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1. Introduction

In the present note we deal with the following problem{
−divA(x,∇u) = λf(x, u) in Ω,
u = 0 on ∂Ω,

(Pλ)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with a smooth boundary ∂Ω, A : Ω × RN → RN is
a function admitting a general enough structure in order to cover the simple case A(x, ξ) = |ξ|p−2ξ,
p > 1, namely (Pλ) involves the usual p-Laplacian operator, moreover, λ is a positive parameter, while
f : Ω× R→ R is a suitable Carathéodory function.

During the last decades a lot of papers have been devoted to the study of several differential
problems that are included or strictly related with problem (Pλ), see, e.g., [15] and [14]. In all these
manuscripts the case p ≥ 2 has been investigated, while different asymptotic conditions at zero and/or
at infinity of the nonlinear term f(x, ·) have been considered. In [13] the more general case p > 1 has
been treated when the reaction term is a suitable perturbation of the nonlinearity |u|p−2u (see also
[6]). More recently, in [8] exploiting the structure of A as introduced in [13], the case when f(x, ·) is
(p− 1)–superlinear at zero and (p− 1)–sublinear at infinity has been studied.

Here, we still consider the same general elliptic operator in divergence form as in [8, 13] and assume
that A : Ω× RN → RN admits a potential A : Ω̄× RN → R, with

(A) A = A (x, ξ) is a continuous function on Ω̄ × RN , with a continuous derivative with respect
to ξ and A = ∂ξA . Moreover

(i) A (x, 0) = 0 and A (x, ξ) = A (x,−ξ) for every x ∈ Ω and ξ ∈ RN .
(ii) A (x, ·) is strictly convex in RN for all x ∈ Ω.

(iii) There exist two constants a1, a2, with 0 < a1 ≤ a2 such that

A(x, ξ) · ξ ≥ a1|ξ|p and |A(x, ξ)| ≤ a2|ξ|p−1

for every (x, ξ) ∈ Ω× RN .

We allow the function f to have a (p − 1)–superlinear behaviour at infinity that, as a special
case, gives back the concave-convex structure. We refer to the seminal papers [1, 3, 4] for existence,
multiplicity and non existence results for differential problems involving the p-Laplacian under the
combined effects of concave and convex nonlinear terms (see also [7, 16, 17, 18, 22, 23, 29, 33] as well
as [25, 26, 27, 28, 31, 32], where a nonhomogeneous operator is considered).
We adopt the variational methods and in the set of assumptions the classical Ambrosetti-Rabinowitz
condition is employed in order to assure the existence of an interval of parameters λ for which problem
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(Pλ) admits at least two nontrivial solutions. In particular, both the solutions are positive when
f satisfies a sign condition. The main tool is a general critical point theorem proved in [7] (see
Theorem 2.1). We wish to emphasize that the proposed approach permits to consider also more general
situations when the multiplicity result can be obtained without requiring any particular asymptotic
condition near at zero of f(x, ·) (see Theorem 3.1, assumption (jj)) so that we can go further the
although meaningful concave-convex case. The autonomous case is also treated (see Corollary 3.1 and
Theorem 3.3).

In Section 2 a quite detailed description of some auxiliary results is given. The main result is proved
in Section 3.

Some of the main abstract tools used in this paper are developed in the recent monograph [30].
We also refer to [24] for an overview of recent results concerning elliptic variational problems with
nonstandard growth conditions and related to different kinds of nonuniformly elliptic operators.

2. Basic notations and auxiliary results

In what follows Ω is a bounded domain of RN and W 1,p
0 (Ω), with 1 < p < N , denotes the usual

Sobolev space equipped with the norm

‖u‖ = ‖∇u‖p,
while W−1,p′(Ω) is its dual space. It is well known, see [35], that the best constant of the embedding

of W 1,p
0 (Ω) into Lp

∗
(Ω), with p∗ = Np

N−p , is explicitly computable by the formula

T = π−1/2N−1/p

(
p− 1

N − p

)1−1/p{
Γ(1 +N/2)Γ(N)

Γ(N/p)Γ(1 +N −N/p)

}1/N

, (2.1)

where Γ is the gamma function. In particular, the inequality

‖u‖p∗ ≤ T‖u‖, (2.2)

for every u ∈ W 1,p
0 (Ω), can be exploited, together with the Hölder inequality, in such a way that, for

every τ ∈ [1, p∗], one has

‖u‖τ ≤ cτ‖u‖ (2.3)

for all u ∈ X, where cτ = T |Ω|(p∗−τ)/(p∗τ) and |Ω| is the Lebesgue measure of Ω. Moreover, the

embedding W 1,p
0 (Ω) ↪→ Lτ (Ω) is compact provided τ ∈ [1, p∗[.

The condition

a1|ξ|p ≤ pA (x, ξ) ≤ a2|ξ|p (2.4)

for every (x, ξ) ∈ Ω×RN , can be derived from assumptions (A)(i) and (A)(iii); as well as the following
lemma has been proved.

Lemma 2.1. [13, Lemma 2.5] Let A satisfy (A)(i)–(A)(iii). Then the functional Φ : W 1,p
0 (Ω) → R

defined by

Φ(u) =

∫
Ω

A (x,∇u(x)) dx (2.5)

is convex, weakly lower semicontinuous and of class C1 in W 1,p
0 (Ω), being

Φ′(u)(v) =

∫
Ω

A(x,∇u) · ∇v dx

for every u, v ∈W 1,p
0 (Ω).

Moreover, Φ′ : W 1,p
0 (Ω)→W−1,p′(Ω) satisfies the (S+) condition, i.e., for every sequence {un} in

W 1,p
0 (Ω) such that un ⇀ u weakly in W 1,p

0 (Ω) and

lim sup
n→∞

∫
Ω

A(x,∇un) · (∇un −∇u) dx ≤ 0,

then un → u strongly in W 1,p
0 (Ω).

Our nonlinear reaction f : Ω × R → R will be required to be a Carathéodory function such that
for some function a ∈ Lα(Ω), that is a.e. positive, with α > Np

Np−Nq+pq , and p < q < p∗, the following

growth condition holds
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(Gf,a,s,q) There exist positive constants s, bs and bq , with 1 ≤ s ≤ p, such that

|f(x, t)| ≤ a(x)(bs|t|s−1 + bq|t|q−1) for a.a. x ∈ Ω and all t ∈ R.

The next lemma will be useful in order to approach problem (Pλ) in the variational setting.

Lemma 2.2. Assume that f satisfies condition (Gf,a,s,q) and put F (x, t) =
∫ t

0
f(x, ξ) dξ. Then, the

functional Ψf : W 1,p
0 (Ω)→ R defined by

Ψf (u) =

∫
Ω

F (x, u(x)) dx (2.6)

is of class C1 being

Ψ′f (u)(v) =

∫
Ω

f(x, u(x))v(x) dx.

Moreover the operator Ψ′f : W 1,p
0 (Ω)→W−1,p′(Ω) is compact and Ψf is sequentially weakly continuous

in W 1,p
0 (Ω).

Proof. First of all we can observe that from q < p∗ one has that Np−Nq+ pq > 0 and, in particular,
p < N implies that Np

Np−Nq+pq > 1. Hence, α > 1. If α′ is the conjugate exponent of α, a direct

computation shows that 1 ≤ α′ ≤ α′s ≤ α′p < α′q < p∗. Indeed, it is immediate if α = +∞, being
α′ = 1. Otherwise, if α < +∞, one has

α′q =
α

α− 1
q <

Np

N − p
⇔ αq(N − p) < αNp−Np

⇔ α(Nq −Np− qp) < −Np

⇔ α >
Np

Np−Nq + pq
.

Thus, since by (Gf,a,s,q) one has

|F (x, u(x))| ≤ a(x)

(
bs
s
|u(x)|s +

bq
q
|u(x)|q

)
, (2.7)

for all u ∈ W 1,p
0 (Ω) and a.e. in Ω, taking in mind that α′q < p∗ implies that |u|q ∈ Lα′ , the Hölder

inequality assures that Ψf is well defined.
Classical arguments assure that Ψf is differentiable and

Ψ′f (u)(v) =

∫
Ω

f(x, u(x))v(x) dx

for every u, v ∈W 1,p
0 (Ω). For the reader convenience, we explicitly compute it. Let u, v ∈W 1,p

0 (Ω).
Fixed x ∈ Ω and t ∈]−1, 1[\{0} there exists σt(x) ∈ [ht(x), kt(x)], with ht(x) = min{u(x), u(x)+tv(x)}
and kt(x) = max{u(x), u(x) + tv(x)}, such that

F (u(x) + tv(x))− F (u(x))

t
= f(x, σt(x))v(x).

In view of (Gf,a,s,q), if w(x) = max{|u(x)|, |v(x)|}, there exists a constant B > 0 such that

|f(x, σt(x))v(x)| ≤ a(x)(bs(|u(x)|+ |v(x)|)s−1 + bq(|u(x)|+ |v(x)|)q−1)|v(x)|
≤ Ba(x)(w(x)s + w(x)q)

a.e. in Ω and for every t ∈] − 1, 1[\{0}. Since w ∈ W 1,p
0 (Ω), one has w ∈ Lα′q and the dominated

convergence theorem assures the announced formula.
For verifying the regularity of Ψf we chiefly argue as in the proof of [13, Lemma 3.2]. We report
all the details showing that Ψ′f is weak-to-strong sequentially continuous, namely if {un}n and u are

in W 1,p
0 (Ω) with un ⇀ u in W 1,p

0 (Ω), then ‖Ψ′f (un) − Ψ′f (u)‖W−1,p′ (Ω) → 0 as n → ∞. Indeed, fix

{un}n in W 1,p
0 (Ω) with un ⇀ u. The compactness of the embedding W 1,p

0 (Ω) ↪→ Lα
′q(Ω) assures that

un → u in Lα
′q(Ω). Hence, from [12, Thm. IV.9], there exist a subsequence, still denoted by {un}n,

and a function h ∈ Lα′q(Ω) such that

un → u a.e. in Ω and |un(x)| ≤ h(x) a.e. in Ω, for every n ∈ N. (2.8)
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Again from (Gf,a,s,q) one has

|f(x, un(x))− f(x, u(x))| ≤ a(x)(bs(|un(x)|s−1 + |u(x)|s−1) + bq(|un(x)|q−1 + |u(x)|q−1))

≤ 2a(x)(bsh(x)s−1 + bqh(x)q−1)

for a.a. x ∈ Ω, that in particular implies

|f(x, un(x))− f(x, u(x))|q
′
a(x)1/(1−q) ≤ 2q

′
a(x)q

′+1/(1−q)(bsh(x)s−1 + bqh(x)q−1)q
′

≤ 22q′−1a(x)(bq
′

s h(x)q
′(s−1) + bq

′

q h(x)q
′(q−1)) (2.9)

= 22q′−1a(x)(bq
′

s h(x)q
′(s−1) + bq

′

2 h(x)q)

a.e. in Ω, namely, observing that 1/(1− q) = −q′/q and being ahq
′(s−1) ∈ L1(Ω), one has

|f(·, un(·))− f(·, u(·))|a(·)−1/q ∈ Lq
′
(Ω).

Thus, fixed v ∈ W 1,p
0 (Ω) with ‖v‖ = 1, taking in mind that a1/qv ∈ Lq(Ω) and exploiting the Hölder

inequality, one has

|Ψ′f (un)(v)−Ψ′f (u)(v)| =

∣∣∣∣∫
Ω

(f(x, un(x))− f(x, u(x)))v(x) dx

∣∣∣∣
≤

∫
Ω

|f(x, un(x))− f(x, u(x))||v(x)| dx

=

∫
Ω

|f(x, un(x))− f(x, u(x))|a(x)−1/qa(x)1/q|v(x)| dx

≤
(∫

Ω

|f(x, un(x))− f(x, u(x))|q
′
a(x)1/(1−q) dx

)1/q′ (∫
Ω

a(x)|v(x)|q
)1/q

.

At this point, observe that from the Hölder inequality and condition (2.3) one has∫
Ω

a(x)|v(x)|q dx ≤ ‖a‖α‖v‖qα′q ≤ c
q
α′q‖a‖α.

In conclusion,

‖Ψ′f (un)(v)−Ψ′f (u)‖W−1,p(Ω) ≤ cα′q‖a‖1/qα

(∫
Ω

|f(x, un(x))− f(x, u(x))|q
′
a(x)1/(1−q) dx

)1/q′

and, in view of (2.9), the dominated convergence theorem, condition (2.8) and the continuity of f(x, ·),
we can conclude that Ψ′f (un)→ Ψ′f (u) in W−1,p(Ω), that completes the proof. �

In analogy with [13] and [8], if f is a function of type (Gf,a,s,q), a weak solution of problem (Pλ)

is any u ∈W 1,p
0 (Ω) such that∫

Ω

A(x,∇u(x)) · ∇v(x) dx− λ
∫

Ω

f(x, u(x))v(x) dx = 0

for every v ∈ W 1,p
0 (Ω). Thus, thanks to the previous lemmas, if for λ > 0 we define the functional

Iλ : W 1,p
0 (Ω)→ R by Iλ(u) = Φ(u)− λΨf (u), the following claim holds

The critical points of Iλ are weak solutions of problem (Pλ). (2.10)

Next theorem, see [7, Theorem 2.1], will be the main tool in order to apply the variational methods
and establish our multiplicity results. We recall that the theorem below is based on a local minimum
theorem obtained in [5] and the classical mountain pass theorem (see [2] and [10]).

Theorem 2.1. Let X be a real Banach space and let Φ,Ψ : X → R be two continuously Gâteaux
differentiable functions such that infX Φ = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ X,
with 0 < Φ(ũ) < r such that

supu∈Φ−1(]−∞,r]) Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)

and for each λ ∈
]

Φ(ũ)
Ψ(ũ) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ = Φ− λΨ satisfies the (PS)-condition

and it is unbounded from below.
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Then, for each λ ∈
]

Φ(ũ)
Ψ(ũ) ,

r
supu∈Φ−1(]−∞,r[) Ψ(u)

[
the functional Iλ admits at least two non-zero critical

points uλ,1, uλ,1 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

3. Main results

Here we present some theorems that assure the existence of at least two nontrivial solutions for
problem (Pλ).

A technical constant will be used. In particular, if ρ : Ω →]0,+∞[ is the function defined by
ρ(x) = d(x, ∂Ω) (observe that for each x ∈ Ω obviously B(x,ρ(x)) = {y ∈ Ω : |y − x0| < ρ(x)} ⊆ Ω),
then, for a fixed x0 ∈ Ω and, for a ∈ Lα(Ω) (a.e. positive, with, as usual, α > Np/(Np−Nq + pq)),
we put

K = K(ρ(x0)) =
a1

a2

1

T p‖a‖α(2N − 1)|Ω|(p∗−α′p)/(α′p∗)|B1|

(
2

ρ(x0)

)N−p
, (3.1)

where T is the Talenti constant introduced in (2.1), a1 and a2 are the constants considered in (A)(iii),
α′ is the conjugate exponent of α and |B1| denotes the Lebesgue measure of the N -dimensional unit
ball.

We are in the position to state our first main result.

Theorem 3.1. Assume that f satisfies condition (Gf,a,s,q) and that there exist µ > a2

a1
p, R > 0 such

that

0 < µF (x, t) ≤ tf(x, t) (AR)

for a.a. x ∈ Ω and for all |t| ≥ R. Moreover, suppose that there exist c, d > 0 with c < d and x0 ∈ Ω
such that

(j) F (x, t) ≥ 0 a.e. in B(x0, ρ(x0)) and for all t ∈ [0, c];

(jj)
bs
s
ds−p +

bq
q
dq−p < K

∫
B(x0,ρ(x0)/2)

F (x, c) dx

cp
.

Put

λ∗ = λ∗(c) = a2(2N−1)|B1|
p

(
ρ(x0)

2

)N−p
cp∫

B(x0,ρ(x0)/2)
F (x,c) dx

,

= a1

‖a‖αpTp‖Ω|(p∗−α′p)/(p∗α′)
1
K

cp∫
B(x0,ρ(x0)/2)

F (x,c) dx

(3.2)

and

λ∗ = λ∗(d) =
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)
1

bs
s d

s−p +
bq
q d

q−p
. (3.3)

Then, for every λ ∈]λ∗, λ
∗[ problem (Pλ) admits at least two nontrivial weak solutions.

Proof. We wish to apply Theorem 2.1, with X = W 1,p
0 (Ω) and the functionals Φ and Ψf as defined

in (2.5) and (2.6) respectively, so that, as seen in Lemma 2.1 and Lemma 2.2, they are of class C1,
moreover infX Φ = Φ(0) = Ψf (0) = 0.

Step 1. For every λ > 0 the functional Iλ = Φ− λΨf is unbounded from below.

Indeed, integrating condition (AR) one has that

F (x, t) ≥ |t|
µ

Rµ
min{F (x,R), F (x,−R)}

for a.a. x ∈ Ω and for every |t| ≥ R. On the other hand, from (Gf,a,s,q) one has that

|F (x, t)| ≤ a(x)

(
bs
s
Rs +

bq
q
Rq
)

for a.a. x ∈ Ω and for every |t| ≤ R. Hence, if we put β(x) = 1
Rµ min{F (x,R), F (x,−R)} and

δ(x) = a(x)
(
bs
s R

s +
bq
q R

q
)

,

F (x, t) ≥ β(x)|t|µ − β(x)|t|µ − δ(x)

≥ β(x)|t|µ −Rµβ(x)− δ(x)
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for a.a. x ∈ Ω and for every |t| ≤ R. Thus,

F (x, t) ≥ β(x)|t|µ −Rµβ(x)− δ(x) (3.4)

for a.a. x ∈ Ω and for every t ∈ R. Moreover, observe that, in view of (AR), β(x) > 0 for a.a.

x ∈ Ω. In addition, it is clear that β ∈ Lα(Ω). Then, for every λ > 0, fixed u ∈ W 1,p
0 (Ω) with u 6= 0,

exploiting (2.4) and (3.4) one has that for every η > 0

Iλ(ηu) = Φ(ηu)− λΨf (ηu)

≤ tp
a2

p
‖u‖p − λ

(
ηµ
∫

Ω

β(x)|u(x)|µ dx−Rµ
∫

Ω

β(x) dx−
∫

Ω

δ(x) dx

)
.

Passing to the limit as η → +∞ in the previous inequality and taking in mind that µ > p one can
conclude the Iλ is unbounded from below.

Step 2. For every λ > 0 the functional Iλ = Φ− λΨf satisfies the (PS)-condition.

Indeed, let {un}n ⊂W 1,p
0 (Ω) be such that {Iλ(un)}n is bounded and I ′λ(un)→ 0 in W−1,p(Ω). A

classical argument assures the existence of some M > 0 such that for n ∈ N large enough

M +
1

µ
‖un‖ ≥ Iλ(un) +

1

µ
‖I ′λ(un)‖W−1,p(Ω)‖un‖

≥ Iλ(un)− 1

µ
I ′λ(un)(un)

=

∫
Ω

A (x,∇un(x))− 1

µ

∫
Ω

A(x,∇un) · ∇un dx

−λ
∫

Ω

(
F (x, un)− 1

µ
f(x, un(x))un(x)

)
dx.

Hence, if we put hn(x) = F (x, un)− 1
µf(x, un(x))un(x), thanks to (A)(iii) and (2.4) one achieves

M +
1

µ
‖u‖ ≥

(
a1

p
− a2

µ

)
‖u‖p − λ

∫
{x∈Ω: |u(x)|<R}

hn(x) dx− λ
∫
{x∈Ω: |u(x)|≥R}

hn(x) dx.

Observe that condition (AR) implies that the third term in the right hand side is positive, while, in view
of (Gf,a,s,q), the second term is bounded by a constant independent from n. Thus, from a1

p −
a2

µ > 0

it follows that {un}n is bounded. At this point, the reflexivity of W 1,p
0 (Ω), the compactness of Ψ′f

Lemma 2.1 and some standard techniques, see for example [8], lead to the existence of a subsequence
of {un}n that strongly converges, namely the (PS)-condition holds.

Step 3. There exist r > 0 and ũ ∈W 1,p
0 (Ω) such that

supΦ(u)≤r Ψf (u)

r
<

Ψf (ũ)

Φ(ũ)
. (3.5)

Put

r =
a1|Ω|p/p

∗

pT p
dp, (3.6)

and define the function ũ ∈W 1,p
0 (Ω) as follows

ũ(x) =


0 if x ∈ Ω \ B̄(x0, ρ(x0))

2c
ρ(x0) (ρ(x0)− |x− x0|) if x ∈ B(x0, ρ(x0)) \ B̄(x0, ρ(x0)/2)

c if x ∈ B(x0, ρ(x0)/2).

(3.7)

Condition (2.4) implies
a1

p
‖u‖p ≤ Φ(u) ≤ a2

p
‖u‖p (3.8)

for every u ∈W 1,p
0 (Ω). Hence,

{u ∈W 1,p
0 (Ω) : Φ(u) ≤ r} ⊆

{
u ∈W 1,p

0 (Ω) : ‖u‖ ≤
(
pr

a1

)1/p
}
. (3.9)
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Condition (2.7) and the Hölder inequality lead to

Ψf (u) ≤ bs
s

∫
Ω

a(x)|u(x)|s dx+
bq
q

∫
Ω

a(x)|u(x)|q dx

≤ bs
s
‖a‖α‖u‖sα′ +

bq
q
‖a‖α‖u‖qα′q (3.10)

≤ bs
s
‖a‖αT s|Ω|(p

∗−α′s)/(p∗α′)‖u‖s +
bq
q
‖a‖αT q|Ω|(p

∗−α′q)/(p∗α′)‖u‖q

for every u ∈W 1,p
0 . Thus, in view of (3.9), condition (3.10) implies

sup
Φ(u)≤r

Ψf (u) ≤ bs
s
‖a‖αT s|Ω|(p

∗−α′s)/(p∗α′)
(
pr

a1

)s/p
+
bq
q
‖a‖αT q|Ω|(p

∗−α′q)/(p∗α′)
(
pr

a1

)q/p
,

from which we deduce that

sup
Φ(u)≤r

Ψf (u)

r
≤ ‖a‖α

p

a1
T p|Ω|(p

∗−α′p)/(p∗α′)

[
bs
s

(
T ppr

a1|Ω|p/p∗
)(s−p)/p

+
bq
q

(
T ppr

a1|Ω|p/p∗
)(q−p)/p

]

= ‖a‖α
p

a1
T p|Ω|(p

∗−α′p)/(p∗α′)
(
bs
s
ds−p +

bq
q
dq−p

)
=

1

λ∗
. (3.11)

A direct computation shows that

‖ũ‖p =

(
2

ρ(x0)

)p
cp|B(x0, ρ(x0)) \B(x0, ρ(x0)/2)| =

(
ρ(x0)

2

)N−p
(2N − 1)|B1|cp.

Hence, in view of (3.8)

Φ(ũ) ≤ a2

p

(
ρ(x0)

2

)N−p
(2N − 1)|B1|cp. (3.12)

Moreover, assumption (j) assures that, one has

Ψf (ũ) =

∫
Ω

F (x, ũ(x)) dx ≥
∫
B(x0,ρ(x0)/2)

F (x, c) dx. (3.13)

The previous (3.12) and (3.13) permit to emphasize that

Ψf (ũ)

Φ(ũ)
≥ p

a2(2N − 1)|B1|

(
2

ρ(x0)

)N−p ∫
B(x0,ρ(x0)/2)

F (x, c) dx

cp
=

1

λ∗
. (3.14)

The proof of Step 3 is concluded in view of (3.11) and (3.14) once observed that assumption (jj)
implies that 1

λ∗ <
1
λ∗

.

Step 4. For r and ũ as in (3.6) and (3.7) one has 0 < Φ(ũ) < r.
Indeed, put

K̃ =

[
a1

a2

2N−p

[ρ(x0)]N−p(2N − 1)|B1|

]1/p |Ω|1/p∗

T
,

and observe that

K̃p ≥ K
∫
B(x0,ρ(x0)/2)

a(x) dx.

In fact, a direct computation shows that

K̃p

K
= ‖a‖α|Ω|1/α

′

and clearly ∫
B(x0,ρ(x0)/2)

a(x) dx ≤ ‖a‖1 ≤ |Ω|1/α
′
‖a‖α.

Now we claim that

c < K̃d. (3.15)
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Suppose (3.15) false. Then, since from (Gf,a,s,q) we have already observed that that |F (x, c)| ≤
a(x)

(
bs
s c

s +
bq
q c

q
)

for a.a. x ∈ Ω, recalling that c < d, end exploiting assumption (jj), one has

bs
s d

s +
bq
q d

q

dp
≥ K̃p

bs
s d

s +
bq
q d

q

cp
> K̃p

bs
s c

s +
bq
q c

q

cp

=
K̃p∫

B(x0,ρ(x0)/2)
a(x) dx

∫
B(x0,ρ(x0)/2)

a(x)

bs
s c

s +
bq
q c

q

cp
dx

≥ K

∫
B(x0,ρ(x0)/2)

F (x, c) dx

cp

>

bs
s d

s +
bq
q d

q

dp
,

and we obtain a contradiction. Finally, from (3.12) and (3.15) one has

Φ(ũ) <
a2

p

(
ρ(x0)

2

)N−p
(2N − 1)|B1|K̃pdp = r

and the proof of Step 4 is complete.

Putting together Step 1– Step 4 we can apply Theorem 2.1. In particular, from (3.11) and (3.14) it

is obvious that ]λ∗, λ
∗[⊆

]
Φ(ũ)

Ψf (ũ) ,
r

supΦ(u)≤r Ψf (u)

[
. Hence, for every λ ∈]λ∗, λ

∗[ the functional Iλ = Φ−
λΨf admits at least two non-zero critical points, namely, in view of (2.10), our proof is complete. �

Remark 3.1. Condition (AR) is crucial in the proof of Step 1 and Step 2. Namely, as usual, it is the
main tool in order to assure that the energy functional associated to the problem is unbounded and
satisfies the (PS)-condition.

Remark 3.2. When f is a non zero function such that f(x, t) ≥ 0 for a.a. x ∈ Ω and every t ≥ 0
the solutions established in Theorem 3.1 are positive. Indeed, we make use of classical truncation
arguments and consider the functions

f+(x, t) =

 f(x, t) if (x, t) ∈ Ω× [0,+∞[

f(x, 0) if (x, t) ∈ Ω× ∈]−∞, 0[

and F+(x, t) =
∫ t

0
f+(x, ξ) dξ for every (x, t) ∈ Ω × R. At this point, we can apply Theorem 3.1 to

the function f+(x, t). Hence, problem{
−divA(x,∇u) = λf+(x, u) in Ω,
u = 0 on ∂Ω

(3.16)

admits at least two nontrivial weak solutions. But, since f̃ is non negative, it is simple to verify that
every weak solution of (3.16) is non negative. Thus the solutions of (3.16) solve also (Pλ). Finally,
the classical regularity theory assures that the weak solutions of (Pλ) are continuous (see [20]) and by
the strong maximum principle, [34, Theorem 11.1], we achieve the announced positivity.

Remark 3.3. Taking into account Remark 3.1, condition (AR) can be required only for positive
t provided f , as considered in Reamark 3.2, is such that f(x, t) ≥ 0 for a.a. x ∈ Ω and every
t ≥ 0. Indeed, also in this case, because of the the definitions of f+ and F+, coming back to the
proof of Theorem 3.1, the energy functional Φ − λΨf+ is unbounded from below and satisfies the
(PS)-condition.

Remark 3.4. A direct computation shows that if 1 < q < p∗ and N > p, then

Np

Np−Nq + pq
>
N

p
if and only if p < q.

Indeed,
Np

Np−Nq + pq
>
N

p
⇔ p2 > Np−Nq + pq ⇔ q(N − p) > p(N − p).
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Hence, Theorem 3.1 represents a kind of counterpart of [8, Theorem 3.1] where the nonlinear term
f(x, ·) is assumed to satisfy a global growth condition that, compared with our (Gf,a,s,q), looks at the
complementary case q < p under the condition α > N/p.

A simple autonomous version of Theorem 3.1 can be stated as follows.

Corollary 3.1. Let f : R→ R be a continuous and nonnegative function such that

|f(t)| ≤ bs|t|s−1 + bq|t|q−1 (3.17)

for every t ∈ R, with bs, bq > 0, 1 ≤ s ≤ p and p < q < p∗. Put F (t) =
∫ t

0
f(ξ) dξ for every t ∈ R,

and assume that there exist c, d > 0 with c < d such that(
bs
s
ds−p +

bq
q
dq−p

)
< H

F (c)

cp
, (3.18)

where H = a1

a2

1
Tp(2N−1)|Ω|(p∗−p)/p∗

(
ρ(x0)

2

)p
and ρ(x0) = maxx∈Ω ρ(x). In addition suppose that there

exist µ > (a2/a1)p and R > 0 such that

0 < µF (t) ≤ tf(t) (AR’)

for all t ≥ R.

Then, for every λ ∈
]

a1

pTp|Ω|(p∗−p)/p∗
1
H

cp

F (c) ,
a1

pTp|Ω|(p∗−p)/p∗
1

bs
s d

s−p+
bq
q d

q−p

[
the problem{

−divA(x,∇u) = λf(u) in Ω,
u = 0 on ∂Ω,

admits at least two positive weak solutions.

Proof. Simply apply Theorem 3.1 with a ≡ 1, α = ∞, α′ = 1 (see also Remark 3.2 and Remark
3.3). �

As a particular case of Theorem 3.1 a multiplicity result can be derived whenever F (x, ·) is p-
sublinear at zero.

Theorem 3.2. Assume that f : Ω × R → R satisfies both conditions (Gf,a,s,q) and (AR). Moreover
suppose that there exists x0 ∈ Ω such that

(j’) there exists δ > 0 such that F (x, t) ≥ 0 a.e. in B(x0, ρ(x0)) and for all t ∈]0, δ[;

(jjj) lim supt→0+
F (x,t)
tp = +∞ uniformly a.e. in B(x0, ρ(x0)/2).

Put

σ∗ =
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)

(
s

bs

) q−p
q−s q − p

q − s

(
q

bq

p− s
q − p

)(p−s)/(q−s)

.

Then, for every λ ∈]0, σ∗[ problem (Pλ) admits at least two non trivial weak solutions.

Proof. First observe that σ∗ = maxd>0 λ
∗(d), where λ∗(d) is defined in (3.3). Indeed, if we put

h(d) = bs
s d

s−p + b2
q d

q−p for every d > 0, a direct computation shows that

h(d̄) =

(
bs
s

)(q−p)/(q−s)
q − s
q − p

(
bq
q

q − p
p− s

)(p−s)/(q−s)

= min
d>0

h(d)

with d̄ =
(
q
s
bs(p−s)
bq(q−p)

)1/(q−s)
. Hence, in conclusion,

σ∗ =
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)
1

h(d̄)
= λ∗(d̄) = max

d>0
λ∗(d).

Fix λ ∈]0, σ∗[, and choose d > 0 such that λ < λ∗(d). From assumption (jjj) one has

K
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)
lim sup
t→0+

∫
B(x0),ρ(x0)/2

F (x, t) dx

tp
= +∞,

with K as introduced in (3.1). Hence, there is c ∈]0,min{δ, d}[ such that

K
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)

∫
B(x0),ρ(x0)/2

F (x, c) dx

cp
>

1

λ
>

1

λ∗(d)
,
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that is

λ∗(c) < λ < λ∗(d).

Thus, taking also in mind (j’) and the choice of c, all the assumptions of Theorem 3.1 are satisfied
and the conclusion follows at once . �

Remark 3.5. I we assume

(jjj’) limt→0+
f(x,t)
tp−1 = +∞

then (j’) and (jjj) hold. So, condition (jjj’) ensures the conclusion of Theorem 3.2.

In the same spirit of Corollary 3.1 we now present an autonomous version of Theorem 3.2.

Theorem 3.3. Let f : [0,+∞[→ R be a continuous function satisfying the growth condition (3.17),

as well as (AR’). Put F (t) =
∫ t

0
f(s) ds for every t ∈ [0,+∞[ and assume that

lim
t→0+

F (t)

tp
= +∞. (3.19)

Then, if

τ∗ =
a1

pT p|Ω|(p∗−p)/(p∗)

(
s

bs

) q−p
q−s q − p

q − s

(
q

bq

p− s
q − p

)(p−s)/(q−s)

,

for every λ ∈]0, τ∗[ the problem{
−divA(x,∇u) = λf(u) in Ω,
u = 0 on ∂Ω,

(3.20)

admits at least two positive solutions.

Proof. Apply Theorem 3.2 with a(x) ≡ 1, α =∞ and α′ = 1 (see also Remarks 3.2 and 3.5).
�

In [13], the problem{
−divA(x,∇u) = λ(a(x)|u|p−2u+ f(x, u)) in Ω,
u = 0 on ∂Ω,

has been studied when f satisfies condition (Gf,a,1,q), with 1 < q < p in addition to a (p−1)-superlinear
behaviour at zero, so that the whole nonlinear reaction term is asymptotically (p−1)-linear both at zero
an at infinity. More recently, in [8] the same problem has been considered under different conditions
on f which are compatible with a (p−1)-superlinearity at zero and still require its (p−1)-sublinearity
at infinity. Here, we wish to point out that the complementary case when the nonlinear term is of
concave-convex type can be addressed.

Theorem 3.4. Let γ ∈ L∞(Ω) and ζ ∈ Lα(Ω) be two functions with α > Np
Np−Nq+pq and 1 ≤ s < p ≤

a2

a1
p < q < q∗ and min{essinfx∈Ωγ(x), essinfx∈Ωζ(x)} > 0. Put a = max{1, ζ} and let

χ∗ =
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)

(
s

‖γ‖∞

) q−p
q−s q − p

q − s

(
q
p− s
q − p

)(p−s)/(q−s)

.

Then, for every λ ∈]0, χ∗[ problem{
−divA(x,∇u) = λ(γ(x)|u|s−2u+ ζ(x)|u|q−2u) in Ω,
u = 0 on ∂Ω,

admits at least two positive weak solutions.

Proof. Let f : Ω× R→ R be the function defined by

f(x, t) =

 γ(x)|t|s−2t+ ζ(x)|t|q−2t if t ≥ 0,

0 if t < 0,

for every x ∈ Ω. Clearly, f satisfies (Gf,a,s,q) with bs = ‖γ‖∞, bq = 1. Indeed

|f(x, t)| ≤ ‖γ‖∞|t|s−1 + ζ(x)|t|q−1 ≤ max{1, ζ(x)}(‖γ‖∞|t|s−1 + |t|q−1)



NON-HOMOGENEOUS DIRICHLET PROBLEMS WITH CONCAVE-CONVEX REACTION 11

for every t ∈ R and a.a. x ∈ Ω. Moreover, since

F (x, t) =


γ(x)
s |t|

s + ζ(x)
q |t|

q if t ≥ 0,

0 if t < 0

a direct computation shows that if µ ∈]a1

a2
p, q[,

tf(x, t)− µF (x, t)

|t|s
= ζ(x)

(
1− µ

q

)
|t|q−s − µ

s
γ(x) + γ(x) ≥ essinfx∈Ωζ

(
1− µ

q

)
|t|q−s − µ

s
‖γ‖∞

a.e. in Ω and for every t > 0. Thus, condition (AR) holds for t > 0 large enough.
Observe that

F (x, t)

tp
≥ γ(x)ts

stp
≥ (essinfΩγ(x))

1

s
ts−p

a.e. in Ω and for every t > 0, namely

lim
t→0+

F (x, t)

tp
= +∞

uniformly a.e. in Ω. Finally, since χ∗ = σ∗ (recall the choice of bs and bq), for all λ ∈]0, χ∗[, arguing
as in the proof of Theorem 3.2, taking also into account Remarks 3.2 and 3.3, the problem under
consideration has at least two nontrivial solutions that, in view of the structure of f and the strong
maximum principle are positive. �

We conclude by showing a consequence of the previous result when a concave and convex nonlin-
earity is still considered.

Corollary 3.2. Assume that the assumptions of Theorem 3.4 are satisfied. Put

η∗ =

(
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)

) q−s
q−p s

‖γ‖∞
(q − p)q

p−s
q−p

(
(p− s)p−s

(q − s)q−s

)1/(q−p)

Then, for every θ ∈]0, η∗[ the problem{
−divA(x,∇u) = θγ(x)|u|s−2u+ ζ(x)|u|q−2u in Ω,
u = 0 on ∂Ω,

(3.21)

admits at least two positive weak solutions.

Proof. Fix θ ∈]0, η∗[. We apply Theorem 3.4 considering the function θγ ∈ L∞(Ω). Therefore, the
problem {

−divA(x,∇u) = λ(θγ(x)|u|s−2u+ ζ(x)|u|q−2u) in Ω,
u = 0 on ∂Ω,

admits at least two positive weak solutions for each λ ∈]0, σ∗[, where

σ∗ =
a1

‖a‖αpT p|Ω|(p∗−α′p)/(p∗α′)

(
s

θ‖γ‖∞

) q−p
q−s q − p

q − s

(
q
p− s
q − p

)(p−s)/(q−s)

.

Taking into account that from θ < η∗ one has that 1 ∈]0, σ∗[, the conclusion is achieved. �

Remark 3.6. Starting from [1, 3, 4] a great interest has been devoted to the study of the existence of
at least two solutions for differential problems involving the p-Laplacian both for semilinear equations,
namely p = 2, and nonlinear equations, that is p 6= 2 (see also [7, 16, 18, 22, 23] as well as [25, 32],
where a non-homogeneous operator is considered). In comparison with the present literature, the
previous Theorem 3.2 covers the case when a more general operator than the p-Laplacian is considered.
However, we explicitly point out that in presenting Theorem 3.2 our investigation does not consider
the best interval for which the problem under examination admits at least to positive solutions. We
simply emphasized that the existence of multiple positive solutions can be easily derived from the
more general theorems previously proved.
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[8] G. Bonanno, G. D’Agùı and R. Livrea, Triple solutions for nonlinear elliptic problems driven by a non-
homogeneous operator, Nonlinear Anal. 197 (2020), 111862

[9] G. Bonanno and R. Livrea, Multiplicity theorems for the Dirichlet problem involving the p-Laplacian,
Nonlinear Anal. 54 (2003), 1–7.

[10] G. Bonanno and R. Livrea, A proof of the Ghoussoub-Preiss theorem by the ε-perturbation of Brezis-
Nirenberg, Houston J. Math, to appear.

[11] P. Candito, R. Livrea and N. S. Papageorgiou, Nonlinear elliptic equations with asymmetric asymptotic
behavior at ±∞, Nonlinear Anal. Real World Appl. 32 (2016), 159–177.

[12] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer,
New York, 2011.

[13] F. Colasuonno, P. Pucci and C. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian
type operators, Nonlinear Anal. 75 (2012), 4496–4512.
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Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 9, 31 pp.

[32] N. S. Papageorgiou and P. Winkert, Positive solutions for nonlinear nonhomogeneous Dirichlet problems
with concave-convex nonlinearities, Positivity 20 (2016), no. 4, 945–979.

[33] N. S. Papageorgiou and C. Zhang, Noncoercive resonant (p,2)-equations with concave terms, Adv. Non-
linear Anal. 9 (2020), no. 1, 228–249.

[34] P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differential Equations 196 (2004),
1–66.

[35] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.

(G. Bonanno) Department of Engineering, University of Messina, c/da di Dio (s. Agata), 98166 Italy

Email address: bonanno@unime.it

(R. Livrea) Department of Mathematics and Computer Science, University of Palermo, Via Archirafi, 34,

90123 Palermo, Italy
Email address: roberto.livrea@unipa.it
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