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Doctor of Philosophy

Analysis of Pattern Selection in Reaction-Diffusion Systems: From Toxic
Zooplankton Dynamics to Tumor Growth Modelling

by FARHAN KHAN

In this thesis, we developed a model to study how patterns form and evolve over
time due to the interaction between toxic phytoplankton and zooplankton. Our
analysis revealed that nonlinear cross-diffusion plays a crucial role in shaping spatial
patterns. We derived amplitude equations to describe the dynamics under nonlin-
ear cross-diffusion, which helped us to understand the transitions and stability of
various Turing patterns. Our numerical simulations confirmed the validity of our
theoretical results. We found that in the absence of cross-diffusion, the distribution
of plankton is homogeneous. However, when cross-diffusivity exceeds a critical
value, the spatial distribution of all plankton species becomes inhomogeneous in
space, leading to different patterns. This thesis also presents a mathematical model
of acid-mediated tumor growth using reaction-diffusion equations in spherical coor-
dinates. Tumor invasion is a complex process involving cell migration and prolifer-
ation. Mathematical modelling can aid in understanding the mechanisms by which
primary and secondary (metastatic) tumors invade and damage normal cells. A nu-
merical study of acid-mediated tumor growth may provide a better understanding
of how to design new experiments or cures for the future. Cancer cells use anaerobic
glycolysis, which increases the production of lactic acid. This acidic environment is
favourable for tumor growth, and if it persists, normal cells cannot survive and be-
gin to die, thereby facilitating tumor invasion. The results show that the method of
lines is a powerful numerical scheme for solving the proposed model, and MATLAB
is used to analyze the computed results graphically.
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Chapter 1

Introduction

Theoretical approaches to delineate the dynamics of pattern formation have ad-
vanced significantly over the past few decades because of their prime importance
in understanding natural phenomena. In his seminal work, Turing ([97]) gave an
idea of pattern formation and how reaction and diffusion parts of the system play
an essential role in developing a pattern. He stated that a homogenous steady state
of the system becomes unstable by adding diffusion, which leads to spatially in-
homogeneous patterns, the so-called Turing instability. In many areas, including
biology, chemistry, physics, ecology, geology, and many more, self-regulated pattern
development can be explained by reaction-diffusion models ([18], [19], [68]). The in-
teractions between species and their evolution are essential processes in biology and
ecology; the mathematical model plays a vital role in understanding the interaction
of species and their development; numerous models have been examined in the past
([76], [77], [85], [92], [93]).
In recent years, one interesting topic has been studying how cross-diffusion plays a
crucial role in developing a pattern. Cross-diffusion is a phenomenon in which the
gradient of one species’ concentration affects the flux of another species. In biolog-
ical modelling, it plays a crucial role in various processes such as chemotaxis, can-
cer progression, cell migration, and ecological interactions. For instance, in chemo-
taxis, cells move in response to chemical gradients, which can be modelled using
cross-diffusion terms ([49], [94], [39]). In cancer modelling, cross-diffusion can rep-
resent the complex interactions between tumour cells and their microenvironment,
influencing invasion and metastasis ([59]; [3],[35], [37], [56]). In ecological systems,
cross-diffusion can describe predator-prey dynamics or competition between species
([86],[58]). Regarding Turing pattern formation, cross-diffusion can significantly im-
pact the conditions for pattern emergence and the resulting spatial structures. It
can destabilize homogeneous steady states and lead to the formation of more com-
plex patterns than those observed in classical reaction-diffusion systems ([62], [33];
[11]). The inclusion of cross-diffusion terms in Turing-type models has expanded
our understanding of pattern formation mechanisms in biological systems, offering
new insights into morphogenesis and self-organization processes ([60]). Recent ad-
vancements in mathematical analysis have further elucidated the behaviour of cross-
diffusion systems ([26]), contributing to more accurate and comprehensive biological
models across various scales and applications.
In this thesis, our focus is on the study of plankton ecosystems, with particular atten-
tion to the dynamics between toxic phytoplankton and zooplankton. Phytoplankton
are tiny organisms that live in the top sunlit layers of almost all water bodies, includ-
ing oceans and freshwater. These drifting, photosynthetic organisms consist of vari-
ous types of microalgae, cyanobacteria, and others that are able to convert inorganic
nutrients and carbon dioxide into organic compounds through photosynthesis. Phy-
toplankton are at the base of the food chain in water ecosystems and are responsible
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for producing about half of Earth’s atmospheric oxygen. They play a crucial role in
supporting marine life and regulating the planet’s climate system ([25]).
While most phytoplankton species are harmless and essential food sources for or-
ganisms ranging from zooplankton to whales, a small fraction of phytoplankton va-
rieties produce potent natural toxins. When environmental conditions are favourable,
these toxic varieties can undergo rapid population increases known as harmful algal
blooms (HABs) or "red tides" when high concentrations discolour the water ([4]).
Blooms of toxic phytoplankton have occurred throughout history, sometimes caus-
ing mass mortality events in marine life, human illness from contaminated seafood,
and substantial economic impacts. Factors like excessive nutrient inputs, warm-
ing ocean temperatures, changes in water chemistry, and introduction of invasive
species via shipping can create conditions that allow certain toxic phytoplankton to
outcompete other varieties and reach high densities ([103]). Blooms have increased
in geographic extent, frequency, and intensity in recent decades ([44]).
The impacts are severe and widespread. Toxic blooms have caused large-scale fish
kills, mammal deaths, human poisoning or memory impairment from consuming
contaminated seafood, and risks from inhaling toxic aerosols at beaches ([10]). Sig-
nificant economic losses result from beach and fishery closures, damage to aquacul-
ture operations, and human illness. Desalination and power plants can experience
disruptions when intake pipes become clogged ([5]).
While most phytoplankton plays a vital role in supporting marine food webs, the
threat from HABs created by toxic varieties demands increased scientific monitor-
ing, controls on nutrient pollution sources, research into bloom dynamics, and other
preventative measures ([40]). Understanding and mitigating toxic phytoplankton
blooms is crucial for protecting marine ecosystems, seafood safety, coastal economies,
and human health.
Zooplankton are a vital link in the marine food web, serving as the primary grazers
of phytoplankton and transferring energy to higher trophic levels like fish, seabirds,
and whales. However, the increasing prevalence of toxic algal blooms poses a sig-
nificant threat to these microscopic animal drifters. When certain phytoplankton
species produce biotoxins and undergo population explosions known as harmful al-
gal blooms (HABs), zooplankton face dire consequences.
Some zooplankton that ingest toxic phytoplankton accumulate the toxins in their
body tissues, passing the toxicity up the food chain to their predators with poten-
tially fatal effects ([89]). Other zooplankton avoids ingesting toxic algae but face nu-
tritional deficiencies or starvation during severe HABs when non-toxic food sources
are depleted ([53]). Prolonged exposure to HABs toxins can impair zooplankton
reproduction and development, negatively impacting growth, fecundity, hatching
success, and larval survival ([9]).
The effects of HABs on zooplankton can ripple through entire marine ecosystems. If
toxic blooms cause zooplankton populations to crash, it can reduce food availability
and negatively impact organisms ranging from forage fish to whales that depend on
zooplankton as a dietary source ([42]). Shifts in zooplankton community composi-
tion during HABs, as sensitive species decline and toxin-resistant species proliferate,
can disrupt ecological dynamics and energy flows ([104]).
Furthermore, as climate change promotes the expansion of warm-water HAB species
into new geographic regions, zooplankton communities unaccustomed to these in-
vasive toxic algae may be particularly vulnerable ([95]). Range expansions of toxic
blooms, combined with the synergistic effects of warming temperatures, ocean acid-
ification, and other climate stressors, pose a growing threat to zooplankton.
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Given the critical role of zooplankton in marine ecosystems and fisheries produc-
tivity, understanding and mitigating the adverse impacts of HABs on these grazers
is crucial ([27]). Through monitoring programs, research into bloom dynamics and
toxicity mechanisms, control strategies for nutrient pollution, and enhanced ability
to predict bloom patterns, we can work to protect zooplankton from the increasingly
pervasive global problem of harmful algal blooms.
A fascinating area of research in recent decades has been exploring how toxic sub-
stances released by phytoplankton reduce zooplankton grazing pressure ([12, 13,
16, 81, 15]). ([17]) proposed a mathematical model demonstrating how this phe-
nomenon, termed TTP (toxic phytoplankton protection), acts as a biocontrol mecha-
nism to mitigate planktonic blooms. Furthermore, ([80]) developed a mathematical
model elucidating the interaction between toxin-producing phytoplankton and zoo-
plankton, exploring Hopf-bifurcation and providing numerical simulations to com-
prehend the underlying dynamics.
In the second half of the thesis, we proposed a reaction-diffusion model of tumour
growth based on glycolysis. Glycolysis has two types: aerobic and anaerobic. Aero-
bic glycolysis occurs in the presence of oxygen, whereas anaerobic glycolysis occurs
in the absence of oxygen. Cellular respiration is the process by which a cell breaks
down glucose molecules to obtain the energy required by the human body to func-
tion properly. This process involves three main steps in healthy cells: glycolysis, the
Krebs cycle, and oxidative phosphorylation. Cellular respiration utilizes one glu-
cose molecule and produces 36 adenosine triphosphate (ATP) molecules. In cancer
cells, glucose molecules are broken down using anaerobic respiration, and they do
not complete the other respiration steps. As a result, cancer cells produce only two
molecules of ATP, which means they need to consume a lot more sugar molecules to
obtain enough energy to survive. This concept was initially suggested by German
scientists ([102]), who received the Nobel Prize in 1931 for their groundbreaking re-
search.
([35]), were the first to propose a mathematical model for acid-mediated tumour in-
vasion, building on the concept introduced by [102]. Experimental works have since
supported this model, underscoring the crucial role of anaerobic glycolysis in cancer
cells. This metabolic process leads to the production of H+ ions ([35], [36], [37], [75])
which causes local acidification and destruction of normal cells, thereby facilitating
the invasion of cancer cells. The reaction-diffusion model ([35]) further elucidates
how the number of normal cells, tumor cells, and concentration of H+ ions evolve
due to interactions between these populations.
Another aspect of cancer invasion is that the microenvironment of particular inter-
est to cancer researchers is the low pH ([20]). The anaerobic glycolysis of cancer cells
produces H+ ions, and these ions lower the pH of the surrounding environment of
the primary tumour, which helps us to form a secondary tumour apart from the pri-
mary tumour; this process is also called metastatic. This high level of the metabolic
process gives a large amount of lactic acid, leading to an excess concentration of H+

ions, and due to this lactic acid, the surrounding environment of the tumour affects
the normal cells. This lactic acid lowers the pH level of the surrounding tumour en-
vironment. This environment helps tumors to grow, and normal cells die due to low
pH ([14], [74], [88]). The pH level of blood in which normal cells live is about 7.1-
7.4; otherwise, tumour cell pH is 6.5-7 ([48], [83], [79]).
In 2013, ([64]) extended the primary model gave ([35]). They used logistic growth
of normal and tumour cells and also discussed the competition of tumour cells on
normal, i.e. the effect of tumour cells on normal cells. In this article, they find the
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unique solution to a mathematical model of tumour growth and use different non-
standard finite difference schemes to solve the model.
([43]) gave a model by adding time-carrying capacities, which depend on tumour
cells’ capacities. He numerically solved this model using the Dual Reciprocity Bound-
ary Element Method (DRBEM). [7] also examines a model of acid-mediated tumour
growth by adding some noticeable changes in the model given by [35]; they discuss
fast and slow-motion travelling waves of tumour and normal.

([65]) generalized the mathematical model of the tumor as first given by ([35]);
all the previous articles published about tumor growth tell that tumor cells can be
grown in an acidic environment and normal cells will die in this environment, but
this mathematical model tells that tumor cells will also be affected in too much acidic
environment also they a add competition term of both normal and tumor cells, i.e.
how normal and tumor both effects on each other by using Lotka–Volterra compe-
tition model ([105]) when both are proximity. In our article, we make a noticeable
approach in the model given by ([65]); this approach we do in the model provides
precise numerical results of the tumour, normal cells, the concentration of H+ ions
and how pH varies in this whole process. We convert the model ([35]) in spherical
coordinates as ([82]); due to the geometry of the tumour and previous numerical
work done on the model in dimensionless, we make a new approach to balance our
mathematical system and then solve the numerical.

The thesis is organized as follows: "In Chapter (2), we provide the theoretical
background for the current work. We present a detailed description of the reaction-
diffusion system. First, we discuss the reaction terms, offering a comprehensive
analysis of the Lotka-Volterra competition model, including its two types of compe-
tition: intraspecific and interspecific. We also briefly describe the different types of
Holling-type functional responses. Additionally, we explore the linearization of the
system around an equilibrium point and the general condition for Turing instability
in reaction-diffusion systems with self- and cross-diffusion."
In Chapter (3), we present the main mathematical model of our thesis, which focuses
on the interaction between toxic phytoplankton and zooplankton, formulated as
a reaction-diffusion system with self-diffusion and nonlinear cross-diffusion. The
novelty of our model lies in the introduction of nonlinear cross-diffusion, which cap-
tures the phenomenon of mutual avoidance between species, a concept proposed by
([47]) in his experimental work. This cross-diffusion term accounts for how individ-
uals of one species tend to avoid areas where the other species are present. Addi-
tionally, we simplify the model by applying nondimensionalization, a mathematical
technique that reduces the complexity of the system by scaling the variables, making
it easier to analyze and interpret. Chapter (4) presents the first main contribution of
the thesis, which is finding the equilibrium solution of the system’s kinetics and
discussing the system’s stability analysis without diffusion. We also linearize the
complete PDE system and prove that the cross-diffusion coefficient is crucial in ob-
taining Turing instability.
In Chapter (5), we give a second main contribution of our work, performing weakly
nonlinear analysis near the bifurcation point to predict the amplitude and form of
the patterns and develop Stuart-Landau amplitude equations that help to under-
stand supercritical and subcritical bifurcation and numerical results performed us-
ing Matlab. Also, we perform WNL in the 2D domain and develop an amplitude
equation to help understand different patterns: spot, stripe, and the mixture of spot
and stripe, as we discuss in upcoming work ([54]). In Chapter 6, the first section
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briefly describes the mathematical modelling of tumor growth in spherical coordi-
nates using a reaction-diffusion system. We also provide an analysis explaining why
the mathematical model of the tumor is discussed in spherical coordinates. Further-
more, we present the numerical results of the tumor growth model, obtained using
the method of lines in Matlab, as discussed in our work ([56]).





7

Chapter 2

A Overview of Reaction Diffusion
Systems

This chapter provides a comprehensive overview of reaction-diffusion systems, which
are mathematical models used to describe the spatial and temporal dynamics of
interacting substances. Reaction-diffusion systems are mathematical models that
describe show how the concentration of one or more substances distributed in space
changes under the influence of two processes: local chemical reactions and diffusion.
These systems are widely used to model various phenomena in biology, chemistry,
physics, and ecology. The chapter begins with an introduction to reaction terms, fo-
cusing on the Lotka-Volterra competition model, which is used to study interactions
between species, including both intraspecific and interspecific competition. The dis-
cussion then extends to the concept of functional responses, particularly Holling’s
types, which describe the relationship between a consumer’s consumption rate and
prey density (see section 2.1). The chapter also delves into the mathematical analysis
of these systems, covering key concepts like steady states, stability analysis through
linearization and Jacobian matrices, and bifurcation points such as Hopf bifurca-
tion, which marks transitions to oscillatory behaviour (see section 2.2). The diffusion
term, critical for describing the spatial spread of substances, is explored alongside
cross-diffusion, which leads to complex pattern formation. Finally, the chapter dis-
cusses the implications of cross-diffusion-driven instability, emphasizing its role in
creating patterns in natural systems (see section 2.3). Through these discussions,
the chapter lays the groundwork for understanding the dynamics and stability of
reaction-diffusion systems in various scientific fields.

2.1 The Reaction

The reaction term in a reaction-diffusion system represents the local interactions
between substances or species. It describes how the concentrations of substances
change over time due to chemical reactions or other interactions independent of
spatial effects. Different types of reaction terms are used, such as Michaelis-Menten
kinetics, Hill function, Fisher-KPP (Kolmogorov-Petrovsky-Piskunov) equation, and
Lotka-Volterra equations; here, we provide a brief description of the Lotka-Volterra
Competition Model. Here, we will focus on the Lotka-Volterra model with logistic
growth.

Lotka-Volterra model with competition

Species coexisting in a shared habitat inevitably interact and compete for limited re-
sources such as food, mates, or space. These interactions can take various forms,
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including competition, cooperation, exclusion, or predation. The more adept com-
petitor often negatively impacts the other species, potentially reducing its popula-
tion size or growth rate.

The Lotka-Volterra model is commonly used to better understand the various as-
pects and outcomes of competitive interactions. This mathematical model describes
interactions between two species, typically representing one as the predator and the
other as the prey. The interaction known as predation involves the predator killing
and consuming the prey. The Lotka-Volterra model provides a valuable framework
for predicting the outcomes of such competitive dynamics.

The Lotka-Volterra model comes in two forms: one for predation and one for com-
petition. In the case of predation, often referred to as the predator-prey model, the
model is based on exponential growth. In contrast, the competition model is based
on logistic growth. Both exponential and logistic growth describe increasing popu-
lation sizes, but they differ in key ways. Exponential growth applies to populations
with no upper limit, where resources are unlimited, and the growth rate is propor-
tional to the current population size. Logistic growth, however, includes a maximum
limit, known as the carrying capacity, accounting for limited resources and competi-
tion with other species. As a result, logistic growth is more realistic than exponential
growth in representing natural population dynamics.

Lotka-Volterra competition model

In the competition model, we take two types of competition,

(1) Intraspecific competition.
(2) Interspecific competition.

Intraspecific competition

Intraspecific competition occurs when members of the same species compete for
limited resources. Individuals within the same population share similar needs and
resource requirements, making intraspecific competition more intense than interspe-
cific competition. As population density increases, the competition for these limited
resources intensifies, leading to a decrease in the population’s growth rate. As a
result, the rate of change in the number of individuals is directly affected by this
competition.

dN
dt

= rN
(

K − N
K

)
(2.1)

Here,
N is a population density,
r is the growth rate,
t is time,
K is the carrying capacity for the population density.

The logistic growth equation is well-suited for modeling intraspecific competi-
tion because it offers a simple yet realistic representation of biological systems.
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If we isolate the term rN on the right-hand side of the equation, it represents popu-
lation growth in the absence of competition, known as exponential growth. The sec-
ond term, K−N

K , accounts for intraspecific competition or density dependence based
on the carrying capacity. As the population size approaches the carrying capacity,
this term K−N

K becomes smaller, reducing the population growth rate. Conversely,
when the population size is below the carrying capacity, the growth rate is higher
than before. This illustrates that the growth rate is influenced by population density.

Interspecific competition

Interspecific competition occurs when individuals from different species vie for the
same resources. For instance, lions and spotted hyenas, which share a common diet
and occupy overlapping niches, compete for food and other resources. This com-
petition can have negative effects on one species, as the presence of the competing
species reduces the availability of food. In a model that integrates the effects of each
species on the other, the impact of interspecific competition between these two pop-
ulations can be used to predict their interactions and outcomes.

dN
dt

= r1.1N
(

Kn − N − a12T
Kn

)
,

dT
dt

= r2.1T
(

Kt − T − a21N
Kt

)
.

(2.2)

Equation (2.2) represents the interspecific competition for species N and T respec-
tively.

Where,
N is the population density for species 1,
T is the population density for species 2,
r1.1 is the growth rate for population 1,
r2.1 is the growth rate for population 2,
t is time,
Kn is the carrying capacity for population 1,
Kt is the carrying capacity for population 2.

The primary distinction between the interspecific and intraspecific competition mod-
els lies in the inclusion of terms involving a. In this context, a12 represents the impact
of species T on the population of species N, while a21 denotes the effect of species
N on the population of species T. When a12 < 1, it indicates that the influence of
species T on species N is less significant compared to its effect on its own members.
Conversely, when a12 > 1, it means that species T has a greater impact on species N
than on its own population, and the same interpretation applies to a21.

Holling type functional response

Holling-type functional response refers to a concept in ecology that describes the re-
lationship between a consumer’s consumption rate and its resources or prey avail-
ability. This relationship is often represented using mathematical models, and sev-
eral types of functional responses are proposed by C.S. Holling in his seminal work
([51]).
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Type I functional response (Linear)

The consumption rate of the consumer increases linearly with the prey density until
it reaches a saturation point. This type of response is often observed in filter feed-
ers or organisms that consume non-renewing resources. The equation for Type I
functional response is:

F = a × N. (2.3)

Where F is the consumption rate, a is the attack rate (a constant), and N is the prey
density.

Type II functional response (Hyperbolic)

The consumption rate increases with prey density but eventually reaches an asymp-
tote or maximum value, known as the saturation level. This type of response is com-
monly observed in many predator-prey systems, where the predator spends more
time handling and consuming prey as density increases. The equation for Type II
functional response is:

F =
a × N

1 + a × N × Th
. (2.4)

Where F is the consumption rate, a is the attack rate, N is the prey density, and Th is
the handling time (the time required to consume and digest a prey item).

Type III functional response (Sigmoid)

At low prey densities, the consumption rate increases slowly, but as prey density
increases, it accelerates until it reaches a plateau. This type of response is often
observed in generalist predators that switch to more profitable prey types as their
density increases. The equation for Type III functional response is:

F =
a × N2

1 + a × Th × N2 . (2.5)

F is the consumption rate, a is the attack rate, N is the prey density, and Th is the
handling time. These functional response models have been widely used in ecolog-
ical studies to understand predator-prey dynamics, population regulation, and the
stability of ecosystems. They provide a theoretical framework for predicting the con-
sumption rates of consumers under different resources or prey densities and have
been supported by numerous empirical studies across various ecosystems and or-
ganisms.

To understand complex kinetic systems, we apply quantitative approaches to un-
derstand the behaviour of the system, which will be discussed in the next section.

2.2 Qualitative Analysis of Reaction Term

A steady state (or equilibrium point) is a point in the phase space where the system
remains at rest or exhibits a constant behaviour over time ([90]). Mathematically, a
steady state is a solution to the system’s governing equations where the time deriva-
tives of the state variables are zero ([55]).
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2.2.1 Linear analysis of a steady state

• To analyze the stability of the steady state, we need to linearize the system’s
governing equations around the steady state ([41]).

• This involves taking the partial derivatives of the system’s equations with re-
spect to the state variables and evaluating them at the steady state ([78]).

• The resulting linear system approximates the original nonlinear system near
the steady state ([72]).

Analyze the eigenvalues of the Jacobian matrix

• The Jacobian matrix is the matrix of partial derivatives obtained in the lin-
earization step ([87]).

• The eigenvalues of the Jacobian matrix determine the stability of the steady
state ([55]).

• If all the eigenvalues have negative real parts, the steady state is stable ([90]).

• If any eigenvalue has a positive real part, the steady state is unstable ([41]).

• If some eigenvalues have zero real parts, the steady state is neutrally stable or
marginally stable ([78]).

Classify the type of stability

• Stable node: All eigenvalues have negative real parts, and the trajectories ap-
proach the equilibrium without oscillations. This indicates that the equilib-
rium is asymptotically stable, and the system will settle to this point after a
disturbance ([90]).

• Unstable node: At least one eigenvalue has a positive real part. Trajectories
move away from the equilibrium, showing that the system is unstable and
small disturbances will cause the system to diverge from this point ([55]).

• Saddle point: Eigenvalues have both positive and negative real parts. The
equilibrium is unstable as trajectories approach along some directions (corre-
sponding to negative eigenvalues) and diverge along others (corresponding to
positive eigenvalues) ([41]).

• Stable focus (Spiral): Eigenvalues are complex with negative real parts, causing
the trajectories to spiral towards the equilibrium. This is also asymptotically
stable, with oscillatory behavior as the system returns to equilibrium ([78]).

• Unstable focus (Spiral): Complex eigenvalues with positive real parts cause
trajectories to spiral outward from the equilibrium, making it unstable with
oscillatory divergence ([87]).

• Center (Neutral stability): Eigenvalues are purely imaginary (zero real parts),
leading to closed trajectories around the equilibrium. The equilibrium is neu-
trally stable, and trajectories neither approach nor diverge from it but instead
form periodic orbits ([90]).
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Determine the stability region

• The stability region is the initial condition for which the system converges to
the stable, steady state ([90]).

• The stability region can be determined by analyzing the phase portrait or using
Lyapunov’s direct method ([55]).

2.2.2 Bifurcation Point

A bifurcation point is a parameter value at which the qualitative structure of the
flow of a dynamical system changes. In other words, it is the point where the system
undergoes a qualitative change in its dynamics, such as the creation or destruction
of fixed points, or a change in the stability of existing fixed points.

Types of bifurcations

Saddle-Node bifurcation

In a saddle-node bifurcation, a pair of fixed points (stable and unstable) are created
or annihilated as a parameter is varied. The collision and annihilation of a stable and
unstable fixed point characterizes this bifurcation. The canonical form of a saddle-
node bifurcation is:

dx
dt

= µ − x2

where µ is the bifurcation parameter.

Transcritical bifurcation

In a transcritical bifurcation, a stable fixed point and an unstable fixed point collide
and exchange stability as a parameter is varied. One fixed point persists on both
sides of the bifurcation point, but its stability changes. The canonical form of a tran-
scritical bifurcation is:

dx
dt

= µx − x2

where µ is the bifurcation parameter.

Pitchfork bifurcation

Pitchfork bifurcation is a type of bifurcation that occurs in dynamical systems when
the stability of a fixed point changes, leading to the appearance of new equilibria.
It’s called a "pitchfork" because the bifurcation diagram resembles the shape of a
pitchfork. There are two types of Pitchfork bifurcation.

Supercritical pitchfork bifurcation

In a supercritical pitchfork bifurcation, as the bifurcation parameter µ passes through
a critical value (usually µ = 0), a single stable equilibrium (fixed point) becomes un-
stable, and two new stable equilibria emerge symmetrically on either side of the
unstable equilibrium for µ > 0. The transition is smooth and continuous, and this
type of bifurcation typically occurs in systems with symmetry.

The canonical form for a supercritical pitchfork bifurcation is:



2.3. Spatial Effect: Reaction Diffusion Systems 13

dx
dt

= µx − x3

where:

• µ is the bifurcation parameter.

• x = 0 is the equilibrium point for µ = 0.

• For µ > 0, two new stable equilibrium points x = ±√
µ emerge, while x = 0

becomes unstable.

Subcritical pitchfork bifurcation

In a subcritical pitchfork bifurcation, as the bifurcation parameter µ approaches the
critical value from below (typically µ = 0), a single unstable equilibrium point be-
comes stable, and two unstable fixed points appear. For µ < 0, the system typically
displays bistability, meaning that both stable and unstable equilibria coexist. The
transition is abrupt, leading to jumps in the system’s behavior (hysteresis).

The canonical form for a subcritical pitchfork bifurcation is:

dx
dt

= µx + x3

where:

• µ is the bifurcation parameter.

• x = 0 is the equilibrium point for µ = 0.

• For µ < 0, the equilibrium at x = 0 is stable, and two unstable equilibrium
points appear at x = ±√−µ

Hopf bifurcation

A Hopf bifurcation is a type of bifurcation in the dynamics of a dynamic system
where a stable equilibrium point loses its stability as a system parameter is var-
ied, giving rise to periodic or oscillatory behaviour. At the Hopf bifurcation point,
eigenvalues of the system’s Jacobian matrix cross the imaginary axis, creating stable
limit cycles or periodic orbits. Hopf bifurcations are crucial in understanding the
transition from steady-state behaviour to sustained oscillations in various physical,
biological, and engineering systems.

2.3 Spatial Effect: Reaction Diffusion Systems

Diffusion is the process by which particles or substances spread out over time from
areas of high concentration to areas of low concentration. In reaction-diffusion sys-
tems, the diffusion term describes this spatial movement of substances.

Types of diffusion

1. Simple diffusion: Described by Fick’s laws of diffusion. The rate of diffusion
is proportional to the concentration gradient.



14 Chapter 2. A Overview of Reaction Diffusion Systems

2. Cross-diffusion: This occurs when the gradient in the concentration of one
substance induces a flux of another substance. It’s particularly important in
systems with multiple interacting species.

2.3.1 General form of reaction-diffusion systems

The general mathematical form of a reaction-diffusion system for multiple interact-
ing species can be written as:

∂ui

∂t
= Di∇2ui + fi(u1, u2, . . . , un)

where:

• ui is the concentration of the i-th species,

• t is time,

• Di is the diffusion coefficient of the i-th species,

• ∇2 is the Laplacian operator (sum of second partial derivatives with respect to
spatial coordinates),

• fi is the reaction term for the i-th species, which may depend on the concentra-
tions of all species.

For a system with cross-diffusion, the equation becomes:

∂ui

∂t
= ∇ ·

(
∑

j
Dij(u1, u2, . . . , un)∇uj

)
+ fi(u1, u2, . . . , un)

where Dij represents the cross-diffusion coefficients.

Importance in pattern formation

Reaction-diffusion systems, particularly those involving cross-diffusion, are vital in
explaining complex pattern formation in various natural systems. Turing’s theory of
morphogenesis demonstrated how reaction-diffusion mechanisms could lead to sta-
ble, spatially periodic patterns, a foundational concept for understanding biological
and chemical pattern formation ([96, 57, 31, 30]).

Applications

• Biological Systems: Reaction-diffusion models explain animal coat patterns,
cellular differentiation, and embryonic development ([57, 67]).

• Chemical Systems: Patterns like waves and spirals in the Belousov-Zhabotinsky
reaction are classic examples of reaction-diffusion systems in chemistry ([23]).

• Ecological Systems: These models describe the spatial distribution of species
in an ecosystem, taking into account both self and cross-diffusion to capture
interactions between species ([73]).
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2.3.2 Qualitative analysis of reaction-diffusion system

A reaction-diffusion system describes how chemical substances, or reactants, inter-
act through local chemical reactions and diffuse through space. These systems are
governed by partial differential equations that couple reaction kinetics with diffu-
sion processes. Due to the complexity of reaction-diffusion systems, solving them
analytically is challenging. Therefore, in this section, we present a quantitative ap-
proach to solve these systems. Specifically, we consider the reaction-diffusion sys-
tem for two interacting species, u and v, with linear self- and cross-diffusion, which
is given by:

∂u
∂t

= Du∇2u + Duv∇2v + f (u, v),

∂v
∂t

= Dv∇2v + Dvu∇2u + g(u, v).
(2.6)

where u and v represent the concentrations of the chemical species, Du and Dv are
the diffusion coefficients, Duv and Dvu are cross-diffusion coefficients, reflecting how
the concentration gradients of v and u affect the diffusion of u and v, respectively,
and f and g denote the reaction terms ([96, 63]). Cross-diffusion involves the influ-
ence of one species on the diffusion of another. This means that the diffusion of one
species can be affected by the concentration gradients of other species in the system.
For instance, the diffusion equation in (2.6) for species u include a term like Duv∇2v,
indicating that the diffusion of u is influenced by the concentration gradient of v ([71,
99]).

The non-dimensional reaction-diffusion system with cross-diffusion of the gen-
eral form can be written as:

∂u
∂t

= ∇2u + dv∇2v + f (u, v),

∂v
∂t

= d∇2v + du∇2u + g(u, v).
(2.7)

Here, d is the ratio of the diffusion coefficients only (without cross-diffusion),
and du and dv are the ratios of the cross-diffusion and the diffusion coefficients, re-
spectively.

Cross-diffusion-driven instability

Cross-diffusion-induced diffusion-driven instability arises when a uniform steady
state becomes unstable due to cross-diffusion and regular diffusion despite being
linearly stable in the absence of cross-diffusion. The definition above can be further
clarified and made more rigorous by following the definition for standard diffusion-
driven instability given by ([21]).

Undertaking an investigation to explore the potential for cross-diffusion, we ini-
tiate our inquiry by expanding the solution u(x, t) around the spatially independent
uniform steady state (us, vs)

T. To do this, we substitute{
u(x, t) = u∗ + ϵu1(x, t),
v(x, t) = v∗ + ϵv1(x, t), with ϵ ≪ 1 (2.8)

By ignoring O
(
ϵ2) and higher-order terms in the system (2.7), we arrive at the

following linearized reaction-diffusion system with cross-diffusion, which can be
succinctly expressed in vector form.
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X t = γJX + D∇2X, (2.9)

with

J =

(
∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v

)
≡
(

fu fv
gu gv

)∣∣∣∣∣
(u∗,v∗)

,

D =

(
1 dv
du d

)
and X =

(
u1

v1

)
.

Given that J represents the Jacobian matrix evaluated at (u∗, v∗), D is a matrix
containing the ratios of the regular diffusion and cross-diffusion coefficients, and X
is the vector of solutions to the linear system of partial differential equations, we can
analytically solve the linear system (2.9) by applying the method of separation of
variables. This approach yields a power series solution of the general form.

X(x, t) = ∑
k

bkeλ(k2)tΦk(x), (2.10)

where for each k, Φk is the eigenfunction of the Laplace operator that satisfies the
Helmholtz equation, {

∇2Φk + k2Φk = 0 on Ω,
(n · ∇)Φk = 0 on ∂Ω.

For each wavenumber k, we substitute the expression bkeλ(k2)tΦk into equation
(2.9) to obtain the following.(

λI − γJ + k2D
)

Φkbk = 0, (2.11)

Given that I is an identity matrix, and since we are seeking non-zero solutions,
both bk and Φk must be non-zero. Consequently, the matrix multiplying these variables
must be singular. Therefore, this implies that

∣∣λI − γJ + k2D
∣∣ = ∣∣∣∣ λ − γ fu + k2 −γ fv + dvk2

−γgu + duk2 λ − γgv + dk2

∣∣∣∣ = 0,

Thus λ
(
k2) satisfies the dispersion relation

λ2 + b
(
k2) λ + c

(
k2) = 0, (2.12)

where

b
(
k2) = k2(1 + d)− γ ( fu + gv) ,

c
(
k2) = (d − dudv) k4 − γk2 (d fu + gv − du fv − dvgu) + γ2 ( fugv − fvgu) .

Given scalar variables u, v, and kinetic functions f (u, v), g(u, v) in Equation (2.7),
the partial derivatives are computed with respect to the uniform steady state (u∗, v∗).

The solutions to the dispersion relation (2.12) are then provided by:
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2λ
(
k2) = −b

(
k2)±√b2 (k2)− 4c (k2).

Taking k = 0 indicates the absence of diffusion and cross-diffusion, leading to
spatial homogeneity. To ensure that (u∗, v∗) is stable for the k = 0 spatially homoge-
neous mode, we must require that:

Re[λ(0)] = Re
[
−b(0)±

√
b2(0)− 4c(0)

]
< 0. (2.13)

This is assured given that b(0) > 0 and c(0) > 0 if and only if the following
conditions are satisfied

Trace (J) := fu + gv < 0, (2.14)
Det (J) := fugv − fvgu > 0. (2.15)

These two conditions are unaffected by cross-diffusion, making them the same
as those without it. The following three conditions, however, emphasize the dis-
tinctions between traditional diffusion-driven scenarios without cross-diffusion and
those where it is involved.

In the context of diffusion and cross-diffusion, where k2 > 0, we have the follow-
ing situation:

b
(
k2) = k2(1 + d) + b(0) > 0, (2.16)

since b(0) > 0. For (u∗, v∗) to become unstable, we require that

Re
[
λ
(
k2)] > 0 for some k2 non-zero. (2.17)

Therefore, it is essential that c(k2) be negative for some non-zero value of k2.
Given the definition of c(k2), we can rewrite this as a quadratic polynomial in k2 in
the following manner:

c
(
k2) = P2k4 + P1k2 + c(0), (2.18)

where

P2 = d − dudv := Det(D),
P1 = γ (du fv + dvgu − (d fu + gv)) ,

c(0) = γ2 ( fugv − fvgu) > 0.

To ensure that we have an upward-opening parabola (i.e., c(k2) < 0 for some
non-zero k > 0), it is necessary that a specific condition be met concerning the rela-
tionship between the diffusion and cross-diffusion coefficients.

Det(D) = d − dudv > 0, (2.19)

It should be noted that if the parabola defined by c(k2) is downward opening,
meaning the determinant Det(D) = d − dudv is negative (Det(D) < 0), then the
cross-diffusion system is ill-posed.

Condition (2.19) represents the first of three necessary conditions for cross-diffusion-
induced instability. To ensure that c(k2) < 0 for some non-zero k2, it is required that



18 Chapter 2. A Overview of Reaction Diffusion Systems

P1 < 0. Thus, this requirement gives the second condition for diffusion-driven in-
stability in the context of cross-diffusion.

d fu + gv − du fv − dvgu > 0,

For diffusively-driven instability to occur, it is also necessary that there exist real
values k2

± for which c
(
k2
±
)
= 0. These values can be readily demonstrated as fol-

lows:

k2
± =

−P1 ±
√

P2
1 − 4c(0) (d − dudv)

2 (d − dudv)
. (2.20)

Thus, the requirement that c(k2) < 0 leads to the condition P2
1 − 4c(0)(d −

dudv) > 0. This establishes the third and final condition necessary for cross-diffusion-
driven instability

(d fu + gv − du fv − dvgu)
2 − 4 (d − dudv) ( fugv − fvgu) > 0. (2.21)

We can now present the following theorem, whose proof is given above:

Theorem 1 : Turing Instability for Reaction-Diffusion Systems with Cross-Diffusion
Let a reaction-diffusion system one as defined in (2.7) with cross-diffusion exhibit a Turing
instability if the following conditions hold:

fu + gv < 0, (2.22)
fugv − fvgu > 0, (2.23)

d − dudv > 0, (2.24)
d fu + gv − du fv − dvgu > 0, (2.25)

(d fu + gv − du fv − dvgu)
2 − 4 (d − dvdu) ( fugv − fvgu) > 0. (2.26)

In the above, the subscripts u and v represent partial derivatives, with the Jacobian com-
ponents fu, fv, gu, and gv being evaluated at the point (us, vs). The conditions ((2.22)-
(2.26)) describe a parameter space for cross-diffusion-driven instability, within which the
uniform steady state (us, vs) becomes linearly unstable.
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Chapter 3

Mathematical Formulation:
Phytoplankton and Zooplankton
with Toxicity

This chapter introduces a mathematical modelling framework that describes the
interactions between toxic phytoplankton and zooplankton in aquatic ecosystems,
with a particular emphasis on the dynamics influenced by toxin-producing phy-
toplankton (TPP). It begins with an introduction to the ecological roles of phyto-
plankton and zooplankton, emphasizing the harmful effects of certain phytoplank-
ton species that produce toxins which can impact the entire food web. The chapter
then details the development of a system of partial differential equations (PDE) to
describe the spatiotemporal dynamics of these interactions. The proposed model
incorporates diffusion processes, reaction terms, and nonlinear cross-diffusion to
capture the mutual avoidance between toxic phytoplankton and zooplankton, a con-
cept proposed by ([47]) in his experimental work. The model is designed to explore
the emergent patterns, stability properties, and potential for TPP to act as a natu-
ral biocontrol mechanism against harmful algal blooms, as we will discuss in our
forthcoming work ([54]). By integrating insights from existing literature, the chapter
highlights the importance of understanding the complex, often chaotic, interactions
within planktonic ecosystems, providing a foundation for further exploration of the
role of TPP in maintaining ecological balance (see section 3.1).

3.1 Toxic Phytoplankton and Zooplankton Model with Cross
Diffusion

Phytoplankton and zooplankton are microscopic organisms that play crucial roles
in aquatic ecosystems. While most species are beneficial, some phytoplankton can
produce toxins that have far-reaching impacts on marine life, including their zoo-
plankton predators. These toxic phytoplankton, often referred to as harmful algal
blooms (HABs), have become increasingly prevalent in recent years due to factors
such as climate change and anthropogenic nutrient inputs ([6]).

Toxic phytoplankton species, such as those belonging to the genera Alexandrium,
Karenia, and Pseudo-nitzschia, can produce a variety of potent neurotoxins and hep-
atotoxins. These toxins serve as a defense mechanism against predation and can
accumulate in the food web, affecting not only zooplankton but also fish, marine
mammals, and even humans ([45]). The production of these toxins is often triggered
by environmental stressors or competitive pressures, highlighting the complex in-
terplay between phytoplankton and their environment ([103]).
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Toxicity

Zooplankton, as primary consumers of phytoplankton, plays a critical role in
controlling phytoplankton populations and transferring energy up the food chain.
However, toxic phytoplankton pose significant challenges to zooplankton grazers.
Some zooplankton species have developed mechanisms to detect and avoid toxic
prey, while others have evolved tolerance or resistance to certain phytoplankton tox-
ins (Ger et al., 2016). This selective grazing pressure can lead to changes in phyto-
plankton community composition, potentially favouring the growth of toxic species
and altering ecosystem dynamics ([98]).

The interactions between toxic phytoplankton and zooplankton are bidirectional
and complex. While toxic phytoplankton can negatively impact zooplankton through
direct toxicity, reduced feeding efficiency, or decreased reproductive success, zoo-
plankton grazing can also influence the growth and toxin production of phytoplank-
ton. Some studies have shown that zooplankton grazing can induce increased toxin
production in certain phytoplankton species, suggesting a chemical arms race be-
tween predator and prey ([84]).

Moreover, the presence of toxic phytoplankton can lead to cascading effects through-
out the food web. When zooplankton avoid toxic prey, they may overgraze on non-
toxic phytoplankton species, potentially leading to shifts in phytoplankton commu-
nity structure and biogeochemical cycling ([91]). Additionally, the bioaccumulation
of phytoplankton toxins in zooplankton can result in the transfer of these toxins to
higher trophic levels, affecting fish populations and potentially posing risks to hu-
man health through seafood consumption ([8]).

The impact of toxic phytoplankton on zooplankton populations can vary de-
pending on factors such as toxin type, concentration, and exposure duration. Some
zooplankton species may experience acute toxicity effects, leading to increased mor-
tality rates, while others may suffer from chronic, sublethal effects that impact growth,
reproduction, or behaviour ([52]). These effects can have long-term consequences for
zooplankton population dynamics and community structure, ultimately influencing
the stability and resilience of aquatic ecosystems.

The study of [47] focused on the toxic phytoplankton species Heterosigma akashiwo
and its responses to the presence of a ciliate predator, Favella sp. The researchers
found that the phytoplankton exhibited significant fleeing behaviours, including in-
creased swimming speed and upward vertical migration when exposed to predators
or predator-derived cues. These behaviours effectively reduced predation pressure
by decreasing encounters with predators, resulting in a three-fold increase in the
net algal population growth rate. The study also incorporated these behaviours into
a spatially explicit population model, which predicted rapid bloom formation un-
der conditions where fleeing behaviours were present. This novel finding suggests
that predator-induced behaviours in phytoplankton can be a critical factor in HAB
dynamics, highlighting the importance of behavioural responses in ecological mod-
elling and management of marine environments.

The authors [66] proposed a reaction-diffusion model for phytoplankton and
zooplankton populations with self-diffusion, described by:

∂ũ
∂t̃

= rũ
(

1 − ũ
b

)
− α1 f (ũ)ṽ + D1

∂2ũ
∂x̃2

∂ṽ
∂t̃

= κα1 f (ũ)ṽ − µṽ + D2
∂2ṽ
∂x̃2

(3.1)
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where ũ and ṽ denote the population densities of the prey and predator, respec-
tively. r is an intrinsic growth rate of prey, κ is a coefficient of food utilization, pa-
rameter µ is a natural mortality rate of the predator, b is a carrying capacity for the
prey population, α1 is a predation rate, while f (ũ) is function response which is a
Holling type II, and H is half saturation abundance of prey. Their study explored the
interactions between phytoplankton and zooplankton without the influence of toxic
phytoplankton (TPP). The research uncovered complex and chaotic behaviour in the
spatiotemporal dynamics of aquatic ecosystems, revealing the formation of intricate
spatial patterns such as jagged and spiral structures. These patterns are shaped by
factors like initial conditions and biological interactions, underscoring the role of
non-linear dynamics in ecological modelling and enhancing the understanding of
pattern formation in biological systems.

Recent research has extensively explored the fascinating phenomenon where
toxic substances produced by phytoplankton significantly reduce the grazing pres-
sure exerted by zooplankton. This interaction, known as toxic phytoplankton pro-
tection (TPP), has become a critical area of study due to its potential role as a natural
biocontrol mechanism against harmful planktonic blooms ([12, 13, 16, 81, 15]).

In [17], a mathematical model based on the toxicity of phytoplankton was for-
mulated using a system of ordinary differential equations, given by:

dũ
dt̃

= rũ
(

1 − ũ
b

)
− α1 f (ũ)ṽ,

dṽ
dt̃

= β1 f (ũ)ṽ − µṽ − δg(ũ)ṽ.
(3.2)

Here, ũ represents the density of the toxic phytoplankton (TPP) population, and
ṽ represents the density of the zooplankton population. The parameter α1 denotes
the rate of zooplankton predation on the TPP population, while f (ũ) is the pre-
dation response function, and g(ũ) represents the distribution of toxic substances.
These functions may correspond to different types of functional responses, such as
Holling Type I, II, and III. Furthermore, β1 denotes the ratio of biomass consumed by
zooplankton for its growth, and δ is the rate of toxic liberation by TPP. In this study,
they proposed that TPP can function as a biocontrol strategy, effectively mitigating
the uncontrolled growth of plankton by altering the typical predator-prey dynamics
between zooplankton and phytoplankton.

Building on this foundation, ([80]) developed a more sophisticated mathemati-
cal model that delves into the interactions between toxin-producing phytoplankton
and zooplankton. Their study specifically investigates the occurrence of Hopf bi-
furcations within this system, which marks the transition from stable to oscillatory
behaviour in population dynamics. Through detailed numerical simulations, they
provided valuable insights into the complex and often counterintuitive dynamics
driven by TPP.

Further extending the theoretical framework, ([61]) introduced a reaction-diffusion
system that incorporates self-diffusion terms to model the spatial and temporal dis-
tributions of these interacting populations. Their work offers a comprehensive and
rigorous analysis of the global dynamics of the system, revealing how TPP influ-
ences not only the population densities but also the spatial patterns and stability of
the entire aquatic ecosystem. This body of research collectively enhances our under-
standing of the intricate biotic interactions that govern planktonic ecosystems and
highlights the importance of TPP in maintaining ecological balance.
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Chapter 3. Mathematical Formulation: Phytoplankton and Zooplankton with

Toxicity

Mathematical modelling of toxic phytoplankton and zooplankton

In this study, we propose a system of partial differential equations (PDEs) to capture
the spatiotemporal dynamics of toxic phytoplankton (denoted by u)and zooplank-
ton (denoted by v). The model accounts for diffusion processes governing the spatial
spread of these populations and reaction terms representing their growth, mortality,
and interactions. By integrating diffusion and reaction mechanisms, our model aims
to elucidate phytoplankton-zooplankton ecosystems’ emergent patterns and stabil-
ity properties.

The proposed PDE system is given by:

∂ũ
∂t̃

= rũ
(

1 − ũ
b

)
− α1 f (ũ)ṽ + D1

∂2ũ
∂x̃2 + D12

∂

∂x̃

(
ũ

∂ṽ
∂x̃

)
∂ṽ
∂t̃

= κα1 f (ũ)ṽ − µṽ − δg(ũ)ṽ + D2
∂2ṽ
∂x̃2 + D21

∂

∂x̃

(
ṽ

∂ũ
∂x̃

) (3.3)

The above-proposed model was initially introduced by ([66]) in the absence of
cross-diffusion and without incorporating the effects of toxicity on zooplankton. In
this model, we introduce nonlinear cross-diffusion to represent the mutual avoid-
ance between TPP and zooplankton, drawing on the concept from the experimental
study by ([47]). Additionally, we include the toxicity effects proposed by [17], which
suggest that TPP can be a biocontrol mechanism to prevent planktonic blooms. Here
ũ and ṽ are an abundance of toxic-producing phytoplankton and zooplankton, re-
spectively, D1, D2 are self-diffusion coefficients, and D12, D21 are cross-diffusion co-
efficients of TTP and zooplankton respectively. Cross diffusion is the phenomenon
that tells how the gradient concentration of one species induces a flux of another
species. Most of the studies where self and cross-diffusion terms are considered to
focus on the mathematical properties of the system rather than pattern formation.
In ([2], [100]), elaborating the importance of cross-diffusion on pattern formation
from both experimental and theoretical points of view, the authors proposed mini-
mal conditions of pattern formation in the presence of linear cross-diffusion terms
with nonlinear kinetics. In recent studies, the researcher in ([32],[29],[34]) presented
a complete analysis of the importance of cross-diffusion on the generation of Turing
patterns from the mathematical point of view. The f (u) represents the predation
response function, and g(u) is the distribution of toxic substances which ultimately
lead to the death of the zooplankton population. The f (u) and g(u) both employ
Holling type II functional response, which is the standard and intuitively obvious
choice to describe grazing phenomena and is defined as f (u) = g(u) = u

u+H .

The above-coupled reaction-diffusion system can be re-written as,

∂ũ
∂t̃

= rũ
(

1 − ũ
b

)
− α1

(
ũṽ

ũ + H

)
+ D1

∂2ũ
∂x̃2 + D12

∂

∂x̃

(
ũ

∂ṽ
∂x̃

)
,

∂ṽ
∂t̃

= κα1

(
ũṽ

ũ + H

)
− µṽ − δ

(
ũṽ

ũ + H

)
+ D2

∂2ṽ
∂x̃2 + D21

∂

∂x̃

(
ṽ

∂ũ
∂x̃

)
,

(3.4)

κ is a coefficient of food utilization, parameter µ is an natural moratility rate of zoo-
plankton, r is an intrinsic growth rate of TPP, b is an carrying capacity of TPP, α1
predation rate of zooplankton, δ is the rate of toxin liberation by TPP, and H is half
saturation abundance of TPP.
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Parameters Values Source

β 0 - 2000 [70], [28]
η1 0.6 - 30 [22] - [46]
η2 0 - 2 [22] - [46]
m 0.06 - 3 [1]
γ 0 < γ < 1 Present study

TABLE 3.1: Numerical values of the parameters of the model (3.6),
which have been used for the simulations for the present work.

The dimensionless form of the given model is represented as:

∂u
∂t

= u (1 − u)−
(

uv
u + β

)
+

∂2u
∂x2 + d12

∂

∂x

(
u

∂v
∂x

)
,

∂v
∂t

= η1

(
uv

u + β

)
− mv − η2

(
uv

u + β

)
+ d

∂2v
∂x2 + d21

∂

∂x

(
v

∂u
∂x

)
,

(3.5)

where
ũ = bu, ṽ = rb

α1
v, x̃ =

√
D1
r x, t̃ = t

r , η1 = κα1
r , η2 = δ

r , β = H
b , m= µ

r , d = D2
D1

,

d12 = D12br
α1D1

, d21 = D21b
D1

.

If we rewrite dimensionless system (3.5), as

∂u
∂t

= u (1 − u)−
(

uv
u + β

)
+

∂2u
∂x2 + d12

∂

∂x

(
u

∂v
∂x

)
,

∂v
∂t

= η

(
uv

u + β

)
− mv + d

∂2v
∂x2 + d21

∂

∂x

(
v

∂u
∂x

)
,

(3.6)

for simplicity, we defined η = η1 − η2, which will help us to understand the
linear stability analysis in the next section. The value of the dimensionless param-
eters are summarised in table 3.1. Initial and boundary conditions must be added
to the system. We are interested in self-organizing patterns in this article and shall
impose the homogenous Neumann boundary conditions.The complete analysis of
the proposed model (3.6) is discussed in the next chapters, (4 and 5).
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Chapter 4

Stability Analysis and Turing
Region

Chapter 4 focuses on the stability analysis of equilibrium solutions in a system de-
scribed by partial differential equations, emphasising determining conditions for lin-
ear stability and Turing Instability. The chapter begins by introducing the concept of
equilibrium solutions, particularly attracting equilibrium solutions, which are stable
under small perturbations. The linear stability of these solutions is analyzed by lin-
earizing the system around the equilibrium points and examining the eigenvalues
of the resulting Jacobian matrix. Stability is ensured if all eigenvalues have negative
real parts, a condition that is elaborated through the trace and determinant of the
Jacobian. The chapter also discusses local stability in the context of ordinary differ-
ential equations (ODE) and introduces the concept of Hopf bifurcation, which occurs
under specific parameter conditions. Numerical simulations illustrate the stability
and instability regions, along with the occurrence of Hopf bifurcation under differ-
ent scenarios (see sections 4.1 and 4.2). The latter part of the chapter delves into
Turing instability, a phenomenon that occurs due to cross-diffusion in the system,
leading to pattern formation. The conditions under which Turing instability arises
are derived, highlighting the crucial role of cross-diffusion terms. The chapter con-
cludes by establishing criteria for Turing instability and discussing its implications
for the dynamics of the system (see sections 4.3 and 4.4 ).

4.1 Linear Stability Analysis

A prominent solution of great interest is the equilibrium solution of a partial dif-
ferential equation. We are particularly interested in attracting equilibrium solutions,
which are time-independent, stable solutions that can remain stable for small pertur-
bations. Stability can take various forms, and our objective is to classify equilibrium
as linearly stable.

Equilibrium solutions to (3.6) are solutions (u∗, v∗)T such that ut = vt = 0. Thus,
(3.6) in absence of diffusion turns into{

f (u, v) = 0,
g(u, v) = 0.

So, for our model, equilibrium solutions in the absence of diffusion are those
solutions (u∗, v∗)T which solve

f (u∗, v∗) = g (u∗, v∗) = 0.
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Now, we address the stability of the equilibrium solutions by presenting the lin-
earization of the system. {

ut = f (u, v),
vt = g(u, v). (4.1)

Linearization

An equilibrium point X∗ ∈ Rn of a nonlinear dynamical system is said to be stable
if, for every neighbourhood O of X∗, there exists a smaller neighbourhood O1 ⊂ O
such that any solution X(t) of the system, with an initial condition X(0) = X0 ∈ O1,
remains in O for all t ≥ 0. In other words, small perturbations around X∗ do not
cause the system to diverge far from X∗. We define a perturbation of the equilibrium
solution as

w =

(
u − u∗

v − v∗

)
.

The functions f and g can be linearized using Taylor expansion about (u∗, v∗)

f (u, v) ≈ f (u∗, v∗) + fu (u∗, v∗) · (u − u∗) + fv (u∗, v∗) · (v − v∗) ,
= fu (u∗, v∗) · (u − u∗) + fv (u∗, v∗) · (v − v∗) ,

and

g(u, v) ≈ g (u∗, v∗) + gu (u∗, v∗) · (u − u∗) + gv (u∗, v∗) · (v − v∗)
= gu (u∗, v∗) · (u − u∗) + gv (u∗, v∗) · (v − v∗) .

So, linearizing (4.1) about (u∗, v∗), we obtain{
ut = [ fu (u∗, v∗) · (u − u∗) + fv (u∗, v∗) · (v − v∗)] ,
vt = [gu (u∗, v∗) · (u − u∗) + gv (u∗, v∗) · (v − v∗)] .

Which can be written in matrix form as

wt = Jw, (4.2)

where

J =
(

fu (u∗, v∗) fv (u∗, v∗)
gu (u∗, v∗) gv (u∗, v∗)

)
=

(
fu fv
gu gv

)
(u∗,v∗)

.

Stability analysis

The solution w is said to be linearly stable if |w| → 0 as t → ∞. We focus on deter-
mining the conditions on the eigenvalues of J, which make the solution w linearly
stable. The solution w of equation (4.2) is linearly stable if and only if all eigenvalues
of J have negative real parts.

Local stability

Let’s review some of the fundamental stability theory of ordinary differential equa-
tions (ODE); for more details, refer to ([74]). The first important aspect to consider
is the behaviour of solutions as t approaches +∞. It is widely known that this be-
haviour heavily depends on the eigenvalues of J, which are denoted as λ1 and λ2.
To calculate these eigenvalues, we need to solve the characteristic equation
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|J − λI| =
∣∣∣∣( fu − λ fv

gu gv − λ

)∣∣∣∣ = 0,

⇒ ( fu − λ) (gv − λ)− fvgu = 0,

⇒ λ1,2 =
( fu + gv)±

√
( fu + gv)

2 − 4 ( fugv − fvgu)

2
.

The linear stability is guaranteed if the trace of J is negative and its determinant
is positive, i.e. {

tr J = fu + gv < 0,
det J = fugv − fvgu > 0.

Our analysis determined that the linearized system (4.2) is stable only if the real
parts of the eigenvalues of J are negative. If any eigenvalue is positive or has a
positive real part, then (u∗, v∗) is unstable.
Now, we will determine the steady state of the equations (3.6) in the absence of
diffusion. For that, using some simple calculation, we have to find three steady states
of the system, which are (0, 0), (total extinction), (1, 0), (extinction of predator), and
coexistence steady state (u∗,v∗). Where (0,0) is the saddle for all parameters values
and (1,0) is the saddle if we choose parameters value from the ecological point of
view; otherwise, it is a stable node if we choose β > 1−γ

γ . The non-trivial steady
state (u∗, v∗) (coexistence of prey and predator), which as defined

u∗ =
γβ

1 − γ
, v∗ = (1 − u∗)(β + u∗), (4.3)

where

γ = m
η .

From the ecological point of view, the steady state defined in Eq. (4.3) should be
positive. We get the following condition on u∗ and v∗

for

u∗ > 0, if γ < 1,

and for

v∗ > 0, if β < 1−γ
γ .

The Jacobian matix around the neighbourhood of (u∗, v∗) is as follow:

J =

(
fu fv
gu gv

)
, (4.4)

where
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fu = u∗
(
−1 +

1 − u∗

(u∗ + β)

)
= γ

(
1 − β

1 + γ

1 − γ

)
, (4.5)

fv = − u∗

(u∗ + β)
= −γ, (4.6)

gu =
ηv∗β

(u∗ + β)2 = η(1 − γ − γβ), (4.7)

gv = 0. (4.8)

The positive coexistence steady state become stable if tr(J) < 0 for that

fu < 0, =⇒ β >
1 − γ

1 + γ
, (4.9)

so we get the following condition on β,

β ∈
(

1 − γ

1 + γ
,

1 − γ

γ

)
, (4.10)

and also, for stability Det.(J) > 0, which we can see easily from Eqs. (4.5 - 4.8).

The eigenvalue of the system without diffusion can be defined as

λ =
1
2
[γ(1 − β

1 + γ

1 − γ
)∓

√
γ2(1 − β

1 + γ

1 − γ
)2 − 4γη(1 − γ− γβ)], (4.11)

so Hopf bifurcation occurs at β = 1−γ
1+γ .

4.2 Numerical Analysis of System Kinetics

This section delves into the numerical analysis of the stability and behaviour of a
nonlinear dynamical system, focusing on the interactions between two species. In
Figs. (4.1 and 4.2), we fix the parameter η and vary other parameters, particularly
β, to observe the system’s transition from stability to periodic oscillation and even-
tually instability. The bifurcation diagram illustrates two distinct regions: Region
I, where the system exhibits stable equilibrium, and Region II, where the system
becomes unstable. Between these two regions lies a boundary where the system
exhibits periodic oscillations, marking a transition zone. As β changes its values,
the system crosses this bifurcation point, transitioning from stable behaviour to pe-
riodic cycles and eventually leading to instability in Region II. Additionally, in Fig.
4.3, we fix the parameter m and explore how variations in β further affect system dy-
namics, demonstrating the system’s progression through different dynamical states.
These graphical representations provide a comprehensive view of the system’s sta-
bility, periodic oscillations, and the transition to instability under varying parame-
ters, highlighting the coexistence and bifurcation of steady states.
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(a) (b)

(c)

FIGURE 4.1: Stability analysis for a dynamical system at η = 1.1.

In Fig.4.1, a Graphical representation shows that the coexistence steady state will
be stable in Region I; it is unstable in Region II and holds Hopf bifurcation on the
dotted line. (a) We fix η = 1.1 and choose m < η to obtain condition 0 < γ < 1. (b)
We are chosen parameters in the stable region by fixing β = 0.25, η = 1.1, m = 0.8,
then γ = 0.7273 , where (u∗, v∗) = (0.6667, 0.3056). (c) We have chosen parameters
where Hopf bifurcation occurs by selecting β = 0.1579; other parameters are the
same as in (b) where (u∗, v∗)=(0.4211, 0.3352).
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(a) (b)

(c)

FIGURE 4.2: Stability analysis for a dynamical system at η = 0.4.

In Fig. 4.2, a Graphical representation shows that the coexistence steady state
will be stable in Region I; it is unstable in Region II and holds Hopf bifurcation on
the dotted line. (a) We fix η = 0.4 and choose m < η to obtain condition 0 < γ < 1.
(b) We are chosen parameters in the stable region by fixing β = 0.4, η = 0.4, m = 0.2,
then γ = 0.5000 , where (u∗, v∗) = (0.4000, 0.4800). (c) We have chosen parameters
where Hopf bifurcation occurs by selecting β = 0.3333; other parameters are the
same as in (b) where (u∗, v∗)=(0.3333, 0.4444).
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(a) (b)

(c)

FIGURE 4.3: Stability analysis for a dynamical system at m = 0.8.

In Fig. 4.3, a Graphical representation showing that the coexistence steady state
will be stable in region I, it is unstable in region II and holds Hopf bifurcation on the
dotted line.(a), We fix m = 0.8 and choose m < η to obtain condition 0 < γ < 1. (b)
We are chosen parameters in the stable region by fixing β = 0.5, m = 0.8, η = 1.5,
then γ = 0.5333, where (u∗, v∗) = (0.5714, 0.459). (c) We have chosen parameters
where Hopf bifurcation occurs by selecting β = 0.3043; other parameters are the
same as in (b), where (u∗, v∗) = (0.3478, 0.4253).

4.3 Linear Stability Analysis of Full System: Turing Instabil-
ity

To obtain Turing instability, we linearized the original system (3.6) around the steady
state. Then, we obtained the following linearized form of the system
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∂w
∂t

= Jw + D∇2w, w =

(
u − u∗

v − v∗

)
, (4.12)

where

D =

(
1 d12u∗

d21v∗ d

)
. (4.13)

The dispersion relation, which gives the eigenvalue λ as a function of the wavenumber
k:

λ2 + (k2 tr(D) − tr(J))λ + h(k2) = 0, (4.14)

where
h(k2) = Det(D)k4 + qk2 + Det(J), (4.15)

with

Det(D) = 1 − d12d21u∗v∗, q = −d fu + d12u∗gu + d21v∗ fv. (4.16)

For Turing instability Re(λ(k) > 0), for that either coefficient of λ in (4.14) is
negative or h(k2) < 0. As the coefficient of λ is positive, we are looking for those
modes for which h(k2)< 0. The only possibility for h(k2) < 0 is q < 0. To check a
sign of q, we have the following possibility

Remark 1: so if d12 = d21 = 0 =⇒q > 0 i.e. no Turing instability exists.

Remark 2: so if d21 = 0 =⇒q > 0 i.e. no Turing instability exists.

Remark 3: so if d21 ̸= 0 =⇒q < 0 i.e. Turing instability exists.

Thus, the only potential destabilising mechanism is the presence of the cross-
diffusion term, while linear diffusion plays a stabilising role; if this cross-diffusion
is zero, there is no possible way to show that this reaction-diffusion system holds a
Turing instability.

So, for the Turing instability, we want to show the following two conditions on
h(k2),

q < 0, (4.17)

and
q2 − 4Det(D)Det(J) ≥ 0. (4.18)

The condition q < 0 shows that we get some positive value of k2 on which h(k2)
attains a minimum value. To get a minimum value of h(k2) negative for some finite
width of the unstable wave number of k2, we need to satisfy the condition as defined
in equation (4.18). since h(k2) attains a minimum value at:

k2
c = − q

2Det(D)
.

At the bifurcation, we require the following:

q2 − 4Det(D)Det(J) = 0, (4.19)
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which, for fixed values for other parameters, defines the critical values dc
21 of the

bifurcation parameter d21.
To prove the condition on which q < 0, we write q in terms of system parameters,

which is

q = −dγ
(

1 − β
1 + γ

1 − γ

)
− γd21v∗ + η(1 − γ− γβ)u∗d12, (4.20)

if we define

d̄21 =
d
v∗

(β
1 + γ

1 − γ
− 1) +

ηu∗d12

v∗γ
(1 − γ− γβ), (4.21)

as we see that q obtains a critical value when d21 = ¯d21, so for q < 0,

d21 > d̄21. (4.22)

For well-posedness condition, need to show that d − d12d21u∗v∗ > 0, which gives
the following condition

d21 <
d

d12u∗v∗
, (4.23)

so it means,

d̄21 <
d

d12u∗v∗
. (4.24)

By solving (4.24), we get the following conditions on the parameters d and d12,
which are given by,

d = dm >
d12η(1 − γ − γβ)u∗

γ
(

1 − β 1+γ
1−γ + 1

d12u∗

) , (4.25)

d12 <
1(

β 1+γ
1−γ − 1

)
u∗

, (4.26)

dm is the point which gives the starting value in (d, d21)-plane, where both q < 0
and d21 < d

d12u∗v∗ satisfied.

Then, we need to show the condition (4.18), which gives the threshold value of
the parameter d21 on the equality. If we write (4.18) in terms of a system parameter,
we get the following inequality,

v∗2
γ2d2

21 − 2d21[v∗
2
γ2 ¯d21 − 2d12u∗v∗Det(J)] + v∗2 ¯d21

2 − 4dDet(J) ≥ 0. (4.27)

The discriminant of (4.27) is

∆ = 4Det(J)[d2
12u∗2v∗2Det(J) + v∗2γ2(d − ¯d21d12u∗v∗)], (4.28)

as we see ∆ > 0 if d > dm from (4.25), then we will find the root dc
21 of (4.27) in which

d21 lies above d̄21, by the following equality d21 ≥ dc
21 = d̄21 + ϵ+, where ϵ+ is the

root of following quadtratic polynimial

ϵ2v∗2γ2 + 4ϵd12u∗v∗Det(J)− 4Det(J)(d − d12d̄21u∗v∗) ≥ 0. (4.29)
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The resulting quadratic polynomial in ϵ, given above by (4.29), admits only one
real positive root ϵ+. Thus, choosing d > dm, a Turing instability sets in for d21 ≥
dc

21 = d̄21 + ϵ+.
From the above calculation, we get the following condition on diffusion coeffi-

cients to obtain a Turing instability:

d = dm >
d12η(1 − γ − γβ)u∗

γ
(

1 − β 1+γ
1−γ + 1

d12u∗

) , (4.30)

d12 <
1(

β 1+γ
1−γ − 1

)
u∗

, (4.31)

d
d12u∗v∗

> d21 > d̄21 + ϵ+. (4.32)

4.3.1 Conditions for diffusion instability

In this subsection, we will establish the conditions for the onset of diffusion instabil-
ities of the system described by equations (3.6). These conditions will be determined
based on the satisfaction of (4.17) - (4.18) and (4.23). We shall choose "d21" as a bifur-
cation parameter.

(a) (b)

(c) (d)

FIGURE 4.4: Parameter space of the system (3.6) showing the region
where Turing instability occurs for case 1.
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In Fig 4.4, there is a Graphical representation of the conditions for the diffusive-
driven instability. (a-b) For two different choices of d12, the region between d21 = ¯d21
(dotted line) and d21 = d

d12u∗v∗ (dash-dotted line) in (d, d21)-plane delineated by the
two straight lines corresponds to fulfilment of the conditions (4.17) and (4.23). The
other parameters are chosen as β = 0.25, η = 1.1, m = 0.8, then γ = 0.7273, so
that (u∗, v∗) = (0.6667, 0.3056). (a) d12 = 0.4, which gives dm = 0.0116, (b) d12 =
0.9, which gives dm = 0.0762. (c-d), For two different values d12, the area between
d21 = dc

21 (solid line) and d21 = d
d12u∗v∗ (dashed dotted line) in (d, d21)-plane fulfills

the conditions (4.17), (4.23), and (4.27). (c) The parameters as chosen in (a). (d) The
parameters as chosen in (b).

(a) (b)

(c) (d)

FIGURE 4.5: Parameter space of the system (3.6) showing the region
where Turing instability occurs for case 2.

.

In Fig. 4.5, a graphical representation of the conditions for the diffusive-driven
instability. (a-b) For two different choices of d12, the region between d21 = ¯d21 (dot-
ted line) and d21 = d

d12u∗v∗ (dash-dotted line) in (d, d21)-plane delineated by the two
straight lines corresponds to fulfillment of the conditions (4.17) and (4.23). The other
parameters are chosen as β = 0.4, η = 0.4, m = 0.2, then γ = 0.5000, so that
(u∗, v∗) = (0.4000, 0.4800). (a) d12 = 0.4, which gives dm = 0.0063, (b) d12 = 0.9,
which gives dm = 0.0335. (c-d), For two different values d12, the area between
d21 = dc

21 (solid line) and d21 = d
d12u∗v∗ (dash-dotted line) in (d, d21)-plane fulfills
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the conditions (4.17), (4.23), and (4.27). (c) The parameters as chosen in (a). (d) The
parameters as chosen in (b),

(a) (b)

FIGURE 4.6: Plots of the dispersion relations of the system (3.6) and
h(k2) for various values of the bifurcation parameter in Case 1.

In Fig. 4.6, the curve in the above plot of (a) tells that real part of the eigenvalue
is negative for the parametric values β = 0.25, m = 0.8, η = 1.1, then γ = 0.7273,
d = 0.41, d12 = 0.9 and bifurcation parameter d21 < dc

21, which shows that the ho-
mogenous steady state is stable for heterogenous pertubation. The corresponding
curve tells that the real part of the eigenvalue is positive for a specific interval k2

at which the model becomes unstable to heterogenous perturbation and produces
Turing patterns when d21 > dc

21. Similarly, in (b), the curve shows that h(k2) > 0,
which shows that a homogenous steady state is stable for heterogenous perturba-
tion. The corresponding curve in (b) tells h(k2) < 0 for a specific interval of k2,
at which the model becomes unstable to heterogenous perturbation and produces
Turing patterns when d21 > dc

21.

(a) (b)

FIGURE 4.7: Plots of the dispersion relations of the system (3.6) and
h(k2) for various values of the bifurcation parameter in Case 2.

In Fig. 4.7, the curve in the above plot of (a) tells that real part of the eigenvalue
is negative for the parametric values β = 0.4, m = 0.2, η = 0.4, then γ = 0.5000,
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d = 0.4095, d12 = 0.4 and bifurcation parameter d21 < dc
21, which shows that the

homogenous steady state is stable for heterogenous pertubation. The corresponding
curve tells that the real part of the eigenvalue is positive for a specific interval k2

at which the model becomes unstable to heterogenous perturbation and produces
Turing patterns when d21 > dc

21. Similarly, in (b), the curve shows that h(k2) > 0,
which shows that a homogenous steady state is stable for heterogenous perturba-
tion. The corresponding curve in (b) tells h(k2) < 0 for a specific interval of k2,
at which the model becomes unstable to heterogenous perturbation and produces
Turing patterns when d21 > dc

21.

4.4 Numerical Simulations of Full System

In this section, we perform a numerical simulation of the reaction-diffusion system
to verify stability analysis with or without cross-diffusion of the system (3.6), using
the numerical scheme method of lines (MOL) in MATLAB.

Choose m = 0.8, η = 1.1, then γ = m/η, β = 0.25, d = 0.41, d12 = 0 and d21 = 0.
The steady-state (u∗, v∗) = (0.6667, 0.3056) is locally asymptotically stable, see Fig.
4.8. Choose m = 0.8, η = 1.1, then γ = m/η, β = 0.25, d = 0.41, d12 = 9 and d21 =
1.7613 < dc

21. The steady-state (u∗, v∗) = (0.6667, 0.3056) is locally asymptotically
stable, see Fig. 4.9. Choose m = 0.8, η = 1.1, then γ = m/η, β = 0.1579, d = 0.41,
d12 = 0.9 and d21 = 1.6010. The steady-state (u∗, v∗) = (0.4211, 0.3352) holds Hopf
bifurcation and get the periodic solution, see Fig. 4.10. Choose m = 0.8, η = 1.1,
then γ = m/η, d = 0.41, d12 = 0.9, d21 = 1.6519 and β = 0.14, when β crosses
the line of Hopf bifurcation see Fig. 4.1, then steady-state (u∗, v∗) = (0.3733, 0.3217)
becomes unstable and we get the asymptotic solution along time, see Fig. 4.11.

(a) (b)

FIGURE 4.8: The coexistence steady state of the system (3.6) is asymp-
totic stable for m = 0.8, η = 1.1, then γ = 0.7273, β = 0.25, d12 = 0,

d = 0.41 and d21 = 0.
.
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(a) (b)

FIGURE 4.9: The coexistence steady state of the system (3.6) is asymp-
totic stable for m = 0.8, η = 1.1, then γ = 0.7273, β = 0.25, d12 = 0.9,

d = 0.41 and d21 = 1.7613.
.

(a) (b)

FIGURE 4.10: The coexistence steady state of the system (3.6) holds
Hopf bifurcation and get periodic solution for m = 0.8, η = 1.1, then

γ = 0.7273, β = 0.1579, d12 = 0.9, d = 0.41 and d21 = 1.6010.
.
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(a) (b)

FIGURE 4.11: The coexistence steady state of the system (3.6) becomes
unstable and gets asymptotic solution along time for m = 0.8, η = 1.1,

then γ = 0.7273, β = 0.1400, d12 = 0.9, d = 0.41 and d21 = 1.6519.
.

(a) (b)

(c) (d)

FIGURE 4.12: Turing pattern of the system (3.6) for m = 0.8, η = 1.1,
then γ = 0.7273, β = 0.25, d = 0.41, d12 = 0.9, and d21 = 1.7701 >

dc
21.





41

Chapter 5

Amplitude and Turing Patterns
Selection

This chapter delves into the weakly nonlinear analysis of Turing patterns in reaction-
diffusion systems, particularly focusing on amplitude equations and pattern selec-
tion near the onset of diffusion-driven instability. By expanding the system’s solu-
tion in terms of a small parameter (ϵ), which measures the distance from the critical
threshold, the study explores the evolution of pattern amplitude on slow temporal
scales. The analysis begins by deriving the Stuart-Landau equation, a key result that
governs the amplitude of the pattern in the supercritical and subcritical regimes.
The sign of the Landau coefficient (L) is crucial, as it determines whether the bifur-
cation is supercritical (where stable patterns emerge smoothly) or subcritical (where
patterns can exhibit abrupt transitions). The chapter compares these analytical pre-
dictions with numerical simulations, demonstrating a strong agreement in the su-
percritical and subcritical cases (see section 5.1). Furthermore, the analysis is ex-
tended to two-dimensional systems, where the interaction of multiple modes leads
to complex pattern formations (sec sections 5.2 and 5.3 ). The chapter concludes by
emphasizing the critical role of nonlinear effects and the Fredholm solvability con-
dition in selecting specific patterns and their stability, providing a comprehensive
understanding of pattern formation mechanisms in reaction-diffusion systems.

5.1 Weakly Nonlinear Analysis

Once the conditions on the system parameters for the onset of diffusion-driven in-
stability have been obtained, we perform a weakly nonlinear analysis to derive a
reduced description of the near-critical bifurcation structure of the patterns in terms
of their amplitude. Defining the control parameter as the dimensionless distance
from the threshold ϵ = d21−dc

21
dc

21
. The solution of the original system is written as a

weakly nonlinear expansion in ϵ:

w = ϵw1 + ϵ2w2 + ϵ3w3 + ..., (5.1)

close to the bifurcation, the amplitude of the pattern evolves on a slow temporal
scale; therefore, we separate the fast time t and slow time T:

∂

∂t
= ϵ

∂

∂T1
+ ϵ2 ∂

∂T2
+ ϵ3 ∂

∂T3
+ ..., (5.2)

moreover, we expand the bifurcation parameter d21 as follows:

d21 = dc
21 + ϵd1

21 + ϵ2d2
21 + ..., (5.3)
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separating the linear part from the nonlinear one, we can recast the given reaction-
diffusion system for the perturbation w= (wu,wv), in the following form:

∂w
∂t

= Ldw +N +

(
d12(wu∇2wv +∇wu∇wv)
d21(wv∇2wu +∇wv∇wu)

)
, (5.4)

where Ld = J + Dd∇2 is a linear operator depending on the bifurcation param-
eter dc

21 and N , which represents the nonlinear parts of the kinetics. Finally, the last
term in Eq. (5.4) is the nonlinear diffusion terms.

Substituting all the above expansions into (5.4) and collecting the terms at each
order in ϵ, one gets a sequence of equations for the wi.

O(ϵ) : Ldc
w1 = 0, (5.5)

O(ϵ2) : Ldc
w2 = F, (5.6)

O(ϵ3) : Ldc
w3 = G. (5.7)

The explicit expression of F and G is given in Appendix A. At order(ϵ), we have
the linear problem Ldc

w1 = 0, whose solution satisfying the Neumann boundary
conditions is:

w1 = A(T)rcos(kcx), (5.8)

with r ∈ ker(J − kc2Ddc) where A(T) is the amplitude of the pattern which is still
arbitrary at this level, since Ldc

does not act on the slow scale T. The vector r = (ru,rv)
is defined up to a constant and can be normalized in the following way:

r =
(

1
M

)
, with M =

J21 − k2
c Ddc

21

Ddc

22k2
c − J22

, (5.9)

where J and Ddc
(i, j = 1, 2) are the i, j-entries of the matrices J and Ddc

.
The solvability condition for (A.8) gives the Stuart-Landau equation for the am-

plitude A(T):

dA
dT

= σA − LA3. (5.10)

The coefficients σ and L are explicitly computed in terms of the system parame-
ters and all the details can be found in Appendix A. Since the growth rate coefficient
σ is always positive, the dynamics of the Stuart–Landau equation (5.10) can be di-
vided into two qualitatively different cases depending on the sign of the Landau
constant L: the supercritical case, when L is positive, and the subcritical case, when
L is negative.

5.1.1 Supercritical case

The bifurcation is supercritical if the coefficients σ and L in (A.12) are positive. In
this case, the stable equilibrium of the Stuart Landau equation is A∞ =

√
σ
L the

asymptotic in-time behaviour of the solution is given by:

w = ϵr
√

σ

L
cos(kcx) + ϵ2 σ

L
(w20 + w22cos(2kcx)) + O(ϵ3) (5.11)
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where r is defined by (5.9) and w2i, i = 0, 2, are the solutions of the systems (A.6)-
(A.7). To satisfy the Neumann boundary conditions ([24]), kc should be an integer or
semi-integer. We, therefore, define k̄c as the first integer or semi-integer to become
unstable as d21 crosses its critical value dc

21 and take as the weakly nonlinear approx-
imation equation (5.11) in which kc is replaced by k̄c.

In Figs. 5.1-5.2(c-d), we show the comparison between the stationary state pre-
dicted by weakly nonlinear analysis (solid line) and the stationary state reached from
a random pertubation of the homogenous equilibrium (u∗; v∗), computed by solving
numerically system (3.6) (dotted line). Notice that in the weakly nonlinear solution,
we have chosen d2

21 = dc
21 so that we measure the deviation from the critical value

with dc
21. Numerical results are in perfect agreement with what the weakly nonlin-

ear analysis predicts. Thus, in this case, (σ, L > 0) weakly nonlinear analysis can
predict the instability’s stationary nature, which leads to pattern and form and the
pattern’s amplitude.

(a) (b)

(c) (d)

FIGURE 5.1: The Sign of Landau constant, bifurcation diagram, and
Turing patterns in supercritical bifurcation for case 1.

In Fig. 5.1, (a) Shows the effect of β on the sign of Landau constant L as defined in
(A.12). (b) Depicts the area between d21 = dc

21 (solid line) and d21 = d
d12u∗v∗ (dashed-

dotted line) in the (d, d21) plane, which is the region where Turing instability exists.
In this region, subcritical bifurcation exists in the grey region and supercritical bi-
furcation in the dark grey region. (c-d) Compare the WNL approximated solution
(solid line) and numerical solution of the original system (3.6) (dotted line). The cho-
sen parameters are β = 0.25, η = 1.1, m = 0.8, γ = 0.7273, d12 = 0.9, and d = 0.41.
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With these parameters, d21 = dc
21(1 + ϵ2) and ϵ = 0.05, resulting in dc

21 = 1.7657,
while k̄c ≈ 1.0. The corresponding point is marked by a plus sign in (b).

(a) (b)

(c) (d)

FIGURE 5.2: The Sign of Landau constant, bifurcation diagram, and
Turing patterns in supercritical bifurcation for case 2.

In Fig. 5.2, (a) Shows the effect of β on the sign of Landau constant L as defined in
(A.12). (b) Depicts the area between d21 = dc

21 (solid line) and d21 = d
d12u∗v∗ (dashed-

dotted line) in the (d, d21) plane, which is the region where Turing instability exists.
In this region, subcritical bifurcation exists in the grey region and supercritical bi-
furcation in the dark grey region. (c-d) Compare the WNL approximated solution
(solid line) and numerical solution of the original system (3.6) (dotted line). The cho-
sen parameters are β = 0.4, η = 0.4, m = 0.2, γ = 0.5000, d12 = 0.4, and d = 0.4095.
With these parameters, d21 = dc

21(1 + ϵ2) and ϵ = 0.05, resulting in dc
21 = 1.3758,

while k̄c ≈ 0.67. The corresponding point is marked by a plus sign in (b).

5.1.2 Subcritical case

When L is negative, the bifurcation is subcritical: in this case the weakly nonlinear
expansion has to be pushed up to the fifth order. We therefore introduce the multiple
time scales T and T1 as follows:

∂

∂t
= ϵ2 ∂

∂T
+ ϵ4 ∂

∂T1
+ ..., (5.12)

and the following expansion of the bifurcation parameter:

d21 = dc
21 + ϵ2d1

21 + ϵ4d2
21 +O(ϵ5). (5.13)
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Performing the weakly nonlinear analysis up to order (ϵ5), one obtains the following
quintic Stuart–Landau equation for the amplitude A:

∂A
∂T

= σ̄A − L̄A3 + Q̄A5, (5.14)

where, σ̄ = σ + ϵ2σ̃, L̄ = L + ϵ2 L̃, Q̄ = ϵ2Q̃.
The details of the analysis and the explicit expression of the coefficients appear-

ing in (5.14) are given in Appendix B.
We compare the numerical solution of the system (3.6) with the weakly nonlinear ap-
proximation in Figs. 5.3-5.4(b-c). The dotted line represents the numerical solution,
while the solid line depicts the weakly nonlinear approximation.

(a) (b) (c)

FIGURE 5.3: Bifurcation diagram, and Turing patterns in subcritical
bifurcation for case 1.

In Fig. 5.3, (a) Depicts the area between d21 = dc
21 (solid line) and d21 = d

d12u∗v∗

(dashed-dotted line) in the (d, d21) plane, which is the region where Turing insta-
bility exists. In this region, subcritical bifurcation exists in the grey region and su-
percritical bifurcation in the dark region. (b-c) Compare the WNL approximated
solution (solid line) and numerical solution of the full system (3.6) (dotted line). The
parameters chosen here are β = 0.25, η = 1.1, m = 0.8, γ = 0.7273, d12 = 0.9,
d = 0.15, ϵ = 0.05, dc

21 = 0.7742 and k̄c ≈ 1.73. The corresponding point is marked
by an asterisk sign in (a).

(a) (b) (c)

FIGURE 5.4: bifurcation diagram, and Turing patterns in subcritical
bifurcation for case 2.
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In Fig. 5.4, (a) depicts the area between d21 = dc
21 (solid line) and d21 = d

d12u∗v∗

(dashed-dotted line) in the (d, d21) plane, which is the region where Turing insta-
bility exists. In this region, subcritical bifurcation exists in the grey region and su-
percritical bifurcation in the dark region. (b-c) Compare the WNL approximated
solution (solid line) and numerical solution of the full system (3.6) (dotted line). The
parameters chosen here are β = 0.4, η = 0.4, m = 0.2, γ = 0.5000, d12 = 0.4,
d = 0.1136, ϵ = 0.1, dc

21 = 0.6442 and k̄c ≈ 1.0. The corresponding point is marked
by an asterisk sign in (a).

5.2 Patterns Selection in 2D

In view of Fredholm solvability conditions, solving the Eq. (5.5) corresponding to
the first order of ϵ yields(

u1
v1

)
=

(
φ
1

)( 3

∑
j=1

Wj exp
(
ikj · q

)
+ c.c.

)
. (5.15)

In the given expression, where φ =
J12−k2

c Ddc
12

k2
c−J11

, and |kj| = kc, with Wj representing

the amplitude of the mode eikj·q (where j = 1, 2, 3) under the first-order perturbation.
Here, q = (x, y) is a spatial vector in two-dimensional space, and c.c. denotes the
conjugate of the former terms. For the second order of ϵ as in Eq. (5.6), in order to
ensure the existence of nontrivial solutions of the equation, the Fredholm solvability
condition requires that the vector function of the right-hand side of this equation
should be orthogonal to the zero eigenvectors of the operator (Ldc

)†, where (Ldc
)†

is the adjoint operator of the operator Ldc
. In this context, the zero eigenvector of

(Ldc
)† is (

1
ψ

)
exp

(
−ikj · r

)
+ c.c., j = 1, 2, 3 (5.16)

where ψ = J11−k2
c

dc
21v∗k2

c−J21
. Then, according to the orthogonality condition, this im-

plies that

(1, ψ)

(
Fj

u

Fj
v

)
= 0, j = 1, 2, 3 (5.17)

where Fj
u and Fj

v represent the coefficients corresponding to exp
(
ikj · q

)
in Fu and

Fv. Fredholm solvability condition for second and third order ϵ can be explained in
Appendix C.

Finally,the amplitudes Aj(j = 1, 2, 3) from 5.2,can be expanded as

∂Aj

∂t
= ϵ

∂Aj

∂T1
+ ϵ2 ∂Aj

∂T2
+ · · · , (5.18)

and on the other hand the amplitude Aj can be expressed as the coefficient of the
term eikj·q in each order of ϵ :(

Au
j

Av
j

)
= ϵ

(
φ
1

)
Wj + ϵ2

(
φ
1

)
Vj + · · · ,
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setting
Aj = Au

j = ϵφWj + ϵ2φVj + O
(
ϵ3) . (5.19)

Then together with (5.3), (C.1), (C.3), (5.18), and (5.19) we thus obtain the ampli-
tude equations corresponding to A1, A2, A3 as follows:


τ0

∂A1
∂t = µA1 + h0Ā2Ā3 −

[
g1 |A1|2 + g2

(
|A2|2 + |A3|2

)]
A1,

τ0
∂A2
∂t = µA2 + h0Ā1Ā3 −

[
g1 |A2|2 + g2

(
|A1|2 + |A3|2

)]
A2,

τ0
∂A3
∂t = µA3 + h0Ā1Ā2 −

[
g1 |A3|2 + g2

(
|A1|2 + |A2|2

)]
A3,

(5.20)

where

τ0 = − φ + ψ

dc
21k2

cv∗φψ
, µ =

d21 − dc
21

dc
21

, g1 = − G1

dc
21v∗ψk2

c φ3 , g2 = − G2

dc
21v∗ψk2

c φ3 ,

h0 =
4(d21 − dc

21)

dc
21v∗φ

+
2φ2 + 2(1 − ηψ)

(
(1−γ)2

β (φ − 2φ2(1 − γβ
1−γ ))

)
+ 4φk2

c(d12 + ψdc
21)

dc
21k2

cv∗ψφ2 .

5.2.1 Amplitude instability

In Eq. (5.20), each amplitude Aj can be decomposed as the following form

Aj = ρj exp
(
iθj
)

, j = 1, 2, 3, (5.21)

where ρj represents mode and θj represents the corresponding phase angle. Sub-
stituting (5.21) into (5.20) and separating the real part and imaginary part yields

τ0
∂θ
∂t = −h0

ρ2
1ρ2

2+ρ2
1ρ2

3+ρ2
2ρ2

3
ρ1ρ2ρ3

sin θ,

τ0
∂ρ1
∂t = µρ1 + h0ρ2ρ3 cos θ − g1ρ3

1 − g2
(
ρ2

2 + ρ2
3
)

ρ1,
τ0

∂ρ2
∂t = µρ2 + h0ρ1ρ3 cos θ − g1ρ3

2 − g2
(
ρ2

1 + ρ2
3
)

ρ2,
τ0

∂ρ3
∂t = µρ3 + h0ρ1ρ2 cos θ − g1ρ3

3 − g2
(
ρ2

1 + ρ2
2
)

ρ3,

(5.22)

where θ = θ1 + θ2 + θ3, consider the equation

(C1) : τ0
∂θ

∂t
= −h0

ρ2
1ρ2

2 + ρ2
1ρ2

3 + ρ2
2ρ2

3
ρ1ρ2ρ3

sin θ.

In this context, when the system (5.22) reaches a steady-state solution, the phase of
its amplitude depends solely on θ = 0 and θ = π. Assuming ρj ≥ 0, if h0 < 0
and θ = π, then the solution of (C1) is stable. Conversely, if θ = 0, the solution is
unstable. Here, only the stable solution of (C1) is of interest, and its corresponding
mode of equation is given by:

τ0
∂ρ1
∂t = µρ1 + h0ρ2ρ3 cos θ − g1ρ3

1 − g2
(
ρ2

2 + ρ2
3
)

ρ1,
τ0

∂ρ2
∂t = µρ2 + h0ρ1ρ3 cos θ − g1ρ3

2 − g2
(
ρ2

1 + ρ2
3
)

ρ2,
τ0

∂ρ3
∂t = µρ3 + h0ρ1ρ2 cos θ − g1ρ3

3 − g2
(
ρ2

1 + ρ2
2
)

ρ3,
(5.23)

System (5.23) has four solutions, and we will analyze their stability using linear sta-
bility analysis. To determine the stability of these four solutions, we introduce a
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perturbation (ϵρ1, ϵρ2, ϵρ3) to the variables (ρ1, ρ2, ρ3) in system (3.19). By neglect-
ing higher-order terms, we derive a linear perturbation system as follows:

τ0
∂

∂t

 ϵρ1
ϵρ2
ϵρ3

 =

 m11 m12 m13
m21 m22 m23
m31 m32 m33

 ϵρ1
ϵρ2
ϵρ3

 (5.24)

where

m11 = µ − 3g1ρ2
1 − g2

(
ρ2

2 + ρ2
3
)

, m12 = |h0|ρ3 − 2g2ρ1ρ2, m13 = |h0|ρ2 − 2g2ρ3ρ1,

m21 = |h0|ρ3 − 2g2ρ1ρ2, m22 = µ − 3g1ρ2
2 − g2

(
ρ2

3 + ρ2
1
)

, m23 = |h0|ρ1 − 2g2ρ2ρ3,

m31 = |h0|ρ2 − 2g2ρ3ρ1, m32 = |h0|ρ1 − 2g2ρ2ρ3, m33 = µ − 3g1ρ2
3 − g2

(
ρ2

1 + ρ2
2
)

.

Through the standard stability analysis of the system (5.23), we find that the sys-
tem has four solutions.
One of them is a uniform steady-state solution (O) : ρ1 = ρ2 = ρ3 = 0.
By substituting (0, 0, 0) into the perturbation equation (5.24), we obtain the charac-
teristic equation (λ − η)3 = 0, which gives the eigenvalue λ = η. This solution is
stable when µ < µ2 = 0 and unstable when µ > µ2 = 0.
Another solution is a strip pattern solution (S) : ρ1 =

√
µ
g1

̸= 0, ρ2 = ρ3 = 0, which
exists under the condition µ > µ2 = 0.
Substituting (ρ1, 0, 0) into the perturbation equation (5.24), we obtain:

τ0
∂

∂t

 ϵρ1
ϵρ2
ϵρ3

 =

 µ − 3g1ρ2
1 0 0

0 µ − g2ρ2
1 |h0|ρ1

0 |h0|ρ1 µ − g2ρ2
1

 ϵρ1
ϵρ2
ϵρ3

 (5.25)

The corresponding characteristic equation is given by:

(λ + 2µ)

[(
λ − µ +

g2

g1
µ

)2

− h2
0

g1
µ

]
= 0.

The corresponding eigenvalues are λ1 = −2µ and λ2,3 = µ
(

1 − g2
g1

)
± |h0|

√
µ
g1

.

Assume that µ > 0 and g2
g1

> 1. If µ > µ3 =
h2

0g1

(g2−g1)
2 , then the eigenvalues are

negative, indicating that the strip solution is stable, and system (5.23) exhibits the

strip solution. Conversely, if µ < µ3 =
h2

0g1

(g2−g1)
2 , the strip solution becomes unstable,

meaning that system (5.23) does not exhibit the strip solution.

Two hexagonal configurations, (H0, Hπ), are given by: ρ1 = ρ2 = ρ3 = ρ∗± =
|h0|±

√
h2

0+4(g1+2g2)µ

2(g1+2g2)
. The condition for the existence of this solution is µ > µ1 =

− h2
0

4(g1+2g2)
.

By substituting (ρ1, ρ2, ρ3) into the perturbation equation (5.24), we obtain:

τ0
∂

∂t

ϵρ1
ϵρ2
ϵρ3

 =

H1 H2 H2
H2 H1 H2
H2 H2 H1

ϵρ1
ϵρ2
ϵρ3

 (5.26)

where H1 = µ − (3g1 + 2g2)ρ2 and H2 = |h0|ρ − 2g2ρ2. The characteristic equa-
tion for this system is:
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(H1 − λ)3 − 3H2
2(H1 − λ) + 2H3

2 = 0

which gives the corresponding eigenvalues as λ1,2 = H1 − H2 and λ3 = 2H2 +
H1. If

ρ∗− =
|h0| −

√
h2

0 + 4(g1 + 2g2)µ

2(g1 + 2g2)

then λ3 > 0, indicating that the hexagonal solution is unstable, and the system
will not display a hexagonal solution. On the other hand, if

ρ∗+ =
|h0|+

√
h2

0 + 4(g1 + 2g2)η

2(g1 + 2g2)
, and µ < µ4 =

(2g1 + g2)h2
0

(g2 − g1)2

then all eigenvalues are negative, implying that the hexagonal solution is stable
and the system will have a hexagonal configuration.

For a mixed structure solution (MS), where ρ1 = |h0|
g2−g1

, ρ2 = ρ3 =

√
µ−g1ρ2

1
g1+g2

, the

solution exists under the conditions µ > µ3 and g2 > g1.
By substituting (ρ1, ρ2, ρ3) into the perturbation equation (5.24), we obtain:

τ0
∂

∂t

ϵρ1
ϵρ2
ϵρ3

 =

H3 H5 H5
H5 H4 H6
H5 H6 H4

ϵρ1
ϵρ2
ϵρ3

 (3.23)

where

H3 = µ − 3g1ρ2
1 − g2(ρ

2
2 + ρ2

3), H4 = η − 3g1ρ2
2 − g2(ρ

2
1 + ρ2

2),

H5 = |h0|ρ2 − 2g2ρ1ρ2, H6 = |h0|ρ1 − 2g2ρ2
2.

The characteristic equation is:[
λ2 − (H3 + H4 + H6)λ + H3(H4 + H6)− 2H2

5
]
(λ − H4 + H6) = 0

The eigenvalues satisfy:

λ1 = H4 − H6, λ2 + λ3 = H3 + H4 + H6, λ2λ3 = H3(H4 + H6)− 2H2
5 .

For all eigenvalues to be negative, the following conditions must be met:

(a) λ1 < 0, (b) λ2 + λ3 < 0, (c) λ2λ3 > 0.

For λ1 < 0, we have:

µ <
(2g1 + g2)h2

0
(g1 − g2)2

and for λ2λ3 > 0, we require:

µ >
(2g1 + g2)h2

0
(g1 − g2)2 .

These two conditions are contradictory, indicating that the mixed structure solu-
tion is unstable, and thus, the system (5.23) will not be stable.
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From the above analysis, we conclude that µ1 < µ2 = 0 < µ3 < µ4, leading to
the following conclusions.

Theorem 2 : Stability Analysis of Amplitude Equations
Assume that g1 > 0 and g2 > 0. The original reaction-diffusion system exhibits differ-
ent types of patterns if the steady-state solution of the system (5.22) satisfies the following
conditions:

1. The homogeneous stationary state (O) is defined by:

ρ1 = ρ2 = ρ3 = 0.

This state (O) is stable when µ < µ2 = 0, and becomes unstable when µ > µ2 = 0.

2. The strip pattern formation (S) occurs if:

ρ1 =

√
µ

g1
̸= 0, ρ2 = ρ3 = 0, with µ > µ2 = 0.

This strip pattern (S) is stable when µ > µ3 =
h2

0g1
(g2−g1)2 , and unstable when µ < µ3.

3. The two hexagonal patterns (H0, Hπ) are given by:

ρ1 = ρ2 = ρ3 = ρ∗± =
|h0| ±

√
h2

0 + 4(g1 + 2g2)µ

2(g1 + 2g2)
,

with θ = 0 or θ = π. These patterns exist when µ > µ1 = − h2
0

4(g1+2g2)
. The solution

ρ∗+ =
|h0|+

√
h2

0+4(g1+2g2)µ

2(g1+2g2)
is stable when µ < µ4 =

(2g1+g2)h2
0

(g2−g1)2 . However, the solution

ρ∗− =
|h0|−

√
h2

0+4(g1+2g2)µ

2(g1+2g2)
is always unstable.

4. The mixed structure state (MS) is defined by:

ρ1 =
|h0|

g2 − g1
, ρ2 = ρ3 =

√
µ − g1ρ2

1
g1 + g2

,

which exists under the conditions µ > µ3 and g2 > g1. However, this solution is
always unstable.

Theorem 3 In the range where Turing patterns are generated, the parameters η, β, m, γ, d, d12,
and d21 are considered variables. The behaviour of the system (3.6) can be described as fol-
lows:

1. When µ2 < µ < µ3, the system exhibits a spot pattern.

2. When µ3 < µ < µ4, the system can display either a spot pattern or a stripe pattern,
depending on the initial conditions.

3. When µ > µ4, the spot pattern in the system transitions to a stripe pattern.

In Fig. 5.5, we change the value of bifurcation parameter d21 and fix the other
parameters in system (3.6), then we can calculate the values of h0, µ, µ1, µ3, µ4 and
know that µ1 < µ2 < µ3 < µ4, according to theorem (2). The bifurcation diagram
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FIGURE 5.5: In the bifurcation diagram of amplitude equations’ solu-
tions, the red lines represent stable solutions, while the black lines sig-
nify unstable ones. In this context, the symbol H0 denotes the hexag-
onal state with θ = 0, Hπ represents the hexagonal state with θ = π,

and S is indicative of stripe patterns.

illustrates how the mode of ρ changes with µ. Here we fix parameters m = 0.8, η =
1.5, β = 0.35, γ = m/η, d = 1.6, d12 = 0.9. Then we get the critical value of Turing
bifurcation is dc

21 = 4.7556. Choosing the control parameter value d21 = 4.8032 > dc
21

,we get h0 = −1.8960, g1 = 5.0648, g2 = 114.7297, µ = 0.0100, µ1 = −0.0038, µ2 = 0,
µ3 = 0.0015 and µ4 = 0.0373.

5.3 Numerical Simulations in 2D

In this section, we conducted numerical simulations of the original system (3.6). We
used the same set of parameters to generate a bifurcation diagram see Fig. 5.5. For
that set of parameters, the coexisting steady state is (0.4000, 0.4500). We determined
the following values: h0 = −1.8960, g1 = 5.0648, g2 = 114.7297, µ = 0.0100,
µ1 = −0.0038, µ2 = 0, µ3 = 0.0015, and µ4 = 0.0373. It’s important to note that
for this set of parameters, h0 < 0 and g1 < g2. Therefore, since h0 < 0, H0 is always
unstable for this set of parameters. Additionally, as µ ∈ (µ3, µ4), both hexagonal and
strip patterns are stable.

In the numerical experiment shown in Fig. 5.6, we pick the parameters in such
a way that in the rectangular domain with Lx = 8π and Ly = 8

√
3π, the only ad-

mitted unstable mode is k̄c ≈ 0.75. For the chosen set of parameters, the bifurcation
diagram in Fig. 5.5 shows a bi-stability regime of hexagonal and roll patterns, which
will appear strictly depending on the initial data. Performing three thousand sim-
ulations, starting from different randomly chosen initial conditions, we have found
that the shape of the pattern is a hexagon shown in Fig. 5.6; furthermore, performing
five thousand simulations and obtained rolls as shown in Fig. 5.7. In Fig. 5.8, we se-
lected parameters such that µ ∈ (µ4, ∞), where only strip patterns are stable. For the
numerical simulation, we used the same rectangular domain that we used for the
numerical experiments in the bi-stability region shown in Figs. 5.6-5.7. Performing
ten thousand simulations, we obtained roll patterns as shown in Fig. 5.8.
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(a) (b)

FIGURE 5.6: Hexagonal patterns, the numerical solution u and v of
the original system (3.6).

(a) (b)

FIGURE 5.7: Roll patterns, the numerical solution u and v of the orig-
inal system (3.6).

(a) (b)

FIGURE 5.8: Roll patterns, the numerical solution u and v of the orig-
inal system (3.6).



53

Chapter 6

Mathematical Modelling and
Numerical Results of Tumor
Growth Model

The chapter presents a mathematical model for tumor growth that accounts for the
interplay between normal cells, tumor cells, and the concentration of H+ ions in
the tumor microenvironment. The model considers logistic growth for each popula-
tion, as well as competition effects between normal and tumor cells. The spatial and
temporal dynamics of the system are described by a system of partial differential
equations (PDE) (see sections 6.1, 6.2, and 6.3). We can discretise the mathematical
model using the method of lines to obtain a system of ordinary differential equations
(ODE) that can be numerically integrated. The numerical results illustrate how the
competition parameters affect the evolution of normal cells, tumor cells, H+ ion con-
centration, and the resulting pH changes over time (see sections 6.4, and 6.5). The
chapter highlights the importance of considering the acid-mediated tumor invasion
process in a radially symmetric geometry to better capture the spherical nature of
tumor growth at the microscopic level, as discussed in our work ([56]).

6.1 Introduction of Tumor Growth

The idea of tumor cell invasion was given by ([102]). He said that metabolism is the
process by which cancer cells and normal cells will grow; metabolism has two types:
anaerobic and aerobic. Aerobic is the process in which the breakdown of glucose is
done in the presence of oxygen; during this process, carbon dioxide and energy are
produced; the normal cell uses this energy to run the function of the human body,
and the carbon dioxide is released during the respiration process. While anaerobic
processes are done in the absence of oxygen, during this process, tumour cells will
be growing, and a concentration of H+ ions is produced, which is a dangerous envi-
ronment for normal cells.

Researchers are particularly intrigued by the low pH of the tumor microenviron-
ment in cancer invasion studies ([20]). Cancer cells’ anaerobic glycolysis generates
H+ ions, lowering the pH of the primary tumor’s surroundings. This acidic environ-
ment facilitates the formation of secondary tumors, a process known as metastasis.
The heightened metabolic activity produces substantial lactic acid, resulting in an
excess of H+ ions. This acidity affects normal cells in the tumor vicinity, creating
conditions favorable for tumor growth while causing normal cell death ([14], [74],
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[88]). While normal cells thrive in blood with a pH of 7.1-7.4, tumor cells can sur-
vive in a more acidic environment with a pH of 6.5-7([48], [83], [79]).

([35]) pioneered a mathematical model for acid-mediated tumor invasion. Sub-
sequent experimental work supported this model, demonstrating that tumor cells’
anaerobic glycolysis produces H+ ions ([36], [37]). This leads to local acidification
and destruction of normal cells, facilitating tumor cell invasion ([35], [37], [75]). Nor-
mal cells struggle to survive in acidic conditions, creating a favourable environment
for tumor growth. The reaction-diffusion model ([35]) describes how the popula-
tion of normal cells, tumor cells, and the concentration of H+ ions evolve over time
due to their interactions. In 2013, ([64]) extended the model of ([35]) by adding the
competition of tumor cells on normal call in logistic growth of normal cells, but the
effect of the normal cells on tumour cells was not be added in tumour cell equation.
Subsequently, ([65]) further developed the model by introducing mutual competi-
tion between normal and tumor cells and accounted for acid-mediated tumor cell
death, noting that tumors cannot survive in environments more acidic than pH 6.3
([14], [74]).

In 2017, ([43]) extended the model by including the time-varying carrying capac-
ities in the normal and tumour cell equations and solved the system using the dual
reciprocity boundary element method. Tumour cells grow in acidic environments,
but an acidic environment does not suit the tumour cells. That’s why the carrying
capacity must depend on the excess concentration of lactic acid.

In this work, we propose a modified form of the mathematical model, which was
first reported in ([35]). More concretely, we will assume that the growth rate for nor-
mal cells, cancer cells, and concentration of H+ ions obey logistic-type regimes. This
is an important difference from previously published works in which, for example,
the concentration of H+ ions is considered to be an exponential growth rate. The
reason behind this correction is that the growth of the concentration of H+ ions de-
pends on the growth of the tumor, which is logistic according to the empirical data
mentioned in the previous paragraphs. We also add nonzero competition terms of
normal and tumour cell growth following the approach based on the Lotka–Volterra
competition model ([101]). Those parameters will be represented by α1 and α2, re-
spectively. Moreover, we will consider a radially symmetric form of the mathemati-
cal model in order to account for the approximately spherical geometry of tumors at
the microscopic level.

6.2 Mathematical Modelling of Tumor Growth

Let r and t denote the radial position in one spatial dimension (cm) and time (s),
respectively. Define the following parameters related to a tumor growth model:

Temporal and spatial distribution of normal cells

Let Nn denote be the normal cells density (in cells /cm3 ), r1 be a growth rate of nor-
mal cells (in s−1) and r2 be rate in which concentration of H+ ions effect the normal
cells (in M−1sec−1 ) since (M = g mol

1000 cm3 ) . We take the logistic growth of Normal
cells in which we use Lotka–Volterra competition, i.e. how tumor cells will affect the
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normal cells; the competition parameter is denoted by α1.

The above phenomenon gives the governing equation of normal cells that can be
described as

∂Nn

∂t
= r1Nn

(
1 − Nn

Kn
− α1

Nt

Kt

)
− r2HNn, (6.1)

here Kn denotes the carrying capacity of normal cells.

Temporal and spatial distribution of tumor cells

Let Nt(r, t) denote tumor cells density (in cells /cm3 ), r3 be static growth rate of
tumor cells ( in s−1 ), and Kt be carrying capacity of tumor cells( in cells/ cm2 ).
In this section, we will also discuss the diffusion term of tumor cells and how they
affect the normal cells, which is denoted by D(Nn). The diffusion term of tumor cells
depends on normal cells. We also take the logistic growth of tumour cells as we took
the growth of normal cells in Eq. (6.1) and the competition effect of normal cells on
tumour cells. The competition parameter is denoted by α2.

The governing Equation of tumor cells will be described as

∂Nt

∂t
= r3Nt

(
1 − Nt

Kt
− α2

Nn

Kn

)
+

1
r2

∂

∂r

(
r2D(Nn)

∂Nt

∂r

)
, (6.2)

where

D(Nn) = Dt

(
1 − Nn

Kn

)
,

here Dt be a Diffusion rate of tumor cells ( in cm2/sec ).

Temporal and spatial distribution of H+ions

In this subsection, we discuss the mathematical modelling of concentration of H+

ions and how they affect the surrounding environment in which tumour cells pro-
mote, and normal cells will decay in this environment. We also discuss in numerical
results how pH will change as time increases, which depends on the concentration
of H+ ions, which will be calculated by the following formula − log (H+).

Let Ch(r, t) is the concentration of H+, r4 in(M cm3/s ) rate of growth for excess
of H+ions and r5 is rate constant for excess H+ ( in s−1) and Dh is a constant diffu-
sion rate of H+ ions.

The above phenomena give the governing concentration equation of Ch ions

∂Ch

∂t
= r4Nt

(
1 − Nt

Kt
− α2

Nn

Kn

)
− r5H +

1
r2

∂

∂r

(
r2Dh

∂Ch

∂r

)
. (6.3)

It is worth pointing out that there is a remarkable difference between the present
model and that investigated in ([35]). Indeed, the authors of that paper assumed
that the concentration of H+ions for tumor cells followed an exponential law, while
we assume a logistic distribution. The rationale behind this assumption obeys the
hypothesis that H+ions affect the normal cells, and lactic acid helps promote tumor
invasion. Moreover, we suppose also that the normal cells affect the tumor cells but
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in milder form ([65]). Also, it is essential to point out that the partial derivative with
respect to r in the second and third equations of the model represents a divergence
operator of the diffusion term in spherical coordinates. This diffusion term consid-
ers a non-constant diffusion coefficient, which makes the model more realistic and
general.

In order to solve the diffusive-reactive system (6.1) -(6.3), we will require suitable
initial conditions of the form 

Nn(r, 0) = fn(r)
Nt(r, 0) = ft(r)
Ch(r, 0) = fh(r)

(6.4)

where fn(r), ft(r) and fh(r) represent the initial distribution of normal cells and
tumor cells and the initial concentration of H+ ions, respectively. In addition, we will
impose homogeneous Neumann boundary conditions on both ends of the interval
[0, ∞), that is,

∂Nt

∂n
(0, t) =

∂Ch

∂n
(0, t) = 0, ∀t ≥ 0 (6.5)

lim
r→∞

∂Nt

∂n
(r, t) = lim

r→∞

∂Ch

∂n
(r, t) = 0, ∀t ≥ 0 (6.6)

Biologically, homogeneous Neumann boundary conditions are usually employed
to simulate a free boundary.

The nonlinear diffusion term of tumor cells, the third term on the right-hand
side of Eq. (6.2), required additional analysis at r = 0, i.e. at r = 0, the diffusion
term is undetermined. Hence, this term is an application of L’Hôpital’s rule ([69]).
Expanding the derivative of the proposed term is given below:

1
r2

∂

∂r

(
r2D(Nn)

∂Nt

∂r

)
=

1
r2

[
r2 ∂

∂r

(
r2D(Nn)

∂Nt

∂r

)]
+

1
r2

[
2r
(

D(Nn)
∂Nt

∂r

)]
,

=
∂

∂r

(
D(Nn)

∂Nt

∂r

)
+

2
r

D(Nn)
∂Nt

∂r
,

= D(Nn)
∂2Nt

∂r2 +
dD(Nn)

dNn

∂Nn

∂r
∂Nt

∂r
+

2
r

D(Nn)
∂Nt

∂r
,

= D(Nn)
∂2Nt

∂r2 +

(
−Dt

Kn

)
∂Nn

∂r
∂Nt

∂r
+

2
r

D(Nn)
∂Nt

∂r

(6.7)

The third term of Eq. (6.7) is not determined at r = 0, which is an application of
L’Hôpital’s rule, so we apply this rule to solve this term as given below.

lim
r→0

[
2
r

D(Nn)
∂Nt

∂r

]
= 2D(Nn)

∂2Nt

∂r2 + 2
dD(Nn)

dNn

∂Nn

∂r
∂Nt

∂r

= 2D(Nn)
∂2Nt

∂r2 + 2
(
−Dt

Kn

)
∂Nn

∂r
∂Nt

∂r

(6.8)

Using BCs ((6.5) and (6.6)) and combining Eqs. ((6.7) and (6.8)), we get
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1
r2

∂

∂r

(
r2D(Nn)

∂Nt

∂r

)
= 3D(Nn)

∂2Nt

∂r2 (6.9)

Similarly, the diffusion term of concentration of H+ions is also undermined at
r = 0, so we solve this term the same manner as we solve the diffusion term of
tumor cells: we get the following term after solving.

1
r2

∂

∂r

(
r2Dh

∂H
∂r

)
= 3Dh

∂2H
∂r2 (6.10)

It is worth pointing out that the dynamical behaviour of this system was already
investigated in ([65]) using Cartesian coordinates. In our case, we investigate the
radially symmetric scenario. However, the determination of the equilibrium points
of this system and the stability analysis is the same as for Cartesian coordinates.

6.3 Cell Balacing

In this section, we will balance our system of PDE, which will show that our system
that we define is balanced, i.e. the equations (6.1-6.3), left and right-hand sides is bal-
ance in normal cells/s, tumor cells/s and H+/s, respectively. This will be presented
in the subsections ((6.3.1), (6.3.2) and (6.3.3)).

6.3.1 Normal cells balance

Equation ( 6.1) is a conservation balance for normal cells in the Spherical coordinates
system starting with the terms:

LHS-1: (4πr2) ∂Nn
∂t – Accumulation of normal cells in a differential volume (4πr2).

Note that the units of this term are (cm3)(normal cells
cm3 )( 1

s ) = (normal cells
s ), that is, the

accumulation of normal cells/s (or the depletion of normal cells if the derivative in
t is negative).

RHS-1: (4πr2)r1Nn

(
1− Nn

Kn
− α1

Nt
Kt

)
– A logistic rate for the increase in the number

of normal cells, Nn, in a differential volume (4πr2). Note that as Nn
Kn

→ 1, this rate
approaches zero again, and the net units are normal cells/s, as in LHS-1.

RHS-2: (4πr2dr)r2NnCh - Finally, the last term on the right-hand side of (6.1) repre-
sents the rate of reduction in the number of normal cells within a differential volume
given by 4πr2dr. Note that this rate is proportional to the product of the variables
Ch and Nn, so it is nonlinear. The net units are normal cells/s, as in the case of the
terms above.

6.3.2 Tumor cells balance

Equation ( 6.2) is a conservation balance for tumor cells in a spherical coordinates
system starting with the terms:

LHS-1: (4πr2dr) ∂Nt
∂t – Accumulation of tumor cells in a differential volume (4πr2dr).

Note that the units of this term are (cm3)( tumor cells
cm3 )( 1

s ) = ( tumor cells
s ), that is, the ac-

cumulation of tumor cells/s (or the depletion of tumor cells if the derivative in t is
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negative).

RHS-1: (4πr2dr)r3Nt

(
1 − Nt

Kt
− α2

Nn
Kn

)
- A logistic rate for the increase in the num-

ber of tumor cells, Nt, in a differential volume (4πr2dr). Note that as Nt
Kt

→ 1, this
rate approaches zero. Again, the net units are tumor cells/s, as in LHS-1.

RHS-2: (4πr2)Dt

(
1 − Nn

Kn

)
∂Nt
∂t at r. Rate of diffusion of tumor cells into the dif-

ferential volume (4πr2dr) at r. This is an application of Fick’s Law for diffusion. The
net units are tumor cells/s, as in LHS-1 and RHS-1. Note the diffusivity of Nt is a
function of Nn to reflect the decrease in the rate of diffusion of tumor cells as the
number of normal cell increases; this is a nonlinear effect that can be accommodated
within the normal approach to the solution of equation ( 6.2), to be discussed subse-
quently.

RHS-3: (4π(r + dr)2)Dt

(
1− Nn

Kn

)
∂Nt
∂t at r + dr. Rate of diffusion of tumor cells out of

differential volume (4πr2dr) at r + dr. The net units are tumor cells/s, as in LHS-1,
RHS-1,and RHS-2.

If these four terms are placed in a balence for Nt
(
with D(Nn) = Dt

(
1 − Nn

Kn

))
in equation ( 6.2), we set

(4πr2dr)
∂Nt

∂t
=(4πr2dr)r3Nt

(
1 − Nt

Kt
− α2

Nn

Kn

)
− (4πr2dr)−

(4πr2)Dt

(
1 − Nn

Kn

)
∂Nt

∂t
|r + (4πr2)Dt

(
1 − Nn

Kn

)
∂Nt

∂t
|r+dr

(6.11)

After some arrangements, the above equation can be written as

∂Nt

∂t
= r3Nt

(
1 − Nt

Kt
− α2

Nn

Kn

)
+

1
r2

∂

∂r

(
r2D(Nn)

∂Nt

∂r

)
(6.12)

6.3.3 H+ balance

Equation ( 6.3) is a conservation balance for H+ ion in spherical coordinates system
starting with the terms:

LHS-1: (4πr2dr) ∂Ch
∂t – Accumulation of H+ ion in a differential volume (4πr2dr).

Note that the units of this term are (cm3)(H+ ion
cm3 )( 1

s ) = (H+ ion
s ), that is, the accu-

mulation of H+ ion per second (or the depletion of H+ ion if the derivative in t is
negative).

RHS-1: (4πr2dr)r4Nt

(
1 − Nt

Kt
− α2

Nn
Kn

)
- A logistic rate for the increase in the num-

ber of H+ ion, in a differential volume (4πr2dr). Note that as Nt
Kt

→ 1, this rate
approaches zero. Again, the net units are H+ ion/s, as in LHS-1.
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RHS-2: (4πr2)Dh

(
∂Ch
∂t

)
at r. Rate of diffusion of H+ ion into the differential vol-

ume (4πr2dr) at r. This is an application of Fick’s Law for diffusion. The net units
are H+ ion/sec, as in LHS-1 and RHS-1.

RHS-3:(4π(r + dr)2)Dh

(
∂Ch
∂t

)
at r + dr. Rate of diffusion of H+ ion out of differ-

ential volume (4πr2dr) at r + dr. The net units are H+ ion/sec, as in LHS-1, RHS-1
and RHS-2.

If these terms are placed in a balance for H+ ion, into the equation ( 6.3), we get

(4πr2dr)
∂Ch

∂t
=(4πr2dr)r4Nt

(
1 − Nt

Kt
− α2

Nn

Kn

)
− (4πr2dr)r5Ch

−(4πr2)Dh

(
∂Ch

∂t

)
|r + (4π(r + dr)2)Dh

(
∂Ch

∂t

)
|r+dr

(6.13)

After some simplification, the above equation can be written as

∂Ch

∂t
= r4Nt

(
1 − Nt

Kt
− α2

Nn

Kn

)
− r5Ch + Dh

1
r2

∂

∂r

(
r2 ∂Ch

∂r

)
(6.14)

6.4 Discretization of the Mathematical Model using MOL

The MOL’s core concept is to use algebraic approximations to substitute the PDE’s
spatial (boundary value) derivatives. Once this has been accomplished, the spatial
derivatives are no longer expressed explicitly in terms of the spatial independent
variables. As a result, in a physical problem, just the initial variable remains, which
is usually time. In other words, we have a system of ODEs that approximates the
original PDEs having only one independent variable. Once this is done, we can use
any integration algorithm to solve the ODEs.

To illustrate this procedure, we consider the MOL solution for the mathemati-
cal model described in Equations (6.1) to (6.3). First, we need to replace the spatial
derivatives with an algebraic approximation. fr and frr represents the first and sec-
ond order derivative respectively. We used a finite difference (FD) five-point (fourth-
order accurate) formula to discretize the model. For Neuman boundary conditions
as defined in eq. (6.5), we used five-point forward and backward formulas for the
endpoints and five-point central difference formulas for the interior points. We used
index i, which is an index designating a position along a grid in r, and ∆r is the spac-
ing in r along the grid, assumed constant for the time being. Thus, for the left end
value of r, i = 1, and for the right end value of r, i = n, i.e., the grid in r has n points

The discretization form of the first-order derivative at the left endpoints is given
as

fr =
−25 fi + 48 fi+1 − 36 fi+2 + 16 fi+3 − 3 fi+4

12∆r
, i = 1 (6.15)
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fr =
−3 fi−1 − 10 fi + 18 fi+2 − 6 fi+3 + fi+4

12∆r
, i = 2 (6.16)

at right end points,

fr =
25 fi − 48 fi−1 + 36 fi−2 − 16 fi−3 + 3 fi−4

12∆r
, i = n (6.17)

fr =
− fi−4 + 6 fi−3 − 18 fi−2 + 10 fi−1 + 3 fi

12∆r
, i = n − 1 (6.18)

for interior points,

fr =
fi−2 − 8 fi−1 − 0 ∗ fi + 8 fi+1 + fi+2

12∆r
(6.19)

The discretization form of the order derivative at the left endpoints is given as

frr =
45 fi − 154 fi+1 + 214 fi+2 − 156 fi+3 + 61 fi+4 − 10 fi+5

12∆r2 i = 1 (6.20)

frr =
10 fi−1 − 15 fi − 4 fi+1 + 14 fi+2 − 6 fi+3 + fi+4

12∆r2 , i = 2 (6.21)

at right endpoints

frr =
45 fi − 154 fi−1 + 214 fi−2 − 156 fi−3 + 61 fi−4 − 10 fi−5

12∆r2 , i = n (6.22)

frr =
10 fi+1 − 15 fi − 4 fi−1 + 14 fi−2 − 6 fi−3 + fi−4

12∆r2 , i = n − 1 (6.23)

for interior points,

frr =
− fi−2 + 16 fi−1 − 30 fi + 16 fi+1 − fi+2

12∆r2 (6.24)

Now we can see that if we put these algebraic expressions as defined in equations
(6.15 - 6.24) to the given system (6.1 - 6.3), we get a system of ODEs that approximates
the original PDEs. Then, to compute the solution of the PDEs, we compute a solution
to the approximating system of ODEs. As we know 1 ≤ i ≤ n so we get n system
ODES. To solve this system of ODEs, we used an ODEs integration algorithm, ode45
and ode15s ([38]), to get the numerical results, as discussed in the next section.

6.5 Numerical Results and Discussion

For numerical results, we used MATLAB R2016a user-defined functions developed
for the analysis and ran it on a laptop with 8 GB RAM and 1.61 GHz processes. The
operating system is 64-bit and Windows 10. The computational cost on each case is
given in Table 6.1, and the parametric numerical value is given in Table 6.2.

We will use no flux Neumann BCs as we define in equations (6.5) and (6.6). We
also assume the initial normal cells are half of their carrying capacity, while tumor
cells can be close to theirs and thus prone to invade the surrounding tissue as given
in ([65]). Since pH level is lowered due to the concentration of H+ ions which is pro-
duced due to tumour cells. By using this assumption, we define the initial condition
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of normal cells, tumor cells and concentration H+ ions as given below

(a) (b)

(c) (d)

FIGURE 6.1: Numerical results for normal cells for 0 ≤ r ≤ 1, t=0,
11.6, 23.1, 34.7. 46.3, 57.9 days (top to bottom)

.

rs = 50 (6.25)

num = e(rs(r−r(21))) − e(−rs(r−r(21)))

den = e(rs(r−r(21))) + e(−rs(r−r(21)))

tanh(r) =
num
den

(6.26)

Nno(r, 0) = 5.0 × 107 × 1 − tanh(r)
2

+ 1.0 × 108 × 1 + tanh(r)
2

(6.27)

The above equation (6.27) is the initial condition for normal cells.
Now we define the initial condition for tumor cells, which can be written as

Nto(r, 0) = 1.0 × 105 × 1 − tanh(r)
2

+ 1.0 × 103 × 1 + tanh(r)
2

(6.28)

Above equation ( 6.28) is the initial condition for tumor cells here tanhr is same as
defined in equation ( 4.14). Now we define initial condition of concentration of H+
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ions,

num = e(rs(r−r(11))) − e(−rs(r−r(11)))

den = e(rs(r−r(11))) + e(−rs(r−r(11)))

tanh(r) =
num
den

(6.29)

Cho(r, 0) = 1.0 × 10−9 × 1 − tanh(r)
2

(6.30)

which is the initial condition for the concentration of H+ ions.The equations (6.27),
(6.28) and (6.30) are the initial conditions for normal cells, tumour cells and concen-
tration of H+ ions, respectively.
The previous work on acid-mediated tumour growth has been done in the Cartesian
coordinates system, and their results were not so much precise about the behaviour
of tumour expansion and how much it affects the normal cells ([50],[65]). But here,
we are dealing with the tumour growth in spherical coordinates, which gives a bet-
ter approximation to the geometry of the tumour. Also, we analyze how the pH
varies due to the effect of the concentration of H+ ion.

The variation of normal cells is presented in Fig. 6.1 (a - d) for different cases.
In these plots, α1 represents the effect of tumor cells on normal cells. On the other
hand, α2 represents the effect of normal cells on tumour cells see Fig.6.1(a - d)).

First, we considered a case in which both α1= α2= 0 as ([35]) taken in his article
and later on ([7]) and discussed the numerical results. The normal cells decay with
time variation, which clearly indicates the effect of tumor cells sec Fig. 5.1(a). In a
second case, see Fig.6.1(b), when we take a competition term of tumor on normal
cells is nonzero and using interspecific competition as taken in, we see that as time
varies normal cells decay more rapidly see Fig. 6.1(b) as compared to the case when
competition term is zero.
In Fig. 6.1(c), when we used intraspecific competition as taken ([65]) then, we see
that the decay rate of normal cells is less as compared to the first two cases see Fig.
5.1(a-b). Also, in the last case, when we take an intraspecific competition, both α1
and α2 are nonzero as see Fig. 6.1(d) decay of normal cells very less as compared to
the other three cases as discussed above.
The variation of tumor cells is presented in Fig. 6.2(a-d) for different cases. For
the first case, we take both the competition terms as zero, i.e. α1= α2= 0. For this
case, we clearly see that tumor cells expand with time variations and affect the nor-
mal cells in that area see Fig. 6.2(a). If we choose one of the competition terms as
nonzero, i.e. interspecific competition, then we clearly see that expand rate of tumor
cells is fast as compared to the first case see Fig. 6.2(b).
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(a) (b)

(c) (d)

FIGURE 6.2: Numerical results for tumor cells for 0 ≤ r ≤ 1, t=0, 11.6,
23.1, 34.7. 46.3, 57.9 days (bottom to top)

.

Also, we considered a case in which we take an intraspecific competition of tu-
mor cells, and we see that in that case, the tumor expansion rate is a little bit slow
but not affect too much to slow down the expansion rate of the tumor see Fig. 6.2(c).
In the last case, when we considered both competition terms as nonzero, then we
see that the spread rate of tumor is much slower as compared to other cases see Fig.
6.2(d). The variation of concentration of H+ is presented in Fig. 6.3(a-d) for different
cases. For the case α1 =α2 = 0 see Fig. 6.3(a), we see how the concentration of H+

ions increases in that area where tumor cells spread with time variation.

On the other hand, as we see in Fig. 6.3(b-c), the variation of concentration H+

ions looks the same as compared to the first case see Fig.6.3(a). The reason behind
this is that in case 2 when we choose α1 > 1 as an interspecific competition of tumor
on normal due to this reason tumor effect normal in that area, but the variation
concentration of H+ looks same as we see in the first case see Fig. 6.3 (a) and when
we choose intraspecific competition then we see that variation of H+ ions remain
looks same because tumor cells do not effect on each other see Fig. 6.3(c). In the last
case, when chosen, both competition terms are nonzero as we see a variation of H+

ions is much slower as compared to the other three cases see Fig.6.3(d).
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(a) (b)

(c) (d)

FIGURE 6.3: Numerical results for concentration of H+ ions for 0 ≤
r ≤ 1, t=0, 11.6, 23.1, 34.7. 46.3, 57.9 days (bottom to top)

.

The Variation of pH is presented in Fig 6.4 (a - d) for different cases. For the
first case, see Fig. 6.4(a) in which both competition terms are zero, we see how pH
decreases with time variation in that area where the concentration of H+ increases
with time (see Fig. 6.3 (a)).

On the other hand, if we choose α1 > 1, then we see that the variation of pH with
time looks the same (see Fig. 6.4 (b)), the reason behind this is that we use competi-
tion of tumor on normal cells is nonzero that’s why the growth rate of tumor same
but in that case, normal cells decay fast as compare to the first case see Fig. 6.4(a-b).
In case three, when we choose intraspecific competition of tumour cells, then we see
that tumour cells do not affect themselves see Fig. 6.4 (c). In the last case, when we
choose that both the competition terms are nonzero, then a variation of pH is too
slow as compared to other cases see Fig. 6.4 (d).
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(a) (b)

(c) (d)

FIGURE 6.4: Numerical results for pH for 0 ≤ r ≤ 1, t=0, 11.6, 23.1,
34.7. 46.3, 57.9 days (top to bottom)

.

TABLE 6.1: Com-
putational Cost

Cases Elapsed Time in seconds
Case 1 3.3023373
Case 2 3.485992
Case 3 3.749872
Case 4 3.749877

TABLE 6.2: Nu-
merical Values of

Parameters

Parameter Value Unit
r1 1 × 10−6 s−1

r2 0 − 10 M−1s−1

r3 1 × 10−6 s−1

r5 2.2 × 10−17 M cm3 s−1

r6 1.1 × 10−4 s−1

Kn 5.0 × 107 cm3

Kt 5.0 × 107 cm3

Dt 2.0 × 10−10 cm2s−1

Dh 2.0 × 10−6 cm2s−1
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Chapter 7

Conclusion

In this thesis, we studied how patterns form when toxic phytoplankton and zoo-
plankton interact in a reaction-diffusion system with nonlinear cross-diffusion. We
identified the parameter ranges where diffusion-driven instability occurs and pat-
terns emerge. Using a weakly nonlinear expansion, we predicted the pattern’s shape
and amplitude and derived the amplitude equations, including up to quintic order
terms, for supercritical and subcritical bifurcation cases. We used two cases of kinetic
parameters to draw patterns in supercritical and subcritical bifurcation regions; in
supercritical bifurcation, both cases’ numerical solutions perfectly match the weakly
nonlinear approximation see Figs. (5.1-5.2), but in subcritical bifurcation, for the
first case, our numerical result does not perfectly match with WNL approximation
because the numerical scheme MOL can not run the solution for a long time, so
we do not get perfect stationary patterns as we expected, but for the second case
of parameters, numerical solution perfectly matches with WNL approximation see
Figs. (5.3 – 5.4), the difference between the last two simulations is about 10−13. Also,
we performed numerical simulations of the system that show that without cross-
diffusion, the system does not hold diffusion-driven instability see Figs. (4.8-4.9).
For the non-spatial model, we predict the region where the coexistence steady state
will be stable, where it holds Hopf bifurcation and where it becomes unstable see
Figs. (4.1-4.3).

Additionally, we examine the pattern transition in the 2D domain by deriving an
amplitude equation for the activated modes near the onset (d21 = dc

21) on the central
manifold, using cross-diffusion rate as a bifurcation parameter. The linear stability
analysis of amplitude equations effectively explains the structural transitions and
stability of various forms of Turing patterns. It is found that the system described
in equation (3.6) can give rise to different types of Turing patterns, such as spot
patterns, stripe patterns, and a combination of spot and stripe patterns, depending
on the varying cross-diffusivity see Figs. (5.6-5.8).

In this thesis, we also proposed a mathematical model of acid-mediated tumour
invasion as a system of reaction-diffusion equations. The partial differential equa-
tions in this model describe the dynamics for the rate of change of normal and tumor
cell densities and the concentration of H+ ions. The cancer cells consistently rely
on anaerobic glycolysis to convert glucose to ATP molecules, even in the presence
of oxygen. Due to anaerobic glycolysis, the H+ ions are produced, causing local
acidification. The excess amount of H+ ions causes the destruction of normal cells,
which helps the tumor to propagate. The mathematical model considers the effect
of tumor cells on normal cells and vice-versa. We checked our results for different
values of the dimensionless competition parameters and observed the dynamics of
normal and tumour cells vary in a bounded interval and at different times. The
spatial interval considered in this work was the interval [0, 1] in R. Under the initial
conditions employed in this work, the normal cells tend to concentrate the radial
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model in [0.1, 1] as time increases. For tumor cells, the concentration area is within
the interval [0, 0.1], and the concentration increases with time. On the other hand,
the concentration of H+ ions is more saturated around [0, 0.1]. The reason for this
effect is that cancer cells produce H+ ions, and this production increases with time.
Consequently, the concentration of H+ ions and the population of cancer cells are
directly related. On the other hand, H+ ions are inversely related to the pH level.
So, when H+ ions increase, the pH decreases, and the normal cells begin to die if the
pH remains below 7.1. This situation facilitates tumor invasion. From our simula-
tions, it is clear that the normal cells decrease more rapidly when both competition
parameters are equal to zero. In that case, the effect of H+ ions on the normal cells
is more evident than its effect on the tumor. In this case, tumor invasion is relatively
fast. Meanwhile, the tumor invasion rate is slower when either of the competition
parameters is nonzero. Various other interesting physical implications were drawn
from our simulations, and the potential applications of our approach are promising
see Figs. (6.1-6.4).

It is important to point out that the idea behind using the reaction-diffusion sys-
tem in this work is that it consists of two components. The first is the kinetics part,
which models the interaction between normal and tumor cells. On the other hand,
due to the interaction of normal cells, if a tumor develops in some part of the body,
it may be transferred to another part through a process called metastatic cancer. Us-
ing Fick’s law to account for this phenomenon, we added the diffusion term to the
model. Our results confirmed that when tumor cells have more concentration at the
primary part, they move to a lower concentration. This is the process through which
tumor develops in other parts of the human body.
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Appendix A

Derivation of Stuart–Landau
Equation

Considering the solution at the lowest order given by (5.8). Equating the coefficients
at O(ϵ2), and O(ϵ3), gives the following equations:

O(ϵ2) : Ldc
w2 = F, (A.1)

O(ϵ3) : Ldc
w3 = G, (A.2)

with

F =
∂w1

∂T1
−
(

0 0
d1

21v∗ 0

)
∇2w1 +

(
u2

1
0

)
−
[
(1 − γ)2

β
(u1v1 − 2u2

1×

(1 − γβ

1 − γ
))

] (
−1
η

)
−
(

d12(u1∇2v1 +∇u1∇v1)
dc

21(v1∇2u1 +∇v1∇u1)

)
,

(A.3)

G =
∂w1

∂T2
+

∂w2

∂T1
−
(

0 0
v∗ 0

)
(d2

21∇2w1 + d1
21∇2w2) +

(
2u1u2

0

)
−
[
(1 − γ)2

β
(u1v2 + u2v1 − 4u1u2(1 −

γβ

1 − γ
)) + 2

(1 − γ)3

β2 ×

(3u3
1(1 −

γβ

1 − γ
)− u2

1v1)

] (
−1
η

)
−
(

0
d1

21(v1∇2u1 +∇v1∇u1)

)
−
(

d12(u1∇2v2 + u2∇2v1 +∇u1∇v2 +∇u2∇v1)
dc

21(v1∇2u2 + v2∇2u1 +∇v1∇u2 +∇v2∇u1)

)
.

(A.4)

At O(ϵ2), we obtain the following system,

Ldc
w2 =

(
∂A
∂T1

r +
(

0
d1

21v∗k2
c

))
cos(kcx) +

(
A2

2
0

)
−
[

A2(1 − γ)2

2β
(M − 2(1 − γβ

1 − γ
))

]
×(

−1
η

)
+

((
A2

2
0

)
−
[

A2(1 − γ)2

2β
(M − 2(1 − γβ

1 − γ
))

] (
−1
η

)
+

(
d12
dc

21

)
Mk2

c

)
cos(2kcx).

(A.5)

By the Fredholm alternative, Eq. (A.5) admits solution if and only if ⟨F, ψ⟩ = 0
and ψ ∈ ker(J − kc2Ddc

)†. since

ψ = r∗cos(kcx), with r∗ =
(

1
M∗

)
, with M∗ =

J12−k2
c Ddc

12
Ddc

22 k2
c−J22

.
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By this condition, we find the amplitude equation of the following form:

∂A
∂T1 = αA,

where α = − k2
c M∗d1

21v∗

1+MM∗ . The above amplitude equation does not indicate anything
about the asymptotic behavior of the amplitude of patterns.Hence, the secular terms
presented in F can be conquered by imposing T1 = 0 and d1

21 = 0 and automatically
the condition holds. Now, we can calculate the solution of (A.5) as follows:

w2 = A2w20 + A2w22cos(2kcx),

where w2i, i = 0, 2, are solutions of the following linear systems:

(J)(w20) =

( 1
2
0

)
−
[
(1 − γ)2

2β
(M − 2(1 − γβ

1 − γ
))

] (
−1
η

)
, (A.6)

(J − 4k2
c Ddc

)(w22) =(J − 4k2
c Ddc

)(w22) =

( 1
2
0

)
−
[
(1 − γ)2

2β
(M − 2(1 − γβ

1 − γ
))

]
×(

−1
η

)
+

(
d12
dc

21

)
Mk2

c .

(A.7)

At O(ϵ3),

Ldc
w3 =

(
dA
dT2

+ AG1
1 + A3G3

1

)
cos(kcx) + A3G3 cos(3kcx), (A.8)

with

G1
1 = k2

cd2
21

(
0
v∗

)
, (A.9)

G3
1 =

(
2wu

20 + wu
22

0

)
− (1 − γ)2

β

(
Mwu

20 +
1
2

Mwu
22 + wv

20 +
1
2

wv
22 − (1 − γβ

1 − γ
)×

(4wu
20 + 2wu

22)

)(
−1
η

)
− 2

(1 − γ)3

β2

(
9
4
(1 − γβ

(1 − γ)
)− 3

4
M
)(

−1
η

)
+

(
d12k2

c(wv
22 − 1

2 Mwu
22 + Mwu

20)
dc

21k2
c(Mwu

22 − 1
2 Mwv

22 + wv
20)

)
,

(A.10)

G3 =

(
wu

22
0

)
− (1 − γ)2

β

(
1
2

wv
22 +

M
2

wu
22 − 2(1 − γβ

1 − γ
)wu

22

)(
−1
η

)
− 2

(1 − γ)3

β2

(
(1 − γβ

(1 − γ)
)

3
4
− 1

4
M)

)(
−1
η

)
+

(
d12k2

c(3wv
22 +

3
2 Mwu

22)
dc

21k2
c(3Mwu

22 +
3
2 Mwv

22)

)
.

(A.11)

The solvability condition ⟨G, ψ⟩ = 0 for Eq. (A.2) leads to Eq. (5.10), which
represents the Stuart–Landau equation for the amplitude A(T). The expressions for
σ and L are provided as follows:
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σ = − (G1
1, ψ)

(r, ψ)
, and L =

(G3
1, ψ)

(r, ψ)
. (A.12)

In the region of the parameter space where the pattern can develop, as long as
d21 > dc

21, it can be easily proven that the coefficient σ is always positive. Mean-
while, the Landau constant L can be either positive or negative, depending on the
system parameters. Therefore, the dynamics of the Stuart-Landau equation can be
categorized into two qualitatively different cases: the supercritical case, when L > 0,
and the subcritical case, when L < 0.
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Appendix B

Derivation of the Quintic
Stuart–Landau Equation

B.1 Quintic Stuart–Landau equation

This appendix provides a detailed derivation of the quintic Stuart–Landau equation
(5.14). By substituting expansions (5.12), (5.13), and (5.1) into (5.4), up to O(ϵ3),
we obtain the same equations as in section 5.1. At O(ϵ3), the solvability condition
⟨G, ψ⟩ = 0 for (A.2) leads once again to (5.10) for the amplitude, where the deriva-
tive with respect to T is now a partial derivative, denoted as A = A(T; T1). If this
condition is satisfied, the solution is:

w3 = (Aw31 + A3w32)cos(kcx) + A3w33cos(3kcx),

where w3i, i = 1, 2, 3 are solutions of the following linear systems:

(J − k2
c Ddc

)(w31) = σr + G1
1, (B.1)

(J − k2
c Ddc

)(w32) = −Lr + G3
1, (B.2)

(J − 9k2
c Ddc

)(w33) = G3. (B.3)

At O(ϵ4):

Ldc
w4 =2A

∂A
∂T

w20 + A2H2
0 + A4H4

0 +

(
2A

∂A
∂T

w22 + A2H2
2 + A4H4

2

)
cos(2kcx)

+ A4H4 cos(4kcx),
(B.4)

where H2
0, H4

0, H2
2, H4

2, H4 are explicitly computed in terms of the system parameters.

H2
0 =

(
wu

31
0

)
− (1 − γ)2

β

(
1
2

wv
31 +

1
2

Mwu
31 − 2wu

31

(
1 − γβ

1 − γ

))(
−1
η

)
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H4
0 =

 1
2 wu2

22 + wu2

20 + wu
32

0
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2
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0

− (1 − γ)2

β

(
1
2

wv
31 +

1
2

Mwu
31 − 2wu

31
(
1 − γβ

1 − γ

))( −1
η

)
+

k2
cdc

21

( 0

4v∗wu
22 + M

)
+

(
d12k2

c
(
wv

31 + Mwu
31

)
d21k2

c
(
wv

31 + Mwu
31

) ),

H4
2 =

 2wu
22wu

20 + wu
32 + wu

33

0

− (1 − γ)2

β

(
1
2

wv
32 +

1
2

wv
33 +

1
2

Mwu
22 +

1
2

Mwu
33+

wu
20wv

22 + wu
22wv

20 − 2(wu
32 + wu

33 + 2wu
20wu

22)
(
1 − γβ

1 − γ

))( −1
η

)
+ 2

(1 − γ)3

β2 ×(
1
2

wv
20 +

1
2

wv
22 + Mwu

22 + Mwu
20 −

(9
2

wu
22 +

9
2

wu
20
)(

1 − γβ

1 − γ

))( −1
η

)
−

3
(1 − γ)4

β3

(
M − 4

(
1 − γβ

1 − γ

))( −1
η

)

+

( d12k2
c (4wu

20wv
22 + wv

32 + 3wv
33 + M(wu

32 − wu
33)

dc
21k2

c (4wv
20wu

22 + M(wu
32 + 3wu

33) + wv
32 − wv

33)

)
,

H4 =

 1
2 wu2

22 + wu
33

0

− (1 − γ)2

β

(
1
2

wv
33 +

1
2

Mwu
33 +

1
2

wu
22wv

22 −
(
2wu

33 + wu2

22
)
×

(
1 − γβ

1 − γ

))( −1
η

)
+ 2

(1 − γ)3

β2

(
1
4

wv
22 +

1
2

Mwu
22 −

9
4

wu
22
(
1 − γβ

1 − γ

))
×(

−1
η

)
− 3

4
(1 − γ)4

β3

(
M − 4

(
1 − γβ

1 − γ

))( −1
η

)

+

( d12k2
c (4wv

22wu
22 + 2Mwu

33 + 6wv
33)

dc
21k2

c (4wv
22wu

22 + 6Mwu
33 + 2wv

33)

)
.

The solvability condition for (B.4) is automatically satisfied and the solution is:

w4 = A2w40 + A4w41 + (A2w42 + A4w43)cos(2kcx) + A4w44cos(4kcx),

where w4i, i = 0, 1, 2, 3, 4 are solutions of the following linear systems:

(J)(w40) = 2σw20 + H2
0, (B.5)
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(J)(w41) = −2Lw20 + H4
0, (B.6)

(J − 4k2
c Ddc

)(w42) = 2σw22 + H2
2, (B.7)

(J − 4k2
c Ddc

)(w43) = −2Lw22 + H4
2, (B.8)

(J − 16k2
c Ddc

)(w44) = H4. (B.9)

At O(ϵ5):
Ldc

w5 = P, (B.10)

where

P =

(
2A

∂A
∂T1

r +
∂A
∂T

w31 + 3A2 ∂A
∂T

w32 + AP1
1 + A3P3

1 + A5P5
1

)
cos(kcx)+(

3A2 ∂A
∂T

w33 + A3P3
3 + A5P5

3

)
cos(3kcx) + A5P5 cos(5kcx),

(B.11)

where P1
1, P3

1, P5
1, P3

3, P5
3, P5 are explicitly computed in terms of the system parame-

ters.

P1
1 = k2

cv∗
(

0
dc

21w31(u) + dc
21

)

P3
1 =

 2wu
40 + wu

42 + 2wu
31wu

20 + wu
22wu

31

0


− (1 − γ)2

β

(
wv

40 +
1
2

wv
42 + wu

20wv
31 +

1
2

wu
22wv

31 + wv
20wu

31 +
1
2

wv
22wu

31 + Mwu
40+

1
2

Mwu
42 − (4wu

40 + 2wu
42 + 4wu

31wu
20 + 2wu

22wu
31
(
1 − γβ

1 − γ
)
)( −1

η

)
+

2
(1 − γ)3

β2

(1
4

wv
31 +

1
2

Mwu
31 −

9
4

wu
31(1 −

γβ

1 − γ
)
)( −1

η

)
+

 0

(dc
21k2

c)(wu
32v∗ + Mwu

22



+

 (d12k2
c)

(
wv

42 + wv
31wu

20 − 1
2 wv

31wu
22 + wv

22wu
31

+Mwu
40 − 1

2 Mwu
42

)
(dc

21k2
c)

(
Mwu

42 + wu
31wv

20 − 1
2 wu

31wv
22 + wu

22wv
31

+wv
40 − 1

2 wv
42

)
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P5
1 =

 2wu
41 + wu

43 + 2wu
32wu

20 + wu
22wu

32 + wu
22wu

33

0


− (1 − γ)2

β

(
wv

41 +
1
2

wv
43 + wu

20wv
32 +

1
2

wu
22wv

32 +
1
2

wu
22wv

33 + wv
20wu

32 +
1
2

wv
22wu

32+

1
2

wv
22wu

33 + Mwu
41 +

1
2

Mwu
43 −

(
4wu

41 + 2wu
43 + 4wu

32wu
20 + 2wu

22wu
32 + 2wu

22wu
33
)
×

(1 − γβ

1 − γ
)

)(
−1
η

)
+ 2

(1 − γ)3

β2

(
1
4

wv
32 +

1
4

wv
33 + 2wu

20wv
20 + wu

20wv
22 + wu

22wv
20+

wu
22wv

22 +
1
2

Mwu
32 +

1
2

Mwu
33 + Mwu2

20 +
1
2

Mu2
w22 + Mwu

20wu
22 − 9

(1
4

wu
32 +

1
4

wu
33+

wu2

20 +
1
2

wu2

22 + wu
20wu

22
)
(1 − γβ

1 − γ
)

)(
−1
η

)
− 6

(1 − γ)4

β3

(1
4

wv
22 +

1
4

wv
20 +

3
4

Mwu
20+

3
4

Mwu
22 − 4(wu

22 + wu
20(1 −

γβ

1 − γ
)
)( −1

η

)
+ 15

(1 − γ)5

β4

(
M − 5(1 − γβ

1 − γ
)
)( −1

η

)

+

 (d12k2
c)

(
wv

43 + wv
32wu

20 − 1
2 wv

32wu
22 +

3
2 wu

22wv
33

+wv
22wu

32 − wu
33wv

22 + Mwu
41 − 1

2 Mwu
43

)
(dc

21k2
c)

(
Mwv

43 + wu
32wv

20 − 1
2 wu

32wv
22 +

3
2 wv

22wu
33

+wu
22wv

32 − wv
33wu

22 + wv
41 − 1

2 wv
43

)
 .

The solvability condition for (B.11) is

∂A
∂T1

= σ̃A − L̃A3 + Q̃A5 (B.12)

where,

σ̃ = − (σw31+P1
1 ,ψ)

(r,ψ) , L̃ = − (−Lw31+3σw32+P3
1 ,ψ)

(r,ψ) , and Q̃ = − (3Lw32−P5
1 ,ψ)

(r,ψ) .

adding up (5.14) to (B.12), one gets the quintic Stuart-Landau equation

∂A
∂T

= σ̄A − L̄A3 + Q̄A5 (B.13)

where, σ̄ = σ + ϵ2σ̃, L̄ = L + ϵ2 L̃, Q̄ = ϵ2Q̃.
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Appendix C

Description of Amplitude
Equations for 2D Patterns Selection

This appendix provides a detailed description of the amplitude equation for 2D pat-
tern selection. By applying the Fredholm solvability condition to the second order
of (ϵ), we derive

(φ + ψ)
∂W1

∂T1
= −dc

21k2
c φψv∗W1 −

[
2φ2 + 2(1 − ηψ)

(
(1 − γ)2

β
(φ − 2φ2(1 − γβ

1 − γ
))

)
+4φk2

c(d12 + ψdc
21)
]

W̄2W̄3,

(φ + ψ)
∂W2

∂T1
= −dc

21k2
c φψv∗W2 −

[
2φ2 + 2(1 − ηψ)

(
(1 − γ)2

β
(φ − 2φ2(1 − γβ

1 − γ
))

)
+4φk2

c(d12 + ψdc
21)
]

W̄1W̄3,

(φ + ψ)
∂W3

∂T1
= −dc

21k2
c φψv∗W3 −

[
2φ2 + 2(1 − ηψ)

(
(1 − γ)2

β
(φ − 2φ2(1 − γβ

1 − γ
))

)
+4φk2

c(d12 + ψdc
21)
]

W̄1W̄2.
(C.1)

Then substituting (5.15) into (5.6) and solving it, we obtain

(
u2
v2

)
=

(
U0
V0

)
+

3

∑
j=1

(
Uj
Vj

)
eikj·q +

3

∑
j=1

(
Ujj
Vjj

)
e2ikj·q +

(
U12
V12

)
ei(k1−k2)·q

+

(
U23
V23

)
ei(k2−k3)·q +

(
U31
V31

)
ei(k3−k1)·q + c.c.,

(C.2)
where

(
U0
V0

)
=

(
u00
v00

)(
|W1|2 + |W2|2 + |W3|2

)
, Uj = φVj(

Ujj
Vjj

)
=

(
u11
v11

)
W2

j ,
(

Ujl
Vjl

)
=

(
u⋆

v⋆

)
WjW̄l ,



78 Appendix C. Description of Amplitude Equations for 2D Patterns Selection



(J)
(

u00
v00

)
=

(
2φ2

0

)
+

[
2(1 − γ)2

β
(φ − 2φ2(1 − γβ

1 − γ
))

] (
1
−η

)
,

(J − 4k2
c Ddc)

(
u11
v11

)
=

(
φ2

0

)
+

[
(1 − γ)2

β
(φ − 2φ2(1 − γβ

1 − γ
))

] (
1
−η

)
+(

2φk2
cd12

2φk2
cdc

21

)
,

(J − 3k2
c Ddc)

(
u∗
v∗

)
=

(
2φ2

0

)
+

[
2(1 − γ)2

β
(φ − 2φ2(1 − γβ

1 − γ
))

] (
1
−η

)
.

For the third-order of ϵ in Eq. (5.7), let
(

H1
u, H1

v
)T represent the coefficient of eik1·q

in the right-hand side term of Eq. (5.7). Then, one can obtain

H1
u =φ

∂V1

∂T1
+ φ

∂W1

∂T2
+
(

I1 |W1|2 + I2

(
|W2|2 + |W3|2

))
W1+(

2φ2 + 2
(
(1 − γ)2

β
(φ − 4φ2(1 − γβ

1 − γ
)

)
+ 4φk2

cd12

)
(W̄2V̄3 + W̄3V̄2) ,

H1
v =

∂V1

∂T1
+

∂W1

∂T2
+ φk2

cv∗(d1
21V1 + d2

21W1)W1 +
(

J1 |W1|2 + J2

(
|W2|2 + |W3|2

))
W1+(

−2η

(
(1 − γ)2

β
(φ − 2φ2(1 − γβ

1 − γ
)

)
+ 4φk2

cdc
21

)
(W̄2V̄3 + W̄3V̄2) ,

where

I1 = 2φ(u11 + u00) +
(1 − γ)2

β

(
φv00 + φv11 + u00 + u11 − 4φ(u00 + u11)(1 −

γβ

1 − γ
)

)
+ 2

(1 − γ)3

β2

(
9φ3(1 − γβ

1 − γ
)− 3φ2

)
+ d12k2

c(2φv11 + u00 − u11),

I2 = 2φ(u00 + u∗) +
(1 − γ)2

β

(
φv00 + φv∗ + u00 + u∗ − 4φ(u00 + u∗)(1 −

γβ

1 − γ
)

)
+ 2

(1 − γ)3

β2

(
18φ3(1 − γβ

1 − γ
)− 6φ2

)
+ d12k2

c6φv∗ + u00 + 4u∗),

J1 = −η
(1 − γ)2

β

(
φv00 + φv11 + u00 + u11 − 4φ(u00 + u11)(1 −

γβ

1 − γ
)

)
− 2η

(1 − γ)3

β2

(
9φ3(1 − γβ

1 − γ
)− 3φ2

)
+ dc

21k2
c(2u11 + φv00 − φv11),

J2 = −η
(1 − γ)2

β

(
φv00 + φv∗ + u00 + u∗ − 4φ(u00 + u∗)(1 −

γβ

1 − γ
)

)
− 2η

(1 − γ)3

β2

(
18φ3(1 − γβ

1 − γ
)− 6φ2

)
+ dc

21k2
c(6u∗ + φv00 + 4φv∗).

Utilizing Fredholm solvability condition in O
(
ϵ3) again, we get
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(φ + ψ)

(
∂V1

∂T1
+

∂W1

∂T2

)
=− k2

cv∗φψ
(

d1
21V1 + d2

21W1

)
− 4k2

cd1
21φψW̄2W̄3−

G3 (W̄2V̄3 + W̄3V̄2)−
[

G1 |W1|2 + G2
(
|W2|2 + |W3|2

)]
W1,

(φ + ψ)

(
∂V2

∂T1
+

∂W2

∂T2

)
=− k2

cv∗φψ
(

d1
21V2 + d2

21W2

)
− 4k2

cd1
21φψW̄1W̄3−

G3 (W̄3V̄1 + W̄1V̄3)−
[

G1 |W2|2 + G2

(
|W3|2 + |W1|2

) ]
W2,

(φ + ψ)

(
∂V3

∂T1
+

∂W3

∂T2

)
=− k2

cv∗φψ
(

d1
21V3 + d2

21W3

)
− 4k2

cd1
21φψW̄1W̄2−

G3 (W̄1V̄2 + W̄2V̄1)−
[
G1 |W3|2 + G2

(
|W1|2 + |W2|2

) ]
W3,

(C.3)
where G1 = I1 +ψJ1, G2 = I2 +ψJ2, G3 = 2φ2 + 2(1− ηψ)

(
(1−γ)2

β

(
φ − 2φ2

(
1 − γβ

1−γ

)))
+

4φk2
c(d12 + ψdc

21)
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