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TRACE IDENTITIES AND ALMOST POLYNOMIAL GROWTH

ANTONIO IOPPOLO, PLAMEN KOSHLUKOV, AND DANIELA LA MATTINA

Abstract. In this paper we study algebras with trace and their trace polynomial identities over a field of characteristic
0. We consider two commutative matrix algebras: D2, the algebra of 2 × 2 diagonal matrices and C2, the algebra of
2 × 2 matrices generated by e11 + e22 and e12. We describe all possible traces on these algebras and we study the
corresponding trace codimensions. Moreover we characterize the varieties with trace of polynomial growth generated
by a finite dimensional algebra. As a consequence, we see that the growth of a variety with trace is either polynomial
or exponential.

1. Introduction

All algebras we consider in this paper will be associative and over a fixed field F of characteristic 0. Let F 〈X〉
be the free associative algebra freely generated by the infinite countable set X = {x1, x2, . . .} over F . One interprets
F 〈X〉 as the F -vector space with a basis consisting of 1 and all non-commutative monomials (that is words) on the
alphabet X . The multiplication in F 〈X〉 is defined on the monomials by juxtaposition. Let A be an algebra, it is clear
that every function ϕ : X → A can be extended in a unique way to a homomorphism (denoted by the same letter)
ϕ : F 〈X〉 → A. A polynomial f ∈ F 〈X〉 is a polynomial identity (PI for short) for the algebra A whenever f lies in the
kernels of all homomorphisms from F 〈X〉 to A. Equivalently f(x1, . . . , xn) is a polynomial identity for A whenever
f(a1, . . . , an) = 0 for any choice of ai ∈ A. The set of all PI’s for a given algebra A forms an ideal in F 〈X〉 denoted
by Id(A) and called the T-ideal of A. Clearly Id(A) is closed under endomorphisms. It is not difficult to prove that
the converse is also true: if an ideal I in F 〈X〉 is closed under endomorphisms then I = Id(A) for some (adequate)
algebra A. One such algebra is the relatively free algebra F 〈X〉/I.

Knowing the polynomial identities satisfied by an algebra A is an important problem in Ring theory. It is also a
very difficult one; it was solved completely in very few cases. These include the algebras F (trivial); M2(F ), the full
matrix algebra of order 2; E, the infinite dimensional Grassmann algebra; E⊗E. If one adds to the above algebras the
upper triangular matrices UTn(F ), one will get more or less the complete list of algebras whose identities are known.

The theory developed by A. Kemer in the 80-ies (see [21]) solved in the affirmative the long-standing Specht problem:
is every T-ideal in the free associative algebra finitely generated as a T-ideal? But the proof given by Kemer is not
constructive; it suffices to mention that even the description of the generators of the T-ideal of M3(F ) are not known,
and it seems to be out of reach with the methods in use nowadays.

Thus finding the exact form of the polynomial identities satisfied by a given algebra is practically impossible in the
vast majority of important algebras. Hence one is led to study either other types of polynomial identities or other
characteristics of the T-ideals. In the former direction it is worth mentioning the study of polynomial identities in
algebras graded by a group or a semigroup, in algebras with involution, in algebras with trace and so on. Clearly one
has to incorporate the additional structure into the “new” polynomial identities. It turned out such identities are sort
of “easier” to study than the ordinary ones.

We cite as an example the graded identities for the matrix algebras Mn(F ) for the natural gradings by the cyclic
groups Zn and Z: these were described by Vasilovsky in [30, 31]. Gradings on important algebras (for the PI-theory)
and the corresponding graded identities have been studied by very many authors (we refer the reader to the monograph
[4] and the references therein). The trace identities for the full matrix algebras were described independently by
Razmyslov [23] and by Procesi [22] (see also the paper by Razmyslov [24] for a generalization to another important
class of algebras). It turns out that the ideal of all trace identities for the matrix algebra Mn(F ) is generated by a
single polynomial, this is the well known Hamilton–Cayley polynomial written in terms of the traces of the matrix
and its powers (and then linearised). We must note here that as it often happens, the simplicity of the statement
of the theorem due to Razmyslov and Procesi is largely misleading, and that the proofs are quite sophisticated and
extensive.

The free associative algebra is graded by the degrees of its monomials, and also by their multidegrees. Clearly the
T-ideals are homogeneous in such gradings; this implies that the relatively free algebras inherit the gradings on F 〈X〉.
One might want to describe the Hilbert (or Poincaré) series of the relatively free algebras. This task was achieved also
in very few instances.
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Studying the relatively free algebras is related to studying varieties of algebras. We recall the corresponding notions
and their importance. Let A be an algebra with T-ideal Id(A). The class of all algebras satisfying all polynomial
identities from Id(A) (and possibly some more PI’s) is called the variety of algebras var(A) generated by A. Then the
relatively free algebra F 〈X〉/Id(A) is the relatively free algebra in var(A) (clearly there might be several algebras that
satisfy the same polynomial identities as A, and passing to var(A) one may “forget” about A and even look for some
“better” algebra generating the same variety).

One of the most important numerical invariants of a variety (or a T-ideal) is its codimension sequence. Let Pn

denote the vector space in F 〈X〉 consisting of all multilinear polynomials in x1, . . . , xn. One may view Pn as the
vector subspace of F 〈X〉 with a basis consisting of all monomials xσ(1)xσ(2) · · ·xσ(n) where σ ∈ Sn, the symmetric
group on {1, 2, . . . , n}. It is well known that whenever the base field is of characteristic 0, each T-ideal I is generated
by its multilinear elements, that is by all intersections I ∩ Pn, n ≥ 1.

On the other hand Pn is a left module over Sn and it is clear that Pn
∼= FSn, the regular Sn-module. The T-ideals

are invariant under permutations of the variables hence I ∩ Pn is a submodule of Pn. In this way one can employ the
well developed theory of the representations of the symmetric (and general linear) groups and study the polynomial
identities satisfied by an algebra. This approach might have seemed rather promising but in 1972 A. Regev [25]
established a fundamental result showing that if I 6= 0 then the intersections I ∩ Pn tend to become very large when
n → ∞. More precisely let A be a PI-algebra (i.e., A satisfies a non-trivial identity), and let I = Id(A), denote
by Pn(A) = Pn/(Pn ∩ I). Then Pn(A) is also an Sn-module, its dimension cn(A) = dimPn(A) is called the n-th
codimension of A (or of the variety var(A), or of the relatively free algebra in var(A)). Regev’s theorem states that if
A satisfies an identity of degree d then cn(A) ≤ (d− 1)2n. Since dimPn = n! this gives a more precise meaning of the
above statement about the size of Pn ∩ I. Recall that this exponential bound for the codimensions allowed Regev to
prove that if A and B are both PI-algebras then their tensor product A⊗B is also a PI-algebra.

But computing the exact values of the codimensions of a given algebra is also a very difficult task, and cn(A) is
known for very few algebras A. This is exactly the same list as above, namely that of the algebras whose identities
are known. Hence one is led to study the growth of the codimension sequences. In the eighties Amitsur conjectured
that for each PI-algebra A, the sequence (cn(A))

1/n converges when n → ∞ and moreover its limit is an integer. This
conjecture was dealt with by Giambruno and Zaicev [12, 13] (see also [14]): they answered in the affirmative Amitsur’s
conjecture. The above limit is called the PI-exponent of a PI-algebra, exp(A). Giambruno and Zaicev’s important
result initiated an extensive research concerning the asymptotic behaviour of the codimension sequences of algebras.
It is well known (see for example [14, Chapter 7] and the references therein) that either the codimensions of A are
bounded by a polynomial function or grow exponentially. The results of Giambruno and Zaicev also hold for the case
of graded algebras ([1, 2, 7]), algebras with involution ([8]), superalgebras with superinvolution, graded involution or
pseudoinvolution ([16, 17, 28]) and also for large classes of non-associative algebras. It is useful to highlight that there
are examples of non-associative algebras such that their PI-exponent exists but is not an integer and also examples
where the PI-exponent does not exist at all.

In this paper we study trace polynomial identities. We focus our attention on two commutative subalgebras
of UT2, the algebra of 2 × 2 upper-triangular matrices over F : D2 the algebra of diagonal matrices and C2 =
spanF {e11+e22, e12}. In [3, Theorem 2.1] A. Berele described the ideal of trace identities for the algebraDn; he proved
that it is generated by the commutativity law and by the Hamilton–Cayley polynomial. The asymptotic behaviour
of the codimensions of trace identities was studied by A. Regev. In fact he described in [27] the asymptotics of the
ordinary codimensions of the full matrix algebra, and in [26] he proved that the ordinary and the trace codimensions
of the full matrix algebra are asymptotically equal.

Our main goal in this paper is the description of the varieties of trace algebras that are of almost polynomial

growth. This means that the codimensions of the given variety are of exponential growth but each proper subvariety
is of polynomial growth. The description we obtain is in terms of excluding the algebras D2 and C2 with non-zero
traces and the algebra UT2 with the zero trace. As a by-product of the proof we obtain that the codimension growth
of the trace identities of a finite dimensional algebra is either polynomially or exponentially bounded.

It is interesting to note that if one considers the algebra Dn of the diagonal n × n matrices without a trace, it is
commutative and non-nilpotent, and hence its codimensions are equal to 1. But when adding a trace then it becomes
of exponential growth. Hence in the case of diagonal matrices there cannot be a direct analogue of Regev’s theorem
mentioned above.

We recall here that similar descriptions for the ordinary codimensions can be found in [14, Theorem 7.2.7] where
it was proved that the only two varieties of (ordinary) algebras of almost polynomial growth are the ones generated
by the Grassmann algebra E and by UT2. In the case of algebras with involution, superinvolution, pseudoinvolution
or graded by a finite group, a complete list of varieties of algebras of almost polynomial growth was exihibited in
[5, 6, 9, 10, 18, 19, 20, 29].

In order to obtain our results we use methods from the theory of trace polynomial identities together with a version
of the Wedderburn–Malcev theorem for finite dimensional trace algebras. Here we recall that a trace function on the
matrix algebra Mn(F ) is just a scalar multiple of the usual matrix trace. In sharp contrast with this there are very
many traces on Dn and C2: these algebras are commutative and hence a trace is just a linear function from them into
F .
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2. Preliminaries

Throughout this paper F will denote a field of characteristic zero and A a unitary associative F -algebra with trace
tr. We say that A is an algebra with trace if it is endowed with a linear map tr : A → F such that for all a, b ∈ A one
has

tr(ab) = tr(ba).

In what follows, we shall identify, when it causes no misunderstanding, the element α ∈ F with α · 1, where 1 is the
unit of the algebra.

Accordingly, one can construct F 〈X,Tr〉, the free algebra with trace on the countable set X = {x1, x2, . . .}, where
Tr is a formal trace. Let M denote the set of all monomials in the elements of X . Then F 〈X,Tr〉 is the algebra
generated by the free algebra F 〈X〉 together with the set of central (commuting) indeterminates Tr(M), M ∈ M,
subject to the conditions that Tr(MN) = Tr(NM), and Tr(Tr(M)N) = Tr(M)Tr(N), for all M , N ∈ M. In other
words,

F 〈X,Tr〉 ∼= F 〈X〉 ⊗ F [Tr(M) : M ∈ M].

The elements of the free algebra with trace are called trace polynomials.
A trace polynomial f(x1, . . . , xn,Tr) ∈ F 〈X,Tr〉 is a trace identity for A if, after substituting the variables xi with

arbitrary elements ai ∈ A and Tr with the trace tr, we obtain 0. We denote by Idtr(A) the set of trace identities of A,
which is a trace T -ideal (T tr-ideal) of the free algebra with trace, i.e., an ideal invariant under all endomorphisms of
F 〈X,Tr〉.

As in the ordinary case, Idtr(A) is completely determined by its multilinear polynomials.

Definition 1. The vector space of multilinear elements of the free algebra with trace in the first n variables is called
the space of multilinear trace polynomials in x1, . . . , xn and it is denoted by MTn (MT comes from mixed trace). Its
elements are linear combinations of expressions of the type

Tr(xi1 · · ·xia) · · ·Tr(xj1 · · ·xjb )xl1 · · ·xlc

where {i1, . . . , ia, . . . , j1, . . . , jb, l1, . . . , lc} = {1, . . . , n}.

The non-negative integer

ctrn (A) = dimF
MTn

MTn ∩ Idtr(A)

is called the n-th trace codimension of A.
A prominent role among the elements of MTn is played by the so-called pure trace polynomials, i.e., polynomials

such that all the variables x1, . . . , xn appear inside a trace.

Definition 2. The vector space of multilinear pure trace polynomials in x1, . . . , xn is the space

PTn = spanF {Tr(xi1 · · ·xia) · · ·Tr(xj1 . . . xjb ) : {i1, . . . , jb} = {1, . . . , n}} .

For a permutation σ ∈ Sn we write (in [3], Berele uses σ instead of σ−1)

σ−1 = (i1 · · · ir1) (j1 · · · jr2) · · · (l1 · · · lrt)

as a product of disjoint cycles, including one-cycles and let us assume that r1 ≥ r2 ≥ · · · ≥ rt. In this case we say that
σ is of cyclic type λ = (r1, . . . , rt). We then define the pure trace monomial ptrσ ∈ PTn as

ptrσ(x1, . . . , xn) = Tr
(

xi1 · · ·xir1

)

Tr
(

xj1 · · ·xjr2

)

· · ·Tr
(

xl1 · · ·xlrt

)

.

If a =
∑

σ∈Sn

ασσ ∈ FSn, we also define ptra(x1, . . . , xn) =
∑

σ∈Sn

ασptrσ(x1, . . . , xn).

It is useful to introduce also the so-called trace monomial mtrσ ∈ MTn−1. It is defined so that

ptrσ(x1, . . . , xn) = Tr (mtrσ(x1, . . . , xn−1)xn) .

Let now ϕ : FSn → PTn be the map defined by ϕ(a) = ptra(x1, . . . , xn). Clearly ϕ is a linear isomorphism and so
dimF PTn = dimF FSn = n!.

The following result is well known, and we include its proof for the sake of completeness.

Remark 3. dimF MTn = (n+ 1)!.

Proof. In order to prove the result we shall construct an isomorphism of vector spaces between PTn+1 and MTn. This
will complete the proof since dimF PTn+1 = (n+1)!. Let ϕ : PTn+1 → MTn be the linear map defined by the equality

ϕ (Tr(xi1 · · ·xia) · · ·Tr(xj1 · · ·xjb)Tr(xl1 · · ·xlc)) = Tr(xi1 · · ·xia) · · ·Tr(xj1 · · ·xjb)xl1 · · ·xlc−1 .

Here we assume, as we may, that lc = n+ 1. It is easily seen that ϕ is a linear isomorphism and we are done. �
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3. Matrix algebras with trace

In this section we study matrix algebras with trace. Let Mn(F ) be the algebra of n× n matrices over F . One can
endow such an algebra with the usual trace on matrices, denoted t1, and defined as

t1(a) = t1







a11 · · · a1n
...

. . .
...

an1 · · · ann






= a11 + · · ·+ ann ∈ F.

We recall that every trace on Mn(F ) is proportional to the usual trace t1. The proof of this statement is a well
known result of elementary linear algebra, we give it here for the sake of completeness.

Lemma 4. Let f : Mn(F ) → F be a trace. Then there exists α ∈ F such that f = αt1.

Proof. Let eij ’s denote the matrix units. First we shall prove that f(eij) = 0 whenever i 6= j. In fact, since
f(ab) = f(ba), for all a, b ∈ Mn(F ), we get that

f(eij) = f(eijejj) = f(ejjeij) = f(0) = 0.

Moreover f(ejj) = f(e11), for all j = 2, . . . , n. Indeed f(e11) = f(e1jejjej1) = f(ej1e1jejj) = f(ejj). For any matrix
a ∈ Mn(F ), a = (aij) =

∑

i,j aijeij , we get that

f(a) = f
(

∑

i,j

aijeij

)

=

n
∑

j=1

ajjf(ejj) = f(e11)t1(a),

and the proof is complete. �

In what follows we shall use the notation tα to indicate the trace on Mn(F ) such that tα = αt1. Moreover, M tα
n

will denote the algebra of n× n matrices endowed with the trace tα.
In sharp contrast with the above result, there are very many different traces on the algebra Dn = Dn(F ) of n× n

diagonal matrices over F .

Remark 5. If tr is a trace on Dn then there exist scalars α1, . . . , αn ∈ F such that for each diagonal matrix
a = diag(a11, . . . , ann) ∈ Dn one has tr(a) = α1a11 + · · ·+ αnann.

The algebra Dn
∼= Fn is commutative, and Dn

∼= Fn with component-wise operations. Hence a linear function
tr : Dn → F must be of the form stated in the remark. Clearly for each choice of the scalars αi one obtains a trace on
Dn, and we have the statement of the remark.

We shall denote with the symbol tα1,...,αn
the trace tr on Dn such that, for all a = diag(a11, . . . , ann), tr(a) =

α1a11 + · · ·+ αnann. Moreover, D
tα1,...,αn
n will indicate the algebra Dn endowed with the trace tα1,...,αn

.
Let (A, t) and (B, t′) be two algebras with trace. A homomorphism (isomorphism) of algebras ϕ : A → B is said to

be a homomorphism (isomorphism) of algebras with trace if ϕ(t(a)) = t′(ϕ(a)), for any a ∈ A.
We have the following remark.

Remark 6. Let Sn be the symmetric group of order n on the set {1, 2, . . . , n}. For all σ ∈ Sn, the algebras D
tα1,...,αn
n

and D
tασ(1),...,ασ(n)
n are isomorphic, as algebras with trace.

Proof. We need only to observe that the linear map ϕ : D
tα1,...,αn
n → D

tασ(1),...,ασ(n)
n , defined by ϕ(eii) = eσ(i)σ(i), for

all i = 1, . . . , n, is an isomorphism of algebras with trace. �

Recall that a trace function tr on an algebra A is said to be degenerate if there exists a non-zero element a ∈ A
such that

tr(ab) = 0

for every b ∈ A. This means that the bilinear form f(x, y) = tr(xy) is degenerate on A.
In the following lemma we describe the non-degenerate traces on Dn.

Lemma 7. Let D
tα1,...,αn
n be the algebra of n × n matrices endowed with the trace tα1,...,αn

. Such a trace is non-
degenerate if and only if all the scalars αi are non-zero.

Proof. Let tα1,...,αn
be non-degenerate and suppose that there exists i such that αi = 0. Consider the matrix unit eii.

It is easy to see that we reach a contradiction since, for any element diag(a11, . . . , ann) ∈ Dn, we get

tα1,...,αn
(eiidiag(a11, . . . , ann)) = tα1,...,αn

(eiiaii) = αiaii = 0.

In order to prove the opposite direction, let us assume that all the scalars αi are non-zero. Suppose, by contradiction,
that the trace tα1,...,αn

is degenerate. Hence there exist a non-zero element a = diag(a11, . . . , ann) ∈ Dn such that
tα1,...,αn

(ab) = 0, for any b ∈ Dn. In particular, let b = eii, for i = 1, . . . , n. We have that

tα1,...,αn
(aeii) = tα1,...,αn

(diag(a11, . . . , ann)eii) = tα1,...,αn
(aiieii) = αiaii = 0.

Since αi 6= 0, for all i = 1, . . . , n, we get that aii = 0 and so a = 0, a contradiction. �
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4. The algebras D
tα,β

2

In this section we deal with the algebra D2 of 2 × 2 diagonal matrices over the field F . In accordance with the
results of Section 3, we can define on D2, up to isomorphism, only the following trace functions:

1. tα,0, for any α ∈ F ,

2. tα,α, for any non-zero α ∈ F ,

3. tα,β , for any distinct non-zero α, β ∈ F .

In the first part of this section our goal is to find the generators of the trace T -ideals of the identities of the algebra
D2 endowed with all possible trace functions.

Let us start with the case of D
tα,0

2 . Recall that, if α = 0, then D
t0,0
2 is the algebra D2 with zero trace. So Idtr(D

t0,0
2 )

is generated by the commutator [x1, x2] and Tr(x) and ctrn (D
t0,0
2 ) = cn(D

t0,0
2 ) = 1.

For α 6= 0, we have the following result.

Theorem 8. Let α ∈ F \ {0}. The trace T -ideal Idtr(D
tα,0

2 ) is generated, as a trace T -ideal, by the polynomials:

• f1 = [x1, x2],

• f2 = Tr(x1)Tr(x2)− αTr(x1x2).

Moreover

ctrn (D
tα,0

2 ) = 2n.

Proof. It is clear that T = 〈f1, f2〉T tr ⊆ Idtr(D
tα,0

2 ).
We need to prove the opposite inclusion. Let f ∈ MTn be a multilinear trace polynomial of degree n. It is clear

that f can be written (mod T ) as a linear combination of the polynomials

(1) Tr(xi1 · · ·xik )xj1 · · ·xjn−k
,

where {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n}, i1 < · · · < ik and j1 < · · · < jn−k.

Our goal is to show that the polynomials in (1) are linearly independent modulo Idtr(D
tα,0

2 ). To this end, let
g = g(x1, . . . , xn,Tr) be a linear combination of the above polynomials which is a trace identity:

g(x1, . . . , xn,Tr) =
∑

I,J

aI,JTr(xi1 · · ·xik )xj1 · · ·xjn−k
,

where I = {xi1 , . . . , xik}, J = {xj1 , . . . , xjn−k
}, and i1 < · · · < ik, j1 < · · · < jn−k.

We claim that g is actually the zero polynomial. Suppose that, for some fixed I = {xi1 , . . . , xik} and J =
{xj1 , . . . , xjn−k

}, one has that aI,J 6= 0. We consider the following evaluation:

xi1 = · · · = xik = e11, xj1 = · · · = xjn−k
= e22, Tr = tα,0.

It follows that g(e11, . . . , e11, e22, . . . , e22, tα,0) = aI,Jαe22 = 0. Hence aI,J = 0, a contradiction. The claim is proved
and so

Idtr(D
tα,0

2 ) = T.

Finally, in order to compute the n-th trace codimension sequence of our algebra, we have only to count how many
elements in (1) there are. Fixed k, there are exactly

(

n
k

)

elements of the type Tr(xi1 · · ·xik)xj1 · · ·xjn−k
, i1 < · · · < ik,

j1 < · · · < jn−k. Hence the polynomials in (1) are exactly
∑n

k=0

(

n
k

)

= 2n and the proof is complete. �

Now, we consider D
tα,α

2 . Recall that, for any

(

a 0
0 b

)

∈ D2, we have that tα,α

(

a 0
0 b

)

= α(a+ b).

Theorem 9. Let α ∈ F \ {0}. The trace T -ideal Idtr(D
tα,α

2 ) is generated, as a trace T -ideal, by the polynomials:

• f1 = [x1, x2],

• f3 = α2x1x2 + α2x2x1 + Tr(x1)Tr(x2)− αTr(x1)x2 − αTr(x2)x1 − αTr(x1x2).

Moreover

ctrn (D
tα,α

2 ) = 2n.

Proof. In case α = 1, Berele ([3, Theorem 2.1]) proved that Idtr(D
tα,α

2 ) = 〈f1, f3〉T tr . The proof when α 6= 1 follows
word by word that one given by Berele in [3].

In order to find the trace codimensions, we remark that the trace polynomials

(2) Tr(xi1 · · ·xik )xj1 · · ·xjn−k
, {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n} , i1 < · · · < ik, j1 < · · · < jn−k,

form a basis of MTn (mod MTn ∩ Idtr(D
tα,α

2 )). Hence, their number, which is the n-th trace codimension sequence

of D
tα,α

2 , is
∑n

k=0

(

n
k

)

= 2n and the proof is complete. �
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Remark 10. Here we observe a curious fact. It follows from Theorems 8 and 9 that the relatively free algebras in the

varieties of algebras with trace generated by D
tα,0

2 and by D
tα,α

2 are quite similar. In fact the multilinear components
of degree n in these two relatively free algebras are isomorphic. But this is an isomorphism of vector spaces which
cannot be extended to an isomorphism of the corresponding algebras. It can be easily seen that neither of these two
varieties is a subvariety of the other as soon as α 6= 0.

(1) The trace identity f2 = Tr(x1)Tr(x2) − αTr(x1x2) does not hold for the algebra D
tα,α

2 . One evaluates it on
the “generic” diagonal matrices d1 = diag(a1, b1) and d2 = diag(a2, b2) and gets α2(a1b2 + a2b1) which does

not vanish on D
tα,α

2 .

(2) Likewise D
tα,0

2 does not satisfy the trace identity f3. Once again substituting x1 and x2 in f3 by the generic
matrices d1 and d2 we get a diagonal matrix with 0 at position (1, 1) and a non-zero entry α2(2b1b2−a1b2−a2b1)
at position (2, 2).

This question is addressed in a more general form in Lemmas 14, 15, and 16.

Finally we consider the trace algebraD
tα,β

2 . Recall that, for any

(

a 0
0 b

)

∈ D2, we have that tα,β

(

a 0
0 b

)

= αa+βb.

Theorem 11. Let α, β ∈ F \ {0}, α 6= β. As a trace T -ideal, Idtr(D
tα,β

2 ) is generated by the polynomials:

• f1 = [x1, x2],

• f4 = −x1Tr(x2)Tr(x3) + (α + β)x1Tr(x2x3) + x3Tr(x1)Tr(x2) − (α + β)x3Tr(x1x2) − Tr(x1)Tr(x2x3) +
Tr(x3)Tr(x1x2),

• f5 = Tr(x1)Tr(x2)Tr(x3) − (αβ2 + α2β)x1x2x3 + αβx1x2Tr(x3) + αβx1x3Tr(x2) + αβx2x3Tr(x1) − (α +
β)x1Tr(x2)Tr(x3) + (α2 + αβ + β2)x1Tr(x2x3) − αβx2Tr(x1x3) − αβx3Tr(x1x2) + αβTr(x1x2x3) − (α +
β)Tr(x1)Tr(x2x3).

Moreover

ctrn (D
tα,β

2 ) = 2n+1 − n− 1.

Proof. Write I = 〈f1, f4, f5〉T tr . An immediate (but tedious) verification shows that I ⊆ Idtr(D
tα,β

2 ). In order to
obtain the opposite inclusion, first we shall prove that the polynomials

(3) xi1 · · ·xikTr(xh1 · · ·xhn−k
), xi1 · · ·xikTr(xj1 · · ·xjs−1)Tr(xjs),

where i1 < · · · < ik, h1 < · · · < hn−k and j1 < · · · < js−1 < js, span MTn, modulo MTn ∩ I, for every n ≥ 1.
In order to achieve this goal we shall use an induction. Let f ∈ MTn be a multilinear trace polynomial of degree

n. Hence it is a linear combination of polynomials of the type

xi1 · · ·xiaTr(xj1 · · ·xjb ) · · ·Tr(xl1 · · ·xlc)

where {i1, . . . , ia, j1, . . . , jb, . . . , l1, . . . , lc} = {1, . . . , n}.
Because of the identity f5 ≡ 0, we can kill all products of three traces (and more than three traces). So we may

consider only monomials with either no trace, or with one, or with two traces. Clearly the identity f1 implies that we
can assume all of these monomials ordered, outside and also inside each trace.

In the case of monomials with two traces, now we want to show how to reduce one of these traces to be of a
monomial of length 1 (that is a variable). To this end, in f4 take x1 as a letter, and x2, x3 as monomials. The last
term is “undesirable”, and it is written as a combination of either one trace, or two traces where one of these is a
trace of a letter (that is x1). The only problem is the first term of f4. But it has a letter outside the traces. Since the
total degree of the monomials inside traces in the first summand of f4 will be less than the initial one, we can apply
the induction.

Suppose now we have a linear combination of monomials where we have either no traces (at most one of these), or
just one trace (and the variables outside the trace are ordered, as well as those inside the trace), or two traces. In the
latter case we may assume that the variables outside the trace are ordered, and that these in the first trace are ordered
(increasing) as well. And moreover the second trace is of a variable, not monomial. In this case we are concerned with
the monomials having two traces. We use once again f4, in fact the last two summands in it, to exchange variables
between the two traces. We get then monomials with one trace or with two traces but of lower degree inside the
traces, and as above continue by induction.

In conclusion, we can suppose that in the case of two traces, the variables are ordered in the following way:

xi1 · · ·xiaTr(xj1 · · ·xjb)Tr(xj)

where i1 < · · · < ia and j1 < · · · < jb < j.

We next show that the polynomials in (3) are linearly independent modulo Idtr(D
tα,β

2 ).
Let us take generic diagonal matricesXi = (ai, bi), that is we consider ai and bi as commuting independent variables.

If the monomials we consider are not linearly independent there will be a non-trivial linear combination among them
which vanishes. Form such a linear combination and evaluate it on the above defined generic diagonal matrices Xi.
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We order the monomials in ai and bi obtained in the linear combination, at positions (1, 1) and (2, 2) of the resulting
matrix, as follows.

In the first coordinate (that is position (1, 1) of the matrices) we consider a1 < · · · < an < b1 < · · · < bn, in the
second coordinate (2, 2) of the matrices in D2 we take b1 < · · · < bn < a1 < · · · < an. Then we extend this order
lexicographically to all monomials in F [ai, bi]. In fact these are two orders, one for position (1, 1) and another for
position (2, 2) of the diagonal matrices.

In order to simplify the notation, let us assume that the largest monomial in the first coordinate is a1 · · · akbk+1 · · · bn.
If k = n then there is no trace at all. The case k = n − 1 is also clear: we have only one trace and it is
Tr(xn). So take k ≤ n − 2. Such a monomial can come from either M = x1 · · ·xkTr(xk+1 · · ·xn) or from N =
x1 · · ·xkTr(xk+1 · · ·xn−1)Tr(xn). Clearly in the second coordinate the largest monomial will be b1 · · · bkak+1 · · · an,
and it comes from the above two elements only.

Now suppose that a linear combination of monomials vanishes on the generic matrices Xi. Then the largest
monomials will cancel and so there will exist scalars p, q ∈ F such that the largest monomials in pM + qN will cancel.
This means, after computing the traces, that pβ+ qβ2 = 0 and pα+ qα2 = 0. Consider p and q as variables in a 2× 2
system. The determinant of the system is αβ(α − β). Since α and β are both non-zero and since α 6= β, we get that
p = q = 0 and we cancel out the largest monomials.

In conclusion the polynomials in (3) are linearly independent modulo Idtr(D
tα,β

2 ).

Since MTn ∩ Idtr(D
tα,β

2 ) ⊇ MTn ∩ I, they form a basis of MTn modulo MTn ∩ Idtr(D
tα,β

2 ) and Idtr(D
tα,β

2 ) = I.
Finally, in order to compute the codimension sequence of our algebra, we have only to observe the following facts.

We have only one monomial with no trace at all, and exactly n monomials where n− 1 letters are outside the traces
(and the remaining one is inside a trace). Then we have 2

(

n
s

)

elements of the type

xi1 · · ·xikTr(xj1 · · ·xjs) or xi1 · · ·xikTr(xj1 · · ·xjs−1)Tr(xjs ), k + s = n.

In conclusion we get that

ctrn (D
tα,β

2 ) =

(

n

0

)

+

(

n

1

)

+ 2

n
∑

s=2

(

n

s

)

= 2n+1 − n− 1.

�

Given a variety V of algebras with trace, the growth of V is the growth of the sequence of trace codimensions of
any algebra A generating V , i.e., V = vartr(A). We say that V has almost polynomial growth if it grows exponentially
but any proper subvariety has polynomial growth.

In the following theorem we prove that the algebras D
tα,α

2 generate varieties of almost polynomial growth.

Theorem 12. The algebras D
tα,α

2 , α ∈ F \ {0}, generate varieties of almost polynomial growth.

Proof. By Theorem 9, the variety generated by D
tα,α

2 has exponential growth.

We are left to prove that any proper subvariety of vartr(D
tα,α

2 ) has polynomial growth. Let vartr(A) ( vartr(D
tα,α

2 ).

Then there exists a multilinear trace polynomial f of degree n which is a trace identity for A but not for D
tα,α

2 . We
can write f as

(4) f =
n
∑

k=0

∑

I

αk,I,JTr(xi1 · · ·xik )xj1 · · ·xjn−k
+ h

where h ∈ Idtr(D
tα,α

2 ), I = {i1, . . . , ik}, J = {j1, . . . , jn−k}, i1 < · · · < ik and j1 < · · · < jn−k.
Let M be the largest k such that αk,I,J 6= 0. There may exist several monomials in f with that same k, we choose

the one with the least monomial with respect to its trace part xi1 · · ·xik (in the usual lexicographical order on the
monomials in x1, . . . , xn induced by x1 < · · · < xn).

Now consider a monomial g of degree n′ > n+M of the type

g = Tr(xl1 · · ·xla)xk1 · · ·xkn′
−a

with a > 2M and n′−a > n−M . We split the monomial xl1 · · ·xla inside the trace, in M monomials y1 = xl1 · · ·xla1
,

. . . , yM = xlaM−1+1 · · ·xla , each one with ⌊ a
M ⌋ or ⌈ a

M ⌉ variables. We also let yM+1 = xk1 , . . . , yn′−a+M = xkn′
−a

.

Now, because of f(y1, . . . , yn) ≡ 0, we can write g (mod Idtr(A)) as a linear combination of monomials having
either less than M variables yi inside the trace, or M variables yi inside the trace, but at least one of these variables
is not among y1, . . . , yM . Passing back to x1, . . . , xn′ we see that g is a linear combination of monomials with less
than a variables inside the trace. If a > 2M is still satisfied for some of these monomials (for the new value of a) we
repeat the procedure and so on.

Thus after several such steps we shall write g as a linear combination of monomials with at most 2M variables
inside the traces. It follows that, for n large enough,

ctrn (A) ≤
2M
∑

k=0

(

n

k

)

≈ bn2M
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where b is a constant. Hence vartr(A) has polynomial growth and the proof is complete. �

With a similar proof we obtain also the following result.

Theorem 13. The algebras D
tα,0

2 , α ∈ F \ {0}, generate varieties of almost polynomial growth.

We conclude this section by proving some results showing that the algebras D
tα,β

2 , D
tγ,γ

2 and D
tδ,0
2 are not T tr-

equivalent. Recall that given two algebras with trace A and B, A is T tr-equivalent to B and we write A ∼T tr B, in
case Idtr(A) = Idtr(B).

Lemma 14. Let α, β, γ, δ, ǫ ∈ F \ {0}, α 6= β, δ 6= ǫ. Then

1. Idtr(D
tδ,0
2 ) 6⊂ Idtr(D

tα,β

2 ).

2. Idtr(D
tδ,0
2 ) 6⊂ Idtr(D

tγ,γ

2 ).

3. Idtr(D
tδ,0
2 ) 6⊂ Idtr(D

tǫ,0
2 ).

Proof. Let us consider the polynomial
f2 = Tr(x1)Tr(x2)− δTr(x1x2).

We have seen in Theorem 8 that f2 is a trace identity of D
tδ,0
2 . In order to complete the proof we need only to show

that f2 does not vanish on the algebras D
tα,β

2 , D
tγ,γ

2 and D
tǫ,0
2 . By considering the evaluation x1 = e11 and x2 = e22,

we obtain that f2(e11, e22, tα,β) = αβ(e11 + e22) 6= 0 and f2(e11, e22, tγ,γ) = γ2(e11 + e22) 6= 0. Hence f2 is not a

trace identity of D
tα,β

2 and D
tγ,γ

2 and we are done in the first two cases. Finally, evaluating x1 = x2 = e11, we get
f2(e11, e11, tǫ,0) = ǫ(ǫ− δ)(e11 + e22) 6= 0 and the proof is complete. �

Lemma 15. Let α, β, γ, δ, κ ∈ F \ {0}, α 6= β, γ 6= κ. Then

1. Idtr(D
tγ,γ

2 ) 6⊂ Idtr(D
tα,β

2 ).

2. Idtr(D
tγ,γ

2 ) 6⊂ Idtr(D
tκ,κ

2 ).

3. Idtr(D
tγ,γ

2 ) 6⊂ Idtr(D
tδ,0
2 ).

Proof. Let us consider the polynomial

f3 = γ2x1x2 + γ2x2x1 +Tr(x1)Tr(x2)− γTr(x1)x2 − γTr(x2)x1 − γTr(x1x2).

We have seen in Theorem 9 that f3 is a trace identity of D
tγ,γ

2 . By considering the evaluation x1 = e11 and x2 = e22,
we obtain that f3(e11, e22, tα,β) = β(α − γ)e11 + α(β − γ)e22 6= 0, f3(e11, e22, tκ,κ) = κ(κ − γ)(e11 + e22) 6= 0 and

f3(e11, e22, tδ,0) = −γδe22 6= 0. Hence f3 is not a trace identity of D
tα,β

2 , D
tκ,κ

2 and D
tδ,0
2 and the proof is complete. �

Lemma 16. Let α, β, γ, δ, η, µ ∈ F \ {0}, α 6= β, η 6= µ, {α, β} 6= {η, µ}. Then

1. Idtr(D
tα,β

2 ) 6⊂ Idtr(D
tη,µ

2 ).

2. Idtr(D
tα,β

2 ) 6⊂ Idtr(D
tγ,γ

2 ).

3. Idtr(D
tα,β

2 ) 6⊂ Idtr(D
tδ,0
2 ).

Proof. By Theorem 11 we know that the polynomials f4 and f5 are trace identities of D
tα,β

2 . In order to complete the

proof we shall show that such polynomials do not vanish on the algebras D
tη,µ

2 , D
tγ,γ

2 and D
tδ,0
2 .

1. We have to consider two different cases. If α+ β 6= η+µ, then f4(e11, e22, e22, tη,µ) = µ(α+ β− η−µ)e11 6= 0
and we are done in this case. Now, let us suppose that α+ β = η+µ. In this case, for some λ ∈ F , we obtain
that f5(e11, e22, e22, tη,µ) = λe11 + η(β − µ)(α− µ)e22 is non-zero since the hypothesis {η, µ} 6= {α, β} implies
that β 6= µ and α 6= µ.

2. It is the same proof of item 1. in which η = µ = γ.

3. The evaluation x1 = x2 = e22, x3 = e11 gives f5(e22, e22, e11, tδ,0) = αβδe22 6= 0.

�

5. The algebras C
tα,β

2

In this section we focus our attention on the F -algebra

C2 =

{(

a b
0 a

)

: a, b ∈ F

}

.

Since C2 is commutative, every trace on C2 is just a linear map C2 → F . Hence, if tr is a trace on C2, then there
exist α, β ∈ F such that

tr

((

a b
0 a

))

= αa+ βb.

We denote such a trace by tα,β . Moreover, C
tα,β

2 indicates the algebra C2 endowed with the trace tα,β .
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Lemma 17. Let α ∈ F . Then C
tα,0

2 satisfies the following trace identities of degree 2 :

1. [x1, x2] ≡ 0.

2. Tr(x1)Tr(x2)− αTr(x1x2) ≡ 0.

3. Tr(x1)Tr(x2)− αTr(x1)x2 − αTr(x2)x1 + α2x1x2 ≡ 0.

Proof. The result follows by an immediate verification. �

If α = 0 then C
t0,0
2 is a commutative algebra with zero trace and ctrn (C

t0,0
2 ) = 1, for all n ≥ 1. In case α 6= 0, by

putting together Lemma 17 and Theorem 8 we get that vartr(C
tα,0

2 ) ( vartr(D
tα,0

2 ). Hence, by Theorem 13, C
tα,0

2

generates a variety of polynomial growth.

Remark 18. Let α, β, β′ ∈ F with β, β′ 6= 0. The algebras C
tα,β

2 and C
tα,β′

2 are isomorphic, as algebras with trace.

Proof. We need only to observe that the linear map ϕ : C
tα,β

2 → C
tα,β′

2 , defined by

ϕ

((

a b
0 a

))

=

(

a ββ′−1b
0 a

)

,

is an isomorphism of algebras with trace. �

With a straightforward computation we get the following result.

Lemma 19. Let α ∈ F . Then:

1. C
tα,1

2 does not satisfy any multilinear trace identity of degree 2 which is not a consequence of [x1, x2] ≡ 0.

2. C
tα,1

2 satisfies the following trace identity of degree 3 :

fα = αx1x2x3 + Tr(x1x2)x3 + Tr(x1x3)x2 + Tr(x2x3)x1 − Tr(x1)x2x3 − Tr(x2)x1x3 − Tr(x3)x1x2 − Tr(x1x2x3).

Next we shall prove that, for any α ∈ F , the algebra C
tα,1

2 generates a variety of exponential growth.

Theorem 20. For any α ∈ F , the algebra C
tα,1

2 generates a variety of exponential growth.

Proof. Let us consider the following set of trace monomials of degree n:

(5) Tr(xi1 ) · · ·Tr(xik )xj1 · · ·xjn−k
,

where {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n}, i1 < · · · < ik, j1 < · · · < jn−k, k = 0, . . . , n.
The number of elements in (5) is exactly

∑n
k=0

(

n
k

)

= 2n. So, in order to prove the theorem we shall show that the

monomials in (5) are linearly independent, modulo Idtr(C
tα,1

2 ). To this end, let g ∈ Idtr(C
tα,1

2 ) be a linear combination
of the above elements:

g(x1, . . . , xn) =
∑

I,J

aI,JTr(xi1 ) · · ·Tr(xik )xj1 · · ·xjn−k
,

where k = 0, . . . , n, I = {xi1 , . . . , xik}, J = {xj1 , . . . , xjn−k
} and i1 < · · · < ik, j1 < · · · < jn−k.

We claim that g is actually the zero polynomial. Let k be the largest integer such that αI,J 6= 0, with fixed
I = {xi1 , . . . , xik} and J = {xj1 , . . . , xjn−k

}. By making the evaluation xi1 = · · · = xik = e12 and xj1 = · · · = xjn−k
=

e11 + e22, we get g = αI,J (e11 + e22) + γe12 = 0. This implies αI,J = 0, a contradiction. �

We conclude this section with the following results comparing trace T -ideals.

Lemma 21. Let α, β ∈ F be two distinct elements. Then Idtr(C
tα,1

2 ) 6⊂ Idtr(C
tβ,1

2 ).

Proof. Let us consider the polynomial

fα = αx1x2x3 +Tr(x1x2)x3 +Tr(x1x3)x2 +Tr(x2x3)x1 − Tr(x1)x2x3 − Tr(x2)x1x3 − Tr(x3)x1x2 − Tr(x1x2x3).

We have seen in Lemma 19 that fα is a trace identity of C
tα,1

2 . In order to complete the proof we need only show that

such a polynomial does not vanish on C
tβ,1

2 . By considering the evaluation x1 = x2 = x3 = e11 + e22 ∈ C
tβ,1

2 , we get

fα(e11 + e22, e11 + e22, e11 + e22, tβ,1) = (α− β)(e11 + e22).

Since α 6= β, fα does not vanish on C
tβ,1

2 and we are done. �

Lemma 22. Let α, β, γ, δ ∈ F \ {0}, ǫ ∈ F , α 6= β. Then

1. Idtr(D
tδ,0
2 ) 6⊂ Idtr(C

tǫ,1
2 ),

2. Idtr(D
tγ,γ

2 ) 6⊂ Idtr(C
tǫ,1
2 ),

3. Idtr(D
tα,β

2 ) 6⊂ Idtr(C
tǫ,1
2 ).
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Proof. By Theorems 8 and 9, we know that the algebras D
tδ,0
2 and D

tγ,γ

2 satisfy trace identities of degree 2 which are

not a consequence of [x1, x2] ≡ 0. This does not happen for the algebra C
tǫ,1
2 (see the first item of Lemma 19) and so

the proof of the first two items is complete.

In order to prove the last item, let us consider the polynomial f5 of Theorem 11, which is a trace identity of D
tα,β

2 .

Such a polynomial does not vanish on C
tǫ,1
2 . In fact, by considering the evaluation x1 = x2 = x3 = e12 ∈ C

tǫ,1
2 , we get

f5(e12, e12, e12, tǫ,1) = e11 + e22 − (α+ β)e12 6= 0.

�

Lemma 23. Let α, β, γ ∈ F , α 6= 0. Then Idtr(C
tγ,1

2 ) 6⊂ Idtr(D
tα,β

2 ).

Proof. Let us consider the polynomial fγ of Lemma 19, which is a trace identity of C
tγ,1

2 . We shall show that it does

not vanish on D
tα,β

2 . By considering the evaluation x1 = x2 = e11 and x3 = e22, we get

fγ(e11, e11, e22, tα,β) = αe22 − βe11.

Since α 6= 0, fγ does not vanish on D
tα,β

2 and we are done.

In particular, in case β = α we get that Idtr(C
tγ,1

2 ) 6⊂ Idtr(D
tα,α

2 ) and in case β = 0 Idtr(C
tγ,1

2 ) 6⊂ Idtr(D
tα,0

2 ). �

6. Algebras with trace of polynomial growth

We start this section by describing a version of the Wedderburn-Malcev theorem for finite dimensional algebras
with trace. First we recall some definitions. Let A be a unitary algebra with trace tr. A subset (subalgebra, ideal)
S ⊆ A is a trace-subset (subalgebra, ideal) of A if it is stable under the trace; in other words for all s ∈ S, one has
tr(s) ∈ S.

Definition 24. Let A be an algebra with trace. A is called a trace-simple algebra if

1. A2 6= 0,

2. A has no non-trivial trace-ideals.

Remark 25. Let A be an algebra with trace tr.

1. If A is simple (as an algebra) then A is trace-simple.

2. If I is a proper trace-ideal of A then the trace vanishes on I.

Proof. The first item is obvious. For the second one, let us suppose that there exists a ∈ I such that tr(a) = α 6= 0.
Hence α ∈ F is invertible. Moreover, since I is a trace-ideal, it contains α and so we would have I = A, a contradiction.

Notice that the second item of the remark also holds for one-sided ideals. �

In the following result we give a version of the Wedderburn–Malcev theorem for finite dimensional algebras with
trace.

Theorem 26. Let A be a finite dimensional unitary algebra with trace tr over an algebraically closed field F of
characteristic 0. Then there exists a semisimple trace-subalgebra B such that

A = B + J(A) = B1 ⊕ · · · ⊕Bk + J(A)

where J = J(A) is the Jacobson radical of A and B1, . . . , Bk are simple algebras.

Proof. By the Wedderburn–Malcev theorem for the ordinary case (see for example [14, Theorem 3.4.3]), we can write
A as a direct sum of vector spaces

A = B + J = B1 ⊕ · · · ⊕Bk + J

where B is a maximal semisimple subalgebra of A, J = J(A) is the Jacobson radical of A, and Bi are simple algebras,
i = 1, . . . , k. By the Theorems of Wedderburn and Wedderburn–Artin on simple and semisimple algebras (see for
instance [15, Theorems 1.4.4, 2.1.6]), and since F is algebraically closed, we have that

B = B1 ⊕ · · · ⊕Bk = Mn1(F )⊕ · · · ⊕Mnk
(F ).

Here Mni
(F ) is the simple algebra of ni × ni matrices, i = 1, . . . , k. Clearly B is a trace-subalgebra since 1A ∈ B.

Moreover, by considering the restriction of the trace tr on B it is easy to see that there exist αi ∈ F such that

tr(a1, . . . , ak) =

k
∑

i=1

tαi
(ai)

where ai ∈ Mni
(F ), tαi

= αit
i
1, and ti1 is the ordinary trace on the matrix algebra Mni

(F ). �

In order to prove the main result of this paper we need the following lemmas.

Lemma 27. Let A = B + J be a finite dimensional algebra with trace tr. If there exists j ∈ J such that tr(j) 6= 0

then C
tα,1

2 ∈ vartr(A), for some α ∈ F .
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Proof. Let us consider the trace subalgebra B′ of A generated by 1, j over F and let I be the ideal of B′ generated by
jn, where n is the least integer such that tr(jn) = tr(jn+1) = · · · = 0. Then the quotient algebra B̄ = B′/I is an algebra
with trace t defined as t(a+I) = tr(a), for any a ∈ B′. Obviously B̄ = span{1̄ = 1+I, j̄ = j+I, . . . , j̄n−1 = jn−1+I}.
Let α = tr(1) and β = tr(jn−1) 6= 0.

We claim that C
tα,β

2 ∈ vartr(B̄). Let ϕ : C
tα,β

2 → B̄ be the linear map defined by ϕ(e11+e22) = 1̄ and ϕ(e12) = j̄n−1.

It is easy to check that ϕ is an injective homomorphism of algebras with trace. Hence C
tα,β

2 is isomorphic to a trace
subalgebra of B̄ and the claim is proved.

Since, by Remark 18, C
tα,β

2
∼= C

tα,1

2 , it follows that C
tα,1

2 ∈ vartr(A) and the proof is complete. �

Lemma 28. For any α ∈ F , the algebra D
tα,α

2 belongs to the variety generated by M tα
n .

Proof. Let us recall that we denote by M tα
n the algebra of the n× n matrices endowed with the trace tα; this is the

usual trace multiplied by the scalar α ∈ F . Since D
tα,α

2 ⊆ M tα
2 as algebras with (the same) trace it follows that

D
tα,α

2 satisfies all trace identities of M tα
2 (and some additional ones). Therefore D

tα,α

2 ∈ vartr(M tα
2 ). In order to

complete the proof we need just to show that M tα
2 ∈ vartr(M tα

n ). To this end, let f ∈ Idtr(M tα
n ) be a multilinear

trace identity of degree m and suppose, by contradiction, that there exists elementary matrices ei1j1 , . . . , eimjm in

M tα
2 such that f(ei1j1 , . . . , eimjm) =

∑

αi,jeij 6= 0. Notice that, if we denote by e′ij the elementary matrices in M tα
n ,

then f(e′i1j1 , . . . , e
′

imjm
) =

∑

αi,jeij +
∑n

i=3 βiieii 6= 0, a contradiction. �

In order to prove the main result of this paper we have to consider also the algebra UT2 of 2× 2 upper-triangular
matrices endowed with zero trace. In the following theorem we collect some results concerning such an algebra.

Theorem 29. Let UT2 be the algebra of 2× 2 upper-triangular matrices endowed with zero trace.

1. The trace T -ideal Idtr(UT2) is generated by [x1, x2][x3, x4] and Tr(x).

2. UT2 generates a variety of almost polynomial growth.

3. Idtr(UT2) * Idtr(A), where A ∈ {D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 }, α, β, γ, δ ∈ F \ {0}, α 6= β, ǫ ∈ F .

4. Idtr(A) * Idtr(UT2), where A ∈ {D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 }, α, β, γ, δ ∈ F \ {0}, α 6= β, ǫ ∈ F .

Proof. The first two items follows directly from the ordinary case (see, for instance [14, Chapter 4 and 7]).
For the item (3) it is sufficient to observe that Tr(x) ≡ 0 is a trace-identity of UT2 but such a polynomial does

not vanish on A, for any A ∈ {D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 }. Finally, since the algebras D

tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 are

commutative and UT2 is not, we get item (4), and the proof is complete. �

Now we are in a position to prove the following theorem characterizing the varieties of unitary algebras with trace
which are generated by finite dimensional algebras, and have polynomial growth of their codimensions.

Theorem 30. Let A be a finite dimensional unitary algebra with trace tr over a field F of characteristic zero. Then

the sequence ctrn (A), n = 1, 2, . . . , is polynomially bounded if and only if D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 , UT2 /∈ vartr(A),

for any choice of α, β, γ, δ ∈ F \ {0}, α 6= β, ǫ ∈ F .

Proof. By Theorems 8, 9, 11, 20, 29, the algebras D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 and UT2 generate varieties of exponential

growth. Hence, if ctrn (A) is polynomially bounded, then D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 , UT2 /∈ vartr(A), for any α, β, γ,

δ ∈ F \ {0}, α 6= β, ǫ ∈ F .

Conversely suppose that D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 , UT2 /∈ vartr(A), for any α, β, γ, δ ∈ F \ {0}, α 6= β, ǫ ∈ F .

Since we are dealing with codimensions, and these do not change under extensions of the base field, we may assume
that the field F is algebraically closed. By Theorem 26, we get that

A = Mn1(F )⊕ · · · ⊕Mnk
(F ) + J, k ≥ 1,

and there exist constants αi such that, for ai ∈ Mni
(F ), we have

tr(a1, . . . , ak) =

k
∑

i=1

tαi
(ai).

Since D
tγ,γ

2 /∈ vartr(A), for any γ ∈ F \ {0}, and since, by Lemma 28, we have that, for n ≥ 2, D
tγ,γ

2 ∈ vartr(M
tγ
n ) ⊆

vartr(A), we get that ni = 1, for every i = 1, . . . , k. Hence

A = A1 ⊕ · · · ⊕Ak + J

where for every i = 1, . . . , k, Ai
∼= F and the trace on it is tαi

.

Since, for any α ∈ F , C
tα,1

2 6∈ vartr(A), by Lemma 27 we must have that the trace vanishes on J .
Now, if for any i = 1, . . . , k, the trace on Ai is zero, since UT2 6∈ vartr(A), then, for any i 6= j, we must have

AiJAj = 0. Hence, for n ≥ 1, ctrn (A) = cn(A) is polynomially bounded (see, for instance [14, Chapter 7]) and we are
done in this case.

Hence, we may assume that there exists i such that the trace on Ai is tαi
, with αi 6= 0.
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Let Fα denote the field F endowed with the trace tα. We claim that Fα ⊕ Fβ is isomorphic to D
tα,β

2 if α 6= β

(notice that β could be zero) and to D
tα,α

2 otherwise. Here we shall denote by t the trace map on Fα ⊕ Fβ defined
as t((a, b)) = tα(a) + tβ(b), for all (a, b) ∈ Fα ⊕ Fβ . In order to prove the claim, let us consider the linear map
ϕ : D2 → Fα ⊕ Fβ such that

ϕ

(

1 0
0 0

)

= (1, 0) and ϕ

(

0 0
0 1

)

= (0, 1).

It is easily seen that ϕ is an isomorphism of algebras.
Now, if α 6= β, we have that

ϕ

(

tα,β

(

1 0
0 0

))

= ϕ(α) = (α, α) = t(1, 0) = t

(

ϕ

(

1 0
0 0

))

,

ϕ

(

tα,β

(

0 0
0 1

))

= ϕ(β) = (β, β) = t(0, 1) = t

(

ϕ

(

0 0
0 1

))

,

and so ϕ is an isomorphism of algebras with trace between D
tα,β

2 and Fα ⊕ Fβ . In the same way, if α = β, we get a

trace isomorphism between D
tα,α

2 and Fα ⊕ Fα.

Hence, since D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 /∈ vartr(A), it follows that

A = B + J

where B ∼= F and for all a = b+ j ∈ A, tr(a) = tr(b + j) = αb, with α 6= 0.
In order to complete the proof we need to show that B + J has polynomially bounded trace codimensions.
Notice that the following polynomials are trace identities of B + J :

1. αTr(x1x2)− Tr(x1)Tr(x2) ≡ 0,

2. (Tr(x1)− αx1) · · · (Tr(xq+1)− αxq+1) ≡ 0, where Jq 6= 0 and Jq+1 = 0.

Modulo the first trace identity, every multilinear trace polynomial in the variables x1, . . . , xn is a linear combination
of expressions of the type

Tr(xi1 ) · · ·Tr(xia )xj1 · · ·xjb

where {i1, . . . , ia, j1, . . . , jb} = {1, . . . , n} and i1 < · · · < ia. The second identity implies that we can suppose a ≤ q.
Indeed if a ≥ q + 1 then one can represent the product of q + 1 traces as a linear combination of elements with fewer
traces by expanding the second trace identity. Therefore we may suppose a ≤ q.

We can further reduce the form of the latter polynomials. As we consider algebras with unit we can rewrite each
monomial xj1 · · ·xjb as a linear combination of elements of the type

xp1 · · ·xpc
[xl1 , . . . , xlk ] · · · [xm1 , . . . , xmh

] .

Here the commutators that appear are left normed, that is [u, v] = uv − vu, [u, v, w] = [[u, v], w] and so on. Moreover

{i1, . . . , ia, p1, . . . , pc, l1, . . . , lk, . . . ,m1, . . . ,mh} = {1, . . . , n} .

By applying the Poincaré–Birkhoff–Witt theorem, we can assume further that p1 < · · · < pc, and that the commutators
are ordered. Therefore we can write each trace polynomial as a linear combination of elements of the type

Tr(xi1 ) · · ·Tr(xia )xp1 · · ·xpc
[xl1 , . . . , xlk1

] · · · [xm1 , . . . , xmkh
],

where {i1, . . . , ia, p1, . . . , pc, l1, . . . , lk1 , . . . ,m1, . . . ,mkh
} = {1, . . . , n} and i1 < · · · < ia, p1 < · · · < pc, a ≤ q. The

algebra B in the decomposition A = B + J is commutative. Hence each commutator vanishes when evaluated on
elements of B only. Thus in order to get a non-zero element we must substitute in a commutator at least one element
from J . Since Jq+1 = 0, a product of q + 1 commutators is a trace identity. Therefore we also get the restriction
K := k1 + · · ·+ kh ≤ q. In this way

ctrn (A) ≤

q
∑

a=0

(

n

a

)

(

q
∑

K=k1+···+kh=0

(

n− a

K

)(

K

k1, . . . , kh

)

k1! · · · kh!

)

=

q
∑

a=0

n(n− 1) · · · (n− a+ 1)

a!

(

q
∑

K=k1+···+kh=0

(n− a)!

(n− a−K)!

)

≈ cn2q

where c is a constant. Hence A = B + J has polynomial growth and the proof is complete. �

As an immediate consequence, we get the following result.

Corollary 31. If A is a finite dimensional unitary algebra with trace, then the sequence ctrn (A), n = 1, 2, . . . , is
either polynomially bounded or grows exponentially.

Now we prove the following corollary.
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Corollary 32. Let α, β ∈ F \ {0}, α 6= β. Any proper subvariety of vartr(D
tα,β

2 ), generated by a finite dimensional
algebra with trace, has polynomial growth.

Proof. Let V = vartr(A) ( vartr(D
tα,β

2 ) where A is a finite dimensional algebra with trace. As a consequence of

Lemmas 16, 22 (item 3.) and Theorem 29, we get that UT2, D
tα′,β′

2 , D
tγ,γ

2 , D
tδ,0
2 , C

tǫ,1
2 6∈ vartr(A), for any α′, β′, γ,

δ ∈ F \ {0}, α′ 6= β′, ǫ ∈ F . Hence Theorem 30 applies and the proof is complete. �

With a similar approach we obtain the following result.

Corollary 33. For any ǫ ∈ F , any proper subvariety of vartr(C
tǫ,1
2 ), generated by a finite dimensional algebra with

trace, has polynomial growth.

According to the previous results, with an abuse of terminology, we may say that D
tα,β

2 and C
tǫ,1
2 generate varieties

of almost polynomial growth. As a consequence we state the following corollary.

Corollary 34. The algebras UT2, D
tα,β

2 , D
tγ,γ

2 , D
tδ,0
2 and C

tǫ,1
2 , α, β, γ, δ ∈ F \ {0}, α 6= β, ǫ ∈ F , are the only finite

dimensional algebras with trace generating varieties of almost polynomial growth.
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