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Featured Application: This research deals with a very relevant topic in the framework of land-
slide susceptibility mapping, highlighting some very critical drawbacks in using a weak land-
slide inventory for regional-scale assessment. Tools and strategies for recognizing and approach-
ing such limits are given.

Abstract: This research is focused on the evaluation of the reliability of regional landslide suscep-
tibility models obtained by exploiting inhomogeneous (for quality, resolution and/or triggering
related type and intensity) collected inventories for calibration. At a large-scale glance, merging more
inventories can result in well-performing models hiding potential strong predictive deficiencies. An
example of the limits that such kinds of models can display is given by a landslide susceptibility
study, which was carried out for a large sector of the coastal area of El Salvador, where an appar-
ently well-performing regional model (AUC = 0.87) was obtained by regressing a dataset through
multivariate adaptive regression splines (MARS), including five landslide inventories from volcanic
areas (Ilopango and Coatepeque caldera; San Salvador, San Miguel, and San Vicente Volcanoes). A
multiscale validation strategy was applied to verify its actual predictive skill on a local base, bringing
to light the loss in the predictive power of the regional model, with a lowering of AUC (20% on
average) and strong effects in terms of sensitivity and specificity.

Keywords: incomplete landslide archives; MARS; Central America; validation procedures; regional-scale;
debris flows

1. Introduction

Due to the subduction of the Cocos Plate under the Caribbean Plate along the Mid-
dle America Trench [1], El Salvador is characterized by intense tectonic activity and a
number of active volcanoes, meaning that severe earthquakes and volcanic eruptions fre-
quently affect the country. As a consequence, volcanic rocks (from Cenozoic hard rocks
to pseudo-coherent recent ones) and their weathered products largely outcrop [2] along
very highly steep slopes in this country. In particular, the tropical-humid climate setting of
El Salvador [3], with a mean annual rainfall above 1846 mm and a temperature between
20 and 30 ◦C [4], is responsible for the intense weathering of the topsoil, resulting in poor
geotechnical properties. At the same time, intense rainfall events associated with recurrent
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hurricanes frequently result in water saturation and neutral pression increasing in the
regolithic mantle, causing the triggering of slope failures [5–7]. As a consequence, the vol-
canoes and the caldera’s inner flanks are very frequently affected by landslides of a debris
slide/flow type. These failures, in light of the high steepness of the initiation zones, very
frequently take the form of very fast and long-runout debris flow phenomena, threatening
those villages, which are set along the track channels or at the foot of the slopes. In recent
years, the Nepaja (2020) [8] and San Vicente (2009) [9,10] disasters clearly illustrated this
kind of phenomenon, resulting in widespread damage to houses and high numbers of
injured and dead.

Differing from rockfall susceptibility studies [11–13], slide- and flow-type landslides
are typically analyzed on a basin to regional scale, meaning that large inventories are
required for robust modelling. In particular, a need arises to detect the potential initiation
sites of landslides. To this end, landslide susceptibility modelling based on statistical
analysis can offer a suitable approach for obtaining quantitative, objective, and validated
prediction images of the potential triggering sites, which can then be processed with
propagation tracking algorithms for a full hazard assessment.

Indeed, civil protection urgently requires regional-scale landslide susceptibility sce-
narios attempting to define statistically based national maps, eventually even exploiting
limited but available landslide inventories for their calibration. To this end, grouping
multiple clustered available datasets is frequently adopted as a solution to obtain landslide
inventories large enough to train the statistical models. However, such landslide datasets
can result in heterogeneity in terms of spatial distribution, the expertise of the operators,
classification and mapping criteria, survey recognition methods and resolution (field, re-
mote, reports), epoch and related triggering events, etc. It is worth noting that these limits
could hamper the resolution and precision of the predictive models without giving clear
effects down from standard validation procedures.

A number of landslide susceptibility studies have been conducted in the last fifteen years.
In particular, post-Hurricane Mitch (1998) and post the 2001 earthquake, landslide inventories
were processed through principal component analysis for assessing landslide susceptibility of
an area in the extreme north-western sector of the country [14]. At the same time, regional
susceptibility assessment studies in El Salvador have been carried out, exploiting the same
2001 seismically induced inventory (set on the epicentral area), both through binary logistic
regression [15] and neural networks [16]. More recently, a regional landslide susceptibility
scenario with a 30-arcsecond resolution was also proposed by applying a fuzzy-based heuristic
approach [17]. Rotigliano et al. [5,6] and Mercurio et al. [7] extensively applied logistic regres-
sion and MARS to assess landslide susceptibility in two limited volcanic sectors (Ilopango
caldera and San Vicente, respectively). Regarding the civil protection authorities, MARN
(Ministerio de Medio Ambiente y Recursos Naturales) adopted a 1:50,000 scale landslide
susceptibility map for the whole country [18] by applying the heuristic approach of [19,20].
However, all of the proposed regional models [14–17] were obtained through a calibration in
very small sectors, with very weak, if any, validation procedures.

In this paper, an application to the El Salvador territory was carried out, aimed at
suggesting approaches and strategies suitable for correctly investigating the actual quality
of a susceptibility map obtained by calibrating a predictive model through a heteroge-
neous landslide inventory. In spite of its relevance, few other scientists have faced similar
issues [21,22].

The susceptibility modelling was based on applying Multivariate Adaptive Regression
Splines (MARS; [23]) and implemented by exploiting open source software (QGIS [24],
SAGA GIS [25], RStudio [26]).

2. Materials and Methods
2.1. Study Areas

In this research, landslide susceptibility assessment was focused on the slopes of a
set of volcano/caldera areas where debris flows are frequently activated (Figure 1): (i) the
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Coatepeque area, which extends for about 82 km2 east of the homonymous caldera lake;
(ii) the San Salvador area, surrounding the homonymous volcano for about 144 km2; (iii) the
watershed inner basins of the Ilopango caldera, covering a total area of about 121 km2; (iv)
the San Vicente area, which includes the whole homonymous volcano, extending for about
287 km2; and (v) the tip sector of the San Miguel volcano, covering a total area of about
11 km2.
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Figure 1. Setting of the study area.

Focusing on the five study areas, the lithologic units of the San Salvador formation
are the most frequently outcropping rocks: Holocene pyroclastites named “Tobas color
café”, in the Coatepeque area (77%), “Tierra Blanca”, in the Ilopango area (45%) and to
a lesser extent in the San Salvador area. Accumulation cones dominate the San Miguel
area (72%), while Pleistocene effusive rocks prevail in the San Salvador area (57%) largely
outcropping also in the San Vicente area. In addition, acid pyroclastites of the Cuscatlán
formation are widely diffused both in the Ilopango and the San Vicente areas. Finally, with
very limited outcropping areas, the pyroclastic and effusive rocks of the Bálsamo formation
are observed in the Coatepeque, Ilopango, and San Vicente areas.

2.2. Landslides Inventory and Related Triggering Rainfall Events

The main task of this research was to test the suitability of aggregated regional land-
slide archives in the evaluation of landslide susceptibility assessment. For this reason, a
set of independent available debris flows/slides archives were exploited for training and
validating a regional landslide susceptibility map. Archives from five different sectors of
the El Salvador territory were considered, which, even in the same sector, were considered
as un-uniform in terms of operators, methods (field/remote), and epoch (which means
grouping debris flows/slides linked to multiple and/or different extreme rainfall). These
landslide inventories were prepared in the framework of different studies (master’s de-
gree thesis, PhD thesis and so on, see Author Contributions), many of which have been
part of the RIESCA project (Proyecto Regional de Formación Aplicada a los Escenarios
de Riesgos con Vigilancia y Monitoreo de los Fenómenos Volcánicos, Sísmicos e Hidro-
geológicos en Centro América). For this reason, the study areas were not a priori limited
and as mentioned above, they were restricted to the sectors affected by the activation of
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the inventoried debris flows/slides: the Ilopango (ILO), Coatepeque (COA), San Miguel
(SMG), San Vicente (SVC), and San Salvador (SSV) areas. The ILO and the COA inventories
were mapped through systematic remote analysis and integrated by some random file
checks, consisting of 38,525 and 1895 debris flows/slides, respectively. The SVC inventory
included 4975 phenomena, which were remotely recognized according to an irregular spa-
tial scheme. The debris flows/slides of the SMG (233 cases) were extracted by a historical
simplified archive inventory, whilst the SSV inventory (382 cases) merged the results of
some spot field surveys. At the same time, the expertise and perspective of the operators
were different, with ILO and COA having been mapped in the framework of scientific
research, all the other inventories coming from civil protection tasks and SMG collecting
a number of historical reports. The main triggering events for these landslide scenarios
were Hurricane Ida and the tropical depression 12 E (TD12 E). The tropical-humid climate
setting of El Salvador produces, in the rainy season between May and October, very high
rainfall amounts (above 1846 mm, on average) that, usually, occur in the form of intense
storms. Therefore, rapid saturation of the regolithic mantle and powerful surface runoff
trigger a huge number of landslides even in the case of a normal rainfall season [5].

Between November 7th and 8th, Hurricane Ida, and the low-pressure system 96 E,
simultaneously struck the central area of El Salvador, with cumulated rainfall exceeding
300 mm/24 h in the Ilopango and San Vicente villages [5,6,27,28]. Floods and landslides
lashed these areas, causing around 200 deaths and huge economic losses [9], with damages
to cropland, rural houses, and roads. In particular, the most devastating debris flows were
triggered from the north-western flank of the San Vicente Volcano, hitting the villages of
Verapaz and Guadalupe [5,7].

Tropical depression 12 E affected El Salvador during the period from the 10th to
20th October. With a cumulative maximum of 1513 mm, equivalent to 42% of the mean
annual rainfall of the period 1971–2000 [28], DT12 E was classified as the most severe
meteorological event recorded in the region. Additionally, in this case, with 10% of the
national territory affected, especially along the coastal plains and the volcanic mountains,
El Salvador was heavily hit by the related floods and landslides, reporting 35 victims and
an economic loss of more than USD nine hundred million [10,28].

The Coatepeque debris flows were triggered by the tropical depression (TD) 12 E in 2011.
The same extreme rainfall event activated the debris flows/slides of the San Salvador dataset.
Hurricane Ida was the trigger of the phenomena mapped in the San Vicente archive, while both
TD12 E and Ida activated the debris flows/slides of the Ilopango dataset. Finally, the landslides
of the San Miguel archive were triggered by several rainfall events from 2001 to 2018.

All of the mapped phenomena were individuated by exploiting Google Earth images,
and the landslide identification point (LIP), which was generated for each of the mapped
phenomena corresponding to the highest point along the landslide crown, was also taken
as indicating the area that effectively represents the activation conditions for surface debris
flows [5,6,29–33].

2.3. Model Building and Validation Strategy
2.3.1. Predictors and Mapping Units

The selection of a set of geo-environmental variables potentially expressing the land-
slide preparatory causes (Table 1) was based on widely adopted geomorphological crite-
ria [5–7,34–37]. In particular, outcropping lithology (GEO) and soil use (USE) were derived
from an available thematic map [38] and a remote survey, respectively. By processing a
10 m pixel digital terrain model (DTM), the following continuous variables were derived:
elevation (ELE), steepness (STP), plan (PLN), and profile (PRF) curvatures, topographic
wetness index (TWI), and aspect, the latter expressed in terms of easternness (EASTNS)
and northernness (NORTHNS). In addition, the landform classification (LCL) categorical
variable was obtained. In this way, a set of three categorial and seven continuous variables
was prepared.
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Table 1. Details of the selected geo-environmental variables.

Factor Acronym Description of Source Parameter Units References

Elevation ELE Raster of elevation distribution m

Landform
classification LCL

Outcome of an automated procedure that
recognize landforms on a gridded elevation

distribution (TPI)

Wilson and
Galland [39]

Slope gradient STP Highest first derivative of elevation degree Burrough and
McDonell [40]

Northerness NORTHNS Cosine of aspect (Direction of steepest
downwards slope from each cell to its neighbors)

Wilson and Galland
[39] (Aspect)

Easterness EASTNS Sine of aspect (Direction of steepest downwards
slope from each cell to its neighbors)

Wilson and Galland
[39] (Aspect)

Plan curvature PLN Second derivative of elevation, computed along
the horizontal plane rad/m Zevenbergen and

Thorne [41]

Profile
curvature PRF Second derivative of elevation, computed along

the direction of the highest slope gradient rad/m Zevenbergen and
Thorne [41]

Topographic
wetness index TWI

Calculated as ln[A/tanβ], where A and β,
computed on each cell, correspond to the area of

upslope drained cells and the slope
gradient, respectively

m Beven and Kirkby [42]

Lithological
map GEO Geolithological map of the study area, modified

from original geological map
modified from

Schmidt-Thomé [43]

Soil use USE Land use map derived from 2002 satellite images
and filed survey

With regard to lithology, based on the geomechanical expected response, the outcrop-
ping lithologies were grouped as soft, medium, and hard rocks and very soft, soft, medium,
and hard soils. On the basis of the landslide distribution in the study areas, very soft
and hard soils account for more than 80% of the mapped cases. The very low number of
landslides recognized in soft soils has to be ascribed to the very limited extension of the
outcropping areas.

All of the controlling factors were arranged in 10 × 10 m raster layers. The same
grid cell structure was then adopted as the susceptibility mapping unit, assigning a sta-
ble/unstable status depending on the intersection of LIPs. In fact, according to a number of
debris flow susceptibility assessment studies (e.g., [7,22,29,31,32,36,37,44–50]), we consid-
ered the instability conditions of each inventoried landslides to be effectively captured in
the highest crown 10 × 10 m pixel. In order to optimize the final selected predictors that
were included in the MARS modelling procedure, the variance inflation factor (VIF) [51]
test was performed for multicollinearity analysis through the continuous variables.

2.3.2. Modelling and Validation Tools

Multivariate adaptive regression splines (MARS; [23]), which was successfully applied
in a number of recent landslide and soil erosion susceptibility studies [5–7,35,37,52–59], was
then applied to regress the outcome (stable/unstable status) onto the covariates set from
the controlling factor layers. MARS is a non-parametric regression method that exploits
the splitting of each independent variable into hinge functions to boost the maximum
likelihood-based adaptation skill of the logistic regression method, according to:

y = f (x) = α +
N

∑
i=1

βihi(x) (1)
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where y is the dependent variable (the outcome) predicted by the function f (x), α is the
model intercept, and βi is the coefficient of the hi basis functions, given the N number of
basis functions. MARS analysis was performed by exploiting the “earth” R-package [60].

The MARS statistical modelling of landslide susceptibility conditions requires the
random extraction of a sample made of a balanced number of stable and unstable cases to be
split into calibration and validation subsets: the first is exploited for regressing the outcome
status on the set of covariates that express the adopted controlling factors, while the latter
furnishes the unknown-to-model target pattern whose status has to be blindly predicted. In
a pixel-based method, where the number of stable cases is typically largely greater than the
unstable, balanced samples are obtained by merging all the positives to an equal number
of randomly extracted negatives. To account for any potential unrepresentativeness of the
extracted negatives, by adopting recurrent random selection routines, multiple samples
were produced. Similarly, to control the influence of the specific cases which feed the
calibration subsets, multiple (75/25%) calibration/validation splitting was applied to
each sample as well. In this way, one hundred samples were split one hundred times
so that each pixel was classified ten thousand times, allowing us to estimate the model
resolution and precision. Finally, to fully evaluate the prediction skill of the model, the
regression coefficients gained in the calibration/validation subset were applied to the
whole investigated area.

Receiver operating curve (ROC) [61–63] and confusion matrices analyses were the
tools employed to investigate the model’s accuracy. In particular, ROC plot analysis is
based on evaluating true- versus false-positive rates for decreasing susceptibility scores,
with a larger area under the curve (AUC) [64,65] attesting to more effective classifications.
The score at the maximum gradient of the ROC is then used as an optimized cut-off [66]
for building a binarized (positive/negative-observed/predicted) confusion matrix. In this
way, the accuracy of the model can be evaluated both with score-independent (ROC_AUC)
and -dependent (ACC) indices.

2.3.3. Research Design and Model Building Strategy

In the following, we will refer to a super area (ALL), considering that it is obtained by
merging all the positive and negative cases of each of the five sectors (volcanic areas), the
latter defining five local datasets (ILO, COA, SMG, SVC, and SSV).

It is worth noting that, in light of the number of causes that have been here claimed as
responsible for the inventory incompleteness, a different approach from Steger et al. [21] was
designed for evaluating the influence of the bias landslide inventory. In particular, to explore
the topic of the research, the following model building procedure was designed by submitting
the hypothesizing of completeness of the inventory to a strict validation procedure.

First, a grand model (ALL) was prepared by applying the typical approach aimed
at obtaining a regional model from the available landslide inventories, including in the
processed dataframe the whole set of positives and negatives from the five sectors. To
maintain control over the variability of the negatives and the calibration/validation subset
assignment of positives, a suite of one thousand multiple datasets were obtained by ran-
domly extracting one hundred sets of negatives and submitting each dataset to ten random
calibration/validation (75/25%) splitting processes.

Once the grand model was prepared, it was first validated with respect to the spatial
distribution of the landslides in the whole super area (ALL_ALL), according to a self-
validation scheme [5–7,32,35–37,46,67,68]. The validation performance of the grand model
was then locally evaluated by restricting the validation dataset to a single sector in turn
(e.g., ALL_ILO). For comparison, independent local models (e.g., LOC_ILO) were prepared
for the five sectors by limiting the application of the modelling procedure to every single
dataset and applying a local self-validation scheme. Finally, five one-leave-out models
were prepared by applying the same above-described procedure but adopting a 4/1 sectors
calibration/validation splitting in the modelling scheme; a local validation was then ob-
tained, by assessing the predictive skill in recognizing the specific positives and negatives
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of the extracted (left-out) target sector. In the following, these models are referred to as
OLO models (e.g., OLO_ILO).

Table 2 provides a summary of the prepared models, including the specification of the
main characteristics.

Table 2. Adopted model building scheme for the tested models. Green and orange dots represent
calibration and validation cases, respectively, on the schematized five sectors.

Type Calibration Validation Graphic Example

ALL_ALL

75% randomly
extracted balanced

subset from the ALL *
dataset

conjugate 25%
randomly extracted

balanced subset from
the ALL dataset
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* ALL: the sum of the positive and negative cases of the five sectors. ** target: the sum of positive and negative
cases of a single sector. *** [ALL-target]: the difference between ALL and a target.

According to the main task of the research, the ALL_ALL is considered as the model
that one can take as representative for a regional prediction image. At the same time,
the imported models (ALL_local), in re-defining the validation set on a local basis, could
furnish a useful warning in case the performance of the grand models is actually locally
misleading. The local models give an estimation of the reference performance that the
imported model (ALL or OLO) should achieve to be considered more informative. Finally,
the one-leave-out modelling procedure simulates the results of applying the model to totally
unknown sectors (such as a hypothetical sixth unknown volcanic area in our research).

3. Results

For each of the models described above, the results of the validation are reported both
in Figures 2–4, where ROC curves and related AUCs are drawn, and in Table 3, where
binarized positive/negative status comparisons between predicted/observed target cases
are given.
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Table 3. Validation results (confusion matrices) for the sixteen models.

Count Positives Negatives TN FN FP TP ACC SensitivitySpecificity AUC

A
LL

ALL 6,311,320 46,010 6,265,310 4,786,221 8022 1,479,089 37,988 0.76 0.82 0.76 0.87
COA 806,671 1895 804,576 698,607 967 105,969 928 0.87 0.44 0.87 0.82
SSV 1,429,050 382 1,428,668 1,369,074 367 59,594 15 0.96 0.04 0.96 0.54
ILO 1,161,436 38,525 1,122,911 378,750 4171 744,161 34,354 0.36 0.89 0.34 0.69
SVC 2,794,399 4975 2,789,424 2,221,036 2295 568,388 2680 0.80 0.54 0.80 0.73
SMG 119,964 233 119,731 118,754 222 977 11 0.99 0.05 0.99 0.78

LO
C

COA 806,471 1895 804,576 590,261 219 214,315 1676 0.73 0.88 0.73 0.88
SSV 1,429,050 382 1,428,668 839,269 66 589,399 316 0.59 0.83 0.59 0.78
ILO 1,161,436 38,525 1,122,911 737,214 13392 385,697 25,133 0.66 0.65 0.66 0.72
SVC 2,794,399 4975 2,789,424 1,880,683 1038 908,741 3937 0.67 0.79 0.67 0.80
SMG 119,964 233 119,731 79,805 25 39,926 208 0.67 0.89 0.67 0.87

O
LO

COA 806,471 1895 804,576 622,805 562 181,771 1333 0.77 0.70 0.77 0.82
SSV 1,429,050 382 1,428,668 1,343,953 361 84,715 21 0.94 0.05 0.94 0.53
ILO 1,161,436 38,525 1,122,911 455,548 7448 66,7363 31,077 0.42 0.81 0.41 0.63
SVC 2,794,399 4975 2,789,424 2,044,869 2021 744,555 2954 0.73 0.59 0.73 0.69
SMG 119,964 233 119,731 119,002 229 729 4 0.99 0.02 0.99 0.76

The performance of the ALL_ALL model is very high, with excellent AUC and accuracy
(0.87 and 0.76, respectively) and highly satisfactory sensitivity (0.82) and specificity (0.76).
Comparing these values to the ones obtained in importing the grand model into the specific
sectors (ALL_local), satisfactory to excellent AUC and ACC values still hold, with the
exception of ILO and SSV. However, lower sensitivity and higher specificity were recorded
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for all the models, with the exception of ILO. It is worth noting that only the SVC imported
local model still performs with acceptable scores for all the main indices (sensitivity, specificity,
ACC, AUC). At the same time, the local models are in general characterized by higher (0.8–0.9)
AUC values, with a much more balanced sensitivity/specificity ratio, as a result of higher
sensitivity and lower specificity. Again, the opposite behavior is observed for ILO.

Finally, the one-leave-out models confirm the general trend of performance indices’
variation, which was observed for ALL_local validations.

With regard to the role of the predictors, the results obtained from the local modelling
highlight two very different responses (Figure 5): SMG and SSV are fully controlled by
elevation and steepness, whilst ILO, COA, and SVC also required the discriminating
contribution of either landform classification (COA and SVC) or outcropping lithology
(ILO and SVC) or soil use (for COA and ILO). Elevation, steepness, outcropping lithology,
and soil use are all selected by the ALL grand model.
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Figure 5. The most important variables for the ALL model (a) and the LOC (left side) and the OLO
(right side) models (b–f). The common variables for the LOC and the OLO models are presented
in amaranth, while the different variables are presented in green. Thin lines are used for variables
with a lower overall (minor than 30 out of 100). Here are the acronyms used: geo 2 = soft rock;
geo 3 = hard rock; geo 4 = medium rock; geo 5 = very soft soil; geo 6 = soft soil; geo 8 = medium soil;
lcl 3 = valleys; lcl 4 = plains; lcl 5 = open slopes; lcl 8 = midslope ridges; uso 2 = forest; uso 4 = crop
and pasture; uso 5 = permanent crop; uso 11 = shrub vegetation.

In Figure 6, a comparison between the ALL and LOC landslide susceptibility maps
for two representative sectors (Ilopango and San Salvador) is given, highlighting either
coherent or incoherent spatial patterns among the models for the two sectors.
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Figure 6. ALL (a,c) and LOC (b,d) landslide susceptibility maps for Ilopango (on the right side)
and San Salvador (on the left side) sectors. The histograms (e,f) show the percentage of observed
(stable/unstable) cases, when (i) LOC model assigns a higher susceptibility with respect to the ALL
model (LOC+), (ii) both the models assign the same predicted status (Equal) or (iii) the ALL model
sets higher susceptibility with respect to the LOC model (ALL+).
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4. Discussion

The local landslide distribution in five different volcanic sectors was predicted both
from imported (both ALL and OLO models) and locally calibrated models. The latter
resulted in smoothly (with the exception of SSV) higher AUC values, with a proportional
decrease in the cut-off-dependent accuracy, but driven by a marked sensitivity increase and
a slight specificity decrease. In particular, the greater the LIP% incidence of a single sector,
the higher the TPR decrease recorded for the imported models. A relevant exception that
was highlighted by the results is the very odd behavior of ILO, whose local model produced
a worse performance in recognizing its own positives. At the same time, in terms of scoring
and status prediction, ALL and LOC models can result in different prediction images.

The ILO sector includes the great majority of landslides (83.7%) and, in light of its
limited extension (18.4%), the maximum ratio between unstable and stable pixels. When
trying to discriminate the status of the ILO pixels, on the basis of the ALL or OLO imported
model, a better performance arises in positive detection when compared to the skill of
the local model. This is due to the undifferentiated presence of positives and negatives
in the same geomorphologic conditions, and this effect could have been enhanced by
the severe triggering conditions (IDA tropical storm) that activated landslides even in
less susceptible areas. In fact, the better performance of ALL and OLO relies on the
circumstance that these models take their cases outside ILO, for positive and negative cases
of OLO, or prevalently outside ILO, for the negatives of ALL. As a consequence, the local
dataset confuses the binary discrimination whilst recurring for the outside pixels, which
allowed us to better understand the unstable conditions. At the same time, for a more
geomorphologically differentiated setting, the sub-catchment of ILO (“Arenal de Cujuapa”),
Rotigliano et al. [5,6] obtained, with the same MARS modelling approach, higher AUC
and accuracy values (0.83 and 0.73, respectively). Moreover, the same loss in the model
performance was observed when trying to temporally predict the landslide inventory of
2003 (produced by a non-extreme rainfall triggering event) from the model calibrated with
the same 2009 hurricane-induced inventory that was used in the present research.

Once the potentially hampering specific conditions of the ILO sector arose, a new
grand model (ALL*) was tested excluding ILO from all sectors (which were reduced to
four) and obtaining better locally imported results (Table 4). With the exception of SSV,
these new imported models performed with similar, largely satisfactory AUCs to the local
models and even higher sensitivity.

Table 4. Validation results (confusion matrices) for the ALL* models.

Count Positives Negatives TN FN FP TP ACC Sensitivity Specificity AUC

ALL*_COA 806,471 1895 804,576 515,857 166 288,719 1729 0.64 0.91 0.64 0.85
ALL*_SSV 1,429,050 382 1,428,668 1,314,478 349 114,190 33 0.92 0.09 0.92 0.61
ALL*_SVC 2,794,399 4975 2,789,424 1,813,333 1026 976,091 3949 0.65 0.79 0.65 0.79
ALL*_SMG 119,964 233 119,731 37,646 8 82,085 225 0.32 0.97 0.31 0.75

5. Conclusions

On the basis of the obtained results, it is confirmed that grouping landslide inventories
from different areas to increase the number of cases can lead to very unreliable results
unless further validation tests are carried out. In particular, depending on both the number
of landslides and frequency distribution of all the predictors in each of the grouped sectors,
the grand model can be seen as having very high performance on average, but is very
misleading and unstable on a local scale. In light of this effect, locally calibrated models can
have better performance even if trained with a lower number of cases. This would typically
lead to attaining a sense of security and considering the obtained prediction image as
reliable for the study area, eventually suggesting that the obtained model also be exported
to new neighboring unrecognized sectors (e.g., those between the five mapped ones). In
this paper, a new approach was adopted, and related tools were proposed for verifying the
inventory completeness hypothesis. This approach can be involved in any model building
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procedure so as to obtain warnings about the quality of the source data and its influence on
the resolution of the derived susceptibility models.

Comparing grand to local models should be a standard procedure when assembling
large landslide inventories, even in the case of secondary catchments in large basin-scale
studies. The main factors controlling the performance of the grand model are the number
of total pixels and the number of positives and the spatial distribution of the predictors.
Two main factors hamper the accuracy and reliability of any grand model, based on a
presence/absence method: depending on the relative spatial extension of the classes of each
covariate, in light of the need to randomly extract the negatives to prepare balanced datasets,
using the more diffused classes results in stable conditions; depending on the different
levels of completeness of the merged landslide inventories, unstable conditions may come
to light in the sectors or catchments with a higher number of mapped landslides. These two
effects are much more severe for the categorical variables in the case of inhomogeneous
geologic/geomorphologic settings, whilst DTM-derived variables are more unlikely to be
so largely different as to mislead the modelling. It is worth noting that the limits produced
by the qualitative and quantitative differences in the landslide inventories suggest that
the adoption of presence-only methods is not suitable, also in light of the strong influence
produced by any unrepresentativeness of the landslide inventories.

Optimizing susceptibility models for predicting new debris flow activation sites in
volcanic areas is of crucial importance in El Salvador. In fact, under the triggering of
the recurrent tropical storms which frequently strike the country, this kind of landslide
rapidly evolves along the steep volcano flanks into very destructive debris flow phenomena
hitting the hillside areas and causing damage and life losses. Investigating the reliability of
prediction images for landslide activation constitutes a mandatory step in obtaining the
starting base to be coupled with propagation algorithms for producing complete debris
flow event scenarios.
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