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Abstract: Recently, the concept of daemonic ergotropy has been introduced to quantify the maximum
energy that can be obtained from a quantum system through an ancilla-assisted work extraction
protocol based on information gain via projective measurements [G. Francica et al., npj Quant. Inf.
3, 12 (2018)]. We prove that quantum correlations are not advantageous over classical correlations
if projective measurements are considered. We go beyond the limitations of the original definition
to include generalised measurements and provide an example in which this allows for a higher
daemonic ergotropy. Moreover, we propose a see-saw algorithm to find a measurement that attains the
maximum work extraction. Finally, we provide a multipartite generalisation of daemonic ergotropy
that pinpoints the influence of multipartite quantum correlations, and study it for multipartite
entangled and classical states.
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1. Introduction

In the rapidly evolving research arena embodied by the thermodynamics of quantum systems,
the resource-role of quantum features in work-extraction protocols is one of the most interesting and
pressing open questions [1–4]. Quantum coherences are claimed to be responsible for the extraction
of work from a single heat bath [5] and the enhanced performance of quantum engines [6]. Weakly
driven quantum heat engines are known to exhibit enhanced power outputs with respect to their
classical (stochastic) versions [7]. Quantum information-assisted schemes for energy extraction have
been put forward and shown to be potentially able to achieve significant efficiencies [8–13]. However,
controversies in the usefulness of quantum correlations and coherences in schemes for the extraction
of work from quantum systems have also been discussed [14–17]. While a full physical understanding
of these issues is still far from being acquired, theoretical progress in this direction will be key to the
design and implementation of informed experimental proof-of-principle experiments and thus the
consolidation of a quantum approach to the thermodynamics of microscopic systems.

Recently, a simple ancilla-assisted work-extraction protocol has been proposed that is able
to pinpoint the crucial role that quantum measurements have in the performance of a quantum
work-extraction game. This protocol also highlighted important implications arising from the
availability of quantum correlations between the work medium and the ancilla [18]. The scheme
provided a link between enhanced work extraction capabilities and quantum entanglement between
ancilla and work medium, suggesting the possibility to exploit entanglement as a resource.

In this work we show that although this link exists for pure states, quantum correlations and
work extraction capabilities are unrelated if mixed states are considered. However, the scheme in
Reference [18] relied on a set of very stringent assumptions, which leave room to further investigations
aimed at clarifying the potential benefits of exploiting quantum resources. Here, we critically
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investigate the protocol in Reference [18], and extend it in various directions. First, we address the
class of measurements that ensure the enhancement of the work-extraction performance. We provide
an example in which generalised measurements allow for more extracted energy than projective
measurements do. The search for the right generalised measurement poses serious computational
challenges that we solve by proposing a constructive see-saw algorithm that is able to identify the most
effective measurement for a given state of the work medium and ancilla, and an assigned Hamiltonian
of the former. We then address the issue embodied by the interplay between information gathered
via optimal measurements and quantum correlations shared between work medium and ancilla. We
show that, depending on the nature of the optimal measurement, quantum correlations may become
entirely inessential for the enhancement of work extraction. Finally, we open the investigation to
multipartite settings by addressing the case of multiple work media and ancillas, showing that the
structure of correlation-sharing among the various parties of such a system is key in the performance
of our work-extraction protocol.

Our results contribute to the ongoing research for the ultimate resources to be exploited to draw an
effective and useful framework for quantum enhanced thermodynamical processes. While clarifying a
number of important points, our work opens up new avenues of investigation that will be crucial for
the design of unambiguous experimental validations.

2. Notation and Concepts

The maximal energy decrease of a given state $S with respect to a reference Hamiltonian H
undergoing an arbitrary unitary evolution U is its ergotropy [19]

W($S, H) = Tr[$S H]−min
U

Tr[U$SU† H]. (1)

This is interpreted as the maximal amount of work that can be extracted from a system prepared
in state $S by the means of a unitary protocol [19]. Given some state in its spectral decomposition
$S = ∑k rk |rk〉〈rk| with rk+1 ≤ rk and a Hamiltonian H = ∑k εk|εk〉〈εk| with εk+1 ≥ εk the optimal
unitary is U = ∑k |εk〉〈rk| [19]. This is a direct consequence of the von Neumann trace inequality [20].
It states that tr[AB] ≤ ∑i aibi, where ai (bi) are the eigenvalues of A (B) and ai+1 ≥ ai, bi+1 ≥ bi.
Choosing A = −U$SU† and B = H and writing maxU tr[−U$SU † H] = −minU tr[U$SU † H] then
shows that the bound given by the von Neumann trace inequality is achieved with the unitary
stated above.

In Reference [18], an ancilla-assisted protocol allowed for enhanced work extraction by making use
of a process of information inference. The fundamental building blocks of the protocol are embodied
by the joint state of a work medium S and an ancilla A, and a projective measurement M performed
on the latter (cf. Figure 1). The information gathered through these measurements is then used to
determine a unitary transformation to be applied to S to extract as much work as possible.

Figure 1. Illustration of daemonic ergotropy. A system S is coupled to an ancilla A. A measurement is
performed on the latter and depending on the outcome i different unitaries can be applied to S in order
to extract work. The maximal amount of extractable work using this protocol is the daemonic ergotropy.
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This work, which is dubbed daemonic ergotropy, is given by

WD($
SA, H, M) = Tr[$S H]−∑

i
min

Ui
Tr(γS

i H̃i), (2)

where H̃i = U†
i HUi, M = {Πj} is a projective measurement, and γS

i = TrA[$
SA(IS ⊗ΠA

i )] is the
unnormalised conditional state of S corresponding to the ith measurement outcome. The daemonic
ergotropy can be written in a more compact way using the ergotropy, namely

WD($
SA, H, M) = ∑

i
W(γS

i , H). (3)

For a pure state, any projective measurement M with Πi rank-one projectors maximises the
daemonic ergotropy. In fact, the conditional states γS

i are then pure and it is always possible to find
a unitary—specific to every conditional state—that maps it to the ground state of the Hamiltonian,
thus lowering as much as possible the energy of the system and extracting the maximum amount of
work [18].

The difference between maximal daemonic ergotropy and ergotropy is called daemonic gain [18],
and is formalised as

δW($SA, H) = max
M

WD($
SA, H, M)−W($S, H). (4)

If $SA is a pure product state, $S is pure. Thus, no measurement on the ancilla is required for
optimal work extraction, since in this case there is a unitary that maps $S to the ground state of the
Hamiltonian. Consequently, the daemonic ergotropy coincides with the ergotropy in this case and
there is no daemonic gain.

The definitions provided above pinpoint the key role of the measurement step in such an
ancilla-assisted extraction protocol. In particular, the assumption of projective measurements performed
on A appears to be too restrictive. It is thus plausible to wonder if better performances of the daemonic
work-extraction scheme are possible when enlarging the range of possible measurements on the ancilla
to generalised quantum measurements.

3. Non-Optimality of Projective Measurements for Daemonic Ergotropy

We now address such a scenario and provide an example where more energy can be extracted
from S when generalised measurements are performed. To this end, we will employ the formalism of
positive operator valued measures (POVMs) [21]. In the case of a finite set of outcomes {i}, a POVM
is a map that assigns a positive semidefinite operator Ei—dubbed as effect—to each outcome i, such
that ∑i Ei = I. As with projective measurements, the probabilities for the outcomes are obtained as
pi = Tr(Ei$). However, the effects Ei of a POVM need not be projectors.

Let us consider now a three-level system S and a two-level ancilla A prepared in the joint state

$SA =
1
3

2

∑
j=0
|j〉〈j| ⊗Π

(
2π j

3
, 0
)

(5)

with projectors

Π(α, β) =
1
2
{I + cos(α)σz + sin(α)[cos(β)σx − sin(β)σy]}. (6)

Here (α, β) are angles in the single-qubit Bloch sphere. We assume a reference Hamiltonian
H=∑j εj|j〉〈j|with energy eigenvalues εj arranged in increasing order. If only projective measurements
M are allowed on the state of the ancilla, the maximum daemonic ergotropy achieved upon optimizing
over the measurement strategy is
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max
M

WD($
SA, H, M) = W($S, H) +

ε2 − ε0

2
√

3
. (7)

Details on this result are presented in Appendix A. However, if generalised measurements are
permitted, one may choose the POVM with effects Ej =

2
3 Π(2π j/3, 0) to yield a daemonic ergotropy of

WD($
SA, H, {Ei}) = W($S, H) +

1
6
(ε1 + ε2 − 2ε0). (8)

This can exceed the maximum daemonic ergotropy achieved through projective measurements.
For instance, we can assume to have shifted energy so that ε0 = 0. Under such conditions, we
would have WD($

SA, H, {Ei}) > maxM WD($
SA, H, M) for (

√
3− 1)ε2 < ε1 ≤ ε2. Figure 2 shows the

daemonic gain δW corresponding to the example above as a function of the value of the highest energy
level of the Hamiltonian for projective measurements (PVMs) and POVMs. While in this example
the optimal projective measurement does not depend on the Hamiltonian, the optimal POVM does.
Therefore, the daemonic gain grows linearly with the value of the highest energy value, as long as
only projective measurements are taken into account. For comparison, the daemonic gain that can be
achieved with the previously discussed POVM

( 2
3 Π(2π j/3, 0)

)
j is plotted as a dashed line.

Figure 2. Daemonic gain δW as a function of the value of the highest energy level of the Hamiltonian
H (in units of ε1) for the state $SA given in Equation (5). Here ε = ε2/ε1. We compare the performance
under the optimal r projective measurements (PVM) and positive operator valued measures (POVM).
The latter was found numerically using the see-saw algorithm proposed here. The former is determined
analytically as discussed in Appendix A. The dashed line is obtained as the daemonic gain δW for the
fixed POVM with effects Ej =

2
3 Π(2π j/3, 0).

4. Construction of Optimal POVMs

Having provided a useful example, we now move to address the problem of identifying the ideal
POVM for optimal daemonic ergotropy. The following Lemma is instrumental to the achievement of
our goal:

Lemma 1. The ergotropy is a sublinear function in its first argument, which refers to the state. That is, for any
γ = γ1 + γ2

W(γ, H) ≤ ∑
i=1,2

W(γi, H) (9)

and

W(λγ, H) = λW(γ, H) (10)
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for any λ ≥ 0. As ergotropy is symmetric under the exchange of its first and the second argument, it is also
sublinear in the Hamiltonian.

Proof. The second equation holds trivially, which justifies our use of unnormalised states. We obtain
the first inequality as follows

W(γ, H) = Tr(γH)−min
U

Tr[UγU† H]

≤ ∑
j=1,2

[
Tr(γj H)−min

U
Tr(UγjU† H)

]
= ∑

j=1,2
W(γj, H). (11)

Note that sublinearity implies convexity, i.e., W[λγ1 + (1− λ)γ2, H] ≤ λW(γ1, H) + (1− λ)W(γ2, H).
This result allows us to state the following corollary:

Corollary 2. The daemonic ergotropy

WD($
SA, H, M) =∑

i
W(γS

i , H) ≥W(∑
i

γS
i , H) = W($S, H) (12)

is larger or equal to ergotropy. Equality holds for the trivial measurement, with the identity as only effect.

This claim has already been proven in a different way in Reference [18]. A second interesting
consequence of the sublinearity of ergotropy is stated in the following lemma:

Lemma 3. Daemonic ergotropy is a convex function of its third argument, which pertains to the
measurement strategy.

Proof. Let us consider a mixed measurement strategy Q = λM + (1− λ)N with 0 ≤ λ ≤ 1, and the
corresponding daemonic ergotropy. We have

WD[$
SA, H, Q] ≤ λ ∑

i
W[TrA($

SA I ⊗Mi), H] + (1− λ)∑
i

W[TrA($
SA I ⊗ Ni), H]

=λWD($
SA, H, M)+(1−λ)WD($

SA, H, N). (13)

We complete our formal analysis that precedes the presentation of an algorithm for the
identification of the optimal POVM with the following theorem.

Theorem 4. For any state $SA and any POVM M, one can find a POVM M̃ with at most d2 effects, where d
is the dimension of the ancilla, such that

WD($
SA, H, M) = WD($

SA, H, M̃). (14)

Proof. The set of POVMs on a d dimensional system is convex and it has been shown that the extremal
points of this set are POVMs with at most d2 effects [22]. A convex function that is defined on a convex
domain takes its maximum on an extremal point. Therefore, there is an extremal POVM E with n
outcomes, 1 ≤ n ≤ d2, that exhibits a daemonic ergotropy that is larger than or equal to the daemonic
ergotropy for M. If equality holds, we choose M̃ = E. Otherwise, there is a mixture M̃ = λE+ (1− λ)I
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between E and a trivial random measurement I with n outcomes and effects Ii = I/n that meets the
requirement, since WD($

SA, H, I) = W($S, H) ≤W($SA, H, M).

We are now in the position to present an algorithm for the search of the optimal measurement. This
task involves two parts (a) Finding the optimal measurement and (b) Finding the optimal unitaries to
calculate the ergotropies of the conditional states. Assume a fixed measurement. Then, the conditional
states are fixed and one can find the optimal unitaries as discussed in the introduction after Equation (1).
On the other hand, if some d2 unitaries Ui are given, finding the optimal measurement M = (Ei)i is a
semidefinite program (SDP) [23]

min
M

∑
i

Tr(τiEi)

s.t ∑
i

Ei = I

Ei ≥ 0 (15)

where Ei are the effects associated with the POVM M and

τi = TrS($
SAU†

i HUi). (16)

We thus propose the following see-saw Algorithm 1:

Algorithm 1 Optimise POVM for daemonic ergotropy

1: Choose n different unitaries Ui and calculate τi
2: Solve the SDP above. This will yield a POVM M.
3: Calculate the conditional states γS

i for the POVM M and the optimal unitaries Ui.
4: repeat . Iterate steps 2 and 3
5: until convergence.

We can restrict ourselves to n = d2 different unitaries in the first step because of Theorem 4.
Calculating the daemonic ergotropy after every round of the algorithm will yield a monotonically
increasing sequence that is bounded from above because all involved operators are bounded and will
therefore converge. In the case of the example discussed above, roughly 10 iterations are needed until
the limit is reached within numerical precision. The sequence however sometimes converges to a local
maximum that is strictly smaller than the maximal daemonic ergotropy. Besides observing this in
practice, we also construct such a case in Appendix B.

5. The Role of Quantum Correlations

Notwithstanding the handiness of the algorithm built above, analytical solutions can be found in
some physically relevant cases. The one most pertinent to the scopes of this work [18] is embodied by
quantum-classical S-A states, i.e., states that can be cast in the form

$SA
qc = ∑

j
σS

j ⊗ |j〉〈j|
A (17)

with { |j〉A} a set of orthonormal vectors and σS
j unnormalised states. This class of states has attracted

attention from the community interested in the characterization of general quantum correlations, for
it has only classical correlations, that is, it is not entangled and exhibits no quantum discord, if A is
considered as the system the measurement being performed on [24–27]. For these states, we provide
the following theorem. The proof is found in Appendix C.
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Theorem 5. For a quantum-classical state $SA
qc , the maximum daemonic ergotropy is

max
M

WD($
SA, H, M) = ∑

j
W(σS

j , H). (18)

This value is achieved by performing the projective measurement with effects Pj = |j〉〈j|A (j = 1, . . . , d) on the
ancilla A.

This shows that, in the case of a quantum-classical state, we have an analytic form for the daemonic
gain. To calculate it, we should diagonalise the reduced state $A = TrS($

SA) of the ancilla. This yields
a unitary to make the state block-diagonal. The individual blocks are then the optimal conditional
states σS

j that one needs in order to compute the daemonic gain.
The above result paves the way to an investigation on the role that quantum correlations play in

the daemonic protocol for work extraction. This important question was already partially addressed
in Reference [18], where a very close relation between daemonic gain and entanglement in pure S-A
states was pointed out, while the link was shown to be looser for the case of mixed resource states.

Here, by using the results reported above, we shed further light on the link between daemonic gain
and quantum correlations. Let us assume that, for a given resource state $SA, the optimal measurement
for daemonic gain is projective, and call Pi = |i〉〈i| the corresponding projections, which can be chosen,
without loss of generality, to be rank one. We write the resource state as

$SA =
S

∑
ij

σS
ij ⊗ |i〉〈j|

A, (19)

where the dyads |i〉〈j|A are written in the basis defined by the optimal projectors Pi above. We notice
that all off-block-diagonal terms σS

ij (with i 6= j) do not contribute to the daemonic gain, which is thus
the same as the one associated with the quantum-classical state

$SA
qc = ∑

i
σS

ii ⊗ |i〉〈i|
A. (20)

That this state is a quantum-classical state is obvious from the definition provided in Equation (17).
This state can be produced by performing the optimal measurement and preparing a pure state on the
ancilla accordingly. This procedure destroys all the quantum correlations, while the daemonic gain
remains unchanged. Quantum correlations in the resource states are thus not useful, if the optimal
measurement is projective. This is especially true if only projective measurements are considered
from the start, which stresses the importance of considering generalised measurements, if one aims at
investigating the impact entanglement may have on daemonic ergotropy.

However, we now show that, even if we allow for the use of arbitrary POVMs, the maximum
daemonic gain for any given Hamiltonian can be achieved by classical-classical states, i.e., states
whose parties share only classical correlations [26]. We do this by providing an upper bound on the
daemonic gain. This bound is tight as it is achieved by a classical-classical state. Let us consider an
explicit formula for daemonic gain, where we have inserted the definitions of ergotropy and daemonic
ergotropy. We have

δW($SA, H) = min
U

Tr(U$SU†H)−min
(Ek)

min
Uk

∑
k

Tr(Uk$S
k U†

k H). (21)

Using von Neumann’s trace inequality, which reads Tr(AB) ≤ ∑i aibi with ai(bi) the eigenvalues
of A (B) in increasing order, one easily finds that the first term never exceeds 1

dS
Tr(H), where dS is the

dimension of the Hilbert space of S. This value is attained if $S is maximally mixed. The smallest value
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that the second term can take is ε0, the lowest energy eigenvalue. This is achieved for pure conditional
states $S

k . Consequently

δW($SA, H) ≤ 1
dS

Tr(H)− ε0. (22)

If the dimension of the ancilla dA is greater or equal to dS, this value is attained by using—among
others—the classical-classical state

$SA =
1
dS

dS

∑
i=1
|si〉〈si|S ⊗ |ai〉〈ai|A (23)

and the projective measurement with effects |ai〉〈ai|A, where { |ai〉A} ({ |si〉S}) forms an orthogonal
basis of A (S). In the above example, the bound is also achievable with maximally entangled pure states

|ΨSA〉 = 1√
dS

dS

∑
i=1
|si〉S |ai〉A. (24)

The maximal daemonic gain is, however, not always achieved using pure states, as the following
example shows. Consider the following classical-classical state with a qutrit system and a qubit ancilla

$SA =
1
3
[|0〉〈0|S ⊗ |0〉〈0|A + (|1〉〈1|S + |2〉〈2|S)⊗ |1〉〈1|A]. (25)

For a Hamiltonian with eigenvalues ε0 ≤ ε1 ≤ ε2 one easily finds the daemonic gain δW($) =

(ε2 − ε0)/3. On the other hand, for any pure state, including maximally entangled states, we have

δW( |Ψ〉SA) ≤ 1
2
(ε1 − ε0), (26)

since the Schmidt-rank of a pure state on a 3× 2 dimensional system is at most 2. For a suitably
chosen Hamiltonian, such as H/ε1 = |1〉〈1|+ ε|2〉〈2|, with ε = ε2/ε1 > 3/2, the daemonic gain of
$SA [Equation (25)] exceeds the daemonic gain of any pure state of the same system.

6. Multipartite Daemonic Ergotropy

In this section we want to investigate a multipartite adaptation of the daemonic ergotropy protocol.
Concretely, we consider the situation in which N different parties i ∈ {1, ..., N} each own one system
Si, whose energy they can locally measure using their local Hamiltonian H(i). The energy of all systems
combined will then be evaluated using the Hamiltonian

H =
N

∑
i=1

H(i). (27)

Additionally, they can only act on their systems locally, that is using local unitaries. It is only this
restriction that makes the protocol multipartite regarding the systems. If arbitrary global unitaries were
admitted, this would be equivalent to a situation with a single system consisting of N subsystems.

We also take the case into account in which there are M ancillas, each owned by a different party
k ∈ {1, ..., M}. As we are interested in a genuinely multipartite protocol, each party must resort to local
measurements, possibly assisted by classical communication among the parties, yielding outcomes jk.
After all outcomes are obtained, they are publicly announced and every party i performs a unitary
on their system Si, which may depend on all the outcomes~j = (jk)M

k=1. We define the multipartite
daemonic ergotropy Wmult

D to be the maximum amount of energy that can be extracted from a state in
this way.
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Note that, in spite of the previously imposed restrictions, our notion of multipartite daemonic
ergotropy is in fact a generalisation of daemonic ergotropy. This might appear paradoxical at first
glance. However, the daemonic ergotropy protocol is equivalent to the protocol of multipartite
daemonic ergotropy for one system and one ancilla. This especially includes scenarios in which system
and ancilla comprise several subsystems. Studying multipartite daemonic ergotropy is interesting,
because it is also applicable to settings, in which the implementation of global measurements and
unitaries are unfeasible.

As we are only concerned with local measurements, possibly assisted by classical communication
among the parties, all effects of a POVM are of the form

E~j =
M⊗

k=1

Ek
jk . (28)

We denote the respective conditional states of all systems by $S
~j
= Tr(A1...AM)($

S1...SN A1...AM E~j)

and the conditional state of system Si given a measurement outcome~j as $i
~j
. As before, the multipartite

daemonic ergotropy can then be expressed in terms of the ergotropy as

Wmult
D (${Sj},{Ak}, H, E) = ∑

~j

N

∑
i=1

W($i
~j
, H(i)). (29)

With this result, we can show that contrary to the bipartite case [cf. discussions after Equation (3)]
in the multipartite setting projective measurements are in general not optimal for work extraction
even for pure states. In order to see this, consider a state $S1 A and a purification |ψ〉S1S2 A, with
$S1 A = TrS2(|ψ〉〈ψ|S1S2 A). If we now assume that system S2 is equipped with a local Hamiltonian
H(2) = hI, where h is a constant, the multipartite daemonic ergotropy of the purified state is

Wmult
D ( |ψ〉S1S2 A, H, E) = ∑

~j

[
W($1

~j
, H(1)) + W($2

~j
, H(2))

]
= ∑

~j

W($1
~j

, H(1))

= WD($
S1 A, H(1), E).

(30)

This result stems from the fact that H(2) is completely degenerate and the ergotropy vanishes for
such Hamiltonians. Thus, also the multipartite daemonic ergotropy of the purification is maximised
for the same POVM that also maximises the daemonic ergotropy of $SA. Hence, the purification of
the qutrit-qubit state stated in Equation (5) is an example for a pure state that requires a POVM to
maximise the multipartite daemonic ergotropy. Note, however, that there are also states for which
projective measurements are optimal independently of the choice of the Hamiltonian. The first example
are states that possess a Schmidt decomposition [28], i.e.,

|Ψ〉 = ∑
i

√
λi |iS1 . . . iSn iA1 . . . iAm〉, (31)

with 〈iSl |jSl 〉 = 〈iAl |jAl 〉 = δij∀i, j, l. For qubits, these are exactly the states that become separable as
soon as one particle is ignored [29]. A famous example is the m-partite Greenberger–Horne–Zeilinger
(GHZ) state

|GHZ〉 = 1√
2
( |0S1 . . . 0Sn 0A1 . . . 0Am〉+ |1S1 . . . 1Sn 1A1 . . . 1Am〉), (32)
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for which the local projective measurements on |0〉 and |1〉 are optimal, since the conditional state of
all systems is a pure product state independently of the outcome and its energy can thus be minimised
using local unitaries.

A second class of states for which projective measurements are always optimal are multipartite
quantum-classical states

$S1 ...Sn A = ∑
i

σS1 ...Sn
i ⊗ |i〉〈i|A. (33)

Here, we can recover the proof of Theorem 5 to show that the projective measurement with projectors
|i〉〈i| is optimal. The only adaptation to the proof is that the unitaries are now required to be products.
Of course this result is still true in the special case when the ancilla is made up of several parties, such
that the state can be written as

${Sj}...{Am} = ∑
i

σS1 ...Sn
i ⊗ |i〉〈i|A1 ⊗ . . . |i〉〈i|Am . (34)

In this case, the optimal measurement consists of the local projective measurements with
effects |i〉〈i|Ak .

7. Conclusions

We have significantly extended the concept of daemonic ergotropy to situations involving
POVM-based information-gain processes, demonstrating that, in general, one should expect
an advantage coming from the use of generalised quantum measurements in ancilla-assisted
work-extraction schemes. While the optimal generalised measurements can be identified analytically
in some restricted—yet physically relevant—cases, we have proposed an SDP-based see-saw algorithm
for their construction. This has led to a number of results shedding light on previously unreported
issues linked to daemonic approaches to quantum work extraction: while the interplay between
quantum correlations and the features of the optimal measurements appears to be intricate, the
structure of entanglement sharing in a multipartite scenario where only local unitaries and POVMs are
used turns out to be key in the performance of ancilla-assisted work extraction.

Our work paves the way to a number of interesting developments aimed at exploring further and
clarifying the relation between quantum features and work-extraction games in quantum scenarios.
On the one hand, it will be very interesting to further compare, quantitatively, the performance of
daemonic protocols under optimal PVMs and POVMs to ascertain the extents of the benefits induced
by the latter class of measurements against the difficulty of practically implement them. On the other
hand, the analysis that we have reported here leaves room to the in-depth assessment of multipartite
daemonic gain against the structure of multipartite entanglement aimed at the identification of
potentially optimal classes of multipartite entangled states, when gauged against their role as a resource
in work-extraction schemes.
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Appendix A. POVM Advantage in Qutrit-Qubit Example

We present the state

$SA =
1
3

2

∑
j=0
|j〉〈j| ⊗ Pj (A1)

with

Pj = Π
(

2π j
3

, 0
)

(A2)

and
Π(α, β) =

1
2
{I + cos(α)σz + sin(α)[cos(β)σx − sin(β)σy]} (A3)

as an example in which higher daemonic ergotropy can be achieved with POVMs compared to
projective measurements, if a Hamiltonian is chosen suitably. Here, we work out the details and show
all necessary calculations explicitely. First, we find the optimal projective measurements. It turns out,
that they can be found independently of the chosen Hamiltonian. With this result and bearing in mind
that the daemonic gain is invariant under unitary transformations of the Hamiltonian, we can then
compute the daemonic ergotropy as a function of the energy spectrum.

Since the ancilla is a qubit, there are only two types of projective measurements: Either, the
projective measurement has one outcome that is obtained with certainty, which makes the measurement
trivial, or the measurement has two outcomes. In the latter case, the effects are rank one. Therefore,
we can compute the maximal daemonic gain for projective measurements by computing it for the
measurement Π = (Π(α, β), Π(α + π, β)) and optimise over the angles α and β afterwards. We have

$S =
1
3
(|0〉〈0|+ |1〉〈1|+ |2〉〈2|),

$S
α =Tr[$SA(I ⊗Π(α, β))]

=
1
3
{|0〉〈0|Tr[P0Π(α, β)] + |1〉〈1|Tr[P1Π(α, β)] + |2〉〈2|Tr[P2Π(α, β)]}

=
1
3

[
|0〉〈0|1

2
(1 + cos(α)) + |1〉〈1|

(
1
2
− 1

4
cos(α) +

√
3

4
sin(α) cos(β)

)

+|2〉〈2|
(

1
2
− 1

4
cos(α)−

√
3

4
sin(α) cos(β)

)]
,

$S
α+π =Tr[$SA(I ⊗Π(α + π, β))]

=
1
3

[
|0〉〈0|1

2
(1− cos(α)) + |1〉〈1|

(
1
2
+

1
4

cos(α)−
√

3
4

sin(α) cos(β)

)

+|2〉〈2|
(

1
2
+

1
4

cos(α) +

√
3

4
sin(α) cos(β)

)]
. (A4)

From the definition of ergotropy one can easily see that the ergotropy of the conditional states γS
α

and γS
α+π will be maximal for cos(β) = ±1. This becomes clear when considering a state

$ = a|0〉〈0|+ (b + c)|1〉〈1|+ (b− c)|2〉〈2|, (A5)
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where a, b, c ∈ R and c ≥ 0. Let the Hamiltonian be

H = ε0|ε0〉〈ε0|+ ε1|ε1〉〈ε1|+ ε2|ε2〉〈ε2|. (A6)

Then, the ergotropy can without loss of generality be written as

W = Tr[$H]−min
U

Tr[U$U† H]

= Tr[$H]− [ε0a + ε1(b + c) + ε2(b− c)]

= Tr[$H]− [aε0 + b(ε1 + ε2) + c(ε1 − ε2)], (A7)

where the energy eigenvalues are ordered such that the minimum is achieved. Consequently, we get
ε1 ≤ ε2 since (b + c) ≥ (b− c). Therefore, W increases with c and we can set β = 0 in the above
calculation. Exploiting addition theorems, we can now write

$S
α =

1
6

[
|0〉〈0|[1 + cos(α)] + |1〉〈1|

(
1 + cos

(
α− 2π

3

))
+ |2〉〈2|

(
1 + cos

(
α +

2π

3

)) ]
$S

α+π =
1
6

[
|0〉〈0|(1− cos α) + |1〉〈1|

(
1− cos

(
α− 2π

3

))
+ |2〉〈2|

(
1− cos

(
α +

2π

3

)) ]
.

As one can easily see, an optimal value of α is not unique, as shifting its value by 2π
3 can be

compensated by relabeling the states, which does not affect the daemonic gain. We now aim to find the
optimal α in the interval [−π

3 , π
3 ). When calculating the ergotropy of the conditional states we need to

know the ordering of their eigenvalues

α ∈
[
−π

3
, 0
)
⇒ cos(α) ≥ cos

(
α +

2π

3

)
≥ cos

(
α− 2π

3

)
α ∈

(
0,

π

3

)
⇒ cos(α) ≥ cos

(
α− 2π

3

)
≥ cos

(
α +

2π

3

)
(A8)

In the following calculation, the upper sign will refer to the negative and the lower sign will refer
to the positive interval

δW($SA, H, Π) = WD($SA, H, Π)−W($S, H)

= Tr[$S H]−min
Π

∑
k

Tr[$S A(U†
k HUk ⊗Πk)]−

[
Tr[$S H]−min

U
Tr[$SU†HU]

]
= min

U
Tr[$SU† HU]−min

Π
∑
k

Tr[$S A(U†
k HUk ⊗Πk)]

= max
α

{
1
3
(ε0 + ε1 + ε2)−

1
6
(ε0[1 + cos(α)]) + ε1

(
1 + cos

(
α± 2π

3

))
+ ε2

(
1 + cos

(
α∓ 2π

3

))
+ ε0

(
1− cos

(
α∓ 2π

3

))
+ ε1

(
1− cos

(
α± 2π

3

))
+ ε2(1− cos α)

}
=

1
6
(ε2 − ε0)max

α

(
cos(α)− cos

(
α∓ 2π

3

))
=

ε2 − ε0

2
√

3
. (A9)
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Now, that we computed the maximal daemonic gain for projective measurements, we compare
this with the daemonic gain that can be achieved by using the POVM M, consisting of the effects 2

3 Pi,
as defined in Equation (A2). In this case, the conditional states are

γS
P0

=
2
9

(
|0〉〈0|+ 1

4
|1〉〈1|+ 1

4
|2〉〈2|

)
,

γS
P1

=
2
9

(
1
4
|0〉〈0|+ |1〉〈1|+ 1

4
|2〉〈2|

)
,

γS
P2

=
2
9

(
1
4
|0〉〈0|+ 1

4
|1〉〈1|+ |2〉〈2|

)
. (A10)

Given the conditional states, we can now compute the daemonic gain as

δW =ε0

(
1
3
− 2

3

)
+ ε1

(
1
3
− 1

6

)
+ ε2

(
1
3
− 1

6

)
=− 1

3
ε0 +

1
6
(ε1 + ε2).

(A11)

Choosing the Hamiltonian H = |ε1〉〈ε1| + |ε2〉〈ε2| provides an example where the maximal
daemonic gain can not be achieved by using projective measurements because

δWproj =
1

2
√

3
< δWM =

1
3

. (A12)

Appendix B. Non-Optimal Convergence of the See-Saw Algorithm

In the following, we construct a case in which Algorithm 1 will yield a sequence of values for
the daemonic ergotropy that does not converge against the maximal daemonic ergotropy. Consider a
state $SA on a system S with a Hamiltonian H and a d-dimensional ancilla A, such that the optimal
measurements are rank-one projective measurements as long as only d-outcome measurements are
considered. Then, there exists an initialisation of Algorithm 1, such that the sequence of daemonic
ergotropies generated by the algorithm limits in the maximal daemonic ergotropy for d-outcome
measurements. In order to see this, consider a measurement Π that is optimal among d-outcome
measurements. For the effects {Π1, . . . , Πd} one finds d optimal unitaries {V1, . . . , Vd}. We now
initialise the algorithm for d2 outcomes in the following way

Ui = Vi, i = 1, ..., d− 1

Ui = Vd, i = d, ..., d2. (A13)

This implies τd = τd+1 = . . . = τd2 , where τi = TrS($
SAU†

i HUi). Hence, the objective of step 2
of the algorithm simplifies to

min
M

d2

∑
i=1

Tr(τi Mi) = min
M

[
d−1

∑
i=1

Tr(τi Mi)+Tr

(
τd

d2

∑
j=d

Mj

)]
. (A14)

The value of this expression thus depends on d effects M1, . . . , Md−1, ∑d2

j=d Mj. In this case, the
minimum can by assumption only be achieved if the effects are all rank-one. This implies that
the first d − 1 effects are orthogonal rank-one projectors and the remaining effects are rank-one
operators on the remaining one-dimensional subspace and sum up to a rank-one projector. Thus, the
algorithm again finds a d-outcome rank-one projective measurement that is optimal among d-outcome
measurements. The case that was discussed above is of practical relevance, as we have observed in
numerical experiments that randomly initialised unitaries may converge against the configuration
stated in Equation (A13).
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The example discussed in Appendix A meets the requirement that all optimal two-outcome
measurements are rank-one projective measurements. The optimal projective measurements are
calculated in Appendix A. Any two outcome measurement in two dimensions with rank-two effects
can be considered as a mixture of a rank-one projective measurement with white noise. The only
case, in which white noise will not decrease the daemonic ergotropy is, if the conditional states γS

i
[Equation (A8)] are simultaneously diagonalisable by the same diagonalising unitary and with the
same ordering of eigenvalues in diagonal form. This is however not the case, since both states are
already diagonal but the eigenvalues are not in the same order.

In the same example, the maximum daemonic ergotropy cannot be achieved with d-outcome
measurements.

Appendix C. Proof of Theorem 5

In this Appendix we provide a complete proof of the statement made in Theorem 5, which we
repeat here again for easiness of reading. For a quantum-classical state, that is a state that can be cast
in the form

$SA
qc = ∑

j
σS

j ⊗ |j〉〈j|
A (A15)

with a set of orthonormal vectors { |j〉A} and unnormalised states σS
j the following theorem holds.

Theorem A1. For a quantum-classical state $SA
qc , the maximum daemonic ergotropy is

max
M

WD($
SA, H, M) = ∑

j
W(σS

j , H). (A16)

This value is achieved by performing the projective measurements Pj = |j〉〈j|A on the ancilla A.

Proof. The first claim follows directly from the second claim using Equation (3). Therefore, we prove
the second claim by showing that the daemonic gain achieved through any POVM E with effects Ei
and an arbitrary number of outcomes N has an upper bound given by the value corresponding to the
use of projective measurements. We start by computing the conditional states

γS
k = TrA

[
$SA(I ⊗ Ek)

]
=

d

∑
j=1

σS
j 〈j| Ek |j〉. (A17)

It can be easily seen that post-processing can never increase the daemonic ergotropy. This allows
us to assume, without loss of generality, that all effects are rank-one and use Naimark’s extension
theorem [30] to write

γS
k =

N

∑
j=1

σS
j |〈j|φk〉|2, (A18)

where (|φk〉〈φk|)N
k=1 is the Naimark extension of the operators Ek on the extended ancilla space. Then,

( |φk〉))N
k=1 is an orthonormal basis in the extended ancilla space. We also extend ( |j〉)d

j=1, so ( |j〉)N
j=1 is

another orthonormal basis in the extended ancilla space and set σS
j = 0, ∀j > d. We can now interpret

|〈j|φk〉|2 as entries of a doubly stochastic matrix and apply the Birkhoff-von Neumann theorem [31],
which allows us to express this doubly stochastic matrix as a convex combination of permutation
matrices π(n) =

(
π
(n)
jk

)
jk

. This yields

γS
k =

N

∑
j=1

σj ∑
n

pnπ
(n)
jk (A19)



Entropy 2019, 21, 771 15 of 16

with probabilities pn.
We insert this result into the formula of the daemonic ergotropy

WD($
SA, H, M) = Tr($SH)−∑

k
min

Uk
Tr(UkγS

k U†
k H). (A20)

As we are interested in the optimal measurement, our only concern is the second term

N

∑
k=1

min
U

Tr(UγS
k U† H)

=
N

∑
k=1

min
U

Tr(U
N

∑
j=1

σj ∑
n

pnπ
(n)
jk U†H)

≥ ∑
k,j,n

pnπ
(n)
jk min

U
Tr(UσjU† H)

=∑
n

pn ∑
j

min
U

Tr(UσjU† H)∑
k

π
(n)
jk

=∑
j

min
U

Tr(UσjU† H), (A21)

which is bounded from below by the value that is achieved for the projective measurement Pj = |j〉〈j|,
as stated above.
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