an original review and reinterpretation of works
published by other authors prior to the beginning of the PhD studies of the author of this
thesis.

1.1 Exchange degeneracy and symmetrization postu-
late

In physics, particles are said to be identical if their intrinsic physical properties, such
as mass, electric charge, and spin are the same [4, 5]. This is the case, for example, of
subatomic particles like electrons, photons, and quarks, of atomic nuclei, and of atoms and
molecules themselves. Particles identity is a cornerstone of both classical and quantum
physics which provides the core of the inductive approach to the investigation of Nature’s
fundamental laws: the assumption that all the electrons in the universe possess the same
electric charge, mass, spin, and so on, allows to conclude that some fundamental properties
extrapolated from the behaviour of a sample of electrons observed in a laboratory also
hold for all the other electrons in the universe. Note that this definition is independent of
the experimental conditions: two particles are either identical or nonidentical regardless
of the actions of an observer.

In classical physics, identical particles (IP) are treated on the same footage of non-
identical (NIP) ones. In the classical world, indeed, two physical systems, even when
microscopic and identical, always occupy distinct positions in space at every fixed time,

3
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thus being always individually addressable by following their trajectory [5]. However, in
quantum mechanics things drastically change: the possibility for the wave functions of dif-
ferent particles to spatially overlap allows for a nonzero probability to find more than one
constituent in the same spatial region. This peculiarity has strong consequences on the
mathematical description of quantum systems. To illustrate this concept, let us consider
an experiment where we measure the spin projection along an axis of two identical and
independently prepared spin-1/2 particles (qubits). Suppose that we find the value +ℏ/2
for one spin and −ℏ/2 for the other, to which we associate the quantum states |↑⟩ and
|↓⟩, respectively. To describe the system mathematically, the standard, first quantization
approach (SA) to identical particles in quantum mechanics assigns to each constituent
a label, which here we denote with A and B. After the spin measurement, two differ-
ent mathematical kets can be associated with the same physical state: |↑⟩A ⊗ |↓⟩B and
|↓⟩A ⊗ |↑⟩B. This is because the two reported states are completely equivalent from the
dynamical point of view, so that there is no physical distinction between the two scenarios:
the assigned labels A, B are, in this sense, unphysical. The labelling choice thus has no
physical consequences, with the resulting kets leading to the same predictions. However,
|↑⟩A⊗|↓⟩B and |↓⟩A⊗|↑⟩B are orthogonal, and span a two-dimensional vector space whose
normalized elements are of the form

|Ψ(2)⟩ = α |↑⟩A ⊗ |↓⟩B + β |↓⟩A ⊗ |↑⟩B , |α|2 + |β|2 = 1. (1.1)

All the vectors in such a space can a priori represent the same physical state: this am-
biguity, rooted in the freedom of the labelling choice, is called exchange degeneracy and
leads to problematic consequences. For example, let us suppose that we are interested
in computing the probability for the state |Ψ(2)⟩ in Eq. (1.1) to be found in a different
state |Φ(2)⟩. Such a probability will, in general, depend on the coefficients α, β, lead-
ing to physical predictions which depend on the specific ket chosen among others that
equivalently describe the same physical situation. To solve this problem, the exchange
degeneracy must be removed. The symmetrization postulate is introduced to this goal,
stating that [4]

When a system includes several identical particles, only certain kets of its
state space can describe its physical states. Physical kets are, depending on
the nature of the identical particles, either completely symmetric or completely
antisymmetric with respect to permutation of these particles. Those particles
for which the physical kets are symmetric are called bosons, and those for
which they are antisymmetric, fermions.

The symmetrization postulate therefore eliminates the exchange degeneracy by associat-
ing one specific ket to the physical system, namely the one which is totally symmetric
under every possible exchange of labels for bosons, and the totally antisymmetric one for
fermions. In the scenario which led to Eq. (1.1), for example, the only physical state is
ruled to be

|Ψ(2)⟩ = 1√
2

(
|↑⟩A ⊗ |↓⟩B + η |↓⟩A ⊗ |↑⟩B

)
, with

{
η = 1, for bosons

η = −1, for fermions.
(1.2)

The symmetrization postulate, which has been exemplified here for two identical par-
ticles, is straightforwardly generalizable to an arbitrary number of identical constituents.
Finally, we point out the Pauli exclusion principle as one of its main consequences, stat-
ing that two identical fermions cannot be in the same individual state. Indeed, having
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two or more particles in the same individual state lead, by construction, to a term in the
global state which is invariant under the swapping of the associated labels, ruling out the
possibility of constructing a multipartite state which is antisymmetric under the exchange
of any pair of particles/labels.

1.1.1 Can we avoid the symmetrization postulate?

If the application of the symmetrization postulate were indispensable in every physical
situation, the description of a system containing a restricted amount of identical parti-
cles should always involve all the other identical particles in the universe, as their states
shoul participate to the symmetrization/antisymmetrization process. As we will discuss
in Section 1.2, this would be not only deleterious from the point of view of the math-
ematical description, but would also lead to physical consequences which contrast with
the experimental evidence. Luckily, this is not the case. To show why it is so, let us
consider two identical spin-1/2 particles localized one on the spatial region I1 and the
other on the spatial region I2. With this, we mean that the wave function ψ1 of the first
particle vanishes outside I1 (i.e., it has support in I1), and similarly the second parti-
cle’s wave function ψ2 vanishes outside I2. Denoting with σ1, σ2 their related spin, the
symmetrization postulate rules the global bipartite state to be

|Ψ(2)⟩ = 1√
2

(
|ψ1 σ1⟩A ⊗ |ψ2 σ2⟩B + η |ψ2 σ2⟩A ⊗ |ψ1 σ1⟩B

)
,

where η = +1 for bosons and η = −1 for fermions. We now measure the pseudospin
projection along a preferred axis of the two particles with two detectors localized in the
spatial regions F1 and F2 and compute the probability to find the individual state |ϕ1 ↑⟩
with the former detector and |ϕ2 ↓⟩ with the latter. Here, ϕ1, ϕ2 are wave functions
localized on F1 and F2, respectively. The final bipartite state is given by the properly
symmetrized state

|Φ(2)⟩ = 1√
2

(
|ϕ1 ↑⟩A ⊗ |ϕ2 ↓⟩B + η |ϕ2 ↓⟩A ⊗ |ϕ1 ↑⟩B

)
,

leading to the probability amplitude

⟨Φ(2)|Ψ(2)⟩ = ⟨ϕ1|ψ1⟩ ⟨↑ |σ1⟩ ⟨ϕ2|ψ2⟩ ⟨↓ |σ2⟩+ η
(
⟨ϕ2|ψ1⟩ ⟨↓ |σ1⟩ ⟨ϕ1|ψ2⟩ ⟨↑ |σ2⟩

)
. (1.3)

The first term in the above summation is called direct term, whereas the second one
is the exchange term [4]. The presence of both the direct and the exchange term is
a direct consequence of the symmetrization postulate reflecting the ambiguity in the
labelling choice of identical particles. It is thus reasonable to expect one of the two
terms to disappear in those cases where a physical result can be related to a specific
particle unambiguously, allowing to relate a physical meaning to its label and thus making
the symmetrization postulate unnecessary. We can see that, in the above example, this
happens when one of the following scenarios occurs:

1a. ⟨ϕ1|ψ1⟩ = 0 and/or ⟨ϕ2|ψ2⟩ = 0;

1b. ⟨ϕ2|ψ1⟩ = 0 and/or ⟨ϕ1|ψ2⟩ = 0;

2a. ⟨↑ |σ1⟩ = 0, and/or ⟨↓ |σ2⟩ = 0;

2b. ⟨↓ |σ1⟩ = 0, and/or ⟨↑ |σ2⟩ = 0.

Cases 1a, 1b describe the physical situation where there is at least one detection region
where it is impossible to find one of the two particles. The contribution of such a particle to
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the total probability amplitude is thus ruled out, with the result measured by the involved
detector being uniquely ascribable to the other constituent. By exclusion, the first particle
will be responsible of the result measured by the second detector, therefore eliminating
any ambiguity. Cases 2a and 2b, instead, represent the physical situation where the spin
of at least one constituent can be perfectly discriminated by the employed detectors: we
can thus assign each measured result to a specific particle without ambiguity. What brings
together all the described scenarios is the possibility to assign a physical meaning to the
labels, such as “the only particle in that specific detection region” or “the only particle with
that specific detected internal state”. In these situations the symmetrization postulate is
deemed to be unnecessary, meaning that we can obtain the same results for probability
amplitudes by directly reasoning as if the labels denote particles of different natures.
The irrelevance of the symmetrization postulate in computing probability amplitudes
of particles measured in regions of space where it is impossible to find some of them
individually is the reason why “the existence of identical particles does not prevent the
separate study of restricted systems, composed of a small number of particles” [4], since
“no quantum prediction, referring to an atom located in our laboratory, is affected by
the mere presence of similar atoms in remote parts of the universe” [6]. However, we
stress that this does not depend on the system’s state alone, but on its relationship
with the measurement (or set of measurements) that we want to implement. Consider,
for example, two identical constituents with a nonzero probability of being individually
found in a same region of space. The symmetrization postulate should be applied if we
set the two detectors within that region, whereas it is unnecessary if at least one of them
is placed outside of it (see Figure 1.1). The former scenario, where both constituents

Figure 1.1: Different relations between wave functions’ support and measurement devices’
localization, deeming the application of the symmetrization postulate either necessary (left
and central figures) or unnecessary (right figure).

can individually trigger each detector, is called ambiguous, while the latter is deemed
unambiguous in contrast [7].

The relation between the spatial distribution of particles in a multipartite state and
the involved detection regions gives rise to a plethora of concepts which will play a crucial
role in the rest of this thesis, such as the spatial indistinguishability one, introduced in
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the next section.

1.2 Consequences of the symmetrization postulate: eval-
uating the entanglement of IP

As discussed in Section 1.1, the symmetrization postulate rules the global state of IP
to be symmetric or antisymmetric with respect to the exchange of labelled particles. In
Subsection 1.1.1, we have shown that such labels assume a physical meaning in certain
situations, as in unambiguous detection scenarios. Nonetheless, one could argue that the
symmetrizzation postulate should always be applied a priori, to provide a mathematical
description of a system’s state which does not require to specify the measurement context.
We will now show that such an approach leads to some problematic consequences when
we try to evaluate the entanglement in systems of IP using the same tools employed for
NIP, and illustrate some of the main techniques proposed in the literature to properly
tackle them. These include measurement-independent methods defining new criteria for
addressing quantum correlations in systems of IP, as well as approaches which rule out the
possibility of evaluating entanglement in measurement-independent contexts and strictly
bound its analysis to the operational measurement framework involved.

1.2.1 Addressing entanglement in NIP systems

Let us consider a bipartite system S composed of two nonidentical particles labelled A
and B. Crucially, for NIP we can always assign a physical meaning to these labels, as
they can be related to those properties which make the particles nonidentical (such as
mass or charge). Let us now suppose that S is in the pure state |Ψ(2)⟩ ∈ H, where H =
HA⊗HB is the global Hilbert space given by the tensor product of the two single-particle
Hilbert spaces HA and HB. Then, there exist two orthonormal bases {|φi⟩A} ∈ HA and
{|χi⟩B} ∈ HB such that [4]

|Ψ(2)⟩ =
r∑
i=0

√
λi |φi⟩A ⊗ |χi⟩B , (1.4)

where λi are real, non-negative coefficients satisfying
∑

i λ
2
i = 1. Eq. (1.4) is called the

Schmidt decomposition of |Ψ(2)⟩, with λi being the Schmidt coefficients. The number r of
nonzero Schmidt coefficients in the above decomposition is named Schmidt rank and can
be used to define entanglement for the system S. In particular, |Ψ(2)⟩ is entangled if its
Schmidt rank is r > 1, whereas it is separable if r = 1.

A separable state is always factorizable, meaning that it can always be rewritten as the
|Ψ(2)⟩ = |φ⟩A⊗|χ⟩B for some |φ⟩A ∈ HA and |χ⟩B ∈ HB. This means that we can assign to
each constituent a well-defined pure state which allows to compute any physical property
of it without having to account for the other. In particular, measuring any observable on
one subsystem has no effects on the other one. On the other hand, this does not hold
for entangled particles, where the superposition principle makes it impossible to assign a
unique state to each constituent. This leads to the purely nonclassical consequence that
the physical predictions drawn for one subsystem are affected by the state of the other
particles, with a measurement of the former influencing the latter.

Let us now consider the density matrix ρ = |Ψ(2)⟩ ⟨Ψ(2)| associated to the bipartite
state in Eq. (1.4). We can describe the two subsystems A and B with the reduced density
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operators obtained from ρ, namely

ρA := TrB[ρ] =
∑
i

λi |φi⟩A ⟨φi|A , ρB := TrA[ρ] =
∑
i

λi |χi⟩B ⟨χi|B . (1.5)

When the composite system is in a pure state, the reduced density operators have the
same eigenvalues, which coincides with the Schmidt coefficients of |Ψ(2)⟩. Notice, in
particular, that when |Ψ(2)⟩ is separable the two subsystems are in a pure state, whereas
they are in a mixed state if |Ψ(2)⟩ is entangled. This leads to a first method to quantify
the entanglement E(|Ψ(2)⟩) of composite systems in a pure state |Ψ(2)⟩: we define it as
E(|Ψ(2)⟩) = S(ρA) = S(ρB), where S(ρA) = S(ρB) is the von Neumann entropy of the
reduced density matrices

S(ρA) = S(ρB) := −
∑
i

λi log2 λi. (1.6)

When ρA and ρB are pure, S(ρA) = S(ρB) = 0 and ρ is separable. On the other hand, if ρA
and ρB are mixed we have 0 < S(ρA) = S(ρB) ≤ 1 and ρ is entangled. The von Neumann
entropy thus associates the entanglement of a composite state to the our ignorance about
the state of the single subsystems. This connection between entanglement and ignorance
will be crucial in the rest of this thesis.

Finally, we have previously discussed that for NIP the labels A and B have a phys-
ical meaning, as they denote the physical properties which make the two constituents
nonidentical. Therefore, the trace operation in Eq. (1.6) can be given a physical interpre-
tation, too: we are tracing out the particle with properties A or B. We thus conclude that
we can always act locally on NIP within the paradigm of local operations and classical
communication (LOCC) [8–10], where the term local refers to particle locality.

1.2.2 Addressing entanglement in IP systems: issues with the SA

We now try to evaluate the entanglement of IP systems using the criteria depicted in the
previous section for NIP, adopting a measurement-independent point of view where the
symmetrization postulate must always be applied. The entanglement which this approach
tries to address only depends on the structure of the system’s state and is called a priori
entanglement [7].

Consider a bipartite system of two identical spinless particles, one in the state |φ⟩ and
the other one in the state |χ⟩. Similarly to Eq. (1.2), the global state is given by

|Ψ(2)⟩ = 1√
2

(
|φ⟩A ⊗ |χ⟩B + η |χ⟩A ⊗ |φ⟩B

)
, with

{
η = 1, for bosons

η = −1, for fermions.
(1.7)

We immediately notice that, unless we are dealing with identical bosons in the same
single-particle state |φ⟩ = |χ⟩, the symmetrization postulate makes a many-body state
never separable and thus always formally entangled according to the criteria developed
for NIP. This can be easily confirmed by computing its von Neumann entropy. Indeed,
we have

ρX =
1

2

(
|φ⟩X ⟨φ|X + |χ⟩X ⟨χ|X

)
, X = A,B,

which implies S(ρA) = S(ρB) = 1. This raises, however, some problems. Consider
for instance the scenario where the two constituents are spatially localized in distant
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laboratories where they have been independently prepared. If we were to take the formal
presence of entanglement in the state of Eq. (1.7) as signalling real physical correlations,
we would be led to conclude that

all identical particles are inherently correlated from the outset, regardless of
how far apart their creation took place [11].

However, this result is in stark contrast with the empirical evidence that particles which
have been independently generated in distant, spacelike-separated regions and which have
never interacted before are intrinsically uncorrelated. This point of view is the most
accepted within the scientific community, which deems the entanglement in the state of
Eq. (1.7) to be only a formal mathematical consequence of the straightforward application
to IP of the tools developed for the entanglement evaluation of NIP. Reconnecting with
the interpretation of entanglement given at the end of Subsection 1.2.1, the presence of
a nonzero von Neumann entropy in such a state is attributed to an ignorance about the
label arbitrarily assigned to each constituent rather than about some physical property
characterizing them, so that “the apparent correlations in the particle labels must not be
accounted for as physical” [7] (see also [12]). Finally, an open question remains for IP
which, after having been independently generated, are measured in ambiguous settings. In
this situation where the symmetrization postulate cannot be avoided, is the entanglement
appearing in |Ψ(2)⟩ physical or fictitious?

We are thus left with (at least) three possible ways to solve the problem of evaluating
entanglement of IP:

1. preserving the SA (first quantization formalism), imposing the application of the
symmetrization postulate regardless of the measurement setting, and providing a
new a priori definition of measurement-independent entanglement for IP. The new
definition must allow to filter out the contribution coming from the labels from
the physical correlations, so that states like the one in Eq. (1.7) can be deemed
unentangled;

2. preserving the SA (first quantization formalism) and addressing quantum correla-
tions from an operational point of view as a physical resource exploitable in quantum
information protocols. Adopting a measurement-dependent approach, the entan-
glement of IP in ambiguous settings can thus be defined in relation to the one
exploitable by distinct parties. All the parties can only act on the constituents
with LOCC operations in unambiguous settings, so that the application of the sym-
metrization postulate can now be avoided and the standard tools developed for NIP
can be used to evaluate the entanglement of the resulting state;

3. giving up on the first quantization approach altogether, defining entanglement within
a different formalism where the symmetrization postulate does not give rise to hin-
drances.

1.2.3 Redefining entanglement in the first quantization formal-
ism: a measurement-independent approach

In Ref. [13], the authors introduce a criterion to evaluate the a priori entanglement of iden-
tical constituents. In particular, they define a bipartite system of two identical particles
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as non-entangled when “both constituents possess a complete set of properties”. This ini-
tially heuristic definition catches the physical meaning attributed to non-entangled states
of NIP in Subsection 1.2.1, relating it to the possibility of computing any physical prop-
erty of one constituent without having to account for the other. Notice that, however,
in this case the absence of entanglement does not imply the separability of the global
state (except for identical bosons in the same single-particle state), as the symmetriza-
tion postulate is always applied. The above condition is then formalized as follows: one
constituent of a bipartite state |Ψ(2)⟩ possesses a complete set of properties if and only
if there exist a one-dimensional projector P , defined on the single-particle Hilbert space
H(1), such that: [13]

⟨Ψ(2)|EP (A,B)|Ψ(2)⟩ = 1, (1.8)

where
EP (A,B) := PA ⊗ [11B − PB] + [11A − PA]⊗ PB + P (A) ⊗ PB. (1.9)

Here, the subscript denotes the label of the particle we are acting on. Eq. (1.8) gives the
probability of finding at least one particle in the state associated with the projector P . It is
subsequently shown that such a condition amounts to the following: two identical fermions
are non-entangled if and only if |Ψ(2)⟩ is obtained by antisymmetrizing a factorized state.
Similarly, two identical bosons are non-entangled if and only if either |Ψ(2)⟩ is obtained by
symmetrizing a factorized product of two orthogonal states or it is the product of the same
state for the two particles. Finally, a quantitative method to evaluate the entanglement
condition is provided, similarly to the separability and von Neumann entropy criteria
in the NIP scenario. To this aim, the Schmidt decomposition and rank are substituted
with the Slater decomposition and rank [14, 15]. In particular, it can be shown that a
properly antisymmetrized bipartite state |Ψ(2)

fer⟩ of two identical fermions with spin s is
characterized by the Slater decomposition

|Ψ(2)
fer⟩ =

(2s+1)/2∑
i=1

ai
(
|2i− 1⟩A ⊗ |2i⟩B − |2i⟩A ⊗ |2i− 1⟩B

)
/
√
2, (1.10)

where the states {|2i− 1⟩ , |2i⟩} with i = 1, . . . , (2s+1)/2 constitute an orthonormal basis
of the two single-particle Hilbert spaces HA, HB, whereas the ai are complex coefficients
such that

∑
i|ai|2 = 1. Similarly, the Slater decomposition of a symmetrized state |Ψ(2)

bos⟩
of two spin s bosons is [14,15]

|Ψ(2)
bos⟩ =

(2s+1)/2∑
i=1

bi |i⟩A ⊗ |i⟩B , (1.11)

where bi with i = 1, . . . , (2s+ 1)/2 are real coefficients satisfying
∑

i b
2
i = 1. The amount

of nonzero coefficients ai and bi provide the related fermionic and bosonic Slater rank.
Differently from the NIP case where the Schmidt number and the von Neumann en-
tropy provided two alternative, independent criteria to evaluate the entanglement of both
fermionic and bosonic systems, the approach here developed for IP requires to consider
both the Slater rank of the global state and the von Neumann entropy of the reduced
density matrices, with results for fermions which differ from the ones for bosons. In
particular, for a fermionic system it holds that [12, 13]:

f1. Slater rank of |Ψ(2)
fer⟩ = 1 ⇔ S(ρA) = S(ρB) = 1 ⇔ |Ψ(2)

fer⟩ is non-entangled (the
state is obtained by antisymmetrizing a factorized state);
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f2. Slater rank of |Ψ(2)
fer⟩ > 1⇔ S(ρA) = S(ρB) > 1⇔ |Ψ(2)

fer⟩ is entangled (the state is
obtained by antisymmetrizing a sum of factorized states).

Scenario f1. is the analogous of the non-entangled situation for NIP, whereas scenario
f2. corresponds to the entangled one. However, in contrast to NIP, the entropy of the
reduced density matrix can here be greater than 1 and is bounded from below by unity
instead of zero: the residual value reflects the unphysical entanglement originating from
the uncertainty of the particle labels [12]. On the other hand, for bosonic systems the
situation is more complex, and we have that:

b1. Slater rank of |Ψ(2)
bos⟩ = 1 ⇔ S(ρA) = S(ρB) = 0 ⇒ |Ψ(2)

bos⟩ is non-entangled (both
particles are in the same individual quantum state);

b2. Slater rank of |Ψ(2)
bos⟩ = 2 and S(ρA) = S(ρB) ∈ (0, 1) ⇒ |Ψ(2)

bos⟩ is entangled (the
state is obtained by symmetrizing a factorized state of non-orthogonal single-particle
states);

b3. Slater rank of |Ψ(2)
bos⟩ = 2⇔ S(ρA) = S(ρB) = 1⇒ |Ψ(2)

bos⟩ is non-entangled (the state
is obtained by symmetrizing a factorized state of orthogonal single-particle states);

b4. Slater rank of |Ψ(2)
bos⟩ > 2⇒ |Ψ(2)

bos⟩ is entangled (the state is obtained by symmetriz-
ing a sum of factorized states).

Once again, the von Neumann entropy also accounts for the uncertainty originating from
the labelling of the constituents. However, this time it can be smaller than 1, and cases b2
and b3 show that its value alone is not enough to determine the presence of entanglement
in the state. Notice that scenarios b3 and b4 are the analogous of the non-entangled
situation for NIP, whereas scenarios b1 and b2 has no counterpart for nonidentical con-
stituents.

In conclusion, the method presented in this subsection allows to verify the presence
of entanglement in bipartite systems of identical particles accounting only for the state
structure (a priori entanglement). It requires the joint evaluation of the Slater rank and
the von Neumann entropy of the reduced density matrices, leading to a categorization
which differs between bosons and fermions.

1.2.4 Mode-entanglement in the second quantization formalism

We now briefly review how entanglement is approached in the second quantization formal-
ism [12,16–19]. Here, physical observables are given in terms of creation and annihilation
operators acting on the single-particle Hilbert space H(1) spanned by vector states called
modes [16]. We denote the creation operator creating a particle in mode |j⟩ ∈ H(1) as a†j,
and the related annihilation operator which annihilate a particle in the same mode as aj.
They satisfy the bosonic canonical commutation (CCR) or fermionic anticommutation
(CAR) relations

[aj, a
†
k] = ⟨j|k⟩ (CCR), {aj, a†k} = ⟨j|k⟩ (CAR). (1.12)

Polynomials in these operators act on the many-body Fock space F and construct the
algebra A(F) of operators that are used to describe multipartite systems consisting of
bosons and fermions [17]. Let us now consider a bipartition of A into two commuting
subalgebras A1,A2 ⊂ A generated by a subset of the creation and annihilation operators



12 CHAPTER 1. INTRODUCTORY REMARKS

which generate A. An operator A ∈ A is then said local with respect to the bipartition
(A1,A2) if it can be written as A = A1A2 with A1 ∈ A1 and A2 ∈ A2. Notice that this
concept, which we will refer to as mode locality, is inherently different from the meaning of
particle locality employed for NIP in the LOCC framework, as it focuses on subgroups of
single-particle states (modes) regardless of the number of constituents filling them rather
than on individual particles. The definition of locality constitutes the main building
block for the definition of entanglement, which is called mode entanglement within this
framework: a state ρ is called separable with respect to the bipartition (A1,A2) if the
expectation value of any local operator A = A1A2 can be decomposed into a convex
combination of products of local expectation values as

Tr [ρA] =
∑
k

λkTr [ρ1,kA1]Tr [ρ2,kA2] , λk ≥ 0,
∑
k

λk = 1, (1.13)

where ρ1,k, ρ2,k are many-body states living in the Hilbert subspaces associated to the
subalgebras A1,A2. A state ρ is entangled if it’s not separable.

To clarify this point, let us consider N bosons distributed over M orthogonal single-
particle modes. The related annihilation and creator operators aj, a†j with j = 1, . . . ,M

satisfy the CCR [aj, a
†
k] = δjk. We consider a bipartition of the global algebra into the

subalgebras A1 and A2 spanned by the operators aj, a†j with, respectively, j = 1, . . . ,m

and j = m + 1, . . . ,M . A pure state |Ψ(N)⟩ is mode separable with respect to this
bipartition if and only if [16]

|Ψ(N)⟩ = P (a†1, . . . , a
†
m)Q(a

†
m+1, . . . , a

†
M) |0⟩ , (1.14)

where P and Q are polynomials in the creation operators and |0⟩ is the vacuum state of
the Fock space.

In conclusion, we emphasize that the entanglement of a state in the mode framework
is not an a priori concept, as it depends on the specific bipartition chosen: the same
state could be entangled with respect to one bipartition and separable with respect to
another. We deem this approach as measurement-dependent, since a specific choice of
a bipartition is typically reflected by a particular choice of a measurement framework
where each employed detector is sensible only to the single particle states of a specific
subalgebra.

1.2.5 Detector-level entanglement in the first quantization for-
malism: the sLOCC framework

A different solution to the problem of evaluating the entanglement of IP discussed in
Subsection 1.2.2 is approaching entanglement as a property which can be exploited as a
resource to realize quantum information protocols unachievable with only classical corre-
lations. Crucially, any protocol of this kind involves a set of operations and measurements.
We have seen in Subsection 1.1.1 that the symmetrization postulate can be avoided when
such operations are realized in unambiguous settings. The bipartite state in Eq. (1.7)
becomes factorized in this case, so that the standard tools developed for NIP can be
employed to deem the state unentangled within the first quantization approach. In this
scenario we thus recover the concept of particle locality characterizing the LOCC frame-
work, since each particle can be individually addressed by means of the spatial location
of the corresponding detector. However, this is impossible when ambiguous settings are



1.2. CONSEQUENCES OF THE SYMMETRIZATION POSTULATE 13

used to deal with IP: in this situation, the idea of particle locality must be abandoned.
However, the detectors and the devices employed in operational protocols are typically de-
signed to act on local regions of space, defined as connected sets of R3. Distinct detectors
are then represented by mutually orthogonal projection operators which select a preferred
orthonormal basis that we call local in space. The focus on particle locality characterizing
the LOCC framework can thus be substituted with the idea of spatial locality, giving rise
to the spatially localized operations and classical communication (sLOCC) framework [20].
Particles which have a nonzero probability to be individually found in a same local region
are said to be spatially overlapped [20], otherwise they are spatially separated. Notice
that, according to the previous definition, orthogonality does not imply spatial separa-
tion: for example, let us consider two single-particle states |ψL⟩ and |ψR⟩ localized on
two spatially separated regions L and R. Two identical constituents in the single-particle
states |ψD⟩ = (|ψL⟩ + |ψR⟩)/

√
2 and |ψA⟩ = (|ψL⟩ − |ψR⟩)/

√
2 are spatially delocalized

and overlapped over the regions L and R, despite ⟨ψL|ψR⟩ = 0. On the contrary, spatial
separation always imply orthogonality. Finally, if the spatial overlap occurs over detection
regions it is then impossible to associate a specific constituent to a detection event and
we deem the particles to be spatially indistinguishable to the eyes of the detectors.

As for the mode-based approach in second quantization, the concept of locality pro-
vides the main building block to define entanglement. After the measurement, particles
found by different detectors are spatially separated, acquiring orthogonal wave functions:
in this sense, the detectors assign them an identity [7]. The entanglement of the resulting
state can now be evaluated using the standard tools developed for the a priori entangle-
ment of NIP, and it is defined to be the detector-level entanglement of the state prior to the
measurement with respect to the given set of detectors (see Ref. [7] for a formal definition).
Thus, the detector-level approach preserves the definition of entanglement given for NIP
when the constituent are not spatially overlapped and the symmetrization postulate can
be avoided, whereas it defines the entanglement of spatially overlapped particles (when
labels are necessary) as the one “inferred by application of any entanglement measure
on the detector-level density matrix, reconstructed by quantum state tomography in the
local basis defined by the detectors” [7]. In this sense, detector-level entanglement pro-
vides an operational, measurement-dependent interpretation of the quantum correlations
between spatially overlapped IP, relating it to the one extractable by suitable operations
and measurements separating them within the sLOCC framework. We emphasize that
in the scenario of local, unambiguous settings, the sLOCC framework coincides with the
LOCC one.

1.2.6 sLOCC-based entanglement in the no-label formalism

The detector-level entanglement approach in the first quantization formalism solves the
problem of the apparent entanglement between distant, independently prepared IP by
avoiding to symmetrize/antisymmetrize the global state with respect to labels when un-
ambiguous settings are involved. However, a different mathematical formalism has been
developed to deal with IP without resorting to labels at all: the no-label approach [21,22].

We will start by considering bipartite systems to illustrate its main characteristics.
Within this mathematical framework, many-body states are simply written as a list of
the single-particle states composing it. For example, the global state in Eq. (1.7) of two
constituents with orthogonal wave functions is here rewritten as |Ψ(2)⟩ = |φ, χ⟩. The
core of the no-label approach is provided by the rule to compute probability amplitudes:
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given two bipartite states |ψ1, ψ2⟩ and |ψ′
1, ψ

′
2⟩, the two-particle probability amplitude

⟨ψ′
1, ψ

′
2|ψ1, ψ2⟩ is defined as a symmetrized inner product given by a linear combination

with same weight of products of one-particle amplitudes [21]

⟨ψ′
1, ψ

′
2|ψ1, ψ2⟩ := ⟨ψ′

1|ψ1⟩ ⟨ψ′
2|ψ2⟩+ η ⟨ψ′

1|ψ2⟩ ⟨ψ′
2|ψ1⟩ . (1.15)

We immediately notice that the exchange factor η, with η = 1 for bosons and η = −1
for fermions, is directly encoded in the above definition: in the no-label approach the
symmetrization postulate does not intervene in the symmetrization/antisymmetrization
of the global state with respect to unphysical labels but rather in the computation of
multipartite probability amplitudes. The result is clearly the same as computed within
the standard, label-based approach, with the two components in the right-hand side of
Eq. (1.15) being the direct and exchange terms of Eq. (1.3). From Eq. (1.15) it directly
follows that ⟨ψ′

1, ψ
′
2|ψ1, ψ2⟩ = η ⟨ψ′

1, ψ
′
2|ψ2, ψ1⟩ for all ψ′

1, ψ
′
2 in the no-label symmetric

bipartite Hilbert space H(2), so that

|ψ1, ψ2⟩ = η |ψ2, ψ1⟩ . (1.16)

Notice that from Eq. (1.15) there follows linearity [17]: α |ψ1, ψ2⟩ = |αψ1, ψ2⟩ = |ψ1, αψ2⟩
for all α ∈ C.

The no-label approach encodes the dependence on the chosen measurement setting in
the factorizability of the global state. Consider for example two particles in the single-
particle states |ψL⟩ and |ψR⟩ localized on two spatially separated regions L and R, respec-
tively, so that ⟨ψL|ψR⟩ = 0. In the no-label approach, we denote such single-particle states
with the shorthand notation |L⟩ , |R⟩ and, by analogy with the second quantization for-
malism, we sometimes refer to L and R as modes. The global state |Ψ(2)⟩ is therefore given
by |Ψ(2)⟩ = |L,R⟩ and is such that |L,R⟩ = |L⟩⊗|R⟩ if and only if we are going to measure
the two particles in an unambiguous setting within the sLOCC framework, that is, with
detectors localized on L and R to which the particles are spatially distinguishable. This is
a consequence of the fact that, denoting with |DL⟩ and |DR⟩ the states on which the two
detectors project, the two-particle probability amplitude related to finding one constituent
per spatial region is given by ⟨DL, DR|L,R⟩ = ⟨DL|L⟩ ⟨DR|R⟩ + η((((((((⟨DL|R⟩ ⟨DR|L⟩, which
is the same result that we would obtain for two NIP in the state |L⟩ ⊗ |R⟩ projected on
the state |DL⟩⊗ |DR⟩: once again, the relation between NIP and spatially distinguishable
IP is retrieved in the no-label approach. We conclude that the null contribution of the
exchange term in the probability amplitude ⟨DL, DR|L,R⟩, which made unnecessary the
application of the symmetrization postulate in the standard approach, makes the state
factorizable in the no-label formalism. It follows that |L,R⟩ ≠ |L⟩⊗ |R⟩ if and only if the
particles are spatially indistinguishable.

We now highlight that a global state such as |Ψ(2)⟩ = |ψ1, ψ2⟩ is in general not nor-
malized. Indeed, it holds that

⟨ψ1, ψ2|ψ1, ψ2⟩ = 1 + η |⟨ψ1|ψ2⟩|2 =: N , (1.17)

so that the properly normalized state is

|Ψ(2)⟩N =
|ψ1, ψ2⟩√
N

. (1.18)

In particular, |ψ1, ψ2⟩ is normalized if and only if the wave functions of the two constituents
are orthogonal.
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Let us now consider a single-particle operator O(1) defined in the space of individual
states, such as the momentum or the energy of a single particle. The total momentum or
energy of a bipartite system is given by the action of the single-particle operator on the
global state, which similarly to the label-based approach [4] is defined as

O(1) |ψ1, ψ2⟩ := |O(1)ψ1, ψ2⟩+ |ψ1, O
(1)ψ2⟩ . (1.19)

We introduce an orthonormal basis B(1) = {|φk⟩}k of the one-particle Hilbert space and
consider the single-particle projector operator Pφk

= |φk⟩ ⟨φk|. From linearity and from
Eq. (1.16) we have

Pφk
|ψ1, ψ2⟩ = |φk, ⟨φk|ψ1⟩ψ2 + η ⟨φk|ψ2⟩ψ1⟩ . (1.20)

This allows to define the following inner product between state spaces with different
particle numbers:

⟨φk| · |ψ1, ψ2⟩ := ⟨φk|ψ1⟩ |ψ2⟩+ η ⟨φk|ψ2⟩ |ψ1⟩ , (1.21)

which amounts to projecting the bipartite state |Ψ(2)⟩ on |φk⟩ (one-particle projective
measurement). Projecting the normalized state |Ψ(2)⟩N gives an unnormalized one-particle
pure state |ϕk⟩ = ⟨φk| · |Ψ(2)⟩N . The corresponding normalized one-particle state is

|ϕk⟩N =
|ϕk⟩√
Ñk

, (1.22)

where

Ñk :=
1

N

[
|⟨φk|ψ1⟩|2 + |⟨φk|ψ2⟩|2 + 2ηRe

(
⟨ψ1|φk⟩ ⟨φk|ψ2⟩ ⟨ψ2|ψ1⟩

)]
. (1.23)

We can now introduce the one-particle partial trace Tr(1) of a system, physically in-
terpreted as the statistical ensemble of all the reduced states obtained after projective
measurements on B(1), which operationally corresponds to measure a subsystem particle
without registering the outcomes [21]:

Tr(1)
[
|Ψ(2)⟩N ⟨Ψ

(2)|N
]
:=
∑
k

⟨φk| · |Ψ(2)⟩N ⟨Ψ
(2)|N · |φk⟩ , (1.24)

that is,
Tr(1)

[
|Ψ(2)⟩N ⟨Ψ

(2)|N
]
=
∑
k

|ϕk⟩ ⟨ϕk| .

From the partial trace we determine the one-particle density matrix

ρ(1) = Tr(1)
[
|Ψ(2)⟩N ⟨Ψ

(2)|N
]
/
˜̃N , (1.25)

where the normalization factor ˜̃N is such that Tr(1)ρ(1) = 1. For the state |Ψ(2)⟩ in

Eq. (1.18), this condition ultimately determines ˜̃N =
∑

k Ñk = 2.
We highlight that the partial trace in Eq. (1.24) represents a physical operation on

the system state based on effective projective measurements, in contrast with the partial
trace performed on labels which are unphysical when ambiguous measurement settings are
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involved. Furthermore, its introduction allows us to define the entanglement EM(|Ψ(2)⟩)
of a pure bipartite state |Ψ(2)⟩ with respect to a measurement performed on the region M .
This is given by the von Neumann entropy of the one-particle reduced density matrix ρ(1)M
obtained by the localized partial trace [20], which is given by Eq. (1.24) with the sum over
the index k limited to the subset {kM} corresponding to the subspace B(1)

M of one-particle
basis states localized on M:

ρ
(1)
M := Tr(1)M

[
|Ψ(2)⟩N ⟨Ψ

(2)|N
]
/M. (1.26)

HereM is such that Tr(1)ρ(1)M = 1. Therefore, we have

EM(|Ψ(2)⟩) := S(ρ
(1)
M ) = −

∑
j

λj log2 λj, (1.27)

where S(ρ(1)M ) is the von Neumann entropy of ρ(1)M and λj are its eigenvalues. We can
understand the physical meaning of Eq. (1.27) by looking at the interpretation given
for the entanglement entropy in the label-based approach (see Eq. (1.6)). In that case,
we first traced over one specific particle of the bipartite system, as identified by either
its physical properties which makes it distinguishable (as for NIP) or by its unphysical
label (for IP). The outcome of this operation is physically interpreted as the state of
the other particle after the traced out one has been measured without registering the
outcome. For NIP, obtaining a pure state as result signals that the remaining particle
is characterized by a specific state which does not depend on the traced out constituent,
that is, it possesses a complete set of properties in the sense explained in Subsection 1.2.3,
ruling out the presence of quantum correlations. If the resulting state is mixed, instead,
there is an ignorance about the state of the remaining particle, which signals the presence
of entanglement. The physical interpretation of Eq. (1.27) follows analogously, but this
time we trace over a specific region of space rather than on a specific constituent, a change
of point of view which clarifies the switching from the LOCC framework to the sLOCC
one. Since more than one particle could be found in the interested region, the partial trace
must account for the fact that the measured one could be any of them, as they cannot
be specifically targeted by the measurement device due to their indistinguishability: this
leads to the one-particle partial trace definition in Eq. (1.24). Obtaining a pure state
finally means that the other constituent is in a perfectly determined state, showing no
correlations with the traced out particle. Otherwise, the global state is entangled. The
no-label approach thus allows to compute the entanglement of systems of two IP by
using the same tool employed for systems of NIP, namely the von Neumann entropy
of the reduced state, by suitably extending it to account for the indistinguishability of
the different constituents to the eyes of the measurement setting and by overcoming the
drawbacks of relying on unphysical labels.

Given the above definition of entanglement, we now stress that an entangled state of
spatially separated IP written in the no-label formalism has always the form a |χ1, χ2⟩+
b |χ′

1, χ
′
2⟩ for any a, b ̸= 0 such that |a|2 + |b|2 = 1, as it happens for NIP in the standard

approach (see the discussion about the Schmidt rank in Subsection 1.2.1). Here χj, χ′
j, j =

1, 2 may also include an internal degree of freedom, as it is the case for the Bell singlet
state of two spin-1/2 particles |Ψ(2)

− ⟩ = (|ψ1 ↑, ψ2 ↓⟩ − |ψ1 ↓, ψ2 ↑⟩)/
√
2, where |ψ1⟩ and

|ψ2⟩ are distinguishable spatial wave functions in the sLOCC sense. In contrast, the same
state written in the standard, label-based approach requires four tensor product kets, as
a consequence of the symmetrization postulate. This notational advantage is reported



1.2. CONSEQUENCES OF THE SYMMETRIZATION POSTULATE 17

in Figure 2.1, where the notation for writing bipartite states in the no-label formalism
is summarized and compared with the standard approach. Notice, in particular, the
possibility to factorize the spatial part from the spin one, so that |Ψ(2)

± ⟩ = (|ψ1 ↑, ψ2 ↓⟩ ±
|ψ1 ↓, ψ2 ↑⟩)/

√
2 can be rewritten as |Ψ(2)

± ⟩ = |ψ1, ψ2⟩±η ⊗ |↑, ↓⟩±, where the subscript
indicates the symmetry of the state: |α, β⟩± = ± |β, α⟩.

Finally, the generalization of the no-label formalism to the many-body scenario is
straightforward: given N particles in the single-particle states |ψj⟩ , j = 1, . . . , N , the
unnormalized global state is written as |Ψ(N)⟩ = |ψ1, ψ2, . . . , ψN⟩, which is properly nor-
malized as |Ψ(N)⟩N = |Ψ(N)⟩ /

√
⟨Ψ(N)|Ψ(N)⟩. Notice that |ψ1, ψ2, . . . , ψN⟩ ≠ |ψ1⟩⊗ |ψ2⟩⊗

· · · ⊗ |ψN⟩ for spatially indistinguishable constituents. Further information about the
generalization of the no-label approach to the many-body scenario, such as the general
rule for computing many-body inner products and the multipartite partial trace, can be
found, e.g., in Ref. [23].

In conclusion, the no-label approach to identical particles provides a midway formalism
between the first and the second quantization. Its focus is on the individual constituents
as for the former, rather than on modes as for the latter. However, the introduction of the
inner product in Eq. (1.21) introduces a relation between states differing in the number
of particles similarly to what is done with the creation and annihilation operators in the
second quantization formalism, allowing to establish a rigorous connection between the
two approaches [22]. The main advantage of the no-label approach is that it accounts
for the indistinguishability of identical constituent without resorting to unphysical labels,
allowing to evaluate entanglement with the same tools developed for NIP while treating
bosons and fermions on the same footage. For these reasons, we will employ such a
formalism in the rest of this thesis.

1.2.7 Discussion and comparison: entanglement of spatially over-
lapped particles

We will now compare the different approaches discussed in the previous subsections to
evaluate the entanglement of peculiar states where identical particles are spatially over-
lapped in the sLOCC sense.

The first example that we consider is the pure state of two identical spinless bosons
given by a balanced, coherent superposition of both the particles being in the same single-
particle state |ψL⟩ and |ψR⟩. Here, |ψL⟩ and |ψR⟩ are localized on two nonoverlapping
spatial regions L and R, so that ⟨ψL|ψR⟩ = 0. The resulting bipartite state is written
within the standard formalism as

|Ψ(2)⟩a =
1√
2

(
|ψL⟩A |ψL⟩B + eiθ |ψR⟩A |ψR⟩B

)
, (1.28)

where θ is a real phase. Let us now fix θ = π. The a priori approach discussed
in Subsection 1.2.3 deems |Ψ(2)⟩a to be non-entangled. Indeed, it can be obtained by
symmetrizing the factorized product of the orthogonal delocalized single-particle states
|ψD⟩ = (|ψL⟩+ |ψR⟩)/

√
2 and |ψA⟩ = (|ψL⟩ − |ψR⟩)/

√
2, that is,

|Ψ(2)⟩a =
1√
2

(
|ψD⟩A |ψA⟩B + |ψA⟩A |ψD⟩B

)
, (1.29)

where the terms |ψL⟩A |ψR⟩B and |ψR⟩A |ψL⟩B cancel out. Such an interference effect,
which gives rise to the well-known Hong-Ou-Mandel effect [24], will play a central role in
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this thesis and will be discussed in Chapter 5. Finally, we highlight that in the a priori
approach there is no difference between the state in Eq. (1.29) and

|Φ(2)⟩ = 1√
2

(
|ψL⟩A |ψR⟩B + |ψR⟩A |ψL⟩B

)
(1.30)

since ⟨ψL|ψR⟩ = ⟨ψD|ψA⟩ = 0, so that they are equivalent under the algebraic point
of view. Such an approach thus makes no difference between spatially overlapped and
spatially separated particles, ignoring the eventual role played by indistinguishability to
the detection setup. In the second quantization formalism, instead, we can define |ψL⟩
and |ψR⟩ as the two modes of our system. The state in Eq. (1.28) is then written as

|Ψ(2)⟩a =
1√
2

(
|2, 0⟩+ eiθ |0, 2⟩

)
. (1.31)

This state is not separable with respect to the bipartition given by the two modes for
every real θ and is thus mode entangled according to the second quantization approach.
Since a generalization of |Ψ(2)⟩a to an N -particle system takes the form

|Ψ(N)⟩ = 1√
2

(
|N, 0⟩+ eiθ |0, N⟩

)
, (1.32)

|Ψ(2)⟩a is called a NOON state [25, 26], with N = 2. NOON states allow for enhanced
performances in quantum estimation protocols which cannot be achieved using classical
probes [27, 28]. We will meet again NOON states in Chapter 6 and Chapter 7. Finally,
the state in Eq. (1.28) is written as

|Ψ(2)⟩a =
1

2

(
|L,L⟩+ eiθ |R,R⟩

)
(1.33)

in the no-label formalism, which becomes |Ψ(2)⟩a = |D,A⟩ for θ = π and |D⟩ = (|L⟩ +
|R⟩)/

√
2, |A⟩ = (|L⟩−|R⟩)/

√
2. We now compute the one-particle reduced density matrix

localized on region L as in Eq. (1.26), obtaining

ρ
(1)
L = |L⟩ ⟨L| . (1.34)

It follows that S(|Ψ(2)⟩a) = 0: NOON states are non-entangled according to the sLOCC
approach. This reflects the fact that after a particle is found in L the state of the other
constituent is uniquely determined as |L⟩.

As a second example, let us consider a bipartite state of two spin-1/2 particles localized
in the same spatial region L with opposite spin. In the standard approach, the global
state is written as

|Ψ(2)⟩b =
1√
2

(
|ψL ↑⟩A |ψL ↓⟩B + η |ψL ↓⟩A |ψL ↑⟩B

)
(1.35)

and deemed non-entangled by the a priori criterion as obtained by symmetrizing the
factorized product of the orthogonal states |ψL ↑⟩ and |ψL ↓⟩. Considering the two modes
associated to these two single-particle states, |Ψ(2)⟩b is non-entangled also according to
the second quantization approach, where it is written as |Ψ(2)⟩b = |1, 1⟩. On the contrary,
in the no-label approach we have |Ψ(2)⟩ = |L ↑, L ↓⟩, leading to the one-particle reduced
density matrix localized on L

ρ
(1)
L =

(
|L ↑⟩ ⟨L ↑|+ |L ↓⟩ ⟨L ↓|

)
/2, (1.36)
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giving S(ρ(1)) = 1: two identical particles in the same site with opposite spin are entangled
according to the no-label approach. Indeed, after the detection of one particle on region L,
the state of the other constituent can be either |L ↑⟩ or |L ↓⟩. This uncertainty gives rise to
spin entanglement between the constituents, as a consequence of the intrinsic spatial and
internal configuration [21]. This claim provides theoretical support of the experimental
observations reported in Ref. [29]. Notice that this would not hold if the two particles
had the same spin, that is, for |Ψ(2)⟩c = |L ↑, L ↑⟩: after the measurement of one particle
the state of the remaining constituent is unavoidably identified as |L ↑⟩: the global state
is deemed non-entangled by all the approaches considered.

1.3 Activating quantum resources in the sLOCC oper-
ational framework

We will now show how it is possible to activate quantum resources in an operational frame-
work which exploits the spatial indistinguishability of identical constituents in different
spin states detected by devices which are not sensible to such a degree of freedom.

1.3.1 No which-particle, no which-way, and no which-spin infor-
mation

Consider different spatially indistinguishable identical particles in an ambiguous setting.
We have previously discussed how in such a framework the detectors are unable to deter-
mine which particle they have detected, a fact which makes the symmetrization postulate
fundamental in the standard approach: in this sense, there is a lack of which-particle
information. We now introduce a dynamical point of view on the situation, assuming
that each constituent in the measured state was generated from a different source. It is
therefore possible to associate each particle to an origin in space, so that the words which-
particle can be rephrased as which-way : the ambiguity arising at the detector level as a
consequence of the spatial overlap thus generates the so-called no which-way information.
We highlight that the lack of which-particle and which-way information hold regardless of
the different degrees of freedom characterizing the particles, as long as the detectors are
not sensible to them (otherwise the constituents could be distinguished as in scenarios 2a.
and 2b. of Subsection 1.1.1): the which-particle and which-way information are related to
the individuality of a particle, rather than to its physical properties. However, let us now
endow the two above particles with pure, linearly independent spin states, so that they
can be factored out of the global state. If the detectors are not able to probe the spin,
the no which-way information leads to an ambiguity about the internal degree of freedom
of the detected constituents: we term this ignorance no which-spin information.

We will further see in Chapter 5 how entanglement and interference effects between
identical particles complicate the relation between no which-way and no which-spin infor-
mation, allowing for situations where the presence of the former is not due to the latter.
Finally, we report in Fig. 1.2 a pictorial representation of scenarios where no which-
particle, no which-way, and no which-spin information occur, highlighting the relation
between the three concepts.
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Figure 1.2: Different relations between particles source, their spin, and their overlap over
detection regions lead to different types of missing information. (a),(d) Unambiguous
setting: all the information are known. (b) Ambiguous setting: no which-particle in-
formation, source and spin known. (c) Ambiguous setting: no which-particle and no
which-way information, spin known. (e) Ambiguous setting: no which-particle and no
which-spin information, source known. (f) Ambiguous setting: no which-particle, no
which-way, and no which-spin information.

1.3.2 Generating entanglement

Consider two identical qubits initially localized in two spatially separated modes A and
B corresponding to the single-particle states |A⟩ , |B⟩, with ⟨A|B⟩ = 0. We assume the
two constituents to be in the initial state |Ψ(2)⟩in = |A ↑, B ↓⟩. Notice that |Ψ(2)⟩in is
normalized and non-entangled according to all the criterion presented in the previous
section. We now act on the wave function of the two particles to make them spatially
overlap over two distinct detection regions L and R, corresponding to the single-particle
states |L⟩ , |R⟩ with ⟨L|R⟩ = 0 (see Fig. 1.3). To do so, we introduce an operation D,
called spatial deformation, such that

|A⟩ D−→ |ψ⟩ = l |L⟩+ r |R⟩

|B⟩ D−→ |ψ′⟩ = l′ |L⟩+ r′ |R⟩ ,
(1.37)

where l, l′, r, r′ are complex coefficients and |l|2+ |r|2 = |l′|2+ |r′|2 = 1. Deformations will
be discussed in depth in Chapter 2. At the moment, we limit to notice that D, which is
in general non-unitary, acts on the initial state as |Ψ(2)⟩in

D−→ |Ψ(2)⟩D = |ψ ↑, ψ′ ↓⟩, where

|ψ ↑, ψ′ ↓⟩ = ll′ |L ↑, L ↓⟩+ rr′ |R ↑, R ↓⟩+ lr′ |L ↑, R ↓⟩+ l′r |R ↑, L ↓⟩ , (1.38)

and |Ψ(2)⟩D is already normalized. Crucially, D maps the spatially distinguishable parti-
cles into indistinguishable ones, creating no which-particle and no which-way information
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Figure 1.3: Deformation process: the spatial wave functions of two identical particles,
initially localized on two distinct spatial modes A and B, are modified and made to
overlap over two distinct detection regions L and R.

with respect to the spin-insensitive detectors set on L and R. Notice that, from the ini-
tial internal configuration, we also have no which-spin information, here ascribable to the
deformation D. In the scenario where the initial modes coincides with the final ones, i.e.,
|A⟩ = |L⟩ , |B⟩ = |R⟩, the deformation in Eq. (1.37) can represent, for example, the phys-
ical situation of particles tunneling to a neighboring site in systems such as Bose-Einstein
condensates or double-quantum dots.

We are now interested in evaluating the entanglement of |Ψ(2)⟩D. Using the tools
provided by the no-label approach, we compute the one-particle reduced density matrix
of ρD = |Ψ(2)⟩D ⟨Ψ(2)|D, tracing over the (arbitrarily chosen) region L (see Eq. (1.26)):

ρ
(1)
L =

[
PLP

′
L |L ↓⟩ ⟨L ↓|+ PLP

′
R |R ↓⟩ ⟨R ↓|+ PL l

′r′∗ |L ↓⟩ ⟨R ↓|+ PL r
′l′∗ |R ↓⟩ ⟨L ↓|

+ PLP
′
L |L ↑⟩ ⟨L ↑|+ PRP

′
L |R ↑⟩ ⟨R ↑|+ P ′

L lr
∗ |L ↑⟩ ⟨R ↑|+ P ′

L rl
∗ |R ↑⟩ ⟨L ↑|

]
/[
PL + P ′

L

]
,

(1.39)
where PL := |l|2 = |⟨L|ψ⟩|2, P ′

L := |l′|2 = |⟨L|ψ′⟩|2, PR := |r|2 = |⟨R|ψ⟩|2, P ′
R := |r′|2 =

|⟨R|ψ′⟩|2, and PL +PR = P ′
L +P ′

R = 1. Notice that ρ(1)L is not defined when PL = P ′
L = 0,

that is, when we are tracing over a region where none of the particles can be found,
indicating that no single constituent is being measured. Using Eq. (1.27) we compute
the related von Neumann entropy to evaluate the amount of entanglement EL(|Ψ(2)⟩D),
getting

EL(|Ψ(2)⟩D) = S(ρ
(1)
L ) = − P ′

L

PL + P ′
L
log2

P ′
L

PL + P ′
L
− PL

PL + P ′
L
log2

PL

PL + P ′
L
. (1.40)

We thus see that |ψ ↑, ψ′ ↓⟩ is entangled as long as PL and P ′
L are both nonzero. The

physical interpretation is as follows: from Eq. (1.38) we see that if PL = 0 (that is, l = 0),
the state of the particle detected by a measurement on the region L will be uniquely
determined as |L ↓⟩, whereas it will be |L ↑⟩ if P ′

L = 0, with the absence of uncertainty
proving the two constituents to be non-entangled. Notice that this observation is similar
to the one carried out for the state |L ↑, L ↓⟩ in Subsection 1.2.7.

The no-label approach thus allows to probe the entanglement between the indistin-
guishable particles in |Ψ(2)⟩D. However, it does not tell us how to exploit it in an opera-
tional framework, where two distinct parties need to perform tasks on individual particles
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in remote, spatially separated regions. Indeed, the two constituents in the state |Ψ(2)⟩ of
Eq. (1.38) can still be found in the same spatial mode, so that they must be somehow
separated in order for their correlations to be used in practical protocols. Notice that
this consideration also holds for the entanglement of the state |L ↑, L ↓⟩, evaluated in
Subsection 1.2.7. We have seen in Subsection 1.2.5 that the concept of detector-level en-
tanglement developed within the sLOCC framework suits for this practical task. We thus
proceed by performing a coincidence measurement, consisting in measuring the system
with the two detectors set on L and R without probing the internal degree of freedom,
and by postselecting only the results where one particle per region is found. This amounts
to projecting |Ψ(2)⟩D on the two-particle basis

BLR = {|L ↑, R ↑⟩ , |L ↑, R ↓⟩ , |L ↓, R ↑⟩ , |L ↓, R ↓⟩} (1.41)

via the projection operator

ΠLR =
∑

σ,τ=↑,↓

|Lσ,Rτ⟩ ⟨Lσ,Rτ | , (1.42)

obtaining, after proper normalization,

|Ψ(2)⟩LR =
ΠLR |Ψ(2)⟩LR√
⟨Ψ(2)|D ΠLR |Ψ(2)⟩D

=
lr′ |L ↑, R ↓⟩+ η l′r |L ↓, R ↑⟩√

|lr′|2 + |l′r|2
, (1.43)

with η = 1 for bosons and η = −1 for fermions. Since we are rejecting the results
where both qubits are found in the same spatial region, such a state is postselected with
probability

PLR = ⟨Ψ(2)|D ΠLR |Ψ(2)⟩D = |lr′|2 + |l′r|2 = PLP
′
R + P ′

LPR. (1.44)

The two constituents in state |Ψ(2)⟩LR are now spatially distinguishable with respect
to regions L, R, so that their entanglement can be evaluated with the standard tools
developed for NIP or for spatially separated IP, where labels can be given a physical
meaning and the symmetrization postulate can be avoided. For example, let us label
with L,R the particle on the respective region: tracing out particle L from |Ψ(2)⟩LR and
normalizing, we get the reduced density matrix

ρR =
[
PLP

′
R |R ↓⟩ ⟨R ↓|+ P ′

LPR |R ↑⟩ ⟨R ↑|
]/
PLR, (1.45)

leading to the von Neumann entropy [20]

S(ρR) = −
PLP

′
R

PLR
log2

PLP
′
R

PLR
− P ′

LPR

PLR
log2

P ′
LPR

PLR
. (1.46)

The amount of operative, detector-level entanglement Edl
(
|Ψ(2)⟩D

)
= S(ρR) extractable

from state |Ψ(2)⟩D = |ψ ↑, ψ′ ↓⟩ thus depends on the spatial overlap between the con-
stituents and, accordingly, on their indistinguishability. In particular, it holds that

• Edl
(
|Ψ(2)⟩D

)
= 0 if at least one of PL, P

′
L, PR, P

′
R is equal to 0 or to 1. In this

case, at least one particle is perfectly localized on one of the two spatial modes: the
detection of the second particle on the other region thus allows to uniquely determine
the state of both qubits. For example, if P ′

L = 0 (i.e., l′ = 0) the postselected state
in Eq. (1.43) becomes the manifestly non-entangled state |Ψ(2)⟩LR = eiθ |L ↑, R ↓⟩,
where θ is a phase which depends on l, r′.
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• Edl
(
|Ψ(2)⟩D

)
= 1 if PL = P ′

L, which implies PR = P ′
R. In this scenario, the two

constituents are delocalized over the two detection regions with the same weights,
leading to maximum entanglement.

It is now interesting to look for the relation between the intrinsic entanglementEL
(
|Ψ(2)⟩D

)
computed with respect to region L in the no-label approach and the operational one
Edl
(
|Ψ(2)⟩D

)
computed in the detector-level approach. To this aim, we notice that the

one-particle reduced density matrix ρ(1)L in Eq. (1.39) becomes equal to the reduced den-
sity matrix ρR in Eq. (1.45) when projected over region R and properly normalized, that
is,

ρ
(1)
L→R := ΠR ρ

(1)
L ΠR = ρR, (1.47)

where ΠR =
∑

σ=↑,↓ |Rσ⟩ ⟨Rσ|. It follows that

S
(
ρ
(1)
L→R

)
= S(ρR), (1.48)

establishing a connection between the two approaches. Indeed, the projection of ρ(1)L
over region R eliminates the possibility of finding the second particle in the same de-
tection region L of the former, which is what the no-label approach needs to become
operational. This is more evident for the state |L ↑, L ↓⟩ discussed in Subsection 1.2.7:
although deemed entangled by the no-label approach, the two particles must be spatially
separated in order to be used in practical tasks.

In conclusion, we have presented an operational protocol to generate entanglement
between identical particles within the sLOCC framework starting from non-entangled
states. The procedure is composed of a deformation of the spatial wave function of the
constituents followed by a postselected projection over distinct detection regions. The
physical explanation of the process stands in the deformation creating no which-way in-
formation at the detector level: we don’t know if the particle detected in regions L,R
is coming from A or from B. Since the constituents are in well-determined, orthogonal
pseudo-spin states, such a no which-way information gives rise to a no which-spin infor-
mation: we do not know if the particle detected in regions L,R has pseudospin ↑ or ↓.
This ignorance ultimately manifests as entanglement in the internal degree of freedom of
the projected state. The physical nature of the emerging quantum correlations has been
verified by experimentally performing a quantum teleportation protocol with the entan-
gled qubits in the state |Ψ(2)⟩LR of Eq. (1.43) [1]. Fig. 1.4 depicts the all-optical setup
employed to achieve this goal, with part (a) implementing the deformation + sLOCC
projection step and part (b) implementing the quantum teleportation protocol.

1.3.3 Enhancing coherence

Following Ref. [30], we now recall how the deformation + sLOCC projection protocol can
be employed to generate coherence exploitable in quantum metrology tasks.

We start with two identical, spatially separated qubits localized on two spatial regions
A and B and assume their initial state to be the incoherent mixture

ρin =
∑

σ,τ=↑,↓

pστ |Aσ,Bτ⟩ ⟨Aσ,Bτ | , (1.49)

where the coefficients pστ are such that Tr [ρin] = 1. Notice that, since the two particles
are spatially separated, the above density matrix factorizes as

ρin =
∑

σ,τ=↑,↓

pστ
(
|Aσ⟩ ⟨Aσ| ⊗ |Bτ⟩ ⟨Bτ |

)
.
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Figure 1.4: Schematic representation of the optical setup employed to implement the
deformation + sLOCC projection and quantum teleportation protocol in Ref. [1]. (a)
Using fiber couplers (FCs), half-wave plates (HWPs) and polarized beam splitters (PBSs),
two oppositely-polarized independent photons generated from two BBO crystals go to the
separated regions L and R, where a beam displacer (BD) makes the photon paths meet at
detectors. The inset displays the unit of polarization analysis detection (PAD), including
a quarter-wave plate (QWP) and a single-photon detector (SPD). (b) Teleportation part.
PAD is removed and the photons in L proceed to a Bell state measurement (BSM) with
coincidence device (CD). The photon state to be teleported is generated in L’. Figure
taken from Ref. [1].

We now act on the system with the spatial deformation D in Eq. (1.37), obtaining the
density matrix

ρD =
∑

σ,τ=↑,↓

pστ |ψσ, ψ′τ⟩ ⟨ψσ, ψ′τ | . (1.50)

Performing the coincidence measurement implementing the sLOCC projection on the
two-particle basis in Eq. (1.41) via the projection operator ΠLR in Eq. (1.42), we get

ρLR =
ΠLR ρD ΠLR

Tr [ΠLR ρD]
=

1

M
∑

σ,τ=↑,↓

pστ
(
PLP

′
R |Lσ,Rτ⟩ ⟨Lσ,Rτ |+ η P ′

LPR |Lτ,Rσ⟩ ⟨Lτ,Rσ|

+ η lr′l′∗r∗ |Lσ,Rτ⟩ ⟨Lτ,Rσ|+ η l′rl∗r′∗ |Lτ,Rσ⟩ ⟨Lσ,Rτ |
)
,

(1.51)
whereM =

∑
σ,τ=↑,↓ pστ

(
PLP

′
R |Lσ,Rτ⟩ ⟨Lσ,Rτ |+ η P ′

LPR |Lτ,Rσ⟩ ⟨Lτ,Rσ|
)
. We there-

fore notice that the resulting state ρLR presents coherence terms initially absent in ρin,
provided by the second line in Eq. (1.51). For instance, these vanish when at least one
of the coefficients l, l′, r, r′ is equal to zero, implying that at least one of the probabilities
PL, P

′
L, PR, P

′
R is null. Indeed, the vanishing of the probability amplitude of one constituent

over a detection region allows to uniquely identify the particle detected in that spatial
mode, erasing the no which-way and thus the no which-spin information responsible for
the coherence. However, in this situation coherence vanishes also when p↑,↓ = p↓,↑ = 0:
in this case, the initial state ρin is a classical mixture of two spatially separated particles
in the same spin state, whether it be ↑ or ↓. This leads to a scenario where the state of
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the two qubits after the detection can be uniquely determined, being either |L ↑, R ↑⟩ or
|L ↓, R ↓⟩, with the density matrix ρLR given by an incoherent mixture of the two. We
are thus in a situation where there is which-spin information despite the presence of no
which-way information (see Fig. 1.2(c)), motivating the absence of coherence. On the
contrary, this does not hold when p↑,↓ ̸= 0 or/and p↓,↑ ̸= 0, as these terms lead to a no
which-spin information in the final state ρLR which manifests in the presence of coherence.

Finally, in Ref. [30] the authors show that the coherence generated by the deforma-
tion + sLOCC projection protocol provides an operational advantage in quantum phase
discrimination tasks.

1.3.4 Recovering correlations

In this last subsection we report the main results of Ref. [2], where the authors show how
the deformation + sLOCC projection procedure can be employed to recover the quantum
correlations initially present in a state of two identical qubits and later spoiled by the
noisy interaction with local environments.

We start once again with two particles initially localized on two spatially separated
regions A and B, prepared in either the maximally entangled Bell triplet state |1+⟩AB or
singlet state |1−⟩AB, where

|1±⟩AB :=
1√
2

(
|A ↑, B ↓⟩ ± |A ↓, B ↑⟩

)
. (1.52)

We now account for the presence of white noise locally affecting both particles during
the preparation of |1±⟩AB. This can be modeled as the noise introduced by the local
interaction between the constituents and depolarizing environments, which leads to the
formation of a Werner state W±

AB [31,32]. Werner state is defined as a mixture of the pure
target state, here represented by the Bell triplet or singlet, and of the maximally mixed
state accounting for the white noise:

W±
AB :=

(
1− p

)
|1±⟩AB ⟨1±|AB +

1

4
p 11, (1.53)

where p is the noise probability accounting for the amount of white noise which affected
the system, whereas 11 is the 4 x 4 identity matrix. We now implement the deformation
D defined in Eq. (1.37) delocalizing the two constituents over two distinct spatial regions
L and R, here recalled:

|A⟩ D−→ |ψ⟩ = l |L⟩+ r |R⟩

|B⟩ D−→ |ψ′⟩ = l′ |L⟩+ r′ |R⟩ .
(1.54)

The resulting state is

W±
AB

D−→ W±
D :=

(
1− p

)
|1±⟩D ⟨1±|D +

1

4
p 11D, (1.55)

where 11D =
∑

|v⟩∈BD
|v⟩ ⟨v| is given in terms of the elements of the deformed Bell state

basis BD = {|1+⟩D , |1−⟩D , |2+⟩D , |2−⟩D}, with

|1±⟩D :=
1√
2

(
|ψ ↑, ψ′ ↓⟩ ± |ψ ↓, ψ′ ↑⟩

)
,

|2±⟩D :=
1√
2

(
|ψ ↑, ψ′ ↑⟩ ± |ψ ↓, ψ′ ↓⟩

)
.

(1.56)
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Notice that the elements of the deformed Bell basis are orthogonal but not normalized.
However, this is not an issue since we are interested in evaluating the detector-level en-
tanglement of the normalized state obtained after projection on the detection regions.

The authors of Ref. [2] introduce a measure of the generated spatial indistinguishabil-
ity, which is aimed to quantify the no which-way information induced by the deformation
D. The introduced quantity is entropic-like and is defined as

I := − PLP
′
R

PLP ′
R + P ′

LPR
log2

PLP
′
R

PLP ′
R + P ′

LPR
− P ′

LPR

PLP ′
R + P ′

LPR
log2

P ′
LPR

PLP ′
R + P ′

LPR
, (1.57)

where we recall that PL = |⟨L|ψ⟩|2, P ′
L = |⟨L|ψ′⟩|2, PR = |⟨R|ψ⟩|2, P ′

R = |⟨R|ψ′⟩|2, and
PL +PR = P ′

L +P ′
R = 1. Notice that such entropic measure of spatial indistinguishability

is defined as the detector-level entanglement Edl(|Ψ(2)⟩D) of the bipartite state |Ψ(2)⟩D =
|ψ ↑, ψ′ ↓⟩ obtained by deforming |A ↑, B ↓⟩ with the deformation D, as computed in
Eq. (1.46). In particular, it is minimum I = 0 when at least one of PL, P

′
L, PR, P

′
R is

equal to 0 or to 1 (spatially distinguishable particles), while it is maximum I = 1 when
PL = P ′

L, implying PR = P ′
R = 1/2 (maximally indistinguishable particles).

We proceed by performing the sLOCC projection over the regions L and R via the
sLOCC projector ΠLR defined in Eq. (1.42), obtaining the properly normalized state

W±
LR =

ΠLRW
±
D ΠLR

Tr
[
ΠLRW

±
D

] (1.58)

with probability PLR = Tr
[
ΠLRW

±
D

]
. To evaluate the entanglement of W±

LR, the authors
of Ref. [2] analyze its Wootters concurrence, as the von Neumann entropy is defined for
pure states only. Given a bipartite state ρLR of spatially separated particles localized on
two separated regions L and R, its concurrence is defined as [33]

C(ρLR) = max{0,
√
λ4 −

√
λ3 −

√
λ2 −

√
λ1}, (1.59)

where λi are the eigenvalues in decreasing order of the matrix ξ = ρLR ρ̃LR, with ρ̃LR :=
(σL

y ⊗σR
y ) ρ

∗
LR (σL

y ⊗σR
y ) and σL

y , σR
y being the usual Pauli matrix σy localized, respectively,

on the particle in L and in R. The resulting C(W±
LR) depends on the noise probability p, on

the particles bosonic or fermionic nature, and on the coefficients l, l′, r, r′ determining the
spatial overlap of the constituents and their indistinguishability I. Results for relevant
parameters are reported in Fig. 1.5. It is crucial to compare the obtained outcomes
with the entanglement of the state W±

LR in Eq. (1.53) prior to the application of the
deformation + sLOCC projection protocol. It is known that the concurrence of such a
state is C(W±

AB) = 1−3p/2 when 0 ≤ p ≤ 2/3, being zero otherwise [34] (see the black dot-
dashed line of Fig. 1.5(a)). In particular, let us focus on the situation l = l′ ⇒ PL = P ′

L
which guarantees a maximum amount of indistinguishability I = 1 between the particles.
We further assume the coefficients l, l′, r to be real and nonzero, whereas r′ = eiθ |r′|. When
the target state is the singlet |1−⟩AB, it can be shown that the state in Eq. (1.58) resulting
from the sLOCC projection for identical bosons with θ = π or fermions with θ = 0 is
W−

LR = |1−⟩LR ⟨1−|LR, that is, in these scenarios the sLOCC operational protocol returns
the target singlet state regardless of the noise parameter p. This occurs with probability
P b

LR = 2l2(1−l2) for bosons with θ = π, and P f
LR = 2l2(1−l2)(4−3p)/[2−(1−2l2)2(2−3p)]

for fermions with θ = π. Since |1−⟩LR is a maximally entangled state (C(|1−⟩LR) = 1),
we have thus recovered the quantum correlations spoiled by the white noise affecting the
initial state W−

AB. Finally, the results for nonidentical particles are retrieved when I = 0,
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Figure 1.5: (a) Entanglement C(W±
LR) as a function of the noise probability p for different

degrees of spatial indistinguishability I and system parameters: the blue solid line refers
to the target state |1−⟩LR of two maximally indistinguishable (I = 1, with l = l′) identical
bosons with θ = π or fermions with θ = 0; the red dashed line refers to the target state
|1+⟩LR of two maximally indistinguishable (I = 1, with l = l′) identical bosons with θ = 0
or fermions with θ = π; the black dot-dashed line refers to distinguishable qubits (I = 0,
with l = 1 and l′ = 0 or vice versa). (b) Contour plot of the entanglement C(W−

LR) as
a function of the noise parameter p and the spatial indistinguishability I for the target
state |1−⟩LR of two identical bosons with θ = π or fermions with θ = 0, fixing l = r′.
Figure taken from Ref. [2].

obtained, e.g., by setting l = r′ = 1 or l = r′ = 0. A more detailed analysis involving
the choice of |1+⟩AB as target state and intermediate values 0 < I < 1 can be found in
Ref. [2].

In conclusion, we remark that an extension of the results discussed in this subsection
can be found in the paper reported in Chapter 4, where different types of local noisy
environments are considered. Furthermore, in Chapter 5 we highlight an issue affecting
the spatial indistinguishability measure of Eq. (1.57) when employed to quantify the
indistinguishability of states such as |1±⟩D obtained by the deformation of |1±⟩AB. We
shall discuss the origin of the problem and propose a possible solution.



Chapter 2

Generating indistinguishability within
identical particle systems: spatial
deformations as quantum resource
activators

Abstract

Identical quantum subsystems can possess a property which does not have any classi-
cal counterpart: indistinguishability. As a long-debated phenomenon, identical particles’
indistinguishability has been shown to be at the heart of various fundamental physical
results. When concerned with the spatial degree of freedom, identical constituents can
be made indistinguishable by overlapping their spatial wave functions via appropriately
defined spatial deformations. By the laws of quantum mechanics, any measurement de-
signed to resolve a quantity which depends on the spatial degree of freedom only and
performed on the regions of overlap is not able to assign the measured outcome to one
specific particle within the system. The result is an entangled state where the measured
property is shared between the identical constituents. In this work, we present a coherent
formalization of the concept of deformation in a general N -particle scenario, together with
a suitable measure of the degree of indistinguishability. We highlight the basic differences
with nonidentical particles scenarios and discuss the inherent role of spatial deformations
as entanglement activators within the spatially localized operations and classical commu-
nication operational framework.

This chapter reports the results of our manuscript of Ref. [23].

2.1 Introduction: identity and indistinguishability

In physics, particles are said to be identical if their intrinsic physical properties, such as
mass, electric charge, and (total) spin, are the same [4,5]. This is the case, for example, of
subatomic particles such as electrons, photons, quarks, of atomic nuclei, and of atoms and
molecules themselves. Particles identity is a cornerstone of both classical and quantum
physics which provides the core of the inductive approach to the investigation of Nature’s
fundamental laws: the assumption that all the electrons in the universe possess the same
electric charge, mass, spin, etc., allows to conclude that some fundamental properties

28
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extrapolated from the behaviour of a sample of electrons observed in a laboratory also
hold for all the other electrons in the universe.

Despite being frequently used as synonyms, particles identity is not the same as parti-
cles indistinguishability. Being a purely quantum phenomenon, the latter is more strictly
related to the concept of individual addressability [7,21]. Identical particles can indeed still
be distinguished one from the other when their extrinsic properties, such as their position
or the projection of their angular momentum along an axis, are different. This is clear
in the classical world where two physical systems, even when microscopic and identical,
always occupy distinct positions in space at a fixed time, thus always being potentially
individually addressed by following their trajectory [5]. On the contrary, this is not always
true in quantum mechanics, where the wave-like and probabilistic description of physical
systems allows different particles wave functions to be spatially overlapped, thus having
a nonzero probability of simultaneously occupying the same region of space. When this
situation occurs, any measurement of quantities depending only on the particles position
performed on the region of overlap does not allow the observer to understand to which
specific particle the measured outcome belongs to. This is the case, for example, of two
synchronized photon sources A and B emitting single photons impinging, with a certain
probability, on a restricted detecting spatial region. If a single photon detector in that
region clicks, we now have no way of knowing from which source the detected photon is
coming from: in this situation, we say that there is no which-way information and the
particles of interest are said to be indistinguishable [4, 21].

The difference between identity and indistinguishability is particularly evident in the
everyday experience. It is indeed this difference which allows one to relate observed results
to specific samples in an experiment: for example, we can talk about the characterization
of a specific laser source carried out in a laboratory in Buenos Aires only because the
photons emitted by such a source are very well distinguishable (not spatially overlapped,
in this case) from the ones emitted by a neon sign in Tokyo, despite all the photons being
identical [6, 7, 12, 35]. Still, the laser must be very well isolated from other light sources
to be sure that the characterized device is the laser and not a street lamp nearby. Thus,
differently from particle identity, particle indistinguishability depends on the variable
degrees of freedom involved. As a crucial consequence, indistinguishability is a meaningful
concept only when related to the discrimination capability of the measurement device
employed to probe those degrees of freedom.

To better clarify this point, let us recover the above mentioned example of two syn-
chronized single photon emitters and let us now assume that source A is known to emit
photons with horizontal polarization, while source B produces only vertically polarized
ones. Furthermore, let us suppose that the polarization is not changed by the dynamics.
If the single photon detector placed on the region of spatial overlap is designed to discrim-
inate also the photon polarization, we now have a way to understand whether the origin
of the particle causing the click is source A or B. In other words, the two photons can now
be individually addressed and are not indistinguishable anymore despite being identical
and spatially overlapped. Similarly, if we now further assume the polarization of the two
photons to be the same, we could employ a measurement device capable of detecting their
energy to discriminate among them. Even the emission time can be used to discriminate
between the two particles if we know one source to emit before the other. Finally, the
number of detectors can be set to distinguish the two particles, too. For example, let us
consider that a photon emitted from source A can only reach regions L and C while a
photon emitted from source B can impinge only on C and R, with L, C, and R distinct: a
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single-photon detector placed in region C would be unable to distinguish the two particles,
while the addition of a second detector on L would be enough to reconstruct the origin of
every click.

Summing up, particles are always assumed, often implicitly, to be (or not to be) indis-
tinguishable to the eyes of the employed measurement devices, while they are universally
identical or nonidentical. From the experimental point of view, the actual generation of
indistinguishable photons is actually a hard operation of fine tuning and synchronization.
From now on, we will always implicitly refer to spatial indistinguishability when not oth-
erwise specified, i.e. to the indistinguishability of particles spatially overlapped in relation
to detectors for which no which-way information exists.

In this paper we characterize the degree of indistinguishability in a general N -particle
quantum system. This is achieved by formalizing and extending the idea of deformation
operations. Firstly introduced in Ref. [36] and later exploited in Refs. [37, 38] in the
particular scenario of bipartite systems, deformations provide a mathematical framework
suitable to describe the manipulation of identical constituents when particles’ indistin-
guishability is involved. They account for processes where indistinguishability is generated
starting from identical, yet distinguishable particles, and vice versa. Remarkably, they
play a fundamental role in devising a coherent extension of the traditional local oper-
ations and classical communication (LOCC) framework to systems of indistinguishable
constituents, whereas the latter fails due to resorting on particles’ individuality. After a
short summary of the no-label approach to identical particles [21,22] in Section 2.2, we in-
troduce, formalize, and generalize deformations in Section 2.3. In Section 2.4, we retrieve
the definition of an entropic measure of spatial indistinguishability firstly introduced in
Ref. [2], extending it to the multipartite scenario and to a general amount of degrees of
freedom. Finally, in Section 2.5, we review and employ the spatially localized operation
and classical communication (sLOCC) operational framework, which highlights the im-
portance of spatial deformations as a fundamental tool for the manipulation of identical
constituents in many practical applications, as confirmed by recent experiments. To help
the reader to grasp the main aspects of the manuscript, we conclude each Section with a
brief summary of the discussed arguments.

2.2 The no-label formalism
As is well known, particles living in a 3-dimensional space can be divided into two macro
groups: bosons, with integer spin, and fermions, with semi-integer spin. According to
the symmetrization postulate, the global state describing an ensemble of identical bosons
must remain the same when the role of any pair of particles is exchanged: bosonic states
are symmetric under particles swapping. On the contrary, fermionic states are ruled to be
anti-symmetric under analogous particles exchange [6]. The existence of such a postulate
is at the heart of the Pauli exclusion principle and sets the ground for fundamental results
in modern physics, from models to analyze Bose-Einstein condensates to the description
of the behaviour of neutron stars.

To deal with these conditions, the standard approach to identical particles assigns un-
physical (unobservable) labels to each constituent, ensuring that the global state exhibits
the correct symmetry when any two labels are switched [4]. For example, let us consider
two non-entangled particles with spatial wave functions ψ1, ψ2. If the two particles are
nonidentical, their global state is simply given by the tensor product |Ψ(2)⟩ = |ψ1⟩A⊗|ψ2⟩B,
where the labels A and B encompass all the other physical degrees of freedom as well as
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the properties which makes the two constituents different. Differently, if the two parti-
cles are identical and indistinguishable, labels A and B becomes simply fictitious names
without any physical meaning and the global state must be written as [6]

|Ψ(2)⟩ = 1√
2
(|ψ1⟩A ⊗ |ψ2⟩B + η |ψ2⟩A ⊗ |ψ1⟩B) , (2.1)

in order to satisfy the symmetrization postulate, where η = 1 for bosons and η = −1 for
fermions.

The approach leading to Eq. (2.1), despite being the most frequently used even in
didactic textbooks, is know to be affected by some formal problems [12,13]. For example,
the necessity to symmetrize/antisymmetrize states by hand as in Eq. (2.1) leads to the
emergence of fictitious entanglement when this is evaluated using standard tools such as
the von Neumann entropy of the reduced density matrix. This is tackled by adopting ad
hoc treatments to probe the existence of quantum correlations among identical particles
systems. In addition, such methods require to treat bosons and fermions differently.
In order to overcome these problems, a plethora of alternative approaches to deal with
identical particles has been proposed over time [7, 13,20–22,39–51].

Among these methods, the no-label approach recognizes the origin of the problem in
the unphysical labels A and B appearing in Eq. (2.1), removing them from the formal-
ism [21, 22]. In this way, global states are simply given by a list of the single particle
states: considering once again the example of two constituents with single spatial wave
functions ψ1 and ψ2, the global state is written as |Ψ(2)⟩ := |ψ1, ψ2⟩. If the two par-
ticles are distinguishable, e.g. not spatially overlapped, the global state is still a prod-
uct state. Nonetheless, when they are not perfectly distinguishable, the global state
cannot be written as a tensor product anymore: |Ψ(2)⟩ ̸= |ψ1⟩ ⊗ |ψ2⟩. Similarly, the
global Hilbert space H(2) is generally not the tensor product of the single particle Hilbert
spaces H(1)

1 and H(1)
2 : H(2) ̸= H(1)

1 ⊗ H
(1)
2 . The formalism easily accounts for other sin-

gle particle degrees of freedom. For example, let us consider a bipartite state of two
identical qubits, one with spatial wave function ψ1 and pseudospin ↑ and the other one
analogously characterized by ψ2 and ↓. Within the standard approach, such a state is
given by |Ψ(2)⟩ = 1√

2
(|ψ1 ↑⟩A ⊗ |ψ2 ↓⟩B + η |ψ2 ↓⟩A ⊗ |ψ1 ↑⟩B), analogously to Eq. (2.1).

In the no-label approach, instead, the same situation is simply described by the state
|Ψ(2)⟩ = |ψ1 ↑, ψ2 ↓⟩, with |Ψ(2)⟩ = |ψ1 ↑⟩ ⊗ |ψ2 ↓⟩ if ψ1 and ψ2 do not overlap (distin-
guishable particles) and |Ψ(2)⟩ ̸= |ψ1 ↑⟩ ⊗ |ψ2 ↓⟩ otherwise (indistinguishable particles).
The advantages of the no-label formalism emerge even more clearly when dealing with
more complicated scenarios: consider, for example, the previously mentioned situation,
where this time we don’t know whether the particle with spatial wave function ψ1 is char-
acterized by the pseudospin ↑ and the one with ψ2 by ↓ or vice versa. When such an
uncertainty is maximum, two possible states for the bipartite system are the Bell triplet
(+) and singlet (-) maximally entangled states, which the symmetrization postulate in
the standard formalism rules to be written as

|Ψ(2)⟩ =
|ψ1 ↑⟩A ⊗ |ψ2 ↓⟩B ± |ψ1 ↓⟩A ⊗ |ψ2 ↑⟩B + η

(
|ψ2 ↓⟩A ⊗ |ψ1 ↑⟩B ± |ψ2 ↑⟩A ⊗ |ψ1 ↓⟩B

)
2

.

(2.2)
The no-label approach noticeably simplifies the notation, allowing to rewrite the same
state as |Ψ(2)⟩ = |ψ1 ↑, ψ2 ↓⟩ ± |ψ1 ↓, ψ2 ↑⟩, or equivalently [22] as |Ψ(2)⟩ = |ψ1, ψ2⟩±η ⊗
|↑, ↓⟩±, where the subscript indicates the symmetry of the state: |α, β⟩± = ± |β, α⟩.
Finally, the generalization to the N -particle scenario is straightforward, with the global
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STANDARD APPROACH NO-LABEL APPROACH

NONIDENTICAL

IDENTICAL

NONIDENTICAL

IDENTICAL

NONIDENTICAL

IDENTICAL

NONIDENTICAL

IDENTICAL

              This does not hold for the spatial and the pseudospin parts separately:                  In the standard approach, 

              Pseudospin known means that there is certainty about which pseudospin is associated to which spatial wave function; pseudospin unknown means that there is no such a certainty.

STANDARD VERSUS NO-LABEL APPROACH CONVERSION TABLE FOR  TWO-PARTICLE STATES

NOTES: for global states of identical particles in the no-label approach, it holds that

DIFFERENT PSEUDOSPIN.

PSEUDOSPIN KNOWN

DIFFERENT PSEUDOSPIN.

PSEUDOSPIN UNKNOWN 

(MAXIMALLY ENTANGLED 

STATE)

SAME PSEUDOSPIN.

PSEUDOSPIN KNOWN

SAME PSEUDOSPIN.

PSEUDOSPIN UNKNOWN 

(MAXIMALLY ENTANGLED 

STATE)

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜏⟩𝐵

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜏⟩𝐵 + 𝜂 |𝜓2𝜏⟩𝐴 |𝜓1𝜎⟩𝐵

|Ψ〉 = (|𝜓1〉𝐴 𝜓2⟩𝐵 ⊗ 𝜎⟩𝐴 𝜏⟩𝐵 ± 𝜏⟩𝐴 𝜎⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜏⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜎⟩𝐵

|Ψ〉 = (|𝜓1〉𝐴 𝜓2⟩𝐵 ± 𝜂 |𝜓2〉𝐴 |𝜓1⟩𝐵 ⊗ 𝜎⟩𝐴 𝜏⟩𝐵 ± 𝜏⟩𝐴 𝜎⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜏⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜎⟩𝐵 + 𝜂 (|𝜓2𝜏⟩𝐴 𝜓1𝜎⟩𝐵 ± |𝜓2𝜎⟩𝐴 𝜓1𝜏⟩𝐵)

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜎⟩𝐵

|Ψ〉 = |𝜓1𝜎⟩𝐴 |𝜓2𝜎⟩𝐵 + 𝜂 |ψ2𝜎⟩𝐴 |𝜓1𝜎⟩𝐵

|Ψ〉 = (|𝜓1⟩𝐴 𝜓2⟩𝐵 ⊗ 𝜎⟩𝐴 𝜎⟩𝐵 ± 𝜏⟩𝐴 𝜏⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜎⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜏⟩𝐵

|Ψ〉 = (|𝜓1⟩𝐴 𝜓2⟩𝐵 + 𝜂 |𝜓2⟩𝐴 |𝜓1⟩𝐵 ⊗ 𝜎⟩𝐴 𝜎⟩𝐵 ± 𝜏⟩𝐴 𝜏⟩𝐵

= |𝜓1𝜎⟩𝐴 𝜓2𝜎⟩𝐵 ± |𝜓1𝜏⟩𝐴 𝜓2𝜏⟩𝐵 + 𝜂 (|𝜓2𝜎⟩𝐴 𝜓1𝜎⟩𝐵 ± |𝜓2𝜏⟩𝐴 𝜓1𝜏⟩𝐵)

|Ψ〉 = |𝜓1𝜎, 𝜓2 𝜏⟩ = 𝜓1𝜎 ⊗ |𝜓2𝜏⟩

|Ψ〉 = |𝜓1𝜎,𝜓2 𝜏⟩

Ψ = 𝜓1𝜎,𝜓2𝜏 ± 𝜓1𝜏, 𝜓2𝜎

= 𝜓1, 𝜓2 ⊗ |𝜎, 𝜏⟩±

Ψ = 𝜓1𝜎, 𝜓2𝜏 ± 𝜓1𝜏, 𝜓2𝜎

= |𝜓1, 𝜓2⟩±𝜂 ⊗ |𝜎, 𝜏⟩±

Ψ = 𝜓1𝜎,𝜓2, 𝜎 = 𝜓1𝜎 ⊗ |𝜓2𝜎⟩

Ψ = 𝜓1𝜎,𝜓2𝜎
= 𝜓1𝜎 ⊗ |𝜓2𝜎⟩ if distinguishable, ≠ 𝜓1𝜎 ⊗ |𝜓2𝜎⟩ if not 

Ψ = 𝜓1𝜎,𝜓2𝜎 ± 𝜓1𝜏, 𝜓2𝜏

= 𝜓1, 𝜓2 ⊗ ( 𝜎, 𝜎 ± |𝜏, 𝜏⟩)

Ψ = 𝜓1𝜎, 𝜓2𝜎 ± 𝜓1𝜏, 𝜓2𝜏

= 𝜓1, 𝜓2 𝜂 ⊗ ( 𝜎, 𝜎 ± |𝜏, 𝜏⟩)

|𝜓1, 𝜓2⟩±𝜂 ⊗ |𝜎, 𝜏⟩± ≠ (𝜂 |𝜓2, 𝜓1⟩±𝜂) ⊗ |𝜎, 𝜏⟩± ≠ |𝜓1, 𝜓2⟩±𝜂 ⊗ 𝜂 𝜏, 𝜎⟩± .

𝜓1𝜎, 𝜓2𝜏 = 𝜂 |𝜓2𝜏, 𝜓2𝜎⟩.

𝝈 ≠ 𝝉

= 𝜓1𝜎 ⊗ |𝜓2𝜏⟩ if distinguishable, ≠ 𝜓1𝜎 ⊗ |𝜓2𝜏⟩ if not

⋅ 𝐴 ⋅ 𝐵≡ ⋅ 𝐴 ⊗ ⋅ 𝐵.

Figure 2.1: Table 1. Conversion table for two-particle states between the standard for-
malism and the no-label approach. ψ1 and ψ2 are the two single particle spatial wave
functions, while σ and τ (σ ̸= τ) are the pseudospin projection along a preferred axis.
Notation is reported for both nonidentical and identical particles states: for the first ones,
labels used in the standard approach have a physical meaning, identifying physical, mea-
surable properties; for the latter, no physical meaning can be assigned to labels when the
described particles are indistinguishable. The no-label approach overcomes this problem
by avoiding to resort on labels. Normalization coefficients are omitted to avoid cluttering.

state |Ψ(N)⟩ := |ψ1, ψ2, . . . , ψN⟩ generally satisfying |Ψ(N)⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN⟩.
For a more exhaustive review of how the most common two-particle states are written
within the no-label approach, compared to their expressions in the standard approach
with fictitious labels, see Table 2.1.

Given the two-particle state |ψ1, ψ2⟩, the cornerstone of the no-label approach is pro-
vided by the definition of the probability amplitude related to finding the system in
the state |φ1, φ2⟩, which takes into account the eventual indistinguishability of the con-
stituents. According to the meaning of indistinguishability discussed in Section 2.1, the
impossibility to discriminate between the two particles should reasonably lead to both of
them contributing with their probability amplitude of being found in φ1 and φ2. Thus,
we define

⟨φ1, φ2|ψ1, ψ2⟩ := ⟨φ1|ψ1⟩ ⟨φ2|ψ2⟩+ η ⟨φ1|ψ2⟩ ⟨φ2|ψ1⟩ . (2.3)

Remarkably, this definition directly encodes the statistical exchange phase η: within
the no-label approach, the statistical information about the identical particles nature is
encoded in the transition amplitudes, rather than in the symmetrization of the quantum
state. Some important characteristics of the formalism can be directly derived from (2.3):
comparing ⟨φ1, φ2|ψ1, ψ2⟩ with ⟨φ1, φ2|ψ2, ψ1⟩, it follows that

|ψ2, ψ1⟩ = η |ψ1, ψ2⟩ (2.4)
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(see the note at the bottom of Table 2.1). Furthermore, state |ψ1, ψ2⟩ is not, in general,
normalized: indeed, it can be easily checked that (assuming the single particle wave
functions ψ1, ψ2 to be properly normalized)

⟨ψ1, ψ2|ψ1, ψ2⟩ = 1 + η |⟨ψ1|ψ2⟩|2 := C2
+, (2.5)

implying that the correctly normalized two particle state is

|Ψ(2)⟩N = |ψ1, ψ2⟩ /C+. (2.6)

Notice that, when the spatial overlap is null (i.e. distinguishable particles), ⟨ψ1|ψ2⟩ = 0
and the normalized two particle state simply reduces to |Ψ(2)⟩N = |ψ1, ψ2⟩. Eq. (2.3),
Eq. (2.4), and Eq. (2.6) can be easily extended to the generalN -particle scenario: given the
states |ψ1, ψ2, . . . , ψN⟩ and |φ1, φ2, . . . , φN⟩, the related N -particle probability amplitude
is given by

⟨φ1, φ2, . . . , φN |ψ1, ψ2, . . . , ψN⟩ =
∑
α⃗

ηPα⃗ ⟨φ1|ψα1⟩ ⟨φ2|ψα2⟩ . . . ⟨φN |ψαN
⟩ , (2.7)

where α⃗ = (α1, α2, . . . , αN) is any arbitrary permutation of (1, 2, . . . , N), while Pα⃗ is the
parity of the permutation. Under particle swapping, the N -particle state behaves as

|ψα1 , ψα2 , . . . , ψαN
⟩ = ηPα⃗ |ψ1, ψ2, . . . , ψN⟩ , (2.8)

while the properly normalized state is simply given by

|Ψ(N)⟩N = |ψ1, . . . , ψN⟩ /
√
⟨ψ1, . . . , ψN |ψ1, . . . , ψN⟩. (2.9)

Notice that, if all the single particle wave functions are non-overlapping and individually
normalized (distinguishable scenario), from Eq. (2.7) we have

⟨ψ1, . . . , ψN |ψ1, . . . , ψN⟩ = ⟨ψ1|ψ1⟩ . . . ⟨ψN |ψN⟩ = 1 (2.10)

and |Ψ(N)⟩N = |ψ1, ψ2, . . . , ψN⟩.
When dealing with distinguishable particles, it is possible to resort to the local op-

erations and classical communication framework to manipulate, quantify, and compare
entanglement [34]. Here, local refers to the concept of particle locality and to the pos-
sibility of acting on the single constituents individually. Thus, such an approach is not
applicable to systems of indistinguishable particles, where no individual constituent can
be defined. In such a situation, one can instead rely on operations which are localized in
space, rather than on single elements, leading to the spatially localized operations and clas-
sical communication (sLOCC) framework discussed further in Section 2.5 [1, 20]. Within
this scenario, the action of a single particle operator O(1)

X localized on the spatial region
X on the multipartite state |Ψ(N)⟩ is defined, according to the no-label approach, as

O
(1)
X |Ψ

(N)⟩ :=
∑
i

|⟨X|ψi⟩| |ψ1, . . . , O
(1)
X ψi, . . . , ψN⟩ , (2.11)

where |X⟩ denotes a generic state of a particle spatially localized on X, and the presence
of at least one such constituent is assumed [36]. Remarkably, the operational necessity of
focusing on a specific region of space rather than on individual particles is reflected, in
Eq. (2.11), by the sum being weighted by the probability amplitudes associated to each
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particle being in the region X. Notice that, when the region X is wide enough to enclose
the whole spatial distribution of |Ψ(N)⟩, Eq. (2.11) reduces to

O
(1)
X |Ψ

(N)⟩ :=
∑
i

|ψ1, . . . , O
(1)
X ψi, . . . , ψN⟩ , (2.12)

which is the usual single particle operator acting on a state of N identical particles.
In this Section, we have briefly reviewed the no-label approach, an alternative formal-

ism to deal with identical particles which avoid resorting on unphysical labels. We have
shown its main features, with particular attention to the main advantages it provides
over the standard, label-based, approach. Within this formalism, we have introduced
the sLOCC framework as an operational method to deal with indistinguishable particles,
postponing a more detailed discussion to Section 2.5. Finally, we remark the spreading
which the no-label approach is undergoing to, having been used in different works such
as, but not limited to, Refs [36,51–56].

2.3 Deformations
In this Section, we discuss and formalize the concept of deformation, a tool of particular
importance when applied to systems of identical particles.

In contrast to global unitary transformations where all the elements of a multipartite
state are modified in the same way, deformations consist in transformations acting differ-
ently, but still unitarily, on each particle, thus changing the relative relations among the
constituents. Given an N -partite state |Ψ(N)⟩ = |ψ1, ψ2, . . . , ψN⟩ of either distinguishable
or indistinguishable particles, the action of the deformation D

(N)

a⃗,X⃗
is defined, within the

no-label approach, as

D
(N)

a⃗,X⃗
|Ψ(N)⟩ :=

(
U

(1)
a1,X1

⊗ U (1)
a2,X2

⊗ · · · ⊗ U (1)
aN ,XN

)
|Ψ(N)⟩

=
∑
α⃗

|⟨X1|ψα1⟩ ⟨X2|ψα2⟩ . . . ⟨XN |ψαN
⟩| ηPα⃗ |U (1)

a1,X1
ψα1 , U

(1)
a2,X2

ψα2 , . . . , U
(1)
aN ,XN

ψαN
⟩ .

(2.13)
Here, the elements aj in a⃗ = (a1, a2, . . . , aN) identify the type of transformation repre-
sented by the single particle unitary operator U (1)

aj ,Xj
and encode the set of parameters

required to determine it, while Xj ∈ X⃗ = (X1, X2, . . . , XN) denotes its region of action.
α⃗ and Pα⃗ are as in Eq. (2.7). In general, for a deformation aj ̸= ai for j ̸= i. Eq. (2.13)
holds when each operator acts on at least one particle, i.e. ∃ α⃗ : ∀ i ∃ j : ⟨Xi|ψαj

⟩ ≠ 0.
The probability amplitudes weighting the sum in Eq. (2.13) account, as in (2.11),

for the spatially localized approach required when the constituents are indistinguishable.
When they are distinguishable, either being identical or nonidentical, we can individually
address each of them within the traditional LOCC framework and drop the subscript X,
so that Eq. (2.13) becomes

D
(N)
a⃗ |Ψ(N)⟩ = |U (1)

a1
ψ1, U

(1)
a2
ψ2, . . . , U

(1)
aN
ψN⟩ . (2.14)

Moreover, deformations are unitary when dealing with nonidentical particles. Indeed, in
this case we are sure that the constituents are left distinguishable by the deformation.
Thus, the right hand side of Eq. (2.14) reduces in this case to a tensor product, namely

D
(N)
a⃗ |Ψ(N)⟩ = |U (1)

a1
ψ1⟩ ⊗ |U (1)

a2
ψ2⟩ ⊗ · · · ⊗ |U (1)

aN
ψN⟩ . (2.15)
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Hence, one has

⟨D(N)
a⃗ Ψ(N)|D(N)

a⃗ Ψ(N)⟩ = ⟨U (1)
a1
ψ1|U (1)

a1
ψ1⟩ ⟨U (1)

a2
ψ2|U (1)

a2
ψ2⟩ . . . ⟨U (1)

aN
ψN |U (1)

aN
ψN⟩

= ⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψN |ψN⟩ ,

which implies ⟨Ψ(N)|
[
D

(N)
a⃗

]†
D

(N)
a⃗ |Ψ(N)⟩ = ⟨Ψ(N)|Ψ(N)⟩, finally leading to[

D
(N)
a⃗

]†
D

(N)
a⃗ = 11. (2.16)

Remarkably, this is in general not true anymore for identical constituents, not even when
initially distinguishable. From the physical point of view, this is so because the defor-
mation can change the relative spatial overlap of particles, thus leading to the emergence
of indistinguishability manifested in the cross-inner products appearing in the right hand
side of Eq. (2.7). In order to explicitly show this, let us consider the scenario of N = 2
distinguishable but identical particles for simplicity. Before applying the deformation,
from Eq. (2.10) we have

⟨Ψ(2)|Ψ(2)⟩ = ⟨ψ1, ψ2|ψ1, ψ2⟩ = ⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩ .

After the deformation, instead, from Eq. (2.7) it holds that

⟨D(2)
a⃗ Ψ(2)|D(2)

a⃗ Ψ(2)⟩ = ⟨U (1)
a1
ψ1, U

(1)
a2
ψ2|U (1)

a1
ψ1, U

(1)
a2
ψ2⟩

= ⟨U (1)
a1
ψ1|U (1)

a1
ψ1⟩ ⟨U (1)

a2
ψ2|U (1)

a2
ψ2⟩+ η |⟨U (1)

a1
ψ1|U (1)

a2
ψ2⟩|2

= ⟨ψ1|ψ1⟩ ⟨ψ2|ψ2⟩+ η |⟨ψ1|
[
U (1)
a1

]†
U (1)
a2
|ψ2⟩|2.

Since, in general, [U (1)
i ]†U

(1)
j ̸= 0, it follows that

⟨Ψ(2)|
[
D

(2)
a⃗

]†
D

(2)
a⃗ |Ψ

(2)⟩ ≠ ⟨Ψ(2)|Ψ(2)⟩ ⇒
[
D

(2)
a⃗

]†
D

(2)
a⃗ ̸= 11. (2.17)

We thus conclude that deformations are unitary when applied to nonidentical particles
and, in general, non-unitary for identical ones. The latter situation is schematically
represented in Figure 2.2(top), where we depict an example of deformation acting on
three identical, nonetheless distinguishable, particles leading to the generation of spatial
indistinguishability, thus being non-unitary. In Figure 2.2(bottom), instead, we report a
pictorial representation of the particular scenario where three identical, distinguishable
particles are manipulated via a deformation which does not generate indistinguishability,
thus retaining unitarity.

Clearly, when normalization is important, states of indistinguishable particles obtained
by a deformation can be straightforwardly normalized: given a system of N identical
particles in a general mixed state ρ, the normalized state after the deformation is

ρN =
DρD†

Tr [D†Dρ]
, (2.18)

where we omit superscripts and subscripts of the deformation operator for simplicity.
In this Section, we have introduced and mathematically formalized deformations,

namely transformations consisting in a set of unitary operations of particular relevance
when dealing with identical particles. We have highlighted their crucial role as oper-
ational tools to generate indistinguishability among initially distinguishable, identical
constituents, and their suitability to deal with them afterwards. Particular attention has
been paid to their general non-unitarity, linking it to their physical interpretation and to
the scenario of application.
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X1 X2 X3

Unitary

deformation

X1
X2

X3 X4

X’2 ⊂ X2

Non-unitary

deformation

X1 X2 X3 X1 X2 X3

X4

Figure 2.2: Top. Example of unitary deformation of three identical and distinguishable
particles. The particle localized in region X1 undergoes a spin rotation, the one in region
X2 sees a unitary restriction of its wave function support to a region X’2 ⊂ X2, while the
particle in region X3 gets spatially translated to X4. No indistinguishability is generated
by the process. Bottom. Example of non-unitary deformation of three identical and
initially distinguishable particles. The particle localized in region X1 undergoes a spin
rotation, while the ones in regions X2 and X3 get spatially overlapped over region X4,
where spatial indistinguishability is generated.

2.4 Entropic measure of indistinguishability

As we shall discuss in the next Section, spatial indistinguishability provides an important
quantum resource which can be accessed within the sLOCC operational framework for
different goals. Within this picture, deformations generating indistinguishability from
previously distinguishable constituents provide the key tool to activate such resources. In
order to quantitatively demonstrate this, we need a way to quantify indistinguishability.
To this aim, we now introduce an entropic measure of generalized indistinguishability, of
which spatial indistinguishability is derived as a particular case.

Let us consider an elementary N -particle state |Ψ(N)⟩ = |ψ1, ψ2, . . . , ψN⟩; here, each
ψj encodes both the single particle spatial wave function χj and all the other relevant
degrees of freedom given by the eigenvalues of a complete set of commuting observ-
ables and gathered in a vector σ⃗j, so that |ψj⟩ = |χj σ⃗j⟩. We now identify N regions
of space S1, S2,. . . ,SN where we set N single particle detectors, corresponding to the
spatial modes |S1⟩ , |S2⟩ , . . . , |SN⟩. Since they represent detection regions, we require
such spatial modes to be non-overlapping. Nonetheless, we allow for two or more de-
tectors to be same, that is, |Si⟩ = |Sj⟩ for any 1 ≤ i, j ≤ N . Typically, the detectors
will be sensible to the spatial position of particles (by construction) and to a subset α⃗
of the degrees of freedom encoded in σ⃗, while being unable to detect the remaining β⃗
(where σ⃗j = α⃗j ∪ β⃗j ∀ j = 1, . . . , N). For example, each detector could be capable of
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detecting the energy of a particle impinging on the spatial region where it is set, with-
out having access to its spin. A single particle detection performed in the region Sk
giving as outcomes the set of values α⃗k is thus described by the projection operator
Π

(1)
k =

∑
β⃗ |Sk α⃗k β⃗⟩ ⟨Sk α⃗k β⃗|, while the probability of such an outcome when detecting a

particle whose state is |ψj⟩ = |χj α⃗j β⃗j⟩ is given by

Pk,j = ⟨ψj|Π(1)
k |ψj⟩ =

∑
β⃗

|⟨Sk α⃗k β⃗|ψj⟩|2 = |⟨Sk|χj⟩ ⟨α⃗k|α⃗j⟩|2. (2.19)

A global simultaneous detection of the multipartite state giving as outcomes α⃗1 for the
particle in the region S1, α⃗2 for the one in S2, and so on, is described by the action of the
N -particle projection operator

Π
(N)
{Sk,α⃗k} =

N⊗
k=1

Π
(1)
k . (2.20)

We now introduce the joint probability related to the projective measurement in Eq. (2.20)
of detecting in the region S1 with degrees of freedom α⃗1 the particle whose state is |ψj1⟩,
in the region S2 with degrees of freedom α⃗2 the one whose state is |ψj2⟩, and so on, that
is

P j1,...,jN
{Sk,α⃗k} =

N∏
k=1

Pk,jk . (2.21)

With respect to the projective measurement in Eq. (2.20), we define the degree of indis-
tinguishability of the N -particle state as

I{Sk,α⃗k} = −
N∑

j1,...,jN=1
j1 ̸=... ̸=jN

P j1,...,jN
{Sk,α⃗k}

Z
log2

P j1,...,jN
{Sk,α⃗k}

Z
, (2.22)

where we have indicated the partition function

Z =
N∑

j1,...,jN=1
j1 ̸=... ̸=jN

P j1,...,jN
{Sk,α⃗k} . (2.23)

When all the particles are spatially separated, there is at most only one non-null joint
probability contributing to Eq. (2.22). In particular, if they are perfectly localized on
one region each and the values of their accessible degrees of freedom are {α⃗k}Nk=1, such a
probability is equal to 1 and I reaches its minimum I{Sk,α⃗k} = 0: particles are perfectly
distinguishable with respect to the measurement given by Eq. (2.20). On the contrary,
if all the constituents are equally distributed over all the N spatial regions and possess
the same values α⃗1 = α⃗2 = · · · = α⃗N , then all the joint probabilities contribute equally to
Eq. (2.22): we have maximally indistinguishable particles and I takes its maximum value
I{Sk,α⃗k} = log2N !.

In what follows, we shall be interested in the scenario where the detectors are only
sensible to the spatial degree of freedom. This situation is derived from the above de-
scribed picture by setting α⃗ = {∅}, so that Eq. (2.22) reduces to a measure of the degree
of spatial indistinguishability, as described in the next Section.

In this Section, we have generalized the notion of spatial indistinguishability intro-
duced in Ref. [2]. As we will discuss in the next Section, such a quantity allows to probe
and further disclose the role of identical particles indistinguishability within quantum
technology protocols involving the sLOCC operational framework.
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2.5 Accessing quantum indistinguishability resources:
the sLOCC operational framework

As discussed in Section 2.2, indistinguishable particles cannot be addressed with the tra-
ditional LOCC framework, since this relies on the possibility to individually manipulate,
and thus distinguish, the single constituents. From an operational point of view, we thus
resort to the sLOCC framework to access the quantum properties of an indistinguishable
particles state [1, 20].

2.5.1 Presentation of the operational framework

For simplicity, we present the sLOCC framework within the simple scenario of two identi-
cal qubits with opposite pseudospin, initially distinguishable and localized in the distinct
spatial regions A and B. Following the original formulation [20], we take the bipartite
system to be in the initial elementary state |Ψ⟩AB = |A ↑, B ↓⟩. Notice that |Ψ⟩AB is
normalized, since ⟨A|B⟩ = 0. Applying the notions introduced in Section 2.3, we proceed
by deforming such a state to make the two single particle wave functions spatially overlap
over two distinct regions L and R corresponding to the normalized spatial modes |L⟩ , |R⟩.
This amount to performing the transformation

|Ψ⟩AB = |A ↑, B ↓⟩ D−→ |Ψ⟩D = |ψ1 ↑, ψ2 ↓⟩ , (2.24)

where |ψ1⟩ = l |L⟩+r |R⟩ and |ψ2⟩ = l′ |L⟩+r′ |R⟩. Here, the complex coefficients l, l′, r, r′
determine the different probabilities of finding each particle in each region and satisfy the
relation |l|2 + |r|2 = |l′|2 + |r′|2 = 1. Following what discussed in Section 2.1 we highlight
that, despite being spatially indistinguishable, the two qubits in state |Ψ⟩D can still be
discriminated by a device capable of detecting their spin direction, which has been left
unchanged by the deformation. Finally, the deformation has left the state normalized:
indeed, it holds that

D⟨Ψ|Ψ⟩D =
(
⟨ψ1|ψ1⟩ ⟨↑ | ↑⟩

)(
⟨ψ2|ψ2⟩ ⟨↓ | ↓⟩

)
+ η |⟨ψ1|ψ2⟩ ⟨↑ | ↓⟩|2 = 1.

We now set two single particle detectors on L and R respectively and perform a coincidence
measurement, preserving the state if both of them detect a particle and discarding it
otherwise. Crucially, the detectors are unable to access the spin direction, so that the
two qubits are effectively indistinguishable to their eyes. Thus, this part of the process
amounts to a postselected measurement where state |Ψ⟩D is projected on the subspace
spanned by the basis

BLR = {|L ↑, R ↑⟩ , |L ↑, R ↓⟩ , |L ↓, R ↑⟩ , |L ↓, R ↓⟩} (2.25)

via the corresponding projection operator

ΠLR =
∑

σ,τ=↑,↓

|Lσ,Rτ⟩ ⟨Lσ,Rτ | . (2.26)

After the proper normalization, the resulting state is given by

|Ψ⟩LR =
ΠLR |Ψ⟩D√
D⟨Ψ|ΠLR|Ψ⟩D

=
lr′ |L ↑, R ↓⟩+ η l′r |L ↓, R ↑⟩√

|lr′|2 + |l′r|2
, (2.27)
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postselected with probability

PLR = D⟨Ψ|ΠLR|Ψ⟩D = |lr′|2 + |l′r|2. (2.28)

Notice that the two qubits in the final state |Ψ⟩LR of Eq. (2.27) are distinguishable, since
one of them is now localized in region L while the other in region R.

2.5.2 Analysis and possible applications

The first aspect that emerges from Eq. (2.27) is that the final state |Ψ⟩LR is an entangled
state, provided l, l′, r, r′ ̸= 0. Since the initial state was non-entangled, we thus conclude
that the sLOCC protocol can be used to generate entanglement [1, 20]. Remarkably, the
superposition of states |L ↑, R ↓⟩ and |L ↓, R ↑⟩ is a direct consequence of the impossibility
for the two detectors to understand which one of the two qubits they have detected,
namely if the one with spin ↑ generated in A or the one with spin ↓ generated in B.
In other words, the origin of the quantum correlations in the sLOCC-generated state of
Eq. (2.27) is the no-which-way information discussed in Section 2.1 deriving from the
achieved spatial indistinguishability. For this reason, we say that deformations leading
to indistinguishability activate entanglement, while the sLOCC measurement allows to
access it. To further stress this point, we remark that |Ψ⟩LR is non-entangled whenever
at least one among l, l′, r, r′ is null; indeed, this amounts to the scenario where (at least)
one of the qubits is perfectly localized either on L or on R, so that the coincidence click
required by the sLOCC measurement allows to precisely track the origin of bothe the
particles. This is the situation occurring, e.g., when no deformation is performed, so
that l = r′ = 1 and l′ = r = 0: particles remain distinguishable and no entanglement is
generated.

From Eq. (2.22) with α⃗ = {∅}, N = 2, and S1 = L, S2 = R, the amount of spa-
tial indistinguishability obtained with the deformation can be properly quantified by the
entropic measure introduced in Section 2.4 [2]

ILR = −|l|
2 |r′|2

Z
log2
|l|2 |r′|2

Z
− |l

′|2 |r|2

Z
log2
|l′|2 |r|2

Z
, (2.29)

where Z = |l|2 |r′|2 + |l′|2 |r|2. Such a quantity takes into account the no-which-way
information, taking the minimum value I = 0 when no overlap is present (l = 1, r′ = 1
or l′ = 1, r = 1: distinguishable particles) and the maximum one I = 1 when the overlap
is maximum (l = l′ = r = r′ = 1/

√
2: maximally indistinguishable particles).

The role of indistinguishability as a resource for quantum technologies within the
sLOCC framework has been investigated by several recent experiments. Remarkably, in
Ref. [1] the authors have experimentally implemented the deformation+sLOCC protocol
with two photons initially prepared in the state |Ψ⟩AB. They have performed quantum
teleportation with the final state of Eq. (2.27), thus showing that the achieved entan-
glement is physical. Furthermore, by directly accessing the value of l, l′, r, r′ they fixed
l = r = 1/

√
2 to make I a function of just one parameter and showed that the amount of

quantum correlations present in the state produced by the sLOCC protocol, as quantified
by the entanglement of formation [33], is proportional to the degree of spatial indistin-
guishability achieved. In particular, when I = 1 we see from Eq. (2.27) that the sLOCC
process generates the maximally entangled state |Ψ⟩max

LR = (|L ↑, R ↓⟩+ η |L ↓, R ↑⟩)/
√
2.

In Refs. [2, 3, 36–38] the authors considered the more realistic scenario where the
deformation+sLOCC protocol is applied to two qubits in different scenarios involving
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local noisy environments. In the analyzed situations, which involve non-elementary states,
the authors shown that the process can be employed to prepare entangled states. Thus,
the sLOCC operational framework can be used to achieve quantum correlations in a way
which is robust under the detrimental action of local noise.

Another relevant element emerging from the sLOCC-prepared state, as can be noticed
from Eq. (2.27), is the factor η := eiθ encoding the exchange phase θ, with θ = 0 for
bosons and θ = π for fermions being at the core of the symmetrization postulate dis-
cussed in Section 2.2. Although many decades have passed after the first formulation
of the postulate, a first direct experimental measurement of the bosonic exchange phase
has been only recently achieved with two photons in an all-optical setup [57, 58]. This
is mainly due to the difficulty in designing a setup manually generating a superposition
between a reference state and its physically permuted one, from which later extrapolating
the relative exchange phase via interferometry. Thanks to its reliance on spatial indistin-
guishability, the sLOCC process allows to avoid such a difficulty by letting θ naturally
emerge. Exploiting this effect, in Ref. [59] the authors designed and experimentally im-
plemented a photonic setup capable of directly measuring the exchange phase of two real
bosons and of simulated fermions and anyons by applying interferometry to the sLOCC-
produced state of Eq. (2.27). Remarkably, the introduced theoretical setup is general and
could be suitably adapted to directly measure the exchange phase of even real fermions
and anyons.

Finally, spatial indistinguishability of identical particles undergoing the sLOCC mea-
surement has been shown to provide a useful resource of quantum coherence yielding an
advantage in quantum metrology [30, 60], whereas the endurance of quantum coherence
within systems of indistinguishable particles in non-dissipative noisy quantum networks
was demonstrated in Ref. [61].

It is interesting to highlight the connection between the deformation+sLOCC opera-
tional framework and the entanglement extraction protocol [50]. In the latter, a single-
mode state of indistinguishable particles is splitted over distinct modes. The resulting
particle number distribution is then measured along such modes, postselecting only those
states which respect a desired partition. Being the resulting modes distinct, this al-
lows to access the entanglement between groups of identical particles whose accessibility
was previously ruled out by their single-mode indistinguishability. In relation to this
framework, the mode splitting operation is a particular case of deformation acting on
already indistinguishable particles. Furthermore, deformations such as mode merging
operations can be seen themselves as the preparation step required to achieve the en-
tanglement extraction single-mode starting point. Furthermore, the particles distribution
postselected measurement and the sLOCC projection are clearly related, since they both
make quantum correlations accessible by making an indistinguishable state distinguish-
able. Nonetheless, while entanglement extraction focuses on the splitting of an already
indistinguishable state to show that quantum correlations inaccessible within identical
systems are actually physically meaningful and constitute useful resources in their own
right [43, 50], the sLOCC process presents itself as an alternative operational framework
where indistinguishability is generated over previously arranged detection regions with
the goal of generating, restoring, and/or manipulating entanglement in actual practical
applications.

In this Section, we have discussed the sLOCC operational framework suitable to deal
with indistinguishable particles. In contrast to the localized operations and classical
communication approach traditionally employed when dealing with distinguishable con-
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stituents, in the sLOCC framework different operations are localized in space rather than
on specific particles, whose indistinguishability makes individually unaddressable. We
have briefly commented on the main works reporting possible practical applications of
deformations and the sLOCC protocol, where spatial indistinguishability of identical con-
stituents is shown to provide an important resource to achieve quantum information tasks
such as entanglement generation, entanglement restoration, coherence generation, and the
direct measurement of particles’ exchange phase. Finally, we have briefly compared the
sLOCC operational framework to the entanglement extraction protocol.

2.6 Conclusion
In conclusion, we have discussed and elucidated the distinction between the concepts of
particle identity and particle indistinguishability in quantum mechanics. We have pre-
sented a concise review of the no-label approach as a suitable tool to deal with indistin-
guishable constituents, as introduced in Ref. [21] and further deepened in Refs [22,36]. We
have introduced a coherent formalization of deformations acting on either distinguishable
or indistinguishable multipartite states, providing an extension of the indistinguishabil-
ity entropic measure introduced in Ref. [36] to the general N -partite scenario. We have
highlighted the relevance of deformations as operations exploitable to activate quantum
correlations to be later accessed within the sLOCC operational framework. Finally, we
have briefly discussed the relations between the sLOCC protocol and the entanglement
extraction one as operational frameworks.

Given the results presented in this work, we believe that deformations, together with
the sLOCC operational framework, have the potential to become a useful technique for
many real-world applications exploiting quantum technologies. Indeed, identical particles
constitute the main building blocks of platforms such as quantum networks, quantum
computers, and quantum measurement systems. For instance, spatial indistinguishability
of identical constituents generated by properly tuned deformations could be exploited to
shield from noise the fundamental quantum correlation properties required for quantum
cryptographic protocols, or the coherence of qubits used to run quantum algorithms. Fur-
thermore, the entanglement-restoration characteristics of the presented techniques could
be further investigated to preserve the super-sensitivity of states carrying information in
quantum sensing and metrology protocols.



Chapter 3

Proof-of-Principle Direct Measurement
of Particle Statistical Phase

Abstract

The symmetrization postulate in quantum mechanics is formally reflected in the appear-
ance of an exchange phase ruling the symmetry of identical particle global states under
particle swapping. Many indirect measurements of this fundamental phase have been
reported thus far, but a direct observation has been only recently achieved for photons.
Here, we propose a general scheme capable of directly measuring the exchange phase of
any type of particle (bosons, fermions, or anyons), exploiting the operational framework
of spatially localized operations and classical communication. We experimentally im-
plement it on an all-optical platform, providing proof-of-principle for different simulated
exchange phases. As a by-product, we supply a direct measurement of the real bosonic
exchange phase of photons. Additionally, we analyze the performance of the proposed
scheme when mixtures of particles of different natures are injected. Our results confirm
the symmetrization tenet and provide a tool to explore it in various scenarios. Finally,
we show that the proposed setup is suited to generate indistinguishability-driven N00N
states useful for quantum-enhanced phase estimation.

This chapter reports the results of our manuscript of Ref. [59].

3.1 Introduction

The symmetrization postulate divides particles living in a three-dimensional space into
two groups: bosons and fermions. This postulate forces the state of an ensemble of
identical bosons (fermions) to be symmetric (antisymmetric) under the exchange of any
pair of particles [6]. If we consider a system of two identical particles, its global state
must then satisfy |ψ(1, 2)⟩ = eiϕ |ψ(2, 1)⟩, where 1 and 2 refer to the two constituents
and the relative phase ϕ is the particle exchange phase (EP), with ϕ = 0 for bosons and
ϕ = π for fermions. Furthermore, the existence of particles called anyons, living in two-
dimensional spaces with a fractional EP ϕ ∈ (0, 2π) \ (π) has been suggested [62,63], and
has attracted the attention of the scientific community in recent decades [64–66]. This
fundamental phase has been indirectly measured in various experiments [67–72]. Despite
the fundamental importance of the symmetrization postulate in both understanding the
quantum world and practical applications, only the bosonic nature of photons has so far

42
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been directly proven by use of a state transport protocol [57, 58]. Direct observation of
fermionic and anyonic EPs is still missing, leaving the field open to the introduction of
techniques capable of filling this gap.

In the standard approach to identical particles [6], the global state vector is sym-
metrized or antisymmetrized with respect to unphysical labels associated to each con-
stituent. This approach is known to exhibit drawbacks when one is trying to assess real
quantum correlations between constituents [12,13]. Given the key role played by entangle-
ment in quantum technologies, several different methods have been developed to fix this
issue [13, 20–22, 45, 47, 53, 73]. Among these, the no-label approach [21] has some advan-
tages: it straightforwardly identifies physical entanglement and establishes its quantitative
relation with the degree of spatial indistinguishability [2]; the latter is associated with the
spatial overlap of particle wave functions. Importantly, in the no-label formalism, the role
played by the particles’ nature does not manifest itself in the (anti)symmetrization of the
quantum state, but instead in the probability amplitudes of the global system [21,22].

The no-label approach has been widely exploited in environments with spatially lo-
calized operations and classical communication (sLOCC) [1, 2, 20, 30, 36–38, 60, 74]. This
procedure can be seen as a natural extension of the standard local operations and classical
communication for distinguishable particles to the case of indistinguishable and individ-
ually unaddressable constituents. Operationally, sLOCC makes the global state of indis-
tinguishable particles undergo a projective measurement over spatially separated regions,
followed by postselection when one particle is found in each location. Consider a state
of two independent identical qubits |ψD⟩ = |φD ↑, φ′

D ↓⟩, where φD, φ′
D are spatial wave

functions and ↑, ↓ are pseudospins. The result of applying sLOCC to |ψD⟩ is [20]

|ψLR⟩ =
lr′ |L ↑, R ↓⟩+ eiϕrl′ |L ↓, R ↑⟩√

|lr′|2 + |rl′|2
, (3.1)

where l, l′ (r, r′) are the probability amplitudes for each particle to be found in the region
L (R), while ϕ is the exchange (statistical) phase; |ψLR⟩ is entangled only if the qubits
spatially overlap, i.e., are spatially indistinguishable, in the regions L and R. Remarkably,
the sLOCC process makes particle statistics emerge naturally in the final entangled state.
The entanglement obtained is experimentally accessible [1,74], and has been exploited for
teleportation [1] and phase discrimination [60]. Also, sLOCC-based indistinguishability
is useful for protecting entanglement against noise [2, 36–38].

Here we give further value to sLOCC by experimentally showing, in a quantum optical
setup, that its theoretical framework enables a phase-estimation procedure to directly
access the EPs of indistinguishable particles of any nature (Fig. 3.2(a)).

3.2 Theoretical framework

The conceptual procedure is depicted in Fig. 3.2(a). We take a pair of two-level identical
particles, independently prepared and initially uncorrelated, whose spatial wave functions
and pseudospins are φ, ↑ and φ′, ↓, respectively. In the no-label formalism, we write this
state as |ψin⟩ = |φ ↑, φ′ ↓⟩. Then, a deformation operation |φ⟩ → |φD⟩, |φ′⟩ → |φ′

D⟩ is
performed [2, 23, 37] to distribute the spatial wave functions over two distinct regions L
and R in a controllable way, thus transforming |ψin⟩ into |ψD⟩ = |φD ↑, φ′

D ↓⟩, where

|φD⟩ = l |L⟩+ r |R⟩ , |φ′
D⟩ = l′ |L⟩+ r′ |R⟩ . (3.2)
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Here, the coefficients l = ⟨L|φD⟩, l′ = ⟨L|φ′
D⟩, r = ⟨R|φD⟩ and r′ = ⟨R|φ′

D⟩ are the tunable
probability amplitudes of finding the particle whose spatial wave function is φD or φ′

D at
the site L and R, respectively.

To implement the sLOCC measurement, we perform postselected detection of the
states, where exactly one qubit per region is recorded. In total, this last step amounts to
projecting the state |ψD⟩ onto the two-particle basis BLR = {|L ↑,R ↑⟩ , |L ↑,R ↓⟩ , |L ↓,R ↑⟩ , |L ↓,R ↓⟩}
via the projection operator ΠLR =

∑
σ,τ=↑,↓ |Lσ,Rτ⟩ ⟨Lσ,Rτ |.

We recall that the two particles in the state |ψD⟩ are indistinguishable to the eyes
of the detectors. This means that it is not possible to know the region of space where
each detected constituent comes from. This absence of which-way information is encoded
in the result of the sLOCC operation, which is easily computed to be the (normalized)
two-particle entangled state

|ψLR⟩ =
ΠLR |ψD⟩√
⟨ψD|ΠLR |ψD⟩

=
lr′ |L ↑,R ↓⟩+ eiϕrl′ |L ↓,R ↑⟩√

|lr′|2 + |rl′|2
, (3.3)

generated with probability PLR = |lr′|2 + |rl′|2 [20]. The phase ϕ that emerges naturally
in Eq. (3.3) is exactly the relative EP that we want to measure (Fig. 3.2(a)). In fact, it is
fundamentally contained in the probability amplitudes ⟨χL, χR|ψD⟩ = ⟨χL|χD⟩ ⟨χR|χ′

D⟩+
η ⟨χL|χ′

D⟩ ⟨χR|χD⟩ [21], where χL = Lσ, χR = Rτ , χD = φD ↑, χ′
D = φ′

D ↓, and
η = eiϕ is the particle statistics parameter. It is worth highlighting that the state |ψLR⟩
resulting from the sLOCC process describes two particles occupying two distinct regions
of space, which are thus now distinguishable and individually addressable. The spatial
indistinguishability I under sLOCC associated with the state |ψD⟩ and thus with the
state |ψLR⟩ is given by [2]

I = − |lr′|2

|lr′|2 + |l′r|2
log2

|lr′|2

|lr′|2 + |l′r|2
− |l′r|2

|lr′|2 + |l′r|2
log2

|l′r|2

|lr′|2 + |l′r|2
. (3.4)

In general, the state in Eq. (3.3) represents a quantum superposition of two-particle
states whose relative phase contains the EP of the particles. Notice that one of the major
difficulties in directly measuring the particle statistical phase consists in creating quantum
interference between a given state and its counterpart where particles have been physi-
cally exchanged [58]. A so-called state-dependent transport protocol has been engineered
with this aim [75] and successively realized with photons [57]. On the other hand, in
our scheme the fundamental EP appears straightforwardly as a natural consequence of
spatial overlap in separated regions plus the sLOCC procedure, making it amenable to be
directly measured via individual operations on the particles. We proceed by rotating the
pseudospin of both qubits by π/4. Given the single-particle operator

MX =
1√
2

(
1 −1
1 1

)
(3.5)

which performs this operation on the region X=L,R, the resulting state is given by |ψf⟩ =
ML⊗MR |ψLR⟩. Finally, a direct measurement of the pseudospin along the z axis in both
of the regions L and R provides information about the EP. We find that

⟨ψf |σzL ⊗ σzR|ψf⟩ =
2lr′rl′

|lr′|2 + |rl′|2
cosϕ, (3.6)

where we have taken the coefficients l, r, l′, r′ to be real, since we are able to directly control
the distribution of the initial spatial wave functions over L and R during the preparation
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Figure 3.1: Theoretical scheme and experimental setup. (a) Conceptual procedure. The
wave functions of two identical particles are distributed over two distinct regions L and
R and adjusted to spatially overlap, generating spatial indistinguishability. A sLOCC
measurement is used to directly observe the EP using a single-particle rotation M in the
two regions. (b) Experimental setup. Two independently prepared photons with opposite
polarizations are distributed to two distinct spatial regions L and R. In each region, a
beam displacer (BD) is used to merge two beams, generating spatial indistinguishability
between the two photons. The relative phase between the two spatial modes of the photons
is tuned using a phase-adjustment device consisting of fused silicon (FS), shown in (d).
The four outputs are individually directed towards four single-photon detectors (SPDs),
where a coincidence device (CD) is used to deal with the signals. PBS: polarization beam
splitter; HWP: half-wave plate. (c) Replacement setup for the framed area in (b). An
unbalanced interferometer is used to prepare mixed states.

of the state |ψD⟩. By knowing these amplitudes, it is thus possible to recover the value
of the EP from repeated pseudospin measurements along the z axis.

Remarkably, the role of spatial indistinguishability I emerges clearly from Eq. (3.6):
as its value varies from I = 1 (maximum indistinguishability, which is obtained, e.g.,
when l = r = l′ = r′ = 1/

√
2) to I = 0 (distinguishable particles, e.g., when l = r′ =

1, l′ = r = 0) [2], the values assumed by Eq. (3.6) change continuously from cosϕ to zero,
correspondingly. It follows that spatial indistinguishability not only is an essential element
for measuring the EP with our procedure, but it also acts as a sensitivity regulator that
tunes our ability to access the value of ϕ.

3.3 Experimental details
Denoting with |H⟩ and |V ⟩ the horizontal and vertical polarization, respectively, of a
photon, we make the correspondence |H⟩ ↔ |↑⟩ and |V ⟩ ↔ |↓⟩. A pulsed ultraviolet
beam with wavelength of 400 nm is used to pump a type-II phase-matched β-barium
borate (BBO) crystal to generate two uncorrelated photons (|H⟩ ⊗ |V ⟩) via spontaneous
parametric down-conversion. Hong-Ou-Mandel interference is performed to characterize
the indistinguishability of the two photons, providing a visibility of 97.7% [1]. Single-
mode fibers collect the photons via fiber couplers and direct them towards the effective
experimental setup illustrated in Fig. 3.1(b). Here, the weights of their horizontal and
vertical polarizations are tuned using a pair of half wave plates (HWPs) fixed at 22.5◦ and
−β/2 (an adjustable angle), respectively. An additional pair of HWPs at 45◦ is placed
on L to restore the original input polarizations. The result is the preparation of the state
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Figure 3.2: (a) Relation between the distance x of the movable plate from the place
perpendicular to the beam and the generated relative phase ϕ. The black dots represent
the experimental results, while the black curve is the theoretical prediction. The error
bars are too small to be visible. (b) Relation between ⟨O⟩ and cosϕ. Results are reported
for different values of β, where the purple, blue, green, and brown colors represent β =
45◦, 30◦, 20◦, and 10◦, respectively. The solid lines represent the ideal expected results,
while the dashed lines show the predictions when noise is taken into consideration. The
experimental values are represented by markers. The two insets show the coincidence
counts n13, n14, n23, and n24 for bosons and fermions.

|ψD⟩, with |φD⟩ = (|L⟩+ |R⟩)/
√
2, |φ′

D⟩ = sin β |L⟩+ cos β |R⟩.
Using a home-made phase adjustment device composed of a thin plate of fused silicon

(FS) fixed in R and another identical plate that is tilted and placed in L (Fig.3.2(b), (d)),
an arbitrary relative phase ϕs is judiciously introduced between the components L and
R of the photon state φ′

D, which becomes |φ′
D⟩ = eiϕs sin β |L⟩ + cos β |R⟩. As shown in

Fig. 3.2(d), ϕs is tuned by directly adjusting the distance x (mm) of the movable plate
from the place perpendicular to the beam. The relation between ϕs and x is displayed
in Fig. 3.2(a) by experimental results (dots) and a theoretical prediction (solid line) for
a plate thickness d = 199.94± 1.43 µm and a rotation radius r = 102.36± 0.91 mm (see
Appendix A).

A beam displacer (BD) is used to make the two beams overlap in both regions. We
proceed by setting an HWP at 22.5◦ after the BD in both L and R to implement the
desired rotation, producing the final state |ψf⟩. The pseudospin measurement σ̂(L)

z ⊗σ̂(R)
z is

then performed as a coincidence-counting measurement by placing each polarization beam
splitter (PBS) in both of the regions L and R. Each output of the PBSs is individually
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directed towards a single-photon detector. The corresponding measured observable is

⟨O⟩ = n13 + n24 − n14 − n23, (3.7)

where nij is the coincidence count between the outputs ni and nj, which are shown in
Fig. 3.2(b). This spatially localized operation, implemented through local counting in L
and R, and classical communication tools, realized via the coincidence device, create the
state in Eq. (3.1) with l = r = 1/

√
2, l′ = sin β, r′ = cos β, i.e.,

|ψLR⟩ = cos β |LH,RV ⟩+ eiϕs sin β |LV,RH⟩ , (3.8)

before the final rotation transforms it into |ψf⟩. Notice that the relative phase ϕs in
Eq. (3.8) plays the exact same role as the real EP ϕ in Eq. (3.3) (which is set to zero
here, since our experiment is run with bosons). Changing ϕs amounts to simulating the
behaviour of identical particles with different natures. In other words, the ability of our
setup to directly measure ϕs provides strong evidence that it can directly detect the EP
of any type of particles. Renaming the simulated exchange phase as ϕ, we obtain

⟨O⟩ ≡ ⟨ψf |O |ψf⟩ = sin(2β) cosϕ, (3.9)

from which ϕ can be easily obtained.
We set β = 45◦ and ϕ = 0 to prepare two maximally indistinguishable photons

(bosons), generating a maximum entanglement |ψLR⟩ = (|LH,RV ⟩+ |LV,RH⟩)/
√
2 with

a fidelity of 0.99 ± 0.01. Unavoidable experimental errors prevent the achievement of
the ideal maximum indistinguishability, which leads to a nonoptimal performance of the
real setup. Following the method used in Ref. [57], we treat such errors as a constant
factor affecting the final experimental results. We assume that the experimentally pre-
pared state is the desired (ideal) one with probability F , while errors give rise to a spoiled
state with probability 1 − F . Within this model, the spoiled state does not contribute
to the expectation value of O, leading to the experimentally measured expectation value
⟨O⟩e = F ⟨O⟩i, where ⟨O⟩i is the ideal prediction. By preparing several states of the type
represented by Eq. (3.8) for different values of ϕ, we use quantum state tomography [76]
to estimate the probability to be F = 0.977 (See Appendix B).

The two insets in Fig. 3.2(b) show the coincidence counts n13, n14, n23, and n24 for
the cases of (real) bosons and (simulated) fermions, with β = 45◦. Treating experimental
errors in the manner introduced above, we obtain ϕb = 0.04 ± 0.06 for bosons and ϕf =
3.12± 0.05 for fermions, which match well with their expected EPs. Here, the error bars
show the standard deviation, which is estimated based on the experimental data via a
Monte Carlo method.

As shown in Fig. 3.2(b), by varying the angle β, we implement various spatial over-
laps to provide deeper insights into the role played by spatial indistinguishability in our
scheme, and adjust the EPs (including anyonic ones) with the homemade device. The
detected values of ⟨O⟩ are given as a function of cosϕ, where ϕ is obtained via tomo-
graphic measurements, for different degrees of spatial overlap and, hence, of the spatial
indistinguishability I = − sin2 β log2(sin

2 β) − cos2 β log2(cos
2 β) [2]. The experimen-

tal results match quite well with the theoretical predictions. In particular, the case of
β = 45◦ corresponds to the maximum spatial overlap (I = 1), while β = 30◦, β = 20◦,
and β = 10◦ are associated with partial spatial overlaps (I < 1). Notice that when I
decreases, the ranges of values of ⟨O⟩ decrease accordingly, leading to a lower sensitivity.
Spatial indistinguishability acts as a sensitive regulator governing the range of measured
values.
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Figure 3.3: Probability distribution pd for a mixture of two types of particles measured
by our procedure versus the value p directly generated by rotating HWPs. Experimental
results for a mixture of bosons and anyons with EP ϕ = π/2 (red markers), and for a mix-
ture of bosons and fermions (brown markers). The solid lines represent the ideal expected
values, while the dashed lines are the theoretical predictions when noise is considered.
The error bars are too small to be visible.

As an extension of our framework, we analyze the scenario where the input is a flux
of particle pairs whose exchange phase is known to be either ϕ1 with probability p or ϕ2

with probability 1− p. Each two-particle state is thus given by the classical mixture

ρ = p |ψ1⟩ ⟨ψ1|+ (1− p) |ψ2⟩ ⟨ψ2| , (3.10)

where |ψ1⟩ = cos β |LH,RV ⟩+eiϕ1 sin β |LV,RH⟩ and |ψ2⟩ = cos β |LH,RV ⟩+eiϕ2 sin β |LV,RH⟩.
We now want to exploit our procedure to estimate the probability distribution p of the
two types of particles by directly measuring their EPs.

To prepare ρ, we replace the framed area in Fig. 3.2(b) with the unbalanced interfer-
ometer shown in Fig. 3.2(c). Here, a BD equipped with two HWPs separately placed in
each beam is used to split each beam into two vertical beams. The two upper arms are
used to prepare a particle with EP ϕ1, while two lower arms are used to prepare a particle
with EP ϕ2. By changing the angles of the two HWPs before the BD, the probability
distribution p can be adjusted. As mentioned above, the EPs ϕ1 and ϕ2 are regulated with
the corresponding homemade phase-adjustment devices. Then, another BD, together with
several HWPs, combines two upper (lower) arms into one beam horizontally. Finally, the
two beams are combined with a beam splitter, in which the desired classical mixed state
of Eq. (3.10) is generated in one output and the other output is blocked.

The expectation value ⟨O⟩ = Tr[ρO] = p ⟨ψ1|O |ψ1⟩+ (1− p) ⟨ψ2|O |ψ2⟩ is measured
following the same method as that introduced above. For simplicity, we assume that the
values of ϕ1 and ϕ2 are provided as prior information, leading to a reduction in ⟨O⟩ as
a linear function of p. Notice that, if this is not the case, the values of ϕ1 and ϕ2 can
nonetheless be obtained by our procedure by directly measuring them on a sufficiently big
sample of particles. We start with ϕ1 = 0 and ϕ2 = π/2 to investigate a classical mixture
of bosons and anyons with β = 45◦. We generate different probability distributions p
by rotating the two HWPs before the first BD, as shown in Fig. 3.2(c). Also, we set
ϕ2 = π to investigate a mixture of bosons and fermions. The results are reported in
Fig. 3.3, where the detected probability distributions pd, obtained based on the measured
values of ⟨O⟩, are shown versus the values of p directly generated by rotating the HWPs.
Excellent agreement with the theoretical predictions is observed (see Appendix C). This
last experiment demonstrates how our procedure can be used to obtain information about
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the probability distribution p for a mixture of two known different types of particles. If
the number of types of particles is increased or unknown, a complete characterization of
the incoming flux can still be done by directly measuring the various EPs of particle pairs
making up a sufficiently large sample.

3.4 Discussion

In summary, we show experimentally that the sLOCC framework is inherently amenable
to direct measurement of the EP of indistinguishable particles. The particle statistics in
the measured state are entirely due to the spatial indistinguishability achieved via the de-
formation of particle wave packets. The sLOCC process functions as a trigger that makes
the EP directly accessible within the entanglement generated. For this reason, physical
exchange of particles and the related geometric phase do not occur here, in contrast with
the technique previously adopted [57] to measure the bosonic EP of photons. Our proce-
dure works for bosons, fermions and anyons. We judiciously design the optical setup to
simulate various particle statistics: differently from other methods used for this purpose
in the context of photonic quantum walks [77, 78], we manually inject different EPs by
accurately tuning a phase-adjustment device, always observing agreement between the
measured values and predictions. Our apparatus confirms the real bosonic (symmetric)
nature of photons, including the result of Ref. [57]. We also prove that repeated mea-
surements of the EP permit us to reconstruct the probability distribution for statistical
mixtures of states of particles of different nature. Our work provides a general scheme
to directly explore the symmetrization principle and the role of particle statistics in var-
ious contexts, which should have extendable applications in other phase-measurement
schemes [79–81].

In the future, it would be interesting to apply our setup on nonoptical platforms
to achieve the direct measurement of real (not simulated) fermionic and anyonic EPs.
In fact, our scheme can be translated to any platform that implements linear optics,
such as platforms for electronic optics [82], where the degree of indistinguishability can
be adjusted by use of quantum point contacts acting as electronic beam splitters [83].
Additionally, quantum dots appear promising for on-demand generation of single elec-
trons [84], including their initialization and coherent control [85, 86], where the tunnel
effect in double quantum dots could play the role of the deformation operation generating
the indistinguishability [23,87].

We also envisage possible practical applications of our protocol to measure the EP of
anyons in topological quantum computers [64,88,89]. Furthermore, the proposed theoreti-
cal and experimental setup can be easily adapted to find application in a phase-estimation
protocol aided by indistinguishability. Suppose that instead of postselecting the states
where exactly one qubit per region is found in the sLOCC measurement, we discard
these states by postselecting the complementary ones. This amounts to projecting the
state |ψD⟩ onto the two-particle basis BXX = {|X ↑, X ↑⟩ , |X ↑, X ↓⟩ , |X ↓, X ↓⟩}, with
X = L,R. The resulting state is thus

|ψXX⟩ =
ll′ |L ↑, L ↓⟩+ rr′ |R ↑, R ↓⟩√

|ll′|2 + |rr′|2
, (3.11)

which, as can be noticed by rewriting it in the Fock representation and disregarding the
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pseudospin, is equivalent to

|ψXX⟩ =
ll′ |2, 0⟩+ rr′ |0, 2⟩√
|ll′|2 + |rr′|2

. (3.12)

This is a NOON-like state exploitable for quantum-enhanced phase estimation [28,90,91].
By adjusting the values of the coefficients, one may obtain NOON states with various
weights for the terms |2, 0⟩ and |0, 2⟩. Remarkably, since the only difference from the EP
measurement scheme is in the postselection, this state can be experimentally generated
with the same setup as that depicted in Fig. 3.2(b) (excluding the final measurement
step).

Finally, we highlight that while the sLOCC operational framework is exploited here
to achieve a result of fundamental interest, different practical applications have been de-
signed and experimentally implemented in fields ranging from quantum communication
to quantum metrology and sensing, including the generation of entanglement between
identical constituents [1, 20], the protection of quantum correlations from detrimental
external noise [2,36–38], and the generation of quantum coherence for metrological appli-
cations [30, 60].

A Introduction of phase adjustment
For a better and more intuitive understanding of subtle features of the adjustment of the
EP ϕ, we aim here to derive an intuitive geometrical relationship between the distance x
moved by the moving plate and the corresponding EP ϕ. This should help us to further
connect the distance of movement x with the direct observable O, by exploiting our
experimental setup’s capability to obtain the exact value of the EP directly.

Here, the corresponding EP of the simulated identical particles ranges from 0 to π. The
necessary experimental initialization starts from the adjustment to obtain ϕ = 0 with two
photons separately passing perpendicularly through two thin plates of fused silicon (both
having the same thickness d), of which one is motionless and the other can be rotated
by a small angle. This rotation is driven by a movable plate (MP). The thickness of d is
about 200µm, so that the moving part has no influence on the parts of the setup that
follow. At each displacement, a tomography procedure is performed so as to construct
the corresponding density matrix and, furthermore, to confirm the relative phase ϕ [76].
The experimental results are represented in Fig. 3.2(a), in which the associated error bars
are too small to be seen.

Here, we determine the theoretical predictions based on our experimental setup. As
shown in Fig. 3.4, the incident angle θi and the refraction angle θr satisfy the refraction
law, where the refractive index of the glass sheet is n = 1.5 and the refractive index of air
is n0 = 1. We can assume x = r sin θi for a small angle θi. The relationship between the
distance of movement x and the phase ϕ is

ϕ =
2π

λ
nd

 1√
1− ( sin θin0

n
)2
− 1

 =
2π

λ
nd

(
1√

1− ( x
rn
)2
− 1

)
, (A1)

where λ corresponds to the wavelength of the photon. Moreover, we find that the param-
eters d and r are d = 199.94± 1.43µm and r = 102.36± 0.91 mm. These numbers are in
agreement with the measured values, and fit well with our experimental results presented
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Figure 3.4: Sketch of the tilted experimental setup.

in Fig. 3.2(a). This means that we can straightforwardly obtain the EP ϕ through the
displacement of MP x, which is a more intuitive quantity than ϕ. Also, we can exploit
the direct measurement results between the observable O and x instead of between O
and ϕ; see Fig. 3.4. Based on Eq. (A1), ϕ can be adjusted to be larger than π; however,
considering its periodicity, it can be transformed to a value which is within the range
[0,π].

B Treatment of experimental errors and prediction of
performance of the setup
The temporal indistinguishability characterizing the two photons in our setup is evaluated
by measuring the Hong-Ou-Mandel interference dip, showing a visibility of 97.7%. This
incomplete indistinguishability is the result of unavoidable environmental decoherence
and of the somewhat limited performance of our experimental setup, e.g., the effects of
white noise and dark counts, leading to the generation of states that deviate slightly from
the ideal ones. Similarly to Ref. [57], we model these experimental errors as a constant
factor and compute the estimated performance of our setup.

The ideal state we would like to prepare is

|ψLR⟩ = cos β |LH,RV ⟩+ eiϕ sin β |LV,RH⟩ , (B1)

where ϕ represents the simulated EP, while β characterizes the degree of spatial indis-
tinguishability. Denoting by ρi the corresponding pure-state density matrix, i.e. ρi =
|ψLR⟩ ⟨ψLR|, we model the experimental errors as if they would lead to the generation of
the ideal state ρi with probability F . If we use ρn to denote the noisy state otherwise
achieved, obtained with probability 1− F , the setup thus generates the mixed state

ρe = Fρi + (1− F )ρn. (B2)

We consider the noisy part as composed of two contributions: a state ρn1 accounting for
white noise due to the accidental errors,

ρn1 =
1

4
(|LH,RH⟩ ⟨LH,RH|+ |LH,RV ⟩ ⟨LH,RV |

+ |LV,RH⟩ ⟨LV,RH|+ |LV,RV ⟩ ⟨LV,RV |),
(B3)
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Figure 3.5: Experimental results for different simulated types of particles. Measured val-
ues of ⟨O⟩ versus the displacement x of the moving plate, generating a relative phase ϕ
in the range from 0 to π. Results are reported for different values of β (different colors),
corresponding to different degrees of spatial indistinguishability. The solid lines represent
the theoretically expected results in the ideal (no-noise) scenario, while the dashed lines
show the theoretical values when noise is taken into consideration. Experimentally mea-
sured values are represented by markers.

and a state ρn2 accounting for decoherence effects,

ρn2 =
1

2
(|LH,RV ⟩ ⟨LH,RV |+ |LV,RH⟩ ⟨LV,RH|). (B4)

The complete noisy state generated is thus given by

ρn = aρn1 + bρn2,

where the coefficients a and b are such that a+ b = 1.
It is now easy to show that, once it has been rotated as described in 3.3, the noisy

component does not contribute to the expectation value of the observable O = σzL⊗σzR that
we want to measure. As a consequence, the only relevant effect of the experimental errors
within this model is to reduce the visibility of the two indistinguishable photons, meaning
that the experimental results ⟨O⟩e are related to the ideal ones ⟨O⟩i by ⟨O⟩e = F ⟨O⟩i.

We now want to estimate the parameter F . To do so, we use quantum tomography
to experimentally reconstruct ρe for different states generated while varying ϕ from 0
to π [76]. This allows us to compute ϕ and β, from which the ideal state in Eq. (B1)
can be reconstructed. After preparing several experimental states and obtaining the
corresponding groups of ϕ and β, we use (B2) to get F = 0.977. As for the noisy part
ρn, composed of ρn1 and ρn2, the values of a and b make little difference. Remarkably, we
find that the parameter F is affected by fluctuations whose magnitude is of the order of
10−3.

The treatment of the experimental errors presented above is exploited in the main text
to perform direct measurement of the EP with a higher accuracy.

C Further experimental plots
By changing the angle β of the HWP, we measure various simulated phases (including
anyonic ones) for different values of the spatial overlap in order to obtain further insights
into the role played by spatial indistinguishability in our framework. The results are
shown in Fig. 3.5. Here, the measured values of ⟨O⟩ are given directly as a function of
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Figure 3.6: Relation between ⟨O⟩ and the simulated probability distribution p of a mixture
of bosons and anyons with EP ϕ = π/2 (red) and one of bosons and fermions (brown). The
solid lines represent the ideal expected values, the dashed lines represent the theoretically
expected values when noise is considered, and the markers represent the experimentally
obtained results. The error bars are too small to be visible.

the movable plate’s displacement for different degrees of spatial overlap and, thus, of the
spatial indistinguishability I. The latter is defined by an entropic expression in terms of
the probabilities of finding each particle in a given region [2] and, in our experiment, reads
I = − sin2 β log2(sin

2 β)− cos2 β log2(cos
2 β). We recall that β = 45◦ corresponds to the

maximum spatial overlap (i.e., the maximum spatial indistinguishability I = 1), while
β = 30◦, β = 20◦, and β = 10◦ denote partial spatial overlap (I < 1). The experimental
results are reported by markers of different types, while the solid lines represent the ideal
theoretically expected values ⟨O⟩i. Finally, the dashed lines correspond to the values
⟨O⟩e expected when the experimental errors are taken into consideration. Notice that, as
previously discussed, when the degree of spatial indistinguishability decreases, the ranges
of values assumed by ⟨O⟩ decrease accordingly, thus leading to a lower sensitivity.

In performing the second experiment, for the classical mixture of two types of particles,
we set β = 45◦ for simplicity, as reported in Section 3.3. To begin with, we set ϕ1 =
0 and ϕ2 = π/2 to simulate a classical mixture of bosons and anyons. We simulate
different probability distributions by rotating the two input HWPs shown in Fig. 3.1.
The expectation value of O, given by

⟨O⟩ = Tr[ρO] = p ⟨ψ1|O |ψ1⟩+ (1− p) ⟨ψ2|O |ψ2⟩ , (C1)

is measured as in the pure-state scenario. For simplicity, we assume that the values of
ϕ1 and ϕ2 are given as prior information, allowing us to compute the expectation values
⟨ψj|O |ψj⟩ , j = 1, 2, and reducing Eq. (C1) to one linear equation in p. Notice that if
this is not the case, the values of ϕ1 and ϕ2 can nonetheless be obtained by exploiting our
procedure to directly measure them on a sufficiently large sample of particle pairs.

The results obtained are represented by markers in Fig. 3.6, where ⟨O⟩ is plotted
against the simulated probability p. Here, the efficacy of our setup is apparent when
compared with the red solid line, representing the theoretically expected values of ⟨O⟩
computed using Eq. (C1). As before, the dashed line represents the theoretical values
expected when the action of noise is considered, i.e., ⟨O⟩e = F ⟨O⟩. Then, we set ϕ2 = π
to simulate a mixture of bosons and fermions and repeat the experiment. The results,
displayed in Fig. 3.6 by brown markers and lines, are once again in good agreement with
our theoretical predictions.



Chapter 4

Entanglement robustness via spatial
deformation of identical particle wave
functions

Abstract

We address the problem of entanglement protection against surrounding noise by a pro-
cedure suitably exploiting spatial indistinguishability of identical subsystems. To this
purpose, we take two initially separated and entangled identical qubits interacting with
two independent noisy environments. Three typical models of environments are con-
sidered: amplitude damping channel, phase damping channel and depolarizing channel.
After the interaction, we deform the wave functions of the two qubits to make them spa-
tially overlap before performing spatially localized operations and classical communication
(sLOCC) and eventually computing the entanglement of the resulting state. This way,
we show that spatial indistinguishability of identical qubits can be utilized within the
sLOCC operational framework to partially recover the quantum correlations spoiled by
the environment. A general behavior emerges: the higher the spatial indistinguishability
achieved via deformation, the larger the amount of recovered entanglement.

This chapter reports the results of our manuscript of Ref. [37].

4.1 Introduction

It is well known that the environment of an open quantum system produces a detrimen-
tal noise which has to be dealt with during the implementation of many useful quan-
tum information processing schemes [92, 93]. One of the main goals in the development
of fault-tolerant enhanced quantum technologies is to provide a strategy to protect the
entanglement from such degradation. This challenge has been addressed, e.g., by the
seminal works on quantum error corrections [94–97], structured environments with mem-
ory effects [98–108], distillation protocols [109–111], decoherence-free subspaces [112,113],
dynamical decoupling and control techniques [114–123].

It is not unusual to find identical particles (i.e., subsystems such as photons, atoms,
nuclei, electrons or any artificial qubits of the same species) as building blocks of quan-
tum information processing devices and quantum technologies [124, 125]. Nonetheless,
the standard approach to identical particles based on unphysical labels is known to give
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rise to formal problems when trying to asses the correlations between constituents with
(partially or completely) overlapping spatial wave functions [12,13]. For this reason, many
alternative approaches have been developed to deal with the formal aspects of the entan-
glement of identical particles [7, 13, 20–22, 39–49, 51, 126, 127]. Among these, the no-label
approach [20–22] provides many advantages: for example, it allows to address the cor-
relations between identical particles exploiting the same tools used for nonidentical ones
(e.g., the von Neumann entropy of the reduced density matrix). Furthermore, it provides
the known results for distinguishable particles in the limit of non-overlapping (spatially
separated) wave functions. Treating the global multiparticle state as a whole, indivisible
object, in the no-label approach entanglement strictly depends on both the spatial over-
lap of the wave functions and on spatially localized measurements. An entropic measure
has been recently introduced [2] to quantify the degree of indistinguishability of identi-
cal particles arising from their spatial overlap. Furthermore, an operational framework
based on spatially localized operations and classical communication (sLOCC), where the
no-label approach finds its natural application, has been firstly theorized [20] and later
experimentally implemented [1, 74] as a way of activating physical entanglement. Such
framework has also been applied to fields such as the exploitation of the Hanbury Brown-
Twiss effect with identical particles [55], quantum entanglement in one-dimensional sys-
tems of anyons [56], entanglement transfer in a quantum network [128], and quantum
metrology [30, 60]. Moreover, in a recent paper [2] it has been shown that spatial indis-
tinguishability, even partial, can be exploited to recover the entanglement spoiled from
the preparation noise of a depolarizing channel.

In this work, we aim to extend the results of Ref. [2] to the wider scenario of dif-
ferent paradigmatic noise channels, namely amplitude damping, phase damping and de-
polarizing channels, under both Markovian and non-Markovian regimes. To do so, we
introduce spatial deformations, i.e., transformations turning initially spatially separated
(and thus distinguishable) particles into indistinguishable ones by making their wave
functions spatially overlap. We then analyze the entanglement dynamics of two identical
qubits interacting separately with their own environment, with the goal of showing that
the application of the mentioned spatial deformation at a given time of the evolution,
immediately followed by the sLOCC measurement, constitutes a procedure capable of
recovering quantum correlations.

This paper is organized as follows: in Section 4.2 we introduce the general framework of
the analyzed dynamics and the main tools used, namely the deformation operation and the
sLOCC protocol. The main results follow in Section 4.3, where we describe the considered
model and study the scenarios of an amplitude damping channel, a phase damping channel
and a depolarizing channel. Finally, Section 4.4 summarizes and discusses the main
results.

4.2 Materials and Methods
In this section we introduce the goal of this paper and the main tools used to achieve it.

Let us consider the following process, illustrated in Figure 4.1: at the beginning, two
identical qubits in the entangled state ρAB(0) occupy two different regions of space A and
B, thus being distinguishable and individually addressable. Here, they locally interact
with two spatially separated and independent noisy environments which spoil the initial
correlations. At time t, the two particles get decoupled from the environments and undergo
a deformation which makes their wave functions spatially overlap into the state ρD(t).
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Figure 4.1: State evolution in the considered scenario. (a) The two qubits are initially
prepared in the pure entangled state ρAB(0). (b) They are left to interact with a noisy
environment, whose detrimental action produces the mixed state ρAB(t). (c) At time t a
deformation of the two particles wave functions is performed, immediately followed by a
sLOCC measurement.

Immediately after that, a sLOCC measurement is performed to generate the entangled
state ρLR(t). In this work, we show that this procedure allows for the recovery of the
entanglement spoiled by the previously introduced noise in an amount which depends on
the degree of spatial indistinguishability achieved with the deformation. Three different
models of environmental noise shall be considered: an amplitude damping channel, a
phase damping channel and a depolarizing channel.

Notice that here the system-environment interaction occurs when the two particles
are still distinguishable and no finite time interval separates the deformation from the
immediately subsequent sLOCC operation. It will thus be interesting to compare the
results of this work with those discussed in Ref. [36], where the interaction with the
noisy channels happens instead during a finite time interval between the deformation and
the sLOCC operation, that is when the qubits are indistinguishable in the frame of the
localized environments.

The deformation process bringing two particles to spatially overlap shall be now briefly
introduced, followed by a recall of the sLOCC operational framework.

4.2.1 Deformations of identical particle states

Given a multipartite quantum system, a quantum transformation acting differently on
each subpart changing the relations among them is called a deformation. In this section
we focus on the specific set of continuous deformations which modify the single spatial
wave functions of identical particles. In what follows, the no-label formalism [21] is used.

Let us take a non-entangled state of two identical particles |Φ⟩ = |ϕ1;ϕ2⟩, where ϕi
(i = 1, 2) is identified by the values of a complete set of commuting observables describing
a spatial wave function ψi and an internal degree of freedom τi. We suppose that the
two particles are initially spatially separated, e.g., localized in two distinct regions A and
B such that |ψ(0)

1 ⟩ = |A⟩, |ψ
(0)
2 ⟩ = |B⟩ and ⟨A|B⟩ = 0. We want to modify the spatial

wave functions of the two particles in order to make them overlap. Thus, we introduce a
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deformation D such that

|ϕ1;ϕ2⟩ = |A, τ1⟩ ⊗ |B, τ2⟩
D−→ |ψ1, τ1;ψ2, τ2⟩ , (4.1)

where ψ1 and ψ2 are now at least partially overlapped. Since the two spatially overlapping
particles are also identical, they are now indistinguishable: their final global state cannot
be written as the tensor product of single particle states anymore and must be considered
as a whole, i.e. |ψ1, τ1;ψ2, τ2⟩ ≠ |ψ1, τ1⟩ ⊗ |ψ2, τ2⟩.

A deformation operator acting on identical particles is not, in general, unitary, and its
normalized action on a state ρ written in terms of a convex set of density matrices {ρi},
ρ =

∑
i pi ρi with pi ∈ [0, 1] and

∑
i pi = 1, is thus

D[ρ] =
DρD†

Tr[DD†ρ]
=
∑
i

p̄iD[ρi], (4.2)

where

p̄i =
Tr[DD†ρi]

Tr[DD†ρ]
, D[ρi] =

DρiD
†

Tr[DD†ρi]
. (4.3)

4.2.2 sLOCC, Spatial Indistinguishability and Concurrence

The natural extension of the standard local operation and classical communication frame-
work (LOCC) for distinguishable particles to the scenario of indistinguishable (and thus
individually unaddressable) particles is provided by the spatially localized operations and
classical communication (sLOCC) environment [20]. Given a set of indistinguishable
particles, sLOCC consist in a projective measurement of the global state over distinct
spatially separated regions, followed by a post-selection of the outcomes where only one
particle is found in each location. The result of this operation is an entangled state whose
physical accessibility has been demonstrated in a quantum teleportation experiment [1].

Suppose we are given a state ρ of two identical and indistinguishable particles, e.g., ob-
tained by the application (4.2) of the deformation (4.1), and assume they have pseudo-spin
1/2. The whole sLOCC operation (projection and post-selection) amounts to projecting
the two qubits state on the subspace spanned by the basis

BLR = {|L ↑, R ↑⟩ , |L ↑, R ↓⟩ , |L ↓, R ↑⟩ , |L ↓, R ↓⟩}, (4.4)

via the projection operator

ΠLR =
∑

σ,τ=↑,↓

|Lσ,Rτ⟩ ⟨Lσ,Rτ | . (4.5)

Since the constituents are indistinguishable before the detection, it is impossible to know
exactly which particle will be found in which region. The sLOCC operation generates the
(normalized) two-particle entangled state

ρLR(t) =
ΠLR ρ(t)ΠLR

Tr [ΠLR ρ]
, (4.6)

with probability
PLR = Tr [ΠLR ρ] . (4.7)
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After the sLOCC measurement, the two qubits occupy two distinct regions of space and
are thus now distinguishable and individually addressable. Furthermore, since in the
no-label formalism the inner product between two-particle states is given by the rule [21]

⟨ϕ′
1;ϕ

′
2|ϕ1;ϕ2⟩ = ⟨ϕ′

1|ϕ1⟩ ⟨ϕ′
2|ϕ2⟩+ η ⟨ϕ′

1|ϕ2⟩ ⟨ϕ′
2|ϕ1⟩ , (4.8)

with η = 1 for bosons and η = −1 for fermions, particle statistics naturally emerges
within the sLOCC framework and is thus expected to play a role in the dynamics.

The sLOCC scenario also allows for the introduction of an entropic measure of the
particles’ indistinguishability after the deformation (2.13), which depends on the achieved
spatial distribution of their wave functions ψ1, ψ2 over the two regions L and R where
sLOCC measurement occurs. Given the probability PXψi

of finding the qubit having wave
function ψi (i = 1, 2) in the region X (X = L,R), the spatial indistinguishability measure
is given by [2]

I = −PLψ1PRψ2

Z
log2

PLψ1PRψ2

Z
− PLψ2PRψ1

Z
log2

PLψ2PRψ1

Z
, (4.9)

where Z = PLψ1PRψ2 + PLψ2PRψ1 . Notice that (4.9) ranges from 0 for spatially sepa-
rated (thus distinguishable) particles (e.g. when PLψ1 = PRψ2 = 1) to 1 for maximally
indistinguishable particles (PLψ1 = PLψ2 , PRψ1 = PRψ2). Hereafter, we assume for conve-
nience that the spatial wave functions of the single indistinguishable particles after the
deformation have the form

|ψ1⟩ = l |L⟩+ r |R⟩ , |ψ2⟩ = l′ |L⟩+ r′ |R⟩ , (4.10)

where
l = ⟨L|ψ1⟩ , r = ⟨R|ψ1⟩ , l′ = ⟨L|ψ2⟩ , r′ = ⟨R|ψ2⟩ (4.11)

are complex coefficients such that |l|2+ |r|2 = |l′|2+ |r′|2 = 1. In the following analysis, we
shall conveniently set l = r′ to assure that the sLOCC probability PLR is different from
zero.

As previously stated, the state ρLR obtained by the sLOCC measurement is entangled.
Among the existing entanglement quantifiers [10, 129, 130], we address the quantification
of the quantum correlations characterizing the bipartite quantum state ρLR of two distin-
guishable qubits via the Wootters concurrence for convenience, namely [2, 33]

C(ρLR) = max{0,
√
λ4 −

√
λ3 −

√
λ2 −

√
λ1}, (4.12)

where λi are the eigenvalues in decreasing order of the matrix ξ = ρLR ρ̃LR, with ρ̃LR =
(σL

y ⊗σR
y ) ρ

∗
AB (σL

y ⊗σR
y ) and σL

y , σR
y being the usual Pauli matrix σy localized, respectively,

on the particle in L and in R.

Finally, we consider the fidelity F (τ, ρLR) =
(
Tr
√√

τ ρLR
√
τ
)2

as a valid figure of
merit to quantify the closeness between the state ρLR and the initial state τ . Notice that
if the initial state is pure, i.e. τ = |ψ0⟩ ⟨ψ0|, then the fidelity takes the simple form

F (τ, ρLR) = ⟨ψ0|ρLR|ψ0⟩ . (4.13)
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4.3 Indistinguishability as a feature for recovering en-
tanglement

In this section we report our main results. Each of the two independent environments is
modeled as a bath of harmonic oscillators in the vacuum state except for one mode which
is coupled to the qubit interacting with it. Considering a qubit-cavity model with just
one excitation overall allows us to treat the reservoir as characterized by a Lorentzian
spectral density [131,132]

J(ω) =
γ

2π

λ2

(ω − ω0)2 + λ2
, (4.14)

where ω0 is the qubit transition frequency, γ is the microscopic system-environment cou-
pling constant related to the decay of the excited state of the qubit in the Markovian limit
of flat spectrum, and λ is the spectral width of the coupling quantifying the leakage of
photons through the cavity walls. The relaxation time τR on which the state of the system
changes is related to the coupling constant by the relation τR ≈ γ−1, while the reservoir
correlation time τB is connected to the spectral width of the coupling by τB ≈ λ−1. These
coefficients regulate the behavior of the system: when γ < λ/2 (τR > 2τB) the system
is weakly coupled to the environment, the reservoir correlation time is shorter than the
relaxation time and we are in a Markovian regime; when γ > λ/2 (τR < 2τB) instead, we
are in the strong coupling scenario, where the relaxation time is shorter than the bath
correlation time and the regime is non-Markovian. The way each qubit interacts with its
own reservoir depends on the type of noise channel taken into account.

The action of the three noisy channels considered in this paper shall be computed
within the usual Kraus operators formalism, or operator-sum representation [32]. The
general expression of the single-qubit evolved density matrix is then given by ρ(t) =∑

iEiρ(0)E
†
i , where the Ei’s are the time-dependent Kraus operators corresponding to

the specific channel and depend on the disturbance probability (decoherence function)
p(t). Each channel in fact introduces a time-dependent disturbance on the system with a
probability p(t) = 1− q(t) obtained by solving the differential equation [131,133]

q̇(t) = −
∫ t

0

dt1 f(t− t1) q(t1), (4.15)

where the correlation function f(t− t1) is given by the Fourier transform of the spectral
density J(ω) of the reservoir, namely

f(t− t1) =
∫
dω J(ω) e−i(ω−ω0)(t−t1). (4.16)

Solving Eq. (4.15) for the spectral density (4.14), one obtains the disturbance (or error)
probability [131]

p(t) = 1− e−λt
[
cos

(
d t

2

)
+
λ

d
sin

(
d t

2

)]2
, (4.17)

with d =
√

2γλ− λ2. Notice that this solution encompasses both Markovian and non-
Markovian regimes, depending on the ratio λ/γ. In particular, in the Markovian limit of
flat spectrum which occurs for γ/λ≪ 1, it is straightforward to see that p(t) = 1−e−γt/2,
as expected [32]. In general, the error probability (4.17) is such that p(0) = 0 and
lim
t→∞

p(t) = 1.
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4.3.1 Amplitude Damping Channel

The amplitude damping channel is one of the most used models describing energy dissi-
pation in quantum systems. This is mainly due to the wide range of physical phenomena
that it encompasses, from the spontaneous emission of a photon by an atom [134–136]
to processes involving spin chains [137], the scattering of a photon in cavity QED [32],
superconducting qubits in circuit QED [138,139], and high temperature spin systems re-
laxing to the equilibrium state with their environment [32]. Furthermore, it can be easily
simulated using linear-optics devices, thus making it of experimental interest.

The action of the amplitude damping channel on a single qubit in the operator-sum
representation is given by the Kraus operators [32]

E0 = |↑⟩ ⟨↑|+
√

1− p(t) |↓⟩ ⟨↓| = E†
0,

E1 =
√
p(t) |↑⟩ ⟨↓| , E†

1 =
√
p(t) |↓⟩ ⟨↑| .

(4.18)

Consider two identical qubits initially prepared in the Bell singlet state

|1−⟩AB =
1√
2

(
|A ↑, B ↓⟩ − |A ↓, B ↑⟩

)
, (4.19)

with A and B being two distinct spatial regions (⟨A|B⟩ = 0). Thanks to the fact that the
the two environmental interactions are independent, the state after the noisy interaction
is given by

ρAB(t) =
(
EA

0 ⊗ EB
0

)
ρAB(0)

(
EA

0 ⊗ EB
0

)
+
(
EA

1 ⊗ EB
1

)
ρAB(0)

(
EA †

1 ⊗ E
B †
1

)
+
(
EA

0 ⊗ EB
1

)
ρAB(0)

(
EA

0 ⊗ E
B †
1

)
+
(
EA

1 ⊗ EB
0

)
ρAB(0)

(
EA †

1 ⊗ EB
0

)
,

(4.20)

where EX
i (i = 1, 2, X = A,B) denotes the i-th single particle Kraus operator of Eq. (4.18)

acting on the qubit localized in region X, while ρAB(0) = |1−⟩AB ⟨1−|AB is the initial
density matrix. Using Eq. (4.18) in the above equation, one then finds

ρAB(t) =
(
1− p(t)

)
|1−⟩AB ⟨1−|AB + p(t) |A ↑, B ↑⟩ ⟨A ↑, B ↑| . (4.21)

We now want to apply the deformation defined in Eq. (2.13) to the state (4.21) at time
t. State |1−⟩AB gets mapped to

|1̄−⟩D =
1√
2

(
|ψ1 ↑, ψ2 ↓⟩ − |ψ1 ↓, ψ2 ↑⟩

)
, (4.22)

which is not a normalized state since ⟨ψ1|ψ2⟩ ̸= 0. In order to write it in terms of a
normalized state |1̄−⟩N , we compute

⟨1̄−|1̄−⟩D = C2
1 , C1 :=

√
1− η|⟨ψ1|ψ2⟩|2, (4.23)

and write it as
|1̄−⟩D = C1 |1̄−⟩N . (4.24)

The same is done for the deformation of |A ↑, B ↑⟩, which gets mapped to

|ψ1 ↑, ψ2 ↑⟩D = C2 |ψ1 ↑, ψ2 ↑⟩N , C2 :=
√

1 + η|⟨ψ1|ψ2⟩|2, (4.25)
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where
⟨ψ1 ↑, ψ2 ↑ |ψ1 ↑, ψ2 ↑⟩N = 1. (4.26)

The normalized state resulting from the spatial deformation (4.2) of the state (4.21) is
thus

ρD(t) =

(
1− p(t)

)
C2

1 |1̄−⟩N ⟨1̄−|N + p(t)C2
2 |ψ1 ↑, ψ2 ↑⟩N ⟨ψ1 ↑, ψ2 ↑|N(

1− p(t)
)
C2

1 + p(t)C2
2

. (4.27)

Following the scheme shown in Figure 4.1, we perform the sLOCC measurement immedi-
ately after the deformation, applying the projection operator (4.5) onto the state (4.27),
which finally gives

ρLR(t) =

(
1− p(t)

)
|lr′ − η l′r|2 |1−⟩LR ⟨1−|LR + p(t) |lr′ + η l′r|2 |L ↑, R ↑⟩ ⟨L ↑, R ↑|(

1− p(t)
)
|lr′ − η l′r|2 + p(t) |lr′ + η l′r|2

(4.28)
where l, r, l′, r′ are the wave function coefficients defined in (4.11).

In order to study the entanglement evolution of the state ρLR(t) of Eq. (4.28), we
calculate the concurrence defined in Eq. (4.12), which is

C
(
ρLR(t)

)
=

|lr′ − η l′r|2
(
1− p(t)

)
|lr′ − η l′r|2

(
1− p(t)

)
+ |lr′ + η l′r|2 p(t)

, (4.29)

where the statistics parameter η explicitly appears, as expected. As a first consideration,
we notice that the results about entanglement dynamics for bosons can be obtained from
the ones for fermions (and vice versa) by simply changing sign to one of the coefficients
l, r, l′, r′ (that is, by shifting the phase of one of them by π). Therefore, in order to
fix a framework to analyze the concurrence, we assume we are dealing with fermions
whose spatial wave functions are distributed over the regions L and R with positive real
coefficients. This reasoning shall hold for the other noisy channels, so that the presented
results are also valid for bosons. With this assumption, we get the concurrence as

C
(
ρLR(t)

)
=

[
(lr′)2 + (l′r)2 + 2 ll′rr′

](
1− p(t)

)
(lr′)2 + (l′r)2 + 2 ll′rr′

(
1− 2p(t)

) . (4.30)

We point out that when no deformation is performed and the particles remain distin-
guishable in two distinct regions (I = 0), the sLOCC projector (4.5) is equivalent to the
identity operator. This implies that when the particles are not brought to spatially over-
lap, our procedure gives the same entanglement we would have without performing the
sLOCC operation. For this reason, we take the results for I = 0 (black dashed lines in the
following figures) as the term of comparison to quantify the entanglement gained due to
the deformation + sLOCC procedure, i.e., ∆C(t) := C

(
ρLR(t)

)
− C

(
ρAB(t)

)
. Figure 4.2

shows the concurrence (4.30) for both the Markovian and the non-Markovian regimes,
while Figure 4.3 displays ∆C(t).

As can be seen in Figure 4.2, spatial indistinguishability (4.9) has a direct influence
on the general behavior: when the particles are not perfectly indistinguishable (I ≠ 1),



62CHAPTER 4. ENTANGLEMENT ROBUSTNESS VIA SPATIAL DEFORMATION

0 2 4 6 8 10
γt0.0

0.2

0.4

0.6

0.8

1.0
C(ρLR(t))

Markovian

I=1

I=0.90

I=0.75

I=0.50

I=0

0 100 200 300 400 500
γt0.0

0.2

0.4

0.6

0.8

1.0
C(ρLR(t))

Non-Markovian

I=1

I=0.90

I=0.75

I=0.50

I=0

Figure 4.2: Concurrence of two identical qubits (fermions with real l, l′, r, r′ > 0, bosons
with one of these four coefficients negative) in the initial state |1−⟩AB subjected to lo-
calized amplitude damping channels, undergoing an instantaneous deformation+sLOCC
operation at time t for different degrees of spatial indistinguishability I (with |l| = |r′|).
Both the Markovian (λ = 5γ) (upper panel) and non-Markovian (λ = 0.01γ) (lower panel)
regimes are reported.

the entanglement vanishes with a monotonic decay in the Markovian regime and with a
periodic one in the non-Markovian regime. From Figure 4.3, we can see that when I ≠ 1
the deformation and sLOCC procedure becomes inefficient in recovering the correlations
as time grows. Nonetheless, it is interesting to notice that it provides an initial effective
advantage as a consequence of the fact that the decay rate shown in Figure 4.2 gets
lower as the indistinguishability increases. However, when the particles wave functions
maximally overlap (I = 1, blue solid line), the entanglement remains stable at its initial
maximum value, thus becoming unaffected by the noise. These results show that, in the
scenario of the amplitude damping channel, we have provided an operational framework
where spatial indistinguishability, even imperfect, of two identical qubits can be exploited
as a scheme to recover quantum correlations spoiled by a short-time interaction with the
noisy environment.

Finally, to check whether such procedure would be of any practical interest we have
to analyze its theoretical probability of success. This strictly depends on the probability
for the sLOCC projection (4.6) to produce a non-null result, physically representing a
state which does not get discarded during the postselection. Such probability is defined
in Eq. (4.7) and, for identical qubits undergoing a local interaction with an amplitude
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Figure 4.3: Net gain in the entanglement recovery of two identical qubits (fermions with
real l, l′, r, r′ > 0, bosons with one of these four coefficients negative) in the initial state
|1−⟩AB under localized amplitude damping channels, thanks to the deformation+sLOCC
operation performed at time t. Results are reported for different degrees of spatial in-
distinguishability I (with |l| = |r′|). Both the Markovian (λ = 5γ) (upper panel) and
non-Markovian (λ = 0.01γ) (lower panel) regimes are shown.

damping channel, it is equal to

PLR(t) =
(lr′)2 + (l′r)2 − 2η ll′rr′

(
1− 2 p(t)

)
C2

1

(
1− p(t)

)
+ C2

2 p(t)
. (4.31)

Figure 4.4 shows the success probability (4.31) for different degrees of spatial indistin-
guishability in both the Markovian and non-Markovian regime in the case of fermions. As
can be seen, when the indistinguishability is not maximum, the probability of success tends
to 1 as time passes in both regimes, thus giving rise to a trade-off with the concurrence.
The trade-off is confirmed by the probability being constant and equal to 1/2 when the
concurrence is maximum, i.e. for I = 1 (blue solid line). For bosons, the time-dependent
success probability corresponding to I = 1 (with the constraint l = r′ = l′ = −r) and
to the concurrence plotted in Fig. 4.2 is PLR(t) = 1 − p(t) (notice, however, that this
success probability can be improved by differently setting the coefficients of the spatial
wave functions).

We conclude the analysis of the amplitude damping channel by showing the fidelity (4.13)
between the state (4.28) resulting from the sLOCC measurement and the initial state
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Figure 4.4: Success probability of obtaining a nonzero outcome from the sLOCC projec-
tion for fermions (l, l′, r, r′ > 0 and l = r′) interacting with localized amplitude damping
channels. Different degrees of spatial indistinguishability are reported in both the Marko-
vian (λ = 5γ) (upper panel) and non-Markovian (λ = 0.01γ) (lower panel) regimes.

where locations A and B are assumed to coincide with L and R, namely τ = |1−⟩LR ⟨1−|LR.
This is reported for fermions with real and positive coefficients in Fig. 4.5 as a function
of time and for different values of indistinguishability. Similarly to the concurrence, the
fidelity decays to zero with time for I ≠ 1, with a decay rate which diminishes with the
spatial indistinguishability. When the maximal spatial indistinguishability is achieved,
instead, the fidelity maintain its maximum value F = 1 (I = 1, solid blue line). This
behaviour holds in both the Markovian and non-Markovian regimes.

4.3.2 Phase Damping channel

The phase damping channel is used to model the inherently quantum non-dissipative
physical situation where a system undergoes a loss of coherence without losing energy. In
this scenario, the energy eigenstates of the system are not changed by the dynamics, but
they accumulate a phase which is responsible for the gradual degradation of the inter-
ference terms. Physical systems undergoing this phenomena are, e.g., random telegraph
noise and phase noisy lasers [140–145], photons randomly scattering through a waveguide,
and superconducting qubits under low-frequency noise.
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Figure 4.5: Fidelity of two identical qubits (fermions with real l, l′, r, r′ > 0) subjected to
localized amplitude damping channels, computed between the initial state |1−⟩LR ⟨1−|LR
and the state produced by an instantaneous deformation+sLOCC operation at time t for
different degrees of spatial indistinguishability I (with |l| = |r′|). Both the Markovian
(λ = 5γ) (upper panel) and non-Markovian (λ = 0.01γ) (lower panel) regimes are re-
ported.

A phase damping channel acting on a single qubit is described by the Kraus operators

E0 = |↑⟩ ⟨↑⟩+
√
1− p(t) |↓⟩ ⟨↓| = E†

0,

E1 =
√
p(t) |↓⟩ ⟨↓| = E†

1.
(4.32)

Once again, we consider the Bell state |1−⟩AB of two identical qubits defined in (4.19) as
our initial state. The evolved state ρAB(t) after the interaction with the two independent
environments is computed as in Eq. (4.20), which for the phase damping channel described
by the above Kraus operators gives

ρAB(t) =

(
1− p(t)

2

)
|1−⟩AB ⟨1−|AB +

p(t)

2
|1+⟩AB ⟨1+|AB , (4.33)

where |1+⟩AB is the Bell state defined as

|1+⟩AB =
1√
2

(
|A ↑, B ↓⟩+ |A ↓, B ↑⟩

)
. (4.34)

At time t, deformation (2.13) is applied to the state (4.33) to make the two particles
spatially overlap. Deformation of |1−⟩AB gives the state (4.22), while |1+⟩AB gets mapped
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to
|1̄+⟩D =

1√
2

(
|ψ1 ↑, ψ2 ↓⟩+ |ψ1 ↓, ψ2 ↑⟩

)
. (4.35)

Once again, state |1̄+⟩D is not normalized: it is indeed easy to show that

|1̄+⟩D = C2 |1̄+⟩N , (4.36)

where ⟨1̄+|1̄+⟩N = 1 and C2 is defined in (4.25). Thus, the global normalized state after
the deformation is

ρD(t) =

(
1− 1

2
p(t)

)
C2

1 |1̄−⟩N ⟨1̄−|N + 1
2
p(t)C2

2 |1̄+⟩N ⟨1̄+|N(
1− 1

2
p(t)

)
C2

1 +
1
2
p(t)C2

2

. (4.37)

Finally, the sLOCC operation is performed: the action of the projection operator (4.5)
on the state (4.37), as defined in Eq. (4.6), gives

ρLR(t) =

(
1− 1

2
p(t)

)
|lr′ − η l′r|2 |1−⟩LR ⟨1−|LR + 1

2
p(t)|lr′ + η l′r|2 |1+⟩LR ⟨1+|LR(

1− 1
2
p(t)

)
|lr′ − η l′r|2 + 1

2
p(t)|lr′ + η l′r|2

.

(4.38)
We now study the entanglement evolution of such a state by the concurrence C(ρLR(t)),

which is readily found to be

C
(
ρLR(t)

)
= max {0, λ1(t)− λ2(t)} ,

λ1(t) := max {λA(t), λB(t)} , λ2(t) := min {λA(t), λB(t)} ,
(4.39)

with

λA(t) :=

(
1− 1

2
p(t)

)
|lr′ − η l′r|2(

1− 1
2
p(t)

)
|lr′ − η l′r|2 + 1

2
p(t)|lr′ + η l′r|2

,

λB(t) :=
1
2
p(t) |lr′ + η l′r|2(

1− 1
2
p(t)

)
|lr′ − η l′r|2 + 1

2
p(t)|lr′ + η l′r|2

.

Focusing the analysis once again on fermions with real and positive coefficients l, r, l′, r′
to fix a framework, concurrence (4.39) is then equal to

C
(
ρLR(t)

)
=

(
1− p(t)

)[
(lr′)2 + (l′r)2

]
+ 2ll′rr′

(lr′)2 + (l′r)2 +
(
1− p(t)

)
2ll′rr′

. (4.40)

The time behavior of the concurrence of Eq. (4.40) is plotted in Figure 4.6 for both
the Markovian and the non-Markovian regime, while the net gain due to the deformation
and sLOCC operation is depicted in Figure 4.7. Once again, the entanglement recovered
is found to decrease as the interaction time increases where the generated spatial indistin-
guishability is not maximum. As in the amplitude damping scenario, such dephasing is
monotonic in the Markovian regime and periodic in the non-Markovian one, with a decay
rate which decreases as particle indistinguishability increases. Nonetheless, differently
from that case, the entanglement now does not vanish. Indeed, for t → ∞ it reaches a
constant value which, under the above assumptions, is given by

C∞ =
2ll′rr′

(lr′)2 + (l′r)2
. (4.41)
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Figure 4.6: Concurrence of two identical qubits (fermions with real l, l′, r, r′ > 0, bosons
with one of these four coefficients negative) in the initial state |1−⟩AB interacting with
localized phase damping channels, undergoing an instantaneous deformation+sLOCC op-
eration at time t for different degrees of spatial indistinguishability I (with |l| = |r′|).
Both the Markovian (λ = 5γ) (upper panel) and non-Markovian (λ = 0.01γ) (lower
panel) regimes are reported.

Furthermore, when the indistinguishability is maximum (I = 1, blue solid line) quantum
correlations after the sLOCC measurement result to be completely immune to the action
of the noisy environment and maintain their initial value. Is is important to highlight that
the existence of such a steady value for the entanglement of identical particles is only due
to the spatial indistinguishability of the qubits and to the procedure used to produce the
entangled state, i.e. the sLOCC operation. This result clearly shows that spatial indistin-
guishability of identical qubits can be exploited to recover quantum correlations spoiled
by the detrimental noise of a phase damping-like environment interacting independently
with the constituents, as shown in Figure 4.7.

Finally, the success (sLOCC) probability of obtaining the outcome ρLR(t) for two
identical qubits undergoing local phase damping channels is

PLR(t) =
(lr′)2 + (l′r)2 − 2η ll′rr′

(
1− p(t)

)
(
1− 1

2
p(t)

)
C2

1 +
1
2
p(t)C2

2

. (4.42)

Figure 4.8 depicts the behavior of the sLOCC probability of success (4.7) for fermions
(with real and positive coefficients of the spatial wave functions) for different values of I.
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Figure 4.7: Net gain in the entanglement recovery of two identical qubits (fermions with
real l, l′, r, r′ > 0, bosons with one of these four coefficients negative) in the initial state
|1−⟩AB under localized phase damping channels, thanks to the deformation+sLOCC op-
eration performed at time t. Results are reported for different degrees of spatial indis-
tinguishability I (with |l| = |r′|). Both the Markovian (λ = 5γ) (upper panel) and
non-Markovian (λ = 0.01γ) (lower panel) regimes are shown.

Once again, there is a trade-off between the probability of success and the concurrence,
with PLR(t) = 1 when the particles are distinguishable (black dashed line) and PLR = 1/2
for perfectly indistinguishable qubits (blue solid line). A similar general behavior is found
for bosons (with the constraint l = r′ = l′ = −r), having PLR(t) = 1− p(t)/2 in the case
of maximal indistinguishability I = 1.

The same general relation between concurrence and spatial indistinguishability is found
also for the fidelity between the initial state τ = |1−⟩LR ⟨1−|LR and the final one (4.38),
displayed in Fig. 4.9 for both the Markovian and the non-Markovian regime.

Notice that, differently from the amplitude damping scenario, this time the fidelity
does not vanish but it reaches an asymptotic value which increases with the indistin-
guishability, starting from F = 1 for distinguishable particles (I = 0, black dashed line)
and reaching the maximum value F = 1 when I = 1 (solid blue line).

4.3.3 Depolarizing Channel

In this section we reconsider and expand the results on entanglement protection at the
preparation stage presented in Ref. [2].
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Figure 4.8: Probability of obtaining a non-zero outcome from the sLOCC projection for
fermions (with real l, l′, r, r′ > 0 and l = r′) interacting with localized phase damping
channels. Different degrees of spatial indistinguishability are reported in both the Marko-
vian (λ = 5γ) (upper panel) and non-Markovian (λ = 0.01γ) (lower panel) regimes.

The depolarizing channel describes the process where a system undergoes a symmetric
decoherence. This can occur, for example, during the scattering of randomly polarized
photons, the isotropic interaction of qubits with their environment, or even in Bose-
Einstein condensates.

A depolarizing channel acting on a system of two qubits has the effect of leaving it
untouched with probability 1− p(t) and of introducing a white noise which drives it into
the maximally mixed state with probability p(t). This is, for instance, a typical noise
occurring when quantum states are initialized. Supposing once again that our system of
two identical particles is initially in the Bell state |1−⟩AB, it is well known that this kind
of noisy interaction produces the Werner state [32]

ρAB(t) = W−
AB(t) :=

(
1− p(t)

)
|1−⟩AB ⟨1−|AB +

1

4
p(t) 11, (4.43)

where 11 is the 4 × 4 identity operator. Hereafter, we work for convenience on the Bell
states basis

BB = {|1+⟩AB , |1−⟩AB , |2+⟩AB , |2−⟩AB},

where |1+⟩AB , |1−⟩AB have been previously defined respectively in (4.19) and (4.34), while



70CHAPTER 4. ENTANGLEMENT ROBUSTNESS VIA SPATIAL DEFORMATION

0 2 4 6 8 10
γt0.0

0.2

0.4

0.6

0.8

1.0
F(t)

Markovian

I=1

I=0.90

I=0.75

I=0.50

I=0

0 100 200 300 400 500
γt0.0

0.2

0.4

0.6

0.8

1.0
F(t)

Non-Markovian

I=1

I=0.90

I=0.75

I=0.50

I=0

Figure 4.9: Fidelity of two identical qubits (fermions with real l, l′, r, r′ > 0) interacting
with localized phase damping channels, computed between the initial state |1−⟩LR ⟨1−|LR
and the state produced by an instantaneous deformation+sLOCC operation at time t for
different degrees of spatial indistinguishability I (with |l| = |r′|). Both the Markovian
(λ = 5γ) (upper panel) and non-Markovian (λ = 0.01γ) (lower panel) regimes are re-
ported.

|2+⟩AB and |2−⟩AB are given by

|2+⟩AB =
1√
2

(
|A ↑, B ↑⟩+ |A ↓, B ↓⟩

)
,

|2−⟩AB =
1√
2

(
|A ↑, B ↑⟩ − |A ↓, B ↓⟩

)
.

(4.44)

We recall that since such basis is orthonormal, the identity operator can be written as

11 =
∑
j=1,2
s=↑,↓

|js⟩AB ⟨js|AB .

At time t we deform the two qubits wave functions. The deformation of states |1+⟩AB
and |1−⟩AB has already been discussed in (4.35) and (4.22), while states |2+⟩AB and |2−⟩AB
get mapped respectively to

|2̄+⟩D = C2 |2̄+⟩N , |2̄−⟩D = C2 |2̄−⟩N , (4.45)

where ⟨2̄+|2̄+⟩N = ⟨2̄−|2̄−⟩N = 1 and C2 is defined in (4.25). The result of the deformation
of state (4.43) is thus the deformed Werner state of two indistinguishable qubits ρD(t) =
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Figure 4.10: Concurrence of two identical qubits (fermions with real l, l′, r, r′ > 0, bosons
with one of these four coefficients negative) in the initial state |1−⟩AB subjected to local-
ized depolarizing channels, undergoing an instantaneous deformation+sLOCC operation
at time t for different degrees of spatial indistinguishability I (with |l| = |r′|). Both
Markovian (λ = 5γ) (upper panel) and non-Markovian (λ = 0.01γ) (lower panel) regimes
are reported.

W̄−
D (t) [2], where

W̄−
D (t) :=

[(
1− 3

4
p(t)

)
C2

1 |1̄−⟩N ⟨1̄−|N

+ C2
2

1

4
p(t)

(
|1̄+⟩N ⟨1̄+|N + |2̄+⟩N ⟨2̄+|N + |2̄−⟩N ⟨2̄−|N

)]
/

[
1− η |⟨ψ1|ψ2⟩|2

(
1− 3

2
p(t)

)]
.

(4.46)

To perform the final sLOCC measurement we assume that |ψ1⟩ , |ψ2⟩ have the usual
structure given in Eq. (4.10). Applying the projection operator on the state (4.46) as
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defined in Eq. (4.6) we get

ρLR(t) =

[(
1− 3

4
p(t)

)
|lr′ − η l′r|2 |1−⟩LR ⟨1−|LR

+
1

4
p(t) |lr′ + η l′r|2

(
|1+⟩LR ⟨1+|LR + |2+⟩LR ⟨2+|LR + |2−⟩LR ⟨2−|LR

)]
/

[(
1− 3

4
p(t)

)
|lr′ − η l′r|2 + 3

4
p(t) |lr′ + η l′r|2

]
.

(4.47)

Before computing the concurrence we notice that, as for the phase damping channel, the
state of Eq. (4.47) is real and diagonal on the Bell states basis, thus being invariant under
the localized action of the Pauli matrices σLy ⊗σRy . Therefore, the concurrence is evaluated
in terms of the four eigenvalues of ρLR(t), namely

λA(t) =

(
1− 3

4
p(t)

)
|lr′ − η l′r|2(

1− 3
4
p(t)

)
|lr′ − η l′r|2 + 3

4
p(t) |lr′ + η l′r|2

,

λB(t) = λC(t) = λD(t) =
1
4
p(t) |lr′ + η l′r|2(

1− 3
4
p(t)

)
|lr′ − η l′r|2 + 3

4
p(t) |lr′ + η l′r|2

.

Considering once again fermions with real and positive coefficients l, r, l′, r′, the concur-
rence has the expression

C
(
ρLR(t)

)
= max

0,

(
1− 3

2
p(t)

)[
(lr′)2 + (l′r)2

]
+ 2ll′rr′

(lr′)2 + (l′r)2 +
(
1− 3

2
p(t)

)
2ll′rr′

 . (4.48)

Figure 4.10 shows the time behavior of entanglement quantified by Eq. (4.48), while
Figure 4.11 depicts ∆C(t). First of all, we emphasize that, differently from the amplitude
damping channel and the phase damping channel, a sudden death phenomenon occurs
when no deformation and sLOCC are performed: indeed, when I = 0 (black dashed line)
the entanglement vanishes at the finite time t̃ such that p(t̃) = 2/3. However, when 0 <
I < 1, the state emerging from the sLOCC procedure recovers an amount of entanglement
which decreases monotonically with t in the Markovian regime and periodically in the non-
Markovian regime. Nonetheless, as in the phase damping case, such decrease approaches
a constant value given by

C∞ = max

{
0, − (lr′)2 + (l′r)2 − 4 ll′rr′

2
[
(lr′)2 + (l′r)2 − ll′rr′

]} . (4.49)

Furthermore, we notice once again that when the maximum spatial indistinguishability
(I = 1, blue solid line) is achieved, our procedure allows for a complete entanglement
recovery independently on t.

As a further quantity of interest we obtain the sLOCC probability of success, defined
in Eq. (4.7), for two identical qubits whose correlations have been spoiled by a local
depolarizing channel, that is

PLR(t) =
(lr′)2 + (l′r)2 − 2η ll′rr′

(
1− 3

2
p(t)

)
1− η

[
(ll′)2 + (rr′)2 + 2ll′rr′

](
1− 3

2
p(t)

) . (4.50)
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Figure 4.11: Net gain in the entanglement recovery of two identical qubits (fermions
with real l, l′, r, r′ > 0, bosons with one of these four coefficients negative) in the initial
state |1−⟩AB interacting with a depolarizing channel, thanks to the deformation+sLOCC
operation performed at time t. Results are reported for different degrees of spatial in-
distinguishability I (with |l| = |r′|). Both the Markovian (λ = 5γ) (upper panel) and
non-Markovian (λ = 0.01γ) (lower panel) regimes are shown.

In Figure 4.12, PLR(t) is plotted in the case of two fermions (with real and positive
coefficients and l = r′) for different degrees of spatial indistinguishability. Again, as
expected, a trade-off exists between the probability of success and the concurrence, with
the higher probability achieved when the qubits are perfectly distinguishable. Nonetheless,
as happens in the previous channels, such probability reaches a stationary value which
decreases as the indistinguishability increases, with PLR = 1/2 as the minimum value
when I = 1 (blue solid line). For bosons, a similar behavior is found (with the constraint
l = r′ = l′ = −r), having PLR(t) = 1− 3p(t)/4 when I = 1 [2].

Finally, we show in Fig. 4.13 the fidelity between the initial state τ = |1−⟩LR ⟨1−|LR
and the final one (4.47), for fermions with real and positive coefficients and different
degrees of spatial indistinguishability. Once again, spatial indistinguishability is found to
be directly influencing the fidelity, with a general behaviour identical to the one emerged
for the phase damping channel (Fig.tilde4.9). Nonetheless, the asymptotic value reached
for distinguishable particles in this scenario is F = 1/4 (I = 0, black dashed line), thus
placing between the two other channels considered in this work.
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Figure 4.12: Probability of obtaining a nonzero outcome from the sLOCC projection for
fermions with real and positive coefficients (l = r′) under a depolarizing channel. Different
degrees of spatial indistinguishability I are reported in both Markovian (λ = 5γ) (upper
panel) and non-Markovian (λ = 0.01γ) (lower panel) regimes.

4.4 Discussion

In this paper we have shown that spatially localized operations and classical communi-
cation (sLOCC) provide an operational framework to successfully recover the quantum
correlations between two identical qubits spoiled by the independent interaction with two
noisy environments. The performance of such procedure is found to be strictly dependent
on the degree of spatial indistinguishability reached by the spatial deformation of the par-
ticles wave functions. A general behavior has emerged: the higher is the degree of spatial
indistinguishability, the better is the efficacy of the protocol, quantified by the difference
between the amount of entanglement present at time t with and without the application of
our procedure. In particular, when the two particles are brought to perfectly overlap and
the maximum degree of indistinguishability is achieved, the initial (maximum) amount
of entanglement is completely recovered in all the considered scenarios, independently on
how long the qubits have been interacting with the detrimental environment.

If the indistinguishability is not maximum, instead, our results show that for an am-
plitude damping channel-like environment the entanglement after the sLOCC drops to
zero after a short interaction time; nonetheless, the interval of time where the amount
of recovered entanglement is significant increases with the indistinguishability in both
the Markovian and the non-Markovian regimes. When the environment acts as a phase
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Figure 4.13: Fidelity of two identical qubits (fermions with real l, l′, r, r′ > 0) subjected to
localized depolarizing channels, computed between the initial state |1−⟩LR ⟨1−|LR and the
state produced by an instantaneous deformation+sLOCC operation at time t for different
degrees of spatial indistinguishability I (with |l| = |r′|). Both the Markovian (λ = 5γ)
(upper panel) and non-Markovian (λ = 0.01γ) (lower panel) regimes are reported.

damping channel, instead, the recovered correlations are always nonzero and our proto-
col provides an exploitable resource independently on the interaction time (stationary
entanglement). This behavior also holds in the depolarizing channel scenario, where the
deformation+sLOCC protocol achieves a special usefulness since it allows to recover quan-
tum correlations destroyed at finite time by a sudden death phenomena.

Then same behaviour is found also for the fidelity between the initial pure state and
the one produced by the deformation+sLOCC protocol : when the indistinguishability is
maximum, such quantity maintains its maximum value constant. When I < 1, instead,
it drops to zero faster as the indistinguishability decreases for an amplitude damping-like
environment, while it reaches a constant value which grows with the indistinguishability
when a phase damping channel or a depolarizing channel are considered. Nonetheless, we
want to stress that

We point out that the results reported in Figs. 4.2, 4.6, 4.10 show a similar behavior to
the ones discussed in Ref. [36] (for a Markovian regime) where, in contrast to the present
analysis, the system-environment interaction occurs between the deformation bringing the
particles to spatially overlap and the final sLOCC measurements. Nonetheless, the decay
rate is much larger in the situation considered here: the sLOCC operational framework
for entanglement recovery performs better when the environment is not able to distin-
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guish the particle it is interacting with, as happens in Ref. [36]. Despite this, our protocol
deals with a different physical context: indeed, it expressly refers to the scenario where
we are given a two identical particle entangled state which got spoiled by the environment
in a situation where the particles remain distinguishable. Furthermore, in a real world
application it is likely that the system-environment interaction will occur both before the
(spatial) deformation and between the deformation and the sLOCC. Therefore, an inter-
esting possible prospect of this work would be to investigate the general open quantum
system framework provided in Ref. [36] when applied to noisy initial states such as those
given in Eqs. (4.21), (4.33), and (4.43).

Our results can apply to all the physical systems undergoing the noisy interactions
discussed in Section 4.3, e.g. Bose-Einstein condensates, cavity QED systems, and quan-
tum photonics, once we are experimentally able to implement the deformation + sLOCC
procedure. Among these scenarios, quantum photonics is most likely the best candidate
for a first experimental verification of our results; indeed, in [1] the authors have managed
to experimentally apply the deformation + sLOCC protocol to a pair of photons in a
tunable way using a simple optical setup. We strongly believe that such setup could be
used as a starting point to validate the results discussed in this paper, where the imple-
mentation of simulated noisy environments is a task which can be easily achieved using
linear optics devices.

Our findings ultimately provide further insights about protection techniques of entan-
gled states from the detrimental effects of surrounding environments by suitably manip-
ulating the inherent indistinguishability of identical particle systems.



Chapter 5

Spatial indistinguishability and
interference: unveiling the connection

In this original chapter, we discuss an issue arising when applying the definition of spatial
indistinguishability and the related entropic measure to systems subjected to deformations
giving rise to interferometric effects. After investigating the origin of the problem, we
propose a solution which shifts the focus from the no which-way information to the no
which-spin information introduced in Subsection 1.3.1.

5.1 Identifying the issue

We have seen in the previous chapters that we can generate spatial indistinguishability
between initially distinguishable identical particles by acting on them with deformations
taking their wave functions to spatially overlap over detection regions. In Chapters 1, 2,
3, 4, we have focused on a specific deformation D taking two particles localized in two
distinct regions A and B to spatially overlap over two distinct regions L and R, that is,

|A⟩ D−→ |ψ⟩ = l |L⟩+ r |R⟩ ,

|B⟩ D−→ |ψ′⟩ = l′ |L⟩+ r′ |R⟩ ,
(5.1)

where l, l′, r, r′ are complex coefficients such that |l|2 + |r|2 = |l′|2 + |r′|2 = 1. We have
quantified the induced no which-way information by the entropic measure of indistin-
guishability

I = − PLP
′
R

PLP ′
R + P ′

LPR
log2

PLP
′
R

PLP ′
R + P ′

LPR
− P ′

LPR

PLP ′
R + P ′

LPR
log2

P ′
LPR

PLP ′
R + P ′

LPR
, (5.2)

where PL = |l|2 = |⟨L|ψ⟩|2, P ′
L = |l′|2 = |⟨L|ψ′⟩|2, PR = |r|2 = |⟨R|ψ⟩|2, P ′

R := |r′|2 =
|⟨R|ψ′⟩|2, and PL + PR = P ′

L + P ′
R = 1. This quantity thus accounts for the individual

probability amplitudes of the two constituents to be found in each region. However,
the assessment of the no which-way information in terms of Eq. (5.2) is flawed. To
see this, consider the singlet state of two spatially separated bosonic qubits localized on
A and B, that is |1−⟩AB = 1√

2
(|A ↑, B ↓⟩ − |A ↓, B ↑⟩), and let us act on it with the

deformation of Eq. (5.1). This scenario corresponds to the one considered in Refs. [2,37],
discussed, respectively, in Subsection 1.3.4 and Chapter 4. Some terms in the resulting
state |Ψ(2)⟩D = (|ψ ↑, ψ′ ↓⟩ − |ψ ↓, ψ′ ↑⟩)/

√
2 interfere destructively, finally returning the
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state |Ψ(2)⟩LR = (|L ↑, R ↓⟩ − |L ↓, R ↑⟩)/
√
2. Taking the input modes to coincide with

the output ones A=L, B=R, we thus conclude that the bosonic singlet state is invariant
under the action of the deformation D of Eq. (5.1):

|1−⟩LR
D−→ |1−⟩LR . (5.3)

This observation raises a problem: we assumed the two constituents to be spatially dis-
tinguishable (I = 0) before the application of D, whereas they are deemed spatially
indistinguishable afterwards by the definition given in Subsection 1.2.5 (I > 0). How-
ever, the state is not changed by the deformation. The issue acquires more relevance
when we notice that the invariance of the singlet state under D holds for any l, l′, r, r′,
including the scenario l = l′ = r = −r′ = 1/

√
2 where the deformation D coincides

with the unitary action of a balanced beam splitter generating the maximum degree of
indistinguishability I = 1 according to Eq. (5.2). Spatial indistinguishability as defined
in Chapter 1 and the entropic measure of no which-way information of Eq. (5.2) are thus,
in general, not state-dependent: given a bosonic singlet state without further information
on its dynamical history, it is not possible to discriminate whether it describes two spa-
tially localized and separated qubits or two delocalized, spatially overlapped ones after
interference. As a consequence, it is not possible to evaluate the indistinguishability of
the involved particles and the associated I. Notice that the same problem holds for the
fermionic state |L ↑, R ↑⟩, which remains invariant under the action of a balanced beam
splitter (fermionic anti-bunching). In contrast, no problem arises when dealing with the
deformation of the state |A ↑, B ↓⟩, which in Subsection 1.3.2 we shown to return

|Ψ(2)⟩D = ll′ |L ↑, L ↓⟩+ rr′ |R ↑, R ↓⟩+ lr′ |L ↑, R ↓⟩+ l′r |R ↑, L ↓⟩ .

|Ψ(2)⟩D is always different from the initial state as long as I ̸= 0, with its entanglement
directly depending on the coefficients l, l′, r, r′ and thus on I, found, e.g., in Refs. [20,59]
(see the discussion reported, respectively, in Subsection 1.3.2 and Chapter 3).

It is therefore crucial to investigate the origin of the problem in order to provide an
interpretation of the indistinguishability of identical particles which is state-dependent,
encompassing the distinction between the deformation of states such as the bosonic singlet
|1−⟩AB, the fermionic |A ↑, B ↑⟩, or the generic |A ↑, B ↓⟩.

5.2 Origin of the problem
In Subsection 1.2.5 we have defined spatial indistinguishability as the property of identical
particles to have a nonzero probability to be individually found in a same detection
region. Here, the word individually is crucial and was introduced in reference to the no
which-particle and no which-way information scenarios where the possibility for more than
one constituent to individually trigger one detector does not allow to discriminate and
assign an identity to the detected particle (see Subsection 1.3.1). However, what actually
determines the outcomes of the detection process are not the single-particle probability
amplitudes (as the ones encoded in the probabilities PL, PR, P

′
L, P

′
R of Eq. (5.2)), but the

many-body probability amplitudes. Interference effects peculiar of identical particles lead to
the cancellation of terms in the global probability amplitude, eliminating the contribution
of some of the products of the single-particle probability amplitudes. The result is that the
individuality of the single constituents can get lost in the measurable collective effect: the
two particles emerging from the deformation of Eq. (5.3) can be thought of as either the
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same input particles delocalized on L and R or two new particles localized one on L and
one on R. It is therefore evident how the problem stems from the particle interpretation of
quantum mechanics provided by the first quantization approach, an issue which the second
quantization approach tackles by allowing for particles to be created and annihilated. It
follows that concepts which are strictly related to particles’ individuality, such as no which-
particle/way information, spatial indistinguishability, and entropic measure I, become
flawed in the presence of interference. Crucially, interference effects explain the difficulties
in addressing the spatial indistinguishability of identical particles after the deformation of
the bosonic state |1−⟩AB and the fermionic state |A ↑, B ↑⟩, whereas the same issue does
not affect |A ↑, B ↓⟩, whose deformation does not cause interference.

5.3 A possible solution: addressing no which-spin in-
formation

Given the issue discussed above, how can we interpret the concepts of spatial indistin-
guishability and the related entropic measure of no which-way information I previously
introduced? Since they happen to be state-independent in interferometric scenarios, a nat-
ural conclusion is that they must be meant as concepts related to the dynamical evolution
of the system and thus characterizing the deformation D rather than the resulting state,
about which they may or may not carry information. However, the given definition of
indistinguishability and the related entropic measure can be slightly modified to recover
their heuristic meaning of uncertainty at the detection stage while making them state-
dependent and relevant for the system evolution. To do so, we must avoid to associate
indistinguishability to the identity of a particle, as the information about it can get lost in
the interference. Instead, we should associate it to some specific measurement outcome,
whose probability can always be retrieved by the state itself. Similarly, we must remove
the dependence on ψ and ψ′ from I. We accomplish this goal by binding the particle de-
tected on each region to its unmeasured internal degree of freedom: instead of expressing
uncertainty about the single-particle spatial wave function of the detected constituent, we
therefore express uncertainty about its spin state. Let us consider two identical qubits
in the global state |Ψ(2)⟩ and the arbitrarily chosen spin basis B↑,↓ = {|↑⟩ , |↓⟩}. We in-
troduce the state-dependent entropic measure of indistinguishability of the two particles
with respect to two detectors localized or regions L and R and to basis B↑,↓ as

Ĩ = − PL↑R↓

PL↑R↓ + PL↓R↑
log2

PL↑R↓

PL↑R↓ + PL↓R↑
− PL↓R↑

PL↑R↓ + PL↓R↑
log2

PL↓R↑

PL↑R↓ + PL↓R↑
, (5.4)

where PLσRτ = |⟨Lσ,Rτ |Ψ(2)⟩|2, σ, τ =↑, ↓. The probabilities PL↑R↓, PL↓R↑ are given by
the squared modulus of two-particle probability amplitudes in the global state and are
thus exempt from the problems affecting the definition based on an individual-particle
viewpoint.

Recalling Subsection 1.3.1, we notice that Ĩ addresses the no which-spin informa-
tion instead of the no which-particle/way information. We have previously shown that
no which-spin information can be induced by generating no which-particle information
between constituents in definite, orthogonal spin states (Figs. 1.2(e),(f)). This is the
case emerging, for example, from the deformation of state |A ↑, B ↓⟩. In this case, where
no interference effect occurs, the new indistinguishability measure of Eq. (5.4) coincides
with the old one of Eq. (5.2). However, let us consider the bosonic singlet state |1−⟩AB:
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Figure 5.1: Detection of a bosonic singlet state |1−⟩LR of (a) two spatially distinguishable
qubits (absence of no which-particle and no which-way information), and of (b) two spa-
tially indistinguishable ones (presence of no which-particle and no which-way information
generated by a deformation). No which-spin information is present in both cases.

here the two constituents are in orthogonal but undefined spin states, as both can be in
either |↑⟩ or |↓⟩, and the new indistinguishability measure returns Ĩ = 1. While the no
which-particle/way information depend on the spatial overlap of the single-particle wave
functions ψ, ψ′, the no which-spin information in state |1−⟩AB and the related ignorance
probed by Ĩ are here due to the entangled structure of the singlet state. We therefore
conclude that there can be no which-spin information even in unambiguous settings where
the detected particles and their origin can be uniquely identified, such as when two parti-
cles in a singlet state have been generated and confined in two distinct laboratories1 (see
Fig. 5.1(a)).

We now highlight the relation between the indistinguishability Ĩ of two identical par-
ticles and their detector-level entanglement (see Section 1.2). The no which-spin informa-
tion is responsible for the presence of entanglement in the state resulting from the sLOCC
coincidence measurement, as the ignorance about the internal state of the particles probed
by Ĩ is reflected in the presence of quantum correlations in the postselected state. Notice
that this point of view also clarifies why the deformation and sLOCC projection of parti-
cles prepared in the same known internal state does not lead to entangled states despite
the presence of no which-way information, as the spin of the constituents remains perfectly
determined after the detection (see Fig. 1.2(b),(c)). Within this picture, the generation
of spatial overlap, leading to ambiguous settings and creating no which-particle/way in-
formation, emerges clearly as one possible way to establish no which-spin information and
thus to activate quantum correlations within IP systems.

As a possible future direction, it would be interesting to deeply investigate the relation
between Ĩ and detector-level entanglement. Furthermore, the indistinguishability measure

1Here we are assuming that the correlations between the two particles have been generated via some
long-distance interaction which does not cause spatial overlap.



5.4. ANALYSIS OF THE PREVIOUS RESULTS 81

introduced in Eq. (5.4) could be generalized, as done for the old entropic measure I
in Section 2.4, leading to a definition analogous to Eq. (2.22) in terms of many-body
probability amplitudes.

5.4 Analysis of the previous results
In view of the above analysis, how can we explain the results reported in Ref. [2] (Sub-
section 1.3.4) and their extension in Ref. [37] (Chapter 4) about the recovery of quantum
correlations between two qubits prepared in a singlet state |1−⟩AB locally interacting with
noisy environments? Looking at Eqs. (4.21), (4.33), (4.43), we notice that the state ρAB(t)
of the system, after the two particles have independently interacted with the considered
local environments, is given by: (i) a diagonal mixture of the original singlet state |1−⟩AB
and the remaining elements |1+⟩AB , |2+⟩AB , |2−⟩AB of the Bell basis for the phase damp-
ing and depolarizing channels; (ii) a mixture of |1−⟩AB and |A ↑, B ↑⟩ for the amplitude
damping channels. Let us now describe what happens to these states when we act on them
with the deformation D of Eq. (5.1). For simplicity, we focus on the bosonic scenario and
consider the action of a balanced beam splitter by fixing l = l′ = r = −r′ = 1/

√
2 (I = 1).

We have already commented that the singlet state is invariant under this operation. On
the contrary, it can be easily shown that |1+⟩AB , |2+⟩AB , |2−⟩AB, and |A ↑, B ↑⟩ are all
transformed by D into states of two particles localized in the same spatial mode, due to
the occurrence of interference effects. The resulting states are therefore discarded by the
sLOCC coincidence measurement, which leads to the postselection of the remaining pure,
maximally entangled singlet state |1−⟩LR exhibiting concurrence C(ρLR) = 1 when I = 1.

This example shows that the recovery of quantum correlations reported in Refs. [2,37]
is ultimately due to the occurrence of interference effects caused by the spatial overlap
of the particles’ wave functions during the deformation, and to the subsequent sLOCC
postselection. With the constraint |l| = |r′| considered in the mentioned references, a
more balanced spatial redistribution results in a lower contamination of the singlet state
|1−⟩LR by states with one particle per spatial mode. Since these states are postselected
by the coincidence measurement, a higher value of I ultimately results in a higher purity
of the distilled singlet state. Despite the occurrence of interference effects hinders the
physical interpretation and evaluation of the no which-way information, the generation of
spatial overlap/indistinguishability acquires a fundamental role in the activation of those
interference effects responsible for the recovery of quantum correlations.

In conclusion, the new interpretation of the phenomenon occurring within the sLOCC
operational framework discussed in this chapter provides the main building block for the
development of an operational scheme to distill maximally entangled states of identical
particles. This is the central topic of the three manuscripts reported in the next three
chapters, where we devise an optimization of the sLOCC protocol employed in Ref. [37]
for both bosons and fermions, and provide a generalization to the multipartite scenario.



Chapter 6

Asymptotically-deterministic robust
preparation of maximally entangled
bosonic states

Abstract

We introduce a theoretical scheme to prepare a pure Bell singlet state of two bosonic
qubits, in a way that is robust under the action of arbitrary local noise. Focusing on a pho-
tonic platform, the proposed procedure employs passive optical devices and a polarization-
insensitive, non-absorbing, parity check detector in an iterative process which achieves
determinism asymptotically with the number of repetitions. Distributing the photons
over two distinct spatial modes, we further show that the elements of the related basis
composed of maximally entangled states can be divided in two groups according to an
equivalence based on passive optical transformations. We demonstrate that the parity
check detector can be used to connect the two sets of states. We thus conclude that the
proposed protocol can be employed to prepare any pure state of two bosons which are
maximally entangled in either the internal degree of freedom (Bell states) or the spatial
mode (NOON states).

This chapter reports the results of our manuscript of Ref. [3].

6.1 Introduction

Entanglement, the most exotic property of quantum mechanics, is at the heart of the
enhancement provided by quantum protocols in many different fields of application [10],
ranging from metrology and parameter estimation [28, 146], to computation [147], com-
munication, and cryptography [148]. The ability to prepare entangled states with high
reliability is thus crucial for the practical development of quantum technologies. Nonethe-
less, realistic preparations of entangled states are known to be hindered by the ubiquitous
interaction with the surrounding environment, whose noisy action is detrimental for the
quantum correlations within the system [10, 101, 131]. For this reason, many different
techniques to circumvent the problem have been proposed over time [94–123,149–153].

In this Letter, we first propose a protocol to distil a pure, maximally entangled Bell
singlet state of two bosons from a completely depolarized one. We focus on a photonic im-
plementation. The local action of depolarizing channels, which can be efficiently induced
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Figure 6.1: Schematic representation of the setup. The D element represents a
polarization-insensitive, non-absorbing parity check detector. The depolarization noises
in the red area (just before the BS) are assumed to be externally activated, while the
noise sources in the blue area are environmentally induced.

by randomized local polarization rotators, transforms any arbitrary state of spatially dis-
tinguishable photons into a maximally mixed one. Thus, the proposed procedure can be
applied to any arbitrary initial state of two spatially distinguishable photons, regardless
of local noises affecting them before the depolarization. Our scheme employs passive op-
tical (PO) devices and a polarization-insensitive, non-absorbing, parity check detector.
The latter is a highly nonlinear transformation which performs a quantum nondemolition
(QND) measurement capable to discriminate between states with even/odd number of
photons. More precisely we only require the detector to distinguish between the cases
where in a given location we have a single photon (corresponding to the successful gener-
ation of the Bell singlet), and those in which the total number of photons is either zero or
equal to two (corresponding to a failure). The nondemolition character of the measure-
ment ensures that in case of failure the whole protocol can be repeated by depolarizing
the system once again, resetting it to the maximally mixed state. By doing so, the prepa-
ration of the Bell singlet is achieved with a probability scaling to 1 exponentially with the
number of repetitions, thus being asymptotically-deterministic.

Differently from other entanglement distillation protocols [109,149–151] allowing only
for local operations and classical communication (LOCC), our scheme makes explicit use of
the interference effects due to particle indistinguishability when non-locality is generated
by a beam splitter (BS). In this sense, the proposed procedure extends the results obtained
in Refs. [2, 37, 38], where the authors employed a technique based on spatially localized
operations and classical communication (sLOCC) [1, 20, 23, 59, 60, 74, 154, 155] to achieve
a probabilistic distillation of a Bell singlet state from a singlet subjected to the action of
local noisy environments.

Finally, we introduce an equivalence between bosonic bipartite states based on PO
transformations. We consider an orthonormal basis of the bipartite Hilbert space com-
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posed of only maximally entangled states, and show that it can be divided in two sets of
PO equivalent elements. We demonstrate that the two sets can be connected by means
of the polarization-insensitive, non-absorbing, parity check detector previously discussed.
As the Bell singlet state belongs to one of the two sets, we thus conclude that the proposed
procedure allows for the preparation of any arbitrary maximally entangled, pure bipar-
tite state. This comes with a trade-off in the difficult realization of the exotic detector
required, whose crucial role for quantum information protocols emerges by the relevance
of the reported results themselves.

Identical particles are treated via the no-label approach [20–22], a mathematical frame-
work which allows to overcome some of the main issues affecting the standard label-based
formalism [12,13]. Also, it allows to write multiparticle states without having to explic-
itly symmetrize/antisymmetrize them as ruled by the symmetrization postulate [20–22],
thus simplifying the notation

6.2 Notation

The Hilbert space of two bosonic qubits distributed over two distinct spatial regions L
and R is 10-dimensional. We consider a basis B = BLR ∪ BNO of maximally entangled
states, where

BLR :=
{
|1±⟩LR , |2±⟩LR

}
,

BNO :=
{
|1±⟩NO , |U±⟩NO , |D±⟩NO

}
,

(6.1)

and
|1±⟩LR :=

1√
2

(
|L ↑, R ↓⟩ ± |L ↓, R ↑⟩

)
,

|2±⟩LR :=
1√
2

(
|L ↑, R ↑⟩ ± |L ↓, R ↓⟩

)
,

|1±⟩NO :=
1√
2

(
|L ↑, L ↓⟩ ± |R ↑, R ↓⟩

)
,

|U±⟩NO :=
1

2

(
|L ↑, L ↑⟩ ± |R ↑, R ↑⟩

)
,

|D±⟩NO :=
1

2

(
|L ↓, L ↓⟩ ± |R ↓, R ↓⟩

)
.

(6.2)

Notice that the elements of basis BLR are Bell states entangled in the internal degree
of freedom |↑⟩ , |↓⟩, which, for the photonic implementation considered in the following
paragraphs, can be identified with the polarization; instead, the basis BNO is composed
of NOON states entangled in the spatial degree of freedom.

6.3 Procedure

The proposed scheme is depicted in Fig. 6.1. Let us take an arbitrary state of two photons
localized in two distinct spatial modes L and R. If each photon is locally subjected to a
depolarizing channel that induces a complete randomization of its polarization degree of
freedom, such a state will be mapped into a maximally mixed configuration which can be
expressed as a uniform mixture of the elements of the basis BLR introduced above, i.e.,
ρdep := 1

4
ΠLR, where ΠLR :=

∑
|v⟩∈BLR

|v⟩ ⟨v| is the projector onto the subspace spanned by
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the elements of the basis BLR. We now let the two photons impinge on the two input ports
of a balanced beam splitter (BS), which mixes the L and R regions inducing, at the level of
single particle states, the mappings |L⟩ −→ (|L⟩+ |R⟩)/

√
2 and |R⟩ −→ (|L⟩ − |R⟩)/

√
2.

Applied to the elements of the set BLR, this achieves the transformations
|1−⟩LR ←→ −|1−⟩LR ,

|1+⟩LR ←→ |1−⟩NO ,

|2−⟩LR ←→ (|U−⟩NO − |D−⟩NO)/
√
2,

|2+⟩LR ←→ (|U−⟩NO + |D−⟩NO)/
√
2.

(6.3)

As a result, the state ρdep introduced previously is mapped into

ρBS =
1

4
|1−⟩LR ⟨1−|LR +

3

4
ρNO, (6.4)

where
ρNO :=

1

3

(
|1−⟩NO ⟨1−|NO + |U−⟩NO ⟨U−|NO + |D−⟩NO ⟨D−|NO

)
. (6.5)

We highlight that ρBS in Eq. (6.4) is a classical mixture of the Bell singlet state |1−⟩LR
and of NOON states. Crucially, the former is characterized by an odd number of photons
in each spatial mode, while an even number (0 or 2) characterizes the latter. This fact
can be exploited to distil the singlet as follows. We employ a polarization-insensitive,
non-absorbing, parity check detector D. By monitoring one of the two spatial modes,
such a detector is capable to distinguish whether it contains an odd or an even number
of photons. In the first case, ρBS is projected onto the subspace spanned by the Bell
states composing BLR via the projection operator ΠLR previously introduced, giving the
desired singlet |1−⟩LR. In this case, occurring with probability pLR = Tr [ΠLRρBS] = 1/4,
we collect the state and conclude the process. If D registers an even number of photons,
instead, ρBS is projected onto the subspace spanned by the NOON states in basis BNO

via the projection operator ΠNO :=
∑

|k⟩∈BNO
|k⟩ ⟨k| . This scenario, which occurs with

probability pNO = Tr [ΠNOρBS] = 3/4, leaves the system in the state ρNO of Eq. (6.5). In
this case, we act on the system with another beam splitting operation, getting the state

ξLR :=
1

3

(
|1+⟩LR ⟨1+|LR + |2+⟩LR ⟨2+|LR + |2−⟩LR ⟨2−|LR

)
. (6.6)

The two photons are now subjected to local depolarizing channels once again, resetting the
system to the completely depolarized state ρdep we started with. The process can thus be
repeated a second time without having to inject new photons in the setup, leading to the
generation of a Bell singlet state with total probability p(2)LR = 1/4+(3/4)(1/4). Proceeding
this way, the j-th iteration returns |1−⟩LR with probability p

(j)
LR =

∑j
n=1(1/4)(3/4)

n−1,
which converges exponentially to 1 for j → ∞. We emphasize that such an iterated
implementation can be achieved with the closed configuration depicted in Fig. 6.1. Here,
two actively controlled mirrors close the input arms of the interferometer after the photons
have been injected in the setup, while two other mirrors are set on the output modes after
the detector. In this way, the two particles are reflected back into the same BS and noisy
channels, allowing for the process to be repeated without requiring further resources.

6.4 Amplitude damping-based implementation
Here we propose an alternative implementation of our scheme which adopts two local
amplitude damping channels instead of the depolarizing ones. In this case, the noisy
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environments map two spatially separated qubits into the pure ground state |L ↓, R ↓⟩.
Placing a polarization rotator (PR) (see below) on the spatial mode L (to fix a frame-
work), we get |L ↑, R ↓⟩ = (|1+⟩LR + |1−⟩LR)/

√
2. From Eq. (6.3), we notice that the BS

transforms this state into (|1−⟩NO − |1−⟩LR)/
√
2. The detector D can now be employed

to distill a Bell singlet state with probability pLR = 1/2. When the system is found in
state |1−⟩NO, instead, the process is repeated analogously to the case where depolariz-
ing channels are employed. At the j-th iteration, the singlet is distilled with probability
p
(j)
LR =

∑j
n=1 1/2

n, which again converges to 1 exponentially when j →∞.

6.5 Passive optical equivalence
We introduce PO operations as the set of transformations which can be obtained by a
proper sequence of BSs, polarization BSs (PBSs), polarization-dependent or -independent
phase shifters (PDPSs/PIPSs), and local polarization rotators (PRs). We further define
two states to be PO equivalent if they can be obtained one from the other by means of
PO operations.

PO equivalence allows to divide basis B in Eq. (6.1) in two sets of equivalent states:

S1 :=
{
|1±⟩LR , |2±⟩LR , |1±⟩NO

}
,

S2 :=
{
|U±⟩NO , |D±⟩NO

}
.

(6.7)

Focusing on S1, mappings |1−⟩LR ↔ |1+⟩LR and |2−⟩LR ↔ |2+⟩LR can be obtained by
locally applying a π-PIPS to one of the two spatial modes, while a PIPS of π/2 achieves
|1−⟩NO ↔ |1+⟩NO. Connections |1−⟩LR ↔ |2−⟩LR and |1+⟩LR ↔ |2+⟩LR can be obtained
by means of a local PR performing the operation |↑⟩ ↔ |↓⟩ on one mode. This set of
local transformations relating Bell states were firstly introduced in Ref. [109]. We now
extend them by noticing from Eq. (6.3) that the non-locality generated by a BS can
be employed to achieve the transformation |1+⟩LR ↔ |1−⟩NO. Considering S2, instead,
mappings |U−⟩NO ↔ |U+⟩NO and |D−⟩NO ↔ |D+⟩NO can be realized by a local π/2-PIPS
on one spatial mode, while |U−⟩NO ↔ |D−⟩NO and |U+⟩NO ↔ |D+⟩NO can be obtained by
applying a PR to both modes. Sets S1 and S2 and the related intra-set PO relations are
depicted in Fig 6.2.

We now show that a link between the two sets can be established by employing the
(non PO) detector D described above. To move from S1 to S2, we start from state
|2+⟩LR ∈ S1. We apply a PBS on one arbitrary spatial mode, placing D at the output
of one of its ports before recombining the outputs in another PBS. Notice that such a
Mach-Zehnder-like setup behaves as a polarization-sensitive, non-absorbing, parity check
detector. This allows to discriminate the component |L ↑, R ↑⟩ of state |2+⟩LR from the
one |L ↓, R ↓⟩. Combining the two spatial modes in a BS now leads to either state
|U−⟩NO ∈ S2 or |D−⟩NO ∈ S2, respectively, as can be computed using Eq. (6.3) and
recalling that |L ↑, R ↑⟩ = |2+⟩LR + |2−⟩LR, |L ↓, R ↓⟩ = |2+⟩LR − |2−⟩LR. To move from
S2 to S1, instead, let us begin with |U−⟩NO ∈ S2. Acting on it with a beam splitting
operation, we obtain (|2+⟩LR + |2−⟩LR)/

√
2. A PR set on the R spatial mode gives

(|1+⟩LR + |1−⟩LR)/
√
2, which is transformed by a second BS into (|1−⟩NO − |1−⟩LR)/

√
2.

The detector D can now be employed to discriminate the odd component (|1−⟩LR) from
the even one (|1−⟩NO), both belonging to S1. Given the intra-set connections discussed
above, we have thus found a link

S1
PO+D←−−→ S2, (6.8)
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Figure 6.2: Structure of passive optical equivalent maximally entangled states of
two photons. The figure shows two sets of PO equivalent maximally entangled states of
two bosonic qubits distributed over two spatial modes. Examples of PO transformations
connecting them are reported for each set. All the depicted PO transformations are
assumed to occur on a single arbitrary spatial mode, except when 2-modes is stated. θ-
PDPS/PIPS are polarization dependent/independent phase shifters inducing a phase θ
on the spatial mode they are set on, PRs are 90◦ polarization rotators, and BSs are beam
splitters. The two sets are linked by a polarization-insensitive, non-absorbing, parity
check detector D (see main text).

which allows to transform any two arbitrary maximally entangled states in B one into the
other. As these include the Bell singlet state, the proposed scheme can be employed to
prepare any maximally entangled state of two photonic qubits.

6.6 Faulty parity check detector
We conclude our analysis by accounting for possible errors occurring during the parity
check detection.

Errors may occur when the system state |1−⟩LR ⟨1−|LR is mistakenly detected as an
even-parity state, and (or) when the system state ρNO in Eq. (6.5) is wrongly detected as
an odd-parity state. Accounting for these events amounts to substituting the previously
defined projectors ΠLR and ΠNO with Π′

LR := (1−ϵ)ΠLR+ϵ
′ ΠNO and Π′

NO := (1−ϵ′)ΠNO+
ϵΠLR, respectively, where error probabilities ϵ, ϵ′ are considered. Correspondingly, the
system is projected into the states

ρ′LR =
1

4

[
(1− ϵ) |1−⟩LR ⟨1−|LR + 3 ϵ′ ρNO

]
/p′LR,

ρ′NO =
1

4

[
3 (1− ϵ′) ρNO + ϵ |1−⟩LR ⟨1−|LR

]
/p′NO,

(6.9)

with respective probabilities p′LR = (1− ϵ)/4 + 3ϵ′/4, p′NO = 3(1− ϵ′)/4 + ϵ/4 = 1− p′LR.
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Figure 6.3: Concurrence of the prepared state ρ′LR, as a function of the error probabilities
ϵ and ϵ′ characterizing a faulty detection.

We now quantify the amount of quantum correlations present in the faulty state ρ′LR we
collect. Since when no errors occur we expect to get the singlet state |1−⟩LR, we focus on
the entanglement in polarization. To do so, we calculate the concurrence [33], obtaining

C(ρ′LR) =
1− ϵ

1− ϵ+ 3 ϵ′
. (6.10)

Notice that the amount of entanglement in ρ′LR depends on both the error probabilities ϵ
and ϵ′, ranging from C(ρ′LR) = 0 (separable state) when ϵ = 1, to C(ρ′LR) = 1/(1 + 3ϵ′)
when ϵ = 0. Fig. 6.3 reports the concurrence C(ρ′LR) as a function of ϵ and ϵ′. We remark
that, however, not all the scenarios are relevant. When ϵ′ = 1, for example, it is enough
to collect the photons when the detector signals an even parity state to achieve a state
with nonzero entanglement (unless ϵ = 0, too).

6.7 Conclusions

In this work, we have presented a procedure to robustly prepare maximally entangled
states of two photonic qubits undergoing arbitrary local noise. The protocol employs PO
transformations and a polarization-insensitive, non-absorbing, parity check detector to
distil a Bell singlet state from a completely depolarized one. As the local depolarization
of spatially distinguishable photons leads to the maximally mixed state regardless of the
previous dynamics, the proposed scheme transforms any arbitrary initial state into the
Bell singlet. In this way, the preparation is robust to the action of any local noise affecting
the photons before their state is reset by the depolarization. We highlight that, in case
a photon is lost during a noisy interaction, a new depolarized photon can be injected to
recover the process. Via a QND measurement, the protocol is iterative and prepares the
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desired state with a probability which scales exponentially with the number of repetitions,
thus being asymptotically-deterministic.

We have introduced a formal equivalence based on PO transformations, showing that
it allows to divide maximally entangled states of two qubits distributed over two distinct
spatial modes in two sets of PO equivalent states. A link between the two sets has been
established through the polarization-insensitive, non-absorbing, parity check detector.
Since the Bell singlet state belongs to one of the two sets, we conclude that the scheme
enables a robust generation of any arbitrary maximally entangled state of two photonic
qubits.

We emphasize that, to achieve the correct interference patterns, the PO transforma-
tions realized by BSs or PBSs require the two photons to be indistinguishable in all the
degrees of freedom but the spatial one and, at most, the polarization. In light of this,
the PO equivalence defined in this Letter can be ultimately interpreted as a connection
between two synchronized sources of single photons satisfying the above requirement and
the set of maximally entangled bipartite states. Our work provides clear insights on the
role played by indistinguishability as a tool to achieve a generation of entanglement which
is robust to environmental noise, whatever the noise. Moreover, the externally induced
noise acts as an ally towards this goal, in contrast to standard protection techniques where
noise constitutes a detrimental trait to be avoided. Notice that the low-dimensional ba-
sic scheme proposed here is strategical, since it allows to focus on the main underlying
physical mechanisms and their interpretation.

In a real-world implementation of our setup, the required PO transformations, in-
cluding the realization of the depolarizing channels, can be reliably produced with com-
mercially available devices such as mirrors, beam splitters, and optical fibers. Given the
resetting function of the depolarizing channels, possible errors introduced by the mirrors
do not affect the performances of the setup as long as the photons are not lost. More-
over, we have not considered photon number-preserving errors introduced by the beam
splitter as very highly-efficient beam splitters are currently employed in the labs. There-
fore, the realization of the polarization-insensitive, non-absorbing, parity check detector
constitutes the main obstacle to be tackled and motivates experimental developments in
different platforms. We have analyzed the case when faulty detections are involved, quan-
tifying the entanglement between the two resulting photons as a function of the errors
due to the parity check detector. To this regard, we remark that the proposed scheme
can still be used substituting such a detector with commercially available single photon
detectors performing a coincidence measurement on the two output modes, achieving the
preparation of the desired maximally entangled state with probability pLR = 1/4. In the
latter case, where the photon is absorbed by the detector, deferred measurements can be
employed after running the quantum protocol which exploits the desired resource state
conditionally [1, 59,60].

It is interesting to compare our scheme with the standard entanglement distillation
protocol [34, 109, 156]. While the latter requires entangled states as input, the resetting
action of the depolarization of both qubits in our procedure admits initially unentangled
states. Also, the proposed method transforms a pair of qubits into a pure maximally
entangled state, either Bell-like or NOON-like, with asymptotic certainty, while the stan-
dard distillation protocol requires n copies of a bipartite mixed state to probabilistically
extract k < n copies of Bell singlet states. On the other hand, our technique is well-suited
for the preparation of entangled particles but not for their distribution to remote parties,
as the extraction of the desired states occurs after the BS and no noise is assumed to
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act afterwards. We thus envision a combined implementation of the two schemes: entan-
gled qubits prepared with our scheme propagate through noisy channels towards distant
parties, providing the initial entangled states required for the application of the standard
distillation protocol.

We finally highlight that the reported results hold for any type of bosonic system,
thus not being limited to photons. We foresee an extension of our procedure to fermions,
clarifying the role of particle statistics in the preparation of entangled states. Moreover,
we aim at widening the analysis of PO transformations to systems of N > 2 particles,
looking for a suitable generalization of the protocol presented in this work to prepare
multipartite entangled states.



Chapter 7

Robust engineering of maximally
entangled states by identical particle
interferometry

Abstract

We propose a procedure for the robust preparation of maximally entangled states of
identical fermionic qubits, studying the role played by particle statistics in the process.
The protocol exploits externally activated noisy channels to reset the system to a known
state. The subsequent interference effects generated at a beam splitter result in a mix-
ture of maximally entangled Bell states and NOON states. We also discuss how every
maximally entangled state of two fermionic qubits distributed over two spatial modes
can be obtained from one another by fermionic passive optical transformations. Using
a pseudospin-insensitive, non-absorbing, parity check detector, the proposed technique is
thus shown to deterministically prepare any arbitrary maximally entangled state of two
identical fermions. These results extend recent findings related to bosonic qubits. Finally,
we analyze the performance of the protocol for both bosons and fermions when the exter-
nally activated noisy channels are not used and the two qubits undergo standard types
of noise. The results supply further insights towards viable strategies for noise-protected
entanglement exploitable in quantum-enhanced technologies.

This chapter reports the results of our manuscript of Ref. [].

7.1 Introduction

With the advent of technologies based on quantum paradigms, entanglement has become
the subject of a rapidly increasing amount of studies [10]. These include, but are not
limited to, its generation, manipulation, and protection from detrimental noise. The lat-
ter, in particular, is a crucial step to be tackled as quantum correlations are known to
decay rapidly in systems exposed to the action of environmental noise [101]. Since achiev-
ing a perfectly isolated system at the quantum level is practically unfeasible, different
strategies have been proposed over time to deal with entanglement fragility. These ranges
from structured environments with memory effects [98–100, 102–108], decoherence-free
subspaces [112,113], dynamical decoupling and control techniques [114–123], to quantum
error corrections [94–97] and distillation protocols [109–111, 149–151]. Furthermore, a

91
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recently developed research line investigates the possibility to exploit the indistinguisha-
bility of identical particles to generate and protect quantum correlations in open quantum
systems [2, 3, 23,37,155].

A method has been recently proposed to distill pure maximally entangled states from
two bosonic qubits subjected to arbitrary local noisy environments [3]. To do so, this
scheme exploits artificially induced noise to affect the two constituents after they have
been subjected to the environmental noise sources. Allowing the externally activated
noisy interaction to act for a sufficiently long time, the system is reset to a known state
regardless of the environmental noise which previously affected it. Referring to a photonic
implementation for simplicity, the resulting photons are later subjected to the non-local
action of a beam splitter (BS). As a consequence of the interference effects occurring due to
particle indistinguishability, the result is found to be a classical mixture of a Bell singlet
state and NOON states. Using a polarization insensitive, non-absorbing, parity-check
detector D set on one of the two spatial modes, the former is filtered probabilistically,
while the latter are reintroduced in the BS and subjected once again to depolarization. In
this way, the process can be iterated until a singlet is obtained, with distillation probability
which scales to 1 exponentially. It has been also shown that all the maximally entangled
states of two bosonic qubits distributed over two spatial modes can be mapped one into
the other via passive optical (PO) transformations and the action of the detector D [3],
suggesting that the proposed procedure can be used to prepare any arbitrary maximally
entangled state of two identical bosons. It is then important to study how a similar
procedure can be applied to particles of different nature, such as fermions.

In this work, we first extend the procedure proposed in Ref. [3] to identical fermions,
introducing the analogous PO equivalences between fermionic maximally entangled states.
After that, we analyze for both bosons and fermions the scenario where the artificially
activated noise is not applicable to the two qubits. In this situation, where the system is
not reset to a fixed state anymore, the performance of the scheme depends on the type
of noisy environment affecting the particles, on the system-environment interaction time,
and on the initially prepared state. In particular, we focus on three standard types of
local noisy channels (phase damping, depolarizing, amplitude damping), and on a set of
initial states which includes both entangled and separable ones.

Multiparticle states are written in the no-label approach [20–22], an alternative formal-
ism for identical particles which allows to simplify the notation by avoiding to explicitly
symmetrize/antisymmetrize global states as required by the symmetrization postulate in
the standard first-quantization framework.

7.2 Procedure
The considered protocol is schematically depicted in Fig. 7.1. Two identical qubits are
initially localized on two distinct spatial modes L and R, prepared in an initial state |ψ0⟩.
Two arbitrary environmental induced noises act locally on the two spatial modes for a
time t. After that, local depolarization is is artificially induced on both qubits, leading
to a maximally mixed state. The two particles are now let to impinge on the two input
ports of a BS. A pseudospin-insensitive, non-absorbing, parity check detector D is em-
ployed on one of the output modes to discriminate the outcomes with one constituent
per mode (odd parity) from the ones with two particles in the same spatial mode (even
parity). When dealing with bosons, the state is collected in the former case, terminating
the process. If an even-parity state is found, instead, the method is iterated by depolar-
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Figure 7.1: Schematic representation of the setup. The scheme uses externally
activated depolarization noises, here represented by the green areas. The implementation
with externally activated amplitude damping noises follows analogously, with the addition
of a polarization rotator set on one spatial mode immediately before the BS. The red
wavy lines represent environmentally-induced noise sources. The D element represents a
pseudospin-insensitive, non-absorbing parity check detector. This setup is applicable to
generic bosons and fermions by suitably adapting the represented photonic devices. The
figure recalls Fig. 1 of Ref. [3].

izing the particles and detecting them again, until an odd-parity state is distilled. In an
alternative implementation, two local amplitude damping channels are employed instead
of the depolarizing ones. In this case, a pseudospin rotator, which maps the pseudospin ↑
of a qubit into ↓ and viceversa, is set on one spatial mode immediately before the BS. In
Ref. [3], the authors showed that this procedure allows to distillate bosonic Bell singlet
states, which can be afterward converted into arbitrary maximally entangled states via
PO operations (see Subsection 7.3.1) and, if required, the action of the detector D.

We stress that, when the externally activated depolarizing (amplitude damping) chan-
nels are let to act on the qubits for a sufficiently long time, they lead to the maximally
mixed state (ground state) independently on both the initial state |ψ0⟩, the interaction
time t, and the type of environmental noise acting before them: in this sense, the artifi-
cially induced noises are used to reset the system to a fixed state. On the contrary, all the
mentioned factors contribute to the final outcomes when such channels are not activated.
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7.3 Fermionic implementation

We introduce the following notation for maximally entangled states of two qubits dis-
tributed over two distinct spatial modes L, R:

|1±⟩LR :=
1√
2

(
|L ↑, R ↓⟩ ± |L ↓, R ↑⟩

)
,

|2±⟩LR :=
1√
2

(
|L ↑, R ↑⟩ ± |L ↓, R ↓⟩

)
,

|1±⟩NO :=
1√
2

(
|L ↑, L ↓⟩ ± |R ↑, R ↓⟩

)
,

|U±⟩NO :=
1

2

(
|L ↑, L ↑⟩ ± |R ↑, R ↑⟩

)
,

|D±⟩NO :=
1

2

(
|L ↓, L ↓⟩ ± |R ↓, R ↓⟩

)
.

(7.1)

Here, states with subscripts LR and NO are Bell states and NOON states, respectively.
The two differ in the number of particles localized in one spatial mode, which is 1 for the
former and 0 or 2 for the latter and can thus be discriminated by a parity measurement.
States in Eq. (7.1) constitute a basis B := BLR∪BNO of the 10-dimensional bosonic Hilbert
space, where BLR :=

{
|1±⟩LR , |2±⟩LR

}
and BNO :=

{
|1±⟩NO , |U±⟩NO , |D±⟩NO

}
. On

the other hand, Pauli exclusion principle forbids the existence of states |U±⟩NO , |D±⟩NO

for identical fermions, restricting their Hilbert space to 6 dimensions spanned by the
remaining vectors of B.

7.3.1 Passive optical operations

Referring to a photonic implementation, PO operations are defined as the set of trans-
formations which can be obtained by a proper sequence of BSs, polarization BSs (PBSs),
polarization-dependent or -independent phase shifters (PDPSs/PIPSs), and local polar-
ization rotators (PRs), with two states being PO equivalent if they can be obtained one
from the other by means of PO operations [3]. Here, we extend PO operations to fermions
by simply asking for the involved devices to act on the particle pseudospin rather than
polarization, performing analogous transformations.

Fig. 7.2 reports the two sets of PO equivalent maximally entangled states of two
bosons, with an example of PO transformations connecting them (see Ref. [3]). Similar
relations can be found for fermions, as illustrated in Fig. 7.3. In particular, a PIPS
introducing a phase π on one spatial mode links |1−⟩LR to |1+⟩LR and |2−⟩LR to |2+⟩LR,
while the introduction of a phase π/2 transforms |1−⟩NO and |1+⟩NO into each other. A
PR mapping ↑ into ↓ and viceversa set on one spatial mode achieves the connections
|1−⟩LR ↔ |2−⟩LR and |1+⟩LR ↔ |2+⟩LR. Being inherently local, this net of PO equivalent
states is the same for fermions and bosons (see Ref. [3]). On the contrary, a BS transforms
two simultaneously impinging fermions differently from the bosonic situation, due to their
different commutation/anticommutation rules. As a 50:50 BS transforms single particle
states according to |L⟩ −→ (|L⟩+ |R⟩)/

√
2 and |R⟩ −→ (|L⟩−|R⟩)/

√
2, we find its action
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Figure 7.2: Structure of passive optical equivalent maximally entangled states of
two photons. The figure shows two sets of PO equivalent maximally entangled states of
two bosonic qubits distributed over two spatial modes. Examples of PO transformations
connecting them are reported for each set. All the depicted PO transformations are
assumed to occur on a single arbitrary spatial mode, except when "2-modes" is stated.
θ-PDPS/PIPS are polarization dependent/independent phase shifter inducing a phase θ
on the spatial mode they are set on, PRs are 90◦ polarization rotators, and BSs are beam
splitters. The two sets are linked by a polarization-insensitive, non-absorbing, parity
check detector D (see main text). The figure recalls Fig. 2 of Ref. [3].

on fermionic maximally entangled states to achieve the transformations

fermionic BS:


|1−⟩LR ←→ |1−⟩NO ,

|1+⟩LR ←→ −|1+⟩LR ,

|2−⟩LR ←→ −|2−⟩LR ,

|2+⟩LR ←→ −|2+⟩LR ,

(7.2)

whereas for bosons we have

bosonic BS:


|1−⟩LR ←→ −|1−⟩LR ,

|1+⟩LR ←→ |1−⟩NO ,

|2−⟩LR ←→ (|U−⟩NO − |D−⟩NO)/
√
2,

|2+⟩LR ←→ (|U−⟩NO + |D−⟩NO)/
√
2.

(7.3)

A 50:50 BS can thus be employed to connect the fermionic states |1−⟩LR and |1−⟩NO. Since
|U±⟩NO and |D±⟩NO are forbidden for identical fermions, we thus find that all the fermionic
maximally entangled states are PO equivalent. The described situation is pictorially
depicted in Fig. 7.3.
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𝜋 - PDPS

𝜋 - PDPS

𝜋/2 - PIPS
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PRPR

1− LR 1+ LR

2− LR 2+ LR

1+ NO1− NO

Figure 7.3: Structure of passive optical equivalent maximally entangled states
of two fermionic qubits. The figure shows two sets of PO equivalent maximally entan-
gled states of two fermionic qubits distributed over two spatial modes. Examples of PO
transformations connecting them are reported. All the depicted PO transformations are
assumed to occur on a single arbitrary spatial mode. θ-PDPS/PIPS, PRs, and BSs are
devices acting on fermions performing operations analogous to their bosonic counterpart
(see main text and Fig. 7.2).

7.3.2 Results for fermions

Let us consider the implementation of the protocol based on the artificially induced depo-
larization of the two qubits. Once the depolarization is complete, the system is left in a
maximally mixed state ρdep := 1

4
ΠLR, where ΠLR :=

∑
|v⟩∈BLR

|v⟩ ⟨v| is the projector onto
the subspace spanned by the elements of the basis BLR introduced in Section 7.3. Under
the action of a BS given in Eq. (7.2), state ρdep is transformed into

ρBS =
1

4
|1−⟩NO ⟨1−|NO +

3

4
ρLR, (7.4)

where
ρLR :=

1

3

(
|1+⟩LR ⟨1+|LR + |2+⟩LR ⟨2+|LR + |2−⟩LR ⟨2−|LR

)
. (7.5)

The previously discussed detector D can now be employed to discriminate the even-parity
components of ρBS from the odd-parity ones. In the first case, ρBS is projected onto
the subspace spanned by the elements of basis BNO via the projection operator ΠNO :=∑

|k⟩∈BNO
|k⟩ ⟨k|, returning |1−⟩NO ⟨1−|NO with probability pNO = Tr [ΠNOρBS] = 1/4. We

thus collect the qubits, and the process terminates. In the second case, instead, ρBS is
projected onto the subspace spanned by the elements of basis BLR via ΠLR, returning ρLR

with probability pLR = Tr [ΠLRρBS] = 3/4. When this happens, the two qubits are artifi-
cially depolarized once again, re-obtaining ρdep and allowing for the process to be iterated.
By repeating the procedure, we find the probability of distilling the state |1−⟩NO ⟨1−|NO at
the j-th iteration to be p(j)NO =

∑j
n=1(1/4)(3/4)

n−1, which converges exponentially to 1 for
j → ∞. Given the PO transformations discussed in Subsection 7.3.1, we thus conclude
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that the proposed scheme allows for the robust preparation of any maximally entangled
state of two fermionic qubits in an asymptotically-deterministic way.

We now consider the implementation where the artificially induced noise is an ampli-
tude damping locally acting on both particles, followed by a PR set on one spatial mode,
which here we fix to be the L one for simplicity. When the damping is complete, the
system is left in the ground state |L ↓, R ↓⟩ regardless of the initial state |ψ0⟩, of the type
of noise previously acting on the qubits, and of the interaction time t. The PR trans-
forms it into |L ↑, R ↓⟩ = (|1−⟩LR+ |1+⟩LR)/

√
2, which is then transformed by a BS. From

Eq. (7.2), the resulting state is easily found to be (|1−⟩NO− |1+⟩LR)/
√
2. Once again, the

detector D allows for discriminating the even component |1−⟩NO from the odd one |1+⟩LR,
both distilled with the same probability pNO = pLR = 1/2. Depending on whether we
are interested in preparing a NOON state or a Bell state, we collect the particles when
the corresponding parity is detected and repeat the process otherwise. In this way, the
desired state is obtained at the j-th iteration with probability p

(j)
NO = p

(j)
LR =

∑j
n=1 1/2

n,
which for j →∞ converges to 1 exponentially. Nonetheless, differently from the depolar-
izing implementation, we stress that in this case both even and odd components are pure
states, so that the desired state can always be obtained from the distilled one by means of
the PO transformations previously discussed. Thus, we conclude that the implementation
employing artificial amplitude damping channels enables the robust preparation of any
maximally entangled state of two fermionic qubits in a way which is deterministic already
in just one run of the protocol.

7.4 Implementation without externally activated noisy
channels

In this Section, we analyze the situation where the artificial introduction of externally
activated noise is not possible. Given its role of resetting the qubits to a determined
state, dropping this assumption introduces new factors which ultimately determine the
performances of the setup. In particular, the initial state |ψ0⟩, the type of environmental
induced noise acting on the particles before the BS, and the interaction time t all affect
the distilled state. In this work, we consider the pure initial state

|ψ0⟩ = a |L ↑, R ↓⟩+ b eiϕ |L ↓, R ↑⟩ . (7.6)

Here, a is a real and positive number, b :=
√
1− a2, and ϕ ∈ [0, 2π). We highlight

that the quantum correlations carried by |ψ0⟩ depend on the parameter a, ranging from
separable states for a = 0, 1 to maximally entangled ones for a = 1/

√
2. Notice that,

in the latter situation, we recover the Bell states |1+⟩LR , |1−⟩LR in Eq. (7.1) when ϕ =
0, π, respectively. We study three standard models of local noisy environments: phase
damping channels, depolarizing channels, and amplitude damping channels. Within this
framework, the results discussed in Ref. [3] for bosons and in the previous Section for
fermions provide the limiting case of the two latter types of noise when t → ∞, with
the addition of a PR on one mode in the amplitude damping scenario. Particle statistics
is taken into account, to highlight the different performances of bosons and fermions.
Furthermore, we focus on a non-iterated version of the process.
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7.4.1 Characterization of the noisy environments

We consider the two noisy environments to be of the same type and to independently
act on one spatial mode each. We model them as baths of harmonic oscillators at zero
temperature, the interaction with the particles being described by a qubit-cavity model
where the coupling involves one single excited mode of the baths [131]. We assume the
spectral density of the baths to be Lorentzian, i.e. [131,132],

J(ω) =
γ

2π

λ2

(ω − ω0)2 + λ2
, (7.7)

where γ is the coupling strength between the system and the related environment, λ is
the spectral width of the coupling, and ω0 is the qubit transition frequency. We com-
pute the dynamics of the system using the operator-sum formalism [32, 131]. While the
structure of the employed Kraus operators depends on the specific type of environment
considered, they all encompass the time-dependent disturbance probability p(t), which
for the Lorentzian spectral density in Eq. (7.7) is given by [131,133]

p(t) = 1− e−λt
[
cos

(
d t

2

)
+
λ

d
sin

(
d t

2

)]2
, (7.8)

with d :=
√

2γλ− λ2.

7.4.2 Phase damping channel

Under the action of two local phase damping channels, the initial state ρ0 = |ψ0⟩ ⟨ψ0|
evolves into

ρpd(t) =
(
1− p(t)

)
|ψ0⟩ ⟨ψ0|

+
p(t)

2

(
|1+⟩LR ⟨1+|LR + |1−⟩LR ⟨1−|LR

)
+
p(t)

2
(2a2 − 1)

(
|1+⟩LR ⟨1−|LR + |1−⟩LR ⟨1+|LR

)
.

(7.9)

Bosons. Two identical bosons in the state ρpd(t) given in Eq. (7.9) impinging on the
input ports of a 50:50 BS are transformed according to Eq. (7.3) into

ρbos
BS (t) =

[1
2
+
(
1− p(t)

)
a b cosϕ

]
|1−⟩NO ⟨1−|NO

+
[1
2
−
(
1− p(t)

)
a b cosϕ

]
|1−⟩LR ⟨1−|LR

+
[1
2
− a2 − i

(
1− p(t)

)
a b sinϕ

]
|1−⟩NO ⟨1−|LR

+
[1
2
− a2 + i

(
1− p(t)

)
a b sinϕ

]
|1−⟩LR ⟨1−|NO .

(7.10)

We thus notice that, by employing the parity check detector D previously introduced, we
can distill either the pure NOON state ρbos

NO := |1−⟩NO ⟨1−|NO with probability pbos
NO(t) =

1
2
+
(
1−p(t)

)
a b cosϕ or the pure Bell state ρbos

LR = |1−⟩LR ⟨1−|LR with probability pbos
LR (t) =

1
2
−
(
1 − p(t)

)
a b cosϕ. Fig. 7.4 depicts pbos

LR (t) as a function of a and of the interaction
time t, for ϕ = 0, π. We notice that, as t → ∞, both pbos

LR (t) → 1/2 and pbos
NO(t) → 1/2

independently on a and ϕ, that is, on the initial state. When |ψ0⟩ is separable (a = 0, 1),
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Figure 7.4: Distillation probability of the pure Bell state ρbos
LR (NOON state ρfer

NO) of two
bosonic (fermionic) qubits subjected to local phase damping for a time t. A Lorentzian
spectral density is assumed (see Eq. (7.7)), with γ = λ = 1 (non-Markovian regime).

the detections of ρbos
LR and ρbos

NO are equiprobable, with pbos
LR = pbos

NO = 1/2 independently on
the interaction time. Equiprobability is obtained also for ϕ = π/2, 3π/2, independently on
both a and t. When |ψ0⟩ is entangled and the relative phase is real, instead, it holds that
pbos

LR (ϕ = π) ≥ pbos
LR (ϕ = 0) for any a and t, with the Bell singlet state (a = 1/

√
2, ϕ = π)

maximizing the probability of detecting ρbos
LR at finite times. In particular, pbos

LR (t) increases
with the interaction time for ϕ = 0 and decreases when ϕ = π. Nonetheless, we stress that
both ρbos

LR and ρbos
NO are pure, maximally entangled states, either in the pseudospin or in

the polarization, with related detection probabilities satisfying pbos
NO(t)+p

bos
LR (t) = 1. Using

the bosonic PO equivalences reported in Fig. 7.2, both the states can be transformed into
any other maximally entangled state. Thus, we conclude that considering two bosons
subjected to local phase damping, our method allows for the robust and deterministic
preparation of any arbitrary pure and maximally entangled state, without the necessity
to iterate the process.

Fermions. When the BS operation is applied to two identical fermionic qubits in the
state given in Eq. (7.9), we get (see Eq. (7.2))

ρfer
BS(t) =

[1
2
+
(
1− p(t)

)
a b cosϕ

]
|1+⟩LR ⟨1+|LR

+
[1
2
−
(
1− p(t)

)
a b cosϕ

]
|1−⟩NO ⟨1−|NO

+
[1
2
− a2 − i

(
1− p(t)

)
a b sinϕ

]
|1+⟩LR ⟨1−|NO

+
[1
2
− a2 + i

(
1− p(t)

)
a b sinϕ

]
|1−⟩NO ⟨1+|LR .

(7.11)

As for the bosonic scenario, we notice that the parity check detector D allows to discrim-
inate the even-parity component ρfer

NO := |1−⟩NO ⟨1−|NO of ρfer
BS from the odd-parity one

ρfer
LR = |1−⟩LR ⟨1−|LR, detected with respective probabilities pfer

NO(t) =
1
2
−
(
1−p(t)

)
a b cosϕ

and pfer
LR(t) =

1
2
+
(
1−p(t)

)
a b cosϕ. Furthermore, as pfer

NO(t) = pbos
LR (t) and pfer

LR(t) = pbos
NO(t),

the same considerations drawn for the odd-parity (even-parity) component in the bosonic
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Figure 7.5: Distillation probability of the pure Bell state ρbos
LR (NOON state ρfer

NO) of two
bosonic (fermionic) qubits subjected to local depolarization for a time t. A Lorentzian
spectral density is assumed (see Eq. (7.7)), with γ = λ = 1 (non-Markovian regime).

scenario hold for the even-parity (odd-parity) one for fermions, with pfer
NO(t) being reported

in Fig. 7.4, too. Given the fermionic PO equivalences introduced in Subsection 7.3.1, we
thus conclude that when applied to two fermions subjected to local phase damping, our
method allows for the robust and deterministic preparation of any arbitrary pure and
maximally entangled state, without having to iterate the process.

7.4.3 Depolarizing channel

Let us now consider the two qubits prepared in the initial state ρ0 = |ψ0⟩ ⟨ψ0| to be
subjected to the local action of a depolarizing channel each. Such an interaction leads to
the Werner state

ρdep(t) =
(
1− p(t)

)
|ψ0⟩ ⟨ψ0|+

1

4
p(t)ΠLR, (7.12)

with ΠLR defined in Subsection 7.3.2. As previously mentioned, the limit t→∞ provides
the maximally mixed state studied in Ref. [3] (for bosons) and in Subsection 7.3.2 (for
fermions).

Bosons. Two identical bosons in the state ρdep(t) given in Eq. (7.12) subjected to the
BS operation in Eq. (7.3) are transformed into

ρbos
BS (t) =

[1
2
− p(t)

4
+
(
1− p(t)

)
a b cosϕ

]
|1−⟩NO ⟨1−|NO

+
[1
2
− p(t)

4
−
(
1− p(t)

)
a b cosϕ

]
|1−⟩LR ⟨1−|LR

+
(
p(t)− 1

)(
a2 − 1

2
+ i a b sinϕ

)
|1−⟩NO ⟨1−|LR

+
(
p(t)− 1

)(
a2 − 1

2
− i a b sinϕ

)
|1−⟩LR ⟨1−|NO

+
p(t)

4

(
|U−⟩NO ⟨U−|NO + |D−⟩NO ⟨D−|NO

)
.

(7.13)
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Once again, the parity check detector D can be employed to distill the pure Bell singlet
state ρbos

LR = |1−⟩LR ⟨1−|LR with a probability pbos
LR (t) =

1
2
− p(t)

4
−
(
1−p(t)

)
a b cosϕ. pbos

LR (t)
is depicted in Fig. 7.5 as a function of a and t for ϕ = 0, π.

First of all, pbos
LR (t) → 1/4 as t → ∞ independently on a and ϕ, i.e., on the initial

state |ψ0⟩, in agreement with the results reported in Ref. [3] when depolarization is used
to reset the system to a maximally mixed state. Furthermore, it holds once again that
pbos

LR (ϕ = π) ≥ pbos
LR (ϕ = 0) for any a and t. In particular, the Bell singlet state (a =

1/
√
2, ϕ = π) is found to maximixe pbos

LR (t) at finite times. Nonetheless, differently from
the phase damping scenario, the interaction time affects the probability of distilling ρbos

LR
even when the initial state is separable (a = 0, 1), ranging from pbos

LR = 1/2 to pbos
LR = 1/4

as t→∞. The same behaviour is obtained when ϕ = π/2, 3π/2, regardless of a.
Fermions. When the two particles impinging on the BS are fermions, the state ρdep(t)

in Eq. (7.12) is mapped into

ρfer
BS(t) =

[1
2
− p(t)

4
+
(
1− p(t)

)
a b cosϕ

]
|1+⟩LR ⟨1+|LR

+
[1
2
− p(t)

4
−
(
1− p(t)

)
a b cosϕ

]
|1−⟩NO ⟨1−|NO

+
(
p(t)− 1

)(
a2 − 1

2
+ i a b sinϕ

)
|1+⟩LR ⟨1−|NO

+
(
p(t)− 1

)(
a2 − 1

2
− i a b sinϕ

)
|1−⟩NO ⟨1+|LR

+
p(t)

4

(
|2+⟩LR ⟨2+|LR + |2−⟩LR ⟨2−|LR

)
.

(7.14)

Analogously to the bosonic scenario and in agreement with the results discussed in
Subsection 7.3.2, the parity check detector D can be used to distill the NOON state
ρfer

NO = |1−⟩NO ⟨1−|NO with probability pfer
NO(t) = 1

2
− p(t)

4
−
(
1 − p(t)

)
a b cosϕ. Since

pfer
NO(t) = pbos

LR (t), Fig. 7.5 also reports pfer
NO(t) and the same considerations discussed for

the distillation of the bosonic Bell singlet state can be drawn for the fermionic NOON
state |1−⟩NO.

7.4.4 Amplitude damping channel

Finally, we study the performance of the proposed method when the two qubits are
independently subjected to a local amplitude damping channel. In this situation, the
initial state ρ0 = |ψ0⟩ ⟨ψ0| evolves into

ρad(t) =
(
1− p(t)

)
|ψ0⟩ ⟨ψ0|+ p(t) |L ↓, R ↓⟩ ⟨L ↓, R ↓| , (7.15)

where |L ↓, R ↓⟩ = (|2+⟩LR − |2−⟩LR)/
√
2 is the two-particle ground state. We highlight

that, differently from the analogous scenario in Ref. [3] and in Section 7.3, here we do
not assume the presence of a PR rotating the pseudospin of particles on one spatial mode
before the BS operation.
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Figure 7.6: Distillation probability of the pure Bell state ρbos
LR (NOON state ρfer

NO) of
two bosonic (fermionic) qubits subjected to local amplitude damping for a time t. A
Lorentzian spectral density is assumed (see Eq. (7.7)), with γ = λ = 1 (non-Markovian
regime).

Bosons. The action of a BS on the bosonic state ρad(t) given in Eq. (7.15) returns

ρbos
BS (t) =

(
1− p(t)

)[(1
2
+ a b cosϕ

)
|1−⟩NO ⟨1−|NO

+
(1
2
− a b cosϕ

)
|1−⟩LR ⟨1−|LR

−
(
a2 − 1

2
+ i a b sinϕ

)
|1−⟩NO ⟨1−|LR

−
(
a2 − 1

2
− i a b sinϕ

)
|1−⟩LR ⟨1−|NO

]
+ p(t) |D−⟩NO ⟨D−|NO .

(7.16)

The detector D allows to distill the pure Bell singlet state ρbos
LR = |1−⟩LR ⟨1−|LR with

probability pbos
LR (t) = (1− p(t))(1

2
− a b cosϕ), depicted in Fig. 7.6.

As for the phase damping and the depolarizing channels, we notice that pbos
LR (ϕ = π) ≥

pbos
LR (ϕ = 0) for every a, t. In particular, such a probability reaches its maximum at finite

times when |ψ0⟩ is a Bell singlet state. However, this time pbos
LR (t) decays to 0 with the

interaction time regardless of a and ϕ. As in this case ρbos
NO(t) is not a pure state (similarly

to the depolarizing scenario and in contrast with the phase damping one), at first sight
such a decay could be interpreted as an inefficacy of the proposed technique to distill pure
and maximally entangled states when the particles of interest have been subjected to the
considered noise for too long. Nonetheless, we highlight that in the limit t→∞ the even
parity state ρbos

NO becomes the pure NOON state |D−⟩NO, and pbos
NO(t) = 1 − pbos

LR (t) → 1.
Thus, for sufficiently long interaction times we should collect the qubits when the detector
D signals an even number of particles, achieving the distillation of a state which becomes
pure as t→∞.

Fermions. When dealing with identical fermions, the state ρad(t) in Eq. (7.12) is
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transformed by a BS into

ρfer
BS(t) =

(
1− p(t)

)[(1
2
+ a b cosϕ

)
|1+⟩LR ⟨1+|LR

+
(1
2
− a b cosϕ

)
|1−⟩NO ⟨1−|NO

−
(
a2 − 1

2
+ i a b sinϕ

)
|1+⟩LR ⟨1−|NO

−
(
a2 − 1

2
− i a b sinϕ

)
|1−⟩NO ⟨1+|LR

]
+ p(t) |L ↓, R ↓⟩ ⟨L ↓, R ↓| .

(7.17)

As in the other fermionic scenarios discussed, the detector D allows to distill the pure
NOON state ρfer

NO = |1−⟩NO ⟨1−|NO. The probability of such a detection is given by
pfer

NO(t) = (1 − p(t))(1
2
− a b cosϕ), which is reported in Fig. 7.6 as pfer

NO(t) = pbos
LR (t).

The considerations drawn for detection of the odd component in the bosonic situation are
thus valid also for the detection of ρfer

NO. Nonetheless, an important difference emerges:
in the limit t → ∞ the fermionic odd-component, which is the only one distillable as
pfer

LR(t) = pbos
NO(t)→ 1, is the pure state ρfer

LR = |L ↓, R ↓⟩ ⟨L ↓, R ↓| which is not entangled.
Notice that the presence of this term in ρfer

BS in contrast to ρbos
BS is due to the anti-bunching

effect characterizing identical fermions, which makes |L ↓, R ↓⟩ in ρad(t) invariant under
the action of a BS whereas the bosonic bunching effect transforms it into the maximally
entangled NOON state |D−⟩NO. Nonetheless, the fermionic state |L ↓, R ↓⟩ can be trans-
formed into a maximally entangled state by means of PO transformations and the detector
D as discussed in Subsection 7.3.2, that is, by rotating the pseudospin of the qubit on one
region, by applying a BS operation to the resulting state, and by finally distilling either
the odd component |1+⟩LR or the even one |1−⟩NO.

7.5 Conclusions

We have extended a theoretical procedure for the robust preparation of maximally entan-
gled states introduced in Ref. [3] for bosons to the fermionic scenario. Considering two
qubits set on two distinct spatial modes and subjected to local environmental noise, the
protocol employs two externally activated local noisy channels to reset the bipartite state
to a known one. A BS is then used to set the system in a mixture or a superposition of
NOON states, entangled in the spatial mode, and Bell states, entangled in the internal
degree of freedom. A non-absorbing, pseudospin-independent, parity check detector D
set on one mode is later used to discriminate between the two components, distilling a
maximally entangled state which is shown to be pure. Such a result is independent on
the initial state of the system, on the characteristics of the environments, and on the in-
teraction between the two besides requiring the latter to be local and particle-preserving,
making the proposed preparation robust. We have analyzed two possible implementations
of the protocol: one employing depolarizing channels as the externally activated noises,
and one using amplitude damping channels as such. In both cases, the procedure can
be iterated; by doing so, the implementation relying on externally activated depolarizing
channels achieves determinism asymptotically with the number of iterations, while deter-
minism can be reached either asymptotically or in a single run when employing externally
activated amplitude damping channels.
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It is worth to stress some main differences with previous works [2,37], where the authors
present indistinguishability-based probabilistic preparation of Bell singlet states starting
from noisy states which arise from unavoidable system-environment interactions. Here,
we have extended such results by introducing the non-absorbing parity check detector,
which allows to iterate the process achieving an asymptotically-deterministic preparation.
Focusing on the indistinguishability of the two qubits at a beam splitter, we have also
stressed the interplay between NOON states and Bell states, showing how pure NOON
states can be distilled in the fermionic scenario. A further improvement comes from the
insertion of this result in a wider preparation framework where noisy channels are suitably
externally activated to reset the system to a desired state. Crucially, this solution leads
to a protocol which is independent of the initial state and of any system-environment
interaction occurring prior to the BS operation.

We have extended the bosonic PO equivalences introduced in Ref. [3] to fermions,
showing that all the pure maximally entangled states of two fermionic qubits distributed
on two spatial modes can be obtained one from another by means of transformations anal-
ogous to passive optical ones. Provided with such a set of transformations, the proposed
framework can thus be employed to deterministically prepare any arbitrary maximally
entangled state of two identical fermionic qubits.

The difficulty in realizing a polarization-insensitive, non-absorbing, parity check de-
tector constitutes the main obstacle hindering an experimental implementation of the
proposed scheme. Nonetheless, we emphasize that two commercially available single pho-
ton detectors can be used in its place to postselect the odd components by performing a
coincidence measurement on the two spatial modes. In this way, the implementation em-
ploying amplitude damping channels can be used to achieve the probabilistic distillation
of a pure fermionic Bell state with probability pLR = 1/2.

We have further studied the performances of our technique when the artificially in-
duced noisy channels are not employed, analyzing both bosonic and fermionic qubits. In
this case, the initial state, the characteristics of the environmental noise, and the system-
environment interaction time all affect the result. We have taken the two particles to
be initially prepared in a generic superposition of anti-parallel pseudospin states as given
by Eq. (7.6). Such a set of states includes both entangled and separable ones, allowing
the role of the initial quantum correlations to be assessed. The two environments acting
locally on the qubits have been modeled as identical phase damping channels, depolariz-
ing channels, and amplitude damping channels. Focusing on a single run of the protocol,
we have shown that it allows to distillate pure and maximally entangled states deter-
ministically when dealing with phase damping channels. When considering depolarizing
channels, instead, a pure maximally entangled state can be prepared conditionally, with a
distillation probability decaying to 1/4 asymptotically with the interaction time regardless
of the initial state. Nonetheless, preparing the system in a Bell singlet state increases the
chances of success at finite interaction times. Finally, a pure maximally entangled state
is probabilistically achieved when the two constituents are affected by amplitude damp-
ing noise for a finite time t, whereas a deterministic distillation is achievable as t → ∞
regardless of the initial state. Remarkably, all the above results hold for both bosons and
fermions.

We stress that the core of the proposed procedure lies in the bunching/antibunching
interferometric effects characterizing identical particles under the action of a BS. In par-
ticular, we notice from Eqs. (7.2) and (7.3) that the singlet is the only Bell state whose
number of particles on one spatial mode changes parity (for fermions) or preserves it
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(for bosons) under a BS transformation. Thus, the parity-check detector ultimately dis-
criminates the pure BS-transformed singlet component from the other ones, achieving
the desired distillation. With a specific focus on coincidence measurements, i.e., on the
detection of odd-parity terms, this mechanism is also at the heart of the technique employ-
ing the spatially localized operations and classical communication (sLOCC) operational
framework [1,20,23,59,60,74,154] to recover the quantum correlations initially present in
a Bell singlet state subjected to the local action of noisy environments [2, 37,38].

Finally, we emphasize that in order that the discussed interference effects properly
occur, the different 2-particle probability amplitudes must be indistinguishable when the
qubits are collected. Crucially, as demonstrated in Ref. [157], this requirement is not
equivalent to ask for the two particles to simultaneously impinge on the BS; an arbitrary
time delay is indeed acceptable, provided it gets compensated after the BS. If a time delay
occurs due, e.g., to the particle sources being desynchronized, the results of this paper
can thus be restored, for example, by suitably arranging the lengths of the different paths
after the BS or, referring to a photonic implementation, by inducing a proper dephasing
on the particles with birefringent media prior to their collection [157,158].



Chapter 8

Robust generation of N-partite N-level
singlet states by identical particle
interferometry

Abstract

We propose an interferometric scheme for generating the totally antisymmetric state of N
identical bosons with N internal levels (generalized singlet). This state is a resource for
various problems with dramatic quantum advantage. The procedure uses a sequence of
Fourier multi-ports, combined with coincidence measurements filtering the results. Suc-
cessful preparation of the generalized singlet is confirmed when the N particles of the
input state stay separate (anti-bunch) on each multiport. The scheme is robust to local
lossless noise and works even with a totally mixed input state.

This chapter reports the results of our manuscript of Ref. [159].

8.1 Introduction

Manipulation of entangled states is necessary to fully access the advantages of quantum
technologies. For this reason, great attention has been dedicated to classes of entan-
gled states proven to be useful for quantum information tasks, ranging from the sim-
plest 2-qubit Bell states [32], to more complex classes of many-body systems such as
W states [160], GHZ states [161, 162], NOON states [25], Dicke states [163], and many
more [26].

Crucially, quantum correlations characterizing such states must be protected from the
detrimental action of external noise to allow for their real-world exploitation. A plethora
of techniques has been suggested to achieve this goal, including decoherence-free sub-
spaces [112,113], structured environments with memory effects [98–100,102–108], quantum
error correction codes [94–97], dynamical decoupling and control techniques [114–123],
quantum repeaters [164–166], distillation protocols [109–111, 149–151], and interferomet-
ric effects in systems of identical particles [2, 3, 37, 38, 155, 167]. These techniques can be
applied to physical systems featuring a wide range of inherent fragility to environmental
noise. In particular, photons have a long coherence time, making them suitable for long-
distance communications between remote parties [168,169]. However, there is a trade-off:
as photons interact little with each other directly, entangling them requires alternative
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methods such as nonlinear multiphoton generation techniques (such as SPDC [170] and
four-wave mixing [171,172]), heralding processes [173–178], or postselected measurements
of identical photons spatially overlapping over detection regions [1, 20,60].

These techniques are typically employed in long-range communication scenarios, in
which the resource states prepared by the sender require protection during their propa-
gation through noisy environments. In Refs. [3, 167], the authors shift this viewpoint by
proposing a protocol where the entangled resource is prepared by the receiver after the
environmental noise has affected the system. To this end, they devise a scheme to pre-
pare maximally entangled states of two identical qubits which probabilistically succeeds
regardless of the initial state, that is, regardless of local particle-preserving noise previ-
ously acting on the system. This goal is achieved by locally injecting white noise on the
two qubits, which resets the system to the maximally mixed state. The various compo-
nents of the mixture interfere differently under the action of a beam splitter, with bosonic
particles in the singlet state staying separate (anti-bunching) and the ones in symmetric
states grouping together (bunching). This effect can then be exploited to postselect a
pure Bell singlet state of two identical bosons with coincidence measurements.

In the present work, we extend this protocol to N identical bosons with N internal
levels and devise a scheme to generate an N -partite singlet state from a maximally mixed
state having one particle per mode. The multipartite singlet state, which is antisymmetric
under the exchange of any pair of particles, can be exploited to solve communication tasks
which have no known classical solution [179–181] and certify the non-projective character
of measurements [182]. Furthermore, entangled states of spatially distinguishable particles
can be used to simulate particle statistics of different types, a phenomenon which has
been shown to obey monogamous relations: a totally antisymmetric state of N distinct
bosons can thus provide a useful testing ground to study the properties of N spatially
indistinguishable fermions [183]. Finally, generalized singlet states are invariant under
global rotations of the internal levels and are characterized by a zero variance of the
related pseudospin operator J2. This property makes them potentially useful in quantum
metrology, where they can be used to probe local fields with enhanced performances [184].

The usefulness of generalized singlet states is hindered by the difficulty of obtaining
them. To achieve this, a method based on a sequence of quantum nondemolition (QND)
measurements has been proposed in [185]. This technique, already implemented with
both cold [186] and hot [187] atomic ensembles, involves postselection and allows for
the preparation of a state approximating the generalized singlet. However, it does not
lead to an exact, pure generalized singlet state, not even when endowed with a feedback
mechanism implementing corrections between the measurements [188].

In contrast to this, the technique we propose here allows for the probabilistic prepa-
ration of exact multipartite singlet states. To do so, we relate the behavior of N identical
particles injected in an N -port interferometer to their symmetries, as dictated by the
general suppression law reported in Ref. [189]. Subsequently, we use the obtained insights
to devise a scheme composed of a sequence of Fourier 2, . . . , N−1, N -port interferometers
interlaced with QND coincidence measurements performed on the related output modes.
As in Refs. [3, 167], the maximally mixed initial state guarantees that our procedure is
robust under the action of local noise acting on the N particles. Finally, we propose an
implementation that employs postselection and a specific initial state to prepare an N = 3
generalized singlet state without QND measurements.
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8.2 Generalized singlet state
The goal of this work is to design an interferometric procedure to prepare the generalized
singlet state of N spatially separated bosons with N internal levels

|AN⟩ :=
1√
N !

∑
π∈SN

N∏
i=1

sgn (π) a†i,π(i) |0⟩ , (8.1)

where sgn (π) is the sign of the permutation π from symmetric group SN , and a†ℓ,m denotes
the operator creating a particle with internal state m in spatial mode ℓ. For example,
|A2⟩ = (|0, 1⟩−|1, 0⟩)/

√
2 is the ordinary Bell singlet state of two qubits, whereas for three

qutrits we have |A3⟩ = (|0, 1, 2⟩−|0, 2, 1⟩−|1, 0, 2⟩+ |1, 2, 0⟩+ |2, 0, 1⟩−|2, 1, 0⟩)/
√
6. The

interest in this class of states stems from their rotational invariance, leading to applications
in quantum protocols [179], and total antisymmetry, which brings these bosonic states
as close to fermionic properties as possible [183].

The systematic classification of the types of symmetries of N particles with d internal
levels can be achieved with representation theory [190]. One of its basic results states
that the space of totally antisymmetric states of N constituents with N internal levels is
one-dimensional, that is, |AN⟩ is the unique totally antisymmetric state of the considered
system.

8.3 Suppression law for anti-bunching
In order to prepare the generalized singlet state |AN⟩ given in Eq. (8.1), we consider the
transformation of the input state under a Fourier N -port given by

b†k,m =
N∑
ℓ=1

(UN)k,ℓ a
†
ℓ,m, (8.2)

where b† denotes the creation operator for the output mode and the matrix UN is given
by

UN =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

 (8.3)

for ω = e2πi/N . Since the state |AN⟩ has a single particle in each spatial mode, we would
like to pin down the conditions that an N -particle input state must satisfy in order to
anti-bunch on the Fourier N -port.

Conveniently, in Ref. [189] Dittel et al. provide a suppression law characterizing pro-
hibited outcomes in interferometric experiments for a class of multiports including Fourier
N -ports. Their results imply that the eigenstates |φ⟩ of the cyclic permutation π(1,2,...,N)

that can anti-bunch when transformed by UN need to obey (see Appendix A)

π(1,2,...,N) |φ⟩ = (−1)N−1 |φ⟩ . (8.4)

To use this insight, let us note that a generic input state |ψin⟩ of N particles with N
internal levels can always be decomposed in the N -particle eigenbasis of π(1,2,...,N). Then,
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the condition Eq. (8.4) rules that |ψin⟩ can anti-bunch when transformed by UN only if its
projection onto the (−1)N−1-eigenspace of π(1,2,...,N) is nonzero. We denote this eigenspace
E(−1)N−1(π(1,2,...,N)) and define the related projection operator

PE
(−1)N−1 (π(1,2,...,N)) :=

1

N

N∑
k=1

[
(−1)N−1 π(1,2,...,N)

]k
. (8.5)

It is clear now that a necessary condition for a generic N-boson input state ρin to
anti-bunch on a Fourier N-port reads

Tr
[
ρinPE

(−1)N−1 (π(1,2,...,N))

]
̸= 0. (8.6)

8.4 Implementing the eigenspace projector
Condition given by Eq. (8.6) can also be interpreted as an operational recipe for im-
plementing a projection into the eigenspace E(−1)N−1(π(1,2,...,N)). It consists in casting
an input state composed of N particles, one in each spatial mode, on a Fourier N -port
followed by performing a coincidence measurement on the output modes. In particular,
this measurement can be realized by means of N quantum non-demolition single parti-
cle detectors filtering out non-coincident detections, effectively implementing the operator
CN =

∑N−1
σ1,...,σN=0 |σ1, . . . , σN⟩⟨σ1, . . . , σN |. This constitutes the basic step of our protocol.

8.5 Extracting the singlet
Let us now consider a sequence of the above steps with the size of the Fourier multiport
increasing from 2 to N , defining Mk :=

∏2
j=k CjUj (notice that the index in the product

decreases to reflect the order of the operations). We are going to show that for an input
state with a single d-level particle in each of N modes we have

MN = eiϕN
2∏

j=N

PE((−1)j−1)(π(1,...,j))
, (8.7)

where ϕN is an irrelevant global phase. By direct calculation one can verify that Eq. (8.7)
is satisfied for N = 2. Suppose now that it holds for any k < N , with N > 2.
Since Eq. (8.6) provides a necessary condition for anti-bunching, we have supp(CNUN) ⊆
Im(PE

(−1)N−1 (π(1,2,...,N))). Thus we have

MN = CNUNPE((−1)N−1)(π(1,...,N))

2∏
j=N−1

CjUj = eiϕN−1CNUN

2∏
j=N

PE((−1)j−1)(π(1,...,j))
. (8.8)

But it can be shown (see Appendix B) that

2∏
j=N

PE((−1)j−1)(π(1,...,j))
=

1

N !

∑
π∈SN

sgn(π)π = PAd
N
, (8.9)

where PAd
N

is the projector onto the totally antisymmetric subspace of N particles with d
internal levels. Therefore MN = eiϕN−1CNUNPAd

N
. It remains to be shown that any state
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Figure 8.1: Procedure for the preparation of the N = 3 bosonic generalized singlet state
|A3⟩. Three identical bosons localized on distinct modes are subjected to arbitrary local
noise (LN) and subsequently depolarized (DN). Later on, two of them are cast onto
a beam splitter U2. Two single-particle non-absorbing detectors perform a coincidence
measurement on the output modes, selecting only the anti-bunched results. The three
particles are then injected into a tritter U3. Three single-particle detectors perform a final
coincidence measurement on the output, collecting only the anti-bunched states. The last
step can be done either with QND detectors or with absorbing detectors via postselection.
Part of the scheme enclosed in a dashed box can be replaced with a heralded generation
of the singlet state |A2⟩.

from the totally antisymmetric subspace is invariant under Fourier multiport UN and
coincident detection CN . For the sake of simplicity we restrict our attention to d = N
(see Appendix C for the general case). The totally antisymmetric space is then spanned
by |AN⟩. From Eq. (8.2) and Eq. (8.1) it follows that

UN |AN⟩ =
1√
N !

det(UNA) |0⟩, (8.10)

where

A =


a†1,1 a†1,2 . . . a†1,N
a†2,1 a†2,2 . . . a†2,N
...

...
...

...
a†N,1 a†N,2 . . . a†N,N .

 (8.11)

But as det(UNA) = detUN detA = (−1)N+1 detA we get that UN |AN⟩ = (−1)N+1|AN⟩.
Clearly the global phase shift is irrelevant, and the fact that |AN⟩ has a single particle in
each mode ensures that it is not affected by the coincidence measurement CN .

This shows that the generalized singlet state of N identical bosons with N levels can be
probabilistically distilled from an arbitrary initial state ρin with a single particle per mode
by acting on it with a sequence of Fourier 2−, . . . , N-ports and selecting only the results
which anti-bunch at every step (see Fig. 8.1 for a pictorial representation of the setup
for N = 3). The procedure we just described can be seen as a filtering scheme where
the generalized singlet component of the input state ρin is probabilistically distilled. Its
success probability ps = Tr [|AN⟩⟨AN | ρin] depends on the overlap of the initial state with
the generalized singlet, in particular being null when there is none.

It should be stressed that the coincidence measurements Cj must be nondemolitive,
as the particles emerging from a Fourier multiport are later cast onto the next one.
Such measurements can be implemented with nonabsorbing detectors [191–193]. This
requirement does not hold for the last measurement (following the Fourier N-port), which
can be realized using standard single particle detectors in a postselected implementa-
tion [1, 3, 59,60,167].
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8.6 Robust generalized singlet preparation

As previously stated, we want to distill the generalized singlet state in a way which is
robust to the action of lossless local noise acting on the initial state. To do so, we start
with an arbitrary state ρN of N identical bosons with N internal levels occupying one
spatial mode each. Following the idea introduced in Ref. [3, 167], we act on each particle
with local externally-activated depolarizing noise, obtaining the N -body maximally mixed
state ρdep =

⊗N
j=1 ρj, where ρj is the Werner state ρj = 1

N

∑N−1
k=0 |k⟩j⟨k|j of the particle

in the jth mode with internal level k. This operation has a double role: first of all,
it resets the system to the known state ρin = ρdep, thus making the obtained result
independent of the original state ρN , of the characteristics of the noisy environments acting
on the constituents prior to the depolarization, and on the interaction time between them.
Secondly, it ensures that the state ρin injected in the setup has a nonzero overlap with
the generalized singlet, guaranteeing that the probability of extracting |AN⟩ is non-zero.
Indeed, ρdep can always be expressed in a diagonal form on a NN -dimensional orthonormal
basis which includes |AN⟩. Therefore, the proposed preparation technique is deemed to
be robust, although it succeeds with probability

ps = Tr [|AN⟩⟨AN | ρdep] = 1/NN . (8.12)

8.7 Alternative realizations with specific initial states

In the suggested implementation, robustness to noise is obtained in exchange for a low
success rate and the requirement of QND measurements. Nonetheless, these two draw-
backs can be mitigated when a free choice of the initial state is allowed. This is the
case, for example, of a preparation occurring immediately after the state initialization, or
when the noise affecting the system between the source and the implementation of our
scheme is negligible. In these scenarios, for instance, the preparation of N spatially sepa-
rated bosons in the product state |0, 1, . . . , N − 1⟩ would guarantee an enhanced success
probability of ps = 1/N !.

The possibility to choose the initial state also allows to avoid relying on nonabsorbing
detectors in specific scenarios, opening the path for realistic experimental implementa-
tions. Consider, for example, N = 3 qutrits in the initial state |ψin⟩ = |A2⟩ ⊗ |2⟩. The
implementation of the Fourier 2-port (beam splitter) can now be avoided, reducing our
setup to a single tritter: indeed, it can be easily checked that C3U3 |ψin⟩ = |A3⟩, so that
the generalized singlet state is distilled with probability ps = |⟨A3|ψin⟩|2 = 1/3. Similarly,
we can allow for the third qutrit to be depolarized as in the robust approach (see Fig-
ure 8.1), obtaining ρin = |A2⟩⟨A2| ⊗ 1

3

(∑2
k=0 |k⟩⟨k|

)
and preparing |A3⟩ with probability

ps = Tr [|A3⟩⟨A3| ρin] = 1/9. Crucially, the QND measurement C3 can be substituted
in both cases by a postselection carried out with standard single-particle detectors. The
preparation of such initial states only requires the ability to entangle 2 qutrits in a Bell
singlet-like state and to eventually depolarize a third one, a challenge which could be
tackled, for example, with frequency-bin manipulation techniques [194], thus making the
preparation of the bosonic generalized singlet of 3 qutrits an experimentally feasible task.
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8.8 Conclusions

We have introduced a theoretical protocol to probabilistically prepare the totally an-
tisymmetric state |AN⟩ of N distinct bosons with N internal levels. This state finds
potential applications in quantum information protocols [179–181], simulating systems
of fermionic indistinguishable particles [183], certifying the non-projective character of
measurements [182], and in quantum metrology [184].

The scheme, which generalizes the one devised in Ref. [3,167] to many-body systems,
employs a sequence of Fourier multiports with the number of ports ranging from 2 to N ,
interlaced with coincidence measurements distilling the results where one constituent per
mode is found. The measurements, which have to be insensitive to the internal degree of
freedom, must preserve the detected particles and are thus required to be nondemolitive.
This does not hold for the last coincidence count, which can be deferred and realized with
standard absorbing detectors via postselection [1,59,60]. We stress that the emergence of
the generalized singlet from the proposed setup is merely due to the interference effects
between the identical constituents generated by the Fourier multiports, as discussed in
Ref. [3, 167]. Therefore, our work supports the perspective of identicality as a potential
quantum resource.

The success probability depends on the overlap between the initial state and the gen-
eralized singlet, as the latter has been shown to be the only state to satisfy the necessary
condition to anti-bunch under the proposed setup. This property has been used to pro-
pose a feasible scheme where the N particles are initially externally depolarized, leading
to a maximally mixed state which always has nonzero overlap with the generalized singlet.
This strategy also allows one to ignore the previous history of the system, including the
initially prepared state and the eventual local interaction of the N particles with lossless
noisy environments. This feature enables our scheme to successfully prepare the gener-
alized singlet state even when the setup is implemented far from the particles source,
assuming no particle losses. In this sense, the proposed protocol is robust against local
noise acting prior to the externally-induced depolarization.

With the suggested realization, the success probability is found to scale as 1/NN .
Nonetheless, alternative initial states can be employed to provide higher success rates
when the presence of noise is low enough to avoid resorting to the external depolar-
ization. This occurs, for example, when our scheme can be applied immediately after
the preparation of the initial state. Although our findings further point out the rele-
vance QND detectors might have for quantum information protocols, we have shown that
specific experimentally-achievable initial states can be used to obtain generalized singlet
states without relying on nonabsorbing detectors. Looking for initial states exploitable
to generate high-dimensional generalized singlet states with current technology is surely
a direction which is worth of further investigation. Moreover, in Ref. [167] the proposed
scheme was shown to distill pure N = 2 NOON states when applied to two identical
fermions. It would thus be interesting to work out its generalization to multipartite
fermionic systems.

A Supplemental Note I

In this section we briefly review the suppression law which led to the equation

π(1,2,...,N) |φ⟩ = (−1)N−1 |φ⟩ . (A1)
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reported in the main text.
In [189] the authors derive a general suppression law for any pure initial state |ψin⟩

of identical bosons distributed over n spatial modes subjected to a unitary mode-mixing
evolution. The particles are further characterized by an internal degree of freedom |I⟩,
with I ∈ {1, 2, . . . , d}. Such a suppression law is ultimately found to be strictly related to
the permutation symmetries of the initial state |ψin⟩. In particular, |ψin⟩ is characterized
by the mode occupation list r⃗ = (r1, . . . , rn) describing the number rj of particles occupying
the jth mode. To such an input configuration is associated the mode assignment list
d⃗(r⃗) = (d1(r⃗), . . . , dN(r⃗)), where N is the total number of particles and dα(r⃗) ∈ {1, . . . , n}
specifies the mode occupied by the αth particle. Since the constituents are identical, the
ordering in d⃗(r⃗) is irrelevant and here assumed to be given in increasing order of the
spatial modes. Let us now consider a permutation P of the n spatial modes which leaves
|ψin⟩ invariant except for a real phase φ, that is,

|ψin⟩
P−→ eiφ |ψin⟩ . (A2)

Notice that P leaves the internal degree of freedom unaffected. We proceed by computing
the eigenvectors of P and the related eigenvalues λ1, λ2, . . . , λn. Arranging the eigenvec-
tors as columns, we build the matrix A and the unitary evolution matrix U = AΣ, where
Σ is an arbitrary diagonal unitary matrix accounting for eventual local phase operations
on the output modes. We then focus on the output distribution given by the mode oc-
cupation list s⃗ and the related mode assignment list d⃗(s⃗). Finally, we build the vector
Λ⃗(s⃗) := (λd1(s⃗), . . . , λdN (s⃗)). The suppression law derived in [Phys. Rev. A 97, 062116
(2018)] states that the probability of getting the output distribution s⃗ by evolving the
input distribution r⃗ via U is zero if

ΠN
α=1 Λα(s⃗) ̸= eiφ. (A3)

In particular, we notice that Eq. (A3):

1. depends on the input distribution r⃗ and the internal input configuration Ωin =
(|I1⟩ , . . . , |IN⟩) characterizing |ψin⟩ by means of Λ⃗(s⃗), which is given by the eigen-
values of the permutation P which satisfies Eq. (A2);

2. depends on the output distribution s⃗ via Λ⃗(s⃗);

3. does not depend on the internal output configuration Ωout;

4. provides a necessary, but not sufficient condition to obtain the distribution s⃗ evolv-
ing |ψin⟩ via U , that is, ΠN

α=1Λα(s⃗) = eiφ.

Since we are interested in the suppression law for anti-bunching, we set s⃗ = (1, 1, . . . , 1︸ ︷︷ ︸
N times

)

and d⃗(s⃗) = (1, 2, . . . , N), obtaining Λ⃗(s⃗) = (λ1, λ2, . . . , λN) for which Eq. (A3) returns

N∏
j=1

λj = eiφ. (A4)
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In the main text, we consider the unitary evolution matrix

UN =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

 , (A5)

with ω = e2πi/N . Its columns are the eigenvectors of the cyclic permutation π(1,2,...,N),
whose eigenvalues are

λj = ω1−j = e−
2πi
N

(1−j), j = 1, . . . , N. (A6)

The LHS of Eq. (A4) is equal to
∏N

j=1 ω
1−j = e

2πi
N

∑N
k=1(1−k) = (−1)N−1, so that a necessary

condition for a state |ψin⟩ to anti-bunch under UN is given by Eq. (A1).

B Supplemental Note II
Here we provide a proof of the relation

2∏
j=N

PE((−1)j−1)(π(1,...,j))
=

1

N !

∑
π∈SN

sgn(π) π (B1)

reported in the main text.
Eq. (B1) holds for N = 2; indeed, from the definition

PE
(−1)N−1 (π(1,2,...,N)) :=

1

N

N∑
k=1

[
(−1)N−1 π(1,2,...,N)

]k (B2)

it follows that
PE−1(π(1,2)) =

1

2

(
11− π(1,2)

)
=

1

2

∑
π∈S2

sgn(π) π.

Let us now assume that Eq. (B1) also holds for all n < N . We have

2∏
j=N

PE
((−1)j−1)

(π(1,...,j)) = PE
(−1)N−1 (π(1,2,...,N))

[
2∏

j=N−1

PE((−1)j−1)(π(1,...,j))

]

=
1

N

N∑
k=1

[
(−1)N−1 π(1,2,...,N)

]k  1

(N − 1)!

∑
π∈SN−1

sgn(π)π


=

1

N !

N∑
k=1

[
(−1)N−1︸ ︷︷ ︸

sgn(π(1,2,...,N))

π(1,2,...,N)

]k  ∑
π∈SN−1

sgn(π)π


=

N∑
k=1

∑
π∈SN−1

sgn
(
πk(1,2,...,N)π

)
πk(1,2,...,N) π

=
1

N !

∑
π∈SN

sgn(π) π.
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The last step follows from the fact that both the symmetric group SN−1 and the cyclic
group ⟨π(1,2,...,N)⟩ are subgroups of SN and

|SN−1⟨π(1,2,...,N)⟩| =
|SN−1||⟨π(1,2,...,N)⟩|
|SN−1 ∩ ⟨π(1,2,...,N)⟩|

= (N − 1)!N = |SN |,

where SN−1 ∩ ⟨π(1,2,...,N)⟩ = {1N} is the identity permutation of N elements.

C Supplemental Note III
Here we demonstrate that any state |Ψ⟩ from the totally antisymmetric subspace given
by the projector PAd

N
= 1

N !

∑
π∈SN

sgn(π) π with d ≥ N is invariant (up to a global phase)
under the action of an arbitrary unitary followed by a coincidence measurement on the
output modes, that is,

CNU |Ψ⟩ = eiϕ |Ψ⟩ . (C1)

A generic state |Ψ⟩ in the totally antisymmetric subspace given by PAd
N

can be written
as

|Ψ⟩ =
∑

S∈PN ([d])

cS |AS
N⟩ , (C2)

where PN([d]) is the family of sets of cardinality N over the set [d] = {1, . . . , d}, |AS
N⟩

denotes an N -partite N -level singlet state corresponding to the choice S ∈ PN([d]) of N
out of d levels, and cS are coefficients such that

∑
S∈PN ([d]) |cS |2 = 1. Each generalized

singlet state |ASN⟩ associated to the choice S = {s1, s2, . . . , sN} can be written in terms
of the determinant of a matrix of creation operators as

|AS
N⟩ =

1√
N !

detAS |0⟩ , (C3)

where

AS =


a†1,s1 a†1,s2 . . . a†1,sN
a†2,s1 a†2,s2 . . . a†2,sN...

...
...

...
a†N,s1 a†N,s2 . . . a†N,sN

 . (C4)

A generic unitary operator U acting on the N spatial modes transforms the creation
operators into u†k,m =

∑N
ℓ=1(U)k,ℓ a

†
ℓ,m, so that

U |AS
N⟩ =

1√
N !

det(UAS) |0⟩. (C5)

Since det(UAS) = detU detAS = eiθ detAS for some real θ, we get that U |AS
N⟩ = eiθ|AS

N⟩.
Therefore, from Eq. (C2) it follows

U |Ψ⟩ =
∑

S∈PN ([d])

cS U |AS
N⟩ = eiϕ |Ψ⟩ . (C6)

This means that |Ψ⟩ is, up to a global phase, invariant under any unitary operator acting
on the N spatial modes. Eq. (C1) follows from the fact that each |AS

N⟩ is a state of
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N particles occupying N distinct spatial modes, so that it is left invariant by a QND
coincidence measurement on the output modes: CN |AS

N⟩ = |AS
N⟩.

Notice that the invariance of the totally antisymmetric state under arbitrary unitaries
ensures that our scheme can use any unitary that leads to the same suppression laws as
UN . These include the unitaries U ′

N resulting from the application of local phases to the
input/output modes of the Fourier multiport, U ′ = DUN D

′, where D, D′ are diagonal
unitary matrices.



Conclusive remarks

This thesis has been dedicated to the study of identical particles and of their indis-
tinguishability as a useful quantum resource in quantum information operational tasks.
Chapters 2-4 and 6-8 report the main papers to which I collaborated during my PhD
studies, whereas Chapter 1 and Chapter 5 provide original presentations, elaborations,
and insights on the main topics underlying this work.

In Chapter 1, we introduced identical particles and the concept of spatial indistin-
guishability. In particular, the latter has been presented as a purely quantum property
occurring when the wave functions of distinct identical constituents spatially overlap over
a same detection region, giving rise to a scenario where both particles can individually
trigger the detector. In this situation, called ambiguous [7, 12], the detector is not able
to distinguish which constituent has actually been detected, connecting the concept of
spatial indistinguishability to the one of no which-particle information, and further and
relating the latter to the ones of no which-way information and no which-spin informa-
tion. We have shown that the straightforward application of the symmetrization postulate
to systems of identical particles within the standard, first quantization, label-based ap-
proach [4] leads to incorrect results when evaluating their entanglement with the same
tools employed for nonidentical constituents [13, 21, 22]. We have highlighted how the
origin of the issue resides in the labels employed to address the constituents, which can
give rise to correlations which are actually unphysical. We have discussed different so-
lutions to this problem; these include adopting a point of view focusing on operations
performed in local regions of space rather than on individual particles, and relying on a
mathematical formalism which does not involve labels. The former, called spatially local-
ized operations and classical communication (sLOCC) [20], solves the issue of evaluating
entanglement of identical constituents localized in distinct regions of space (distinguish-
able particles/unambiguous settings), whereas the latter, called no-label approach, allows
to directly evaluate the quantum correlations of identical particles even in ambiguous
scenarios, by suitably extending the standard tools employed for nonidentical ones. After
that, we reported prior results showing how spatial indistinguishability can be quantified
by an entropic measure [2], and used within the sLOCC framework to generate entan-
glement [1, 20], coherence [128], and to recover quantum correlations between identical
qubits affected by local white noise [2].

In Chapter 2 we extended the indistinguishability measure to the multipartite scenario
and to different degrees of freedom, and provided a theoretical generalization of the spatial
deformation technique employed to generate no which-way information between identical
constituents [23].

In Chapter 3 we introduced a theoretical protocol exploiting spatial indistinguishability
within the sLOCC framework to directly measure the exchange phase of identical particles
of any species [59]. The scheme has been experimentally implemented in an all-optical
setup by colleagues of the University of Science and Technology of China, leading to the
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direct measurement of the real bosonic exchange phase and of other simulated ones whose
results are reported in the same manuscript.

In Chapter 4 we show how spatial indistinguishability of identical constituents and the
sLOCC framework can be exploited to recover the quantum correlations between initially
entangled qubits which have locally interacted with detrimental noisy environments [37],
extending the results introduced in Ref. [2].

Chapter 5 explores some issues arising from the straightforward application of the no
which-way information and the related indistinguishability measure to scenarios where
interference effects can lead to the loss of particles’ individuality, providing insights on
the origin of the problem and proposing a solution to it.

In Chapters 6 and 7 we proposed a scheme to probabilistically distill maximally en-
tangled states of two identical qubits regardless of their initial state, in a way which is
robust to the action of local, particle-preserving noisy channels [3, 167]. The protocol
works for both bosons and fermions and allows to prepare either Bell states or NOON
states thanks to the introduction of passive optical operations and the exploitation of a
polarization-insensitive, nonabsorbing parity check detector.

Finally, in Chapter 8 we extended the scheme introduced in the two previous chapters
and proposed an interferometric protocol to probabilistically prepare generalized singlet
states of N identical bosons with N internal levels, in a way which is robust to detrimental
local noise [159].

In conclusion, this thesis provides a useful review of the techniques developed by our
group to activate and exploit spatial indistinguishability of identical particles as a gen-
uine quantum resource for quantum information processing, paving the way for future
developments. The latter include, but are not limited to, a better understanding of the
relationship between the measure of indistinguishability introduced and the quantum cor-
relations present in the state resulting from the sLOCC protocol for multipartite systems,
the development of more reliable interferometric schemes for the generation of many-
body entangled states and their extension to the fermionic case, and the application of
the sLOCC framework to obtain advantages in quantum thermodynamics.

Lastly, I highlight an ongoing collaboration with the team directed by Prof. Roberto
Morandotti at Institut National de la Recherche Scientifique in Montreal, Canada, where
I am currently working at the development of optical implementations of quantum al-
gorithms based on qudits encoded within single photons, expanding my experience and
knowledge in the field of quantum computing and quantum optics.
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