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SUMMARY 
 

In recent years, scientific breakthroughs in the biomedical field have spurred a growing 

interest in healthcare, driving research and development of increasingly sophisticated 

biomedical devices and data analysis algorithms capable of providing crucial information 

for the assessment of individual well-being. Among these, Wearable Health Devices 

(WHDs) stand out as some of the most sought-after technologies, thanks to their 

capability of being comfortably worn by the user and of allowing non-invasive and 

comfortable monitoring of the subject's health state through the acquisition of key 

physiological parameters. The user-friendly design, reduced weight and size, and the 

escalating performance in terms of energy efficiency and measurement accuracy 

incentivize the massive research and development of WHDs, suggesting their application 

as biomedical devices for monitoring not only vulnerable but also healthy individuals. 

These features pave the way to the prospective use of WHDs as helpful tools in the clinical 

setting for early diagnosis, potentially averting the onset of specific pathologies and 

helping to alleviate the workload of the healthcare system. 

Similarly, recent developments in the biomedical and clinical fields have involved the 

implementation and utilization of advanced data analysis algorithms that, starting from 

the raw signals acquired by biomedical devices, perform the extraction of important 

physiological indices for a more accurate assessment of organ functionality and individual 

physiological state. In fact, the growing interest from the scientific community in the field 

of biomedical signal processing has allowed researchers to identify new methodologies 

for the analysis and interpretation of biomedical data. This has brought to light innovative 

metrics, such as those derived from the information-theoretic domain and multivariate 

biomedical analysis, enabling the extraction of additional physiological indices to obtain 

novel insights into the dynamics of organ functions and their mutual influence in 

physiological and pathological states, thus allowing for a more comprehensive picture of 

physiological mechanisms and clinically relevant states. It appears evident how the 

combined and appropriate use of WHDs and algorithms for biomedical signal processing 

and analysis can be of fundamental importance in the healthcare context.  
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For this reason, there is a need to continue researching and developing increasingly 

cutting-edge wearable technologies that enable multiparametric acquisition and the 

implementation of data analysis algorithms for the extraction and interpretation of 

standard and advanced physiological indices. 

This thesis addresses the concepts outlined above by (i) introducing a novel wearable 

biomedical device which has been specifically designed and realized to perform 

multiparametric and non-invasive acquisition of multiple biosignals detected in the same 

body area, and (ii) exploring both novel and standard techniques for biomedical data 

analysis to extract physiological indices capable of detecting diverse physiological states. 

Specifically, the realized device has been designed to be worn on the forefinger of the 

hand, it is user-friendly and allows for the acquisition of electrocardiographic (ECG), 

photoplethysmographic (PPG), skin conductance (SC), and motion signals. The device 

incorporates sensors for the non-invasive and comfortable acquisition, transmitting the 

data via a Bluetooth Low Energy (BLE) communication protocol to a computer equipped 

with a user interface specifically developed for the communication with the device, as 

well as for the real-time visualization and storage of the acquired data.  

The ability to easily and efficiently extract important physiological indexes 

simultaneously from the ECG and PPG, along with the acquisition of the SC signal, allow 

to employ the device for detecting physiological states, identifying conditions of physical 

and mental stress, and assessing cardiovascular system functionality, also enabling an 

investigation into the potential of the realized wearable device as diagnostic and 

monitoring tool in everyday life. It is for this reason that the thesis also addresses 

biomedical signal processing and analysis, introducing and investigating about post-

processing and filtering operations on the acquired biosignals that lead to the extraction 

of different physiological parameters, such as respiratory rate, as well as the computation 

of physiological indices obtained from the time series of interest, such as RRI and PPI 

series (i.e., the time periods between successive heartbeats), that are obtained respectively 

from ECG and PPG signals. The thesis then explores Heart Rate Variability (HRV) 

analysis, which is a valid and widely used tool for the assessment of stress states, for 

extracting physiological indices in the time, frequency, and novel information-theoretic 

domains, over standard 5-minute time windows, performing what is well-known in the 

literature as Short-Term (ST) analysis.  
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Furthermore, the work evaluates the feasibility of Ultra-Short-Term (UST) analysis, 

exploring an area which is currently under research and, due to the lower constraints 

associated with analyzing a very short time window, could represent a breakthrough in 

implementing this kind of analysis directly on wearable devices. 

Finally, the developed wearable device was employed in a measurement campaign aimed 

at preliminary validation of its use for detecting physiological states. This was achieved 

through the implementation of the discussed data analyses conducted using the recordings 

of biosignals acquired by the device. 

Data analysis algorithms are employed on the signals acquired by the realized wearable 

device, as well as other biomedical devices that has been used to collect biosignals, to 

evaluate the potential use of innovative indices, such as those obtained in the frequency 

and the information theoretical domain. Indeed, not all the analyses presented here were 

conducted on signals recorded with the wearable device, but the results of the analyses 

still serve to identify indices to be implemented on the wearable device in future 

developments of the present thesis work.  

In the first chapter, the main topic is introduced, presenting the potential of wearable 

biomedical devices along with the importance of developing non-invasive measurement 

methodologies and biomedical data analysis. These cutting-edge technologies aim to 

make healthcare accessible to everyone, effectively enhancing health awareness in civil, 

industrial, and clinical domains. Chapter 2 provides the background on which this work 

is based, introducing the relevant biosignals and subsequently presenting the methods that 

illustrate the types of data analysis employed. Chapter 3 covers the design and 

development of the ring-shaped device from the hardware, firmware, and software 

perspectives. Finally, Chapter 4 reports the results of the data analysis conducted on the 

processed biosignals, as well as the measurement campaign using the ring-shaped device 

to preliminarily validate its use for detecting physiological states. 
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PPG – Photoplethysmogaphy 

PPI (or PP) – Pulse-to-Pulse Interval 

PRV – Pulse Rate Variability 

PSD – Power Spectral Density 

RISC – Reduced Instruction Set Computer 

RLD – Right Leg Drive 

RMSSD – Root Mean Square of Successive Differences 

RRI (or RR) – R-to-R Interval 

RSA – Respiratory Sinus Arrythmia 

SaO2 – Arterial Oxygen Saturation 

SAP – Systolic Arterial Pressure 

SB – Spontaneous Breathing 

SC – Skin Conductance 

SCL – Skin Conductance Level 

SCR – Skin Conductance Response 

SDNN – Standard Deviation of the interbeat interval between normal sinus beats 

SE – Static Entropy 

SNS – Sympathetic Nervous System 

SpO2 – Pulsoxymetrically measured Oxygen Saturation 

ST – Short-Term  

STD – Standard Deviation 

U-ART – Universal-Asynchronous Receiver/Transmitter 

ULF – Ultra-Low-Frequency 

USB – Universal Serial Bus 

UST – Ultra-Short-Term 

VLF – Very-Low-Frequency 

WHD – Wearable Health Device 
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CHAPTER 1 

 

INTRODUCTION 
 
 
 

1.1 MONITORING IN HEALTHCARE 

The rapid advent of new technologies characterizing the current era, coupled with an 

increased awareness and understanding of human health, is leading to a growing interest 

and attention to healthcare [1], [2], [3]. In particular, the term "healthcare" refers to the 

collective set of all facilities, individuals, and processes involved in patient care and 

health protection within a society [4], [5]. Key actors in the healthcare system include 

medicians and hospitals as service providers, and more recently, emerging ICT and 

biomedical technologies that have paved the way for the field of Telemedicine: a new 

biomedical sector which seeks to redefine the concept of healthcare enabling continuous 

remote monitoring and real-time interconnection among patients, doctors, and healthcare 

facilities [6], [7], [8] thanks to cutting-edge technologies. 

The growing interest in healthcare is driven by various factors originating primarily in 

civil, industrial, and clinical fields, which, when combined, result in the increasing need 

to pursue the health-status assessment by monitoring key physiological parameters. 

Furthermore, the ability to leverage Information and Communication Technologies (ICT) 

to pursue healthcare in the contexts just introduced has recently given rise to new fields, 

such as Industry 4.0 and the Internet of Medical Things (IoMT), complementing 

Telemedicine and Clinical Monitoring as sub-branches of nowadays healthcare, as 

summarized in Figure 1.1. In particular, the purpose varies depending on whether it 

pertains to the civil field, where there is a simple intention for a healthy individual to 

obtain feedback about their health status during daily life routines, the industrial field, 

where the typical need is to monitor the health of workers to prevent potential individual 

and collective dangers, or the clinical field, where there is a requirement to conduct 

routine examinations and monitor vulnerable individuals within healthcare environments 

and remotely during the convalescence [9], [10], [11], [12], [13].  
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As a consequence, it is therefore quite clear that healthcare monitoring is a very broad 

concept, encompassing the assessment of health status through numerous approaches, 

ranging from basic lifestyle monitoring to the screening of primary pathologies, 

depending on the context in which one is operating.  

 
Figure 1.1 – Conceptualization of healthcare and its importance in application scenarios in 

civil, industrial and clinical settings. 

 

Regardless of the application field, monitoring in healthcare is often pursued through the 

acquisition of different biosignals, from which it is possible to extract main physiological 

indices for assessing the functionalities of the organism [8], [14], [15]. Indeed, although 

the monitoring of biosignals is a small part of the vast landscape of healthcare, they 

represent the starting point not only for assessing health status, but also for identifying 

the potential onset or presence of certain pathologies, which will then be confirmed 

through specific screening and investigations.  

Starting with the cardiovascular system, which is undoubtedly one of the most crucial, 

monitoring involves the recording of the electrocardiogram (ECG) and blood pressure 

(BP) levels [16], [17]. A comprehensive health monitoring also includes the assessment 

of blood oxygenation levels and respiratory rate, allowing for the evaluation of respiratory 

system functions [18], [19], [20].  
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Additionally, other parameters are typically recorded, such as movement, which helps 

recognize physical activity or potential involuntary tremors in the subject, body 

temperature, and levels of epidermal sweating, which could contribute to identifying the 

occurrence of stressful events [21], [22]. Lastly, building on this concept, it is essential to 

highlight the importance of detecting the activity of the autonomic nervous system 

(ANS), which directly and indirectly controls the mechanisms regulating the functions of 

all other systems and, thus, the organism itself [23], [24]. Its activity can be discerned 

from indices extracted from the data derived from all the aforementioned biosignals: 

consequently, understanding the levels of activation of the ANS is important to 

comprehend changes in the dynamics of other signals and physiological indices, in 

addition to providing information about changes individual physiological state. 

Thanks to continuous advancements in technologies and electronic miniaturization 

process, today it is possible to find a huge number of biomedical devices aiding healthcare 

that can record a multitude of high-quality biosignals [25], [26]. Although many of them 

enable the acquisition of a wide range of biosignals using relatively little space in a non-

invasive manner, only a few manage to do so without causing discomfort to the user. It is 

precisely for this reason that current research in this field is focused on developing 

increasingly compact and comfortable devices and studying non-invasive measurement 

methodologies for the extraction of the main physiological indices, with the final aim is 

to make biomedical devices user-friendly and comfortable even for inexperienced users, 

which is a fundamental requirement to integrate healthcare into everyday life. 

 

1.2 NON-INVASIVE MONITORING IN HEALTHCARE APPLICATIONS 

From the possibility of leveraging modern technologies to make healthcare accessible to 

everyone, there arises the need to identify, as mentioned earlier, measurement 

methodologies for biosignals that are non-invasive and easy to implement. In response to 

this, significant strides have been made over the years, leading to two main solutions to 

the problem [27], [28]. The first solution involves the ability to exploit increasingly 

compact and efficient electronic components, enabling the biosignal acquisition using the 

same measurement methodology, with the advantage of significantly reducing the weight 

and size of the probes worn by the user and the instrumentation needed to obtain the 

signal, thus allowing for less invasive and more comfortable measurements.  
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Moreover, the possibility of integrating a multitude of sensors into a single compact 

biomedical device has thus made it feasible to realize and commercialize multiparametric 

biomedical devices, which consist of single devices that integrate a multitude of 

biomedical sensors to allow the simultaneous acquisition of multiple biosignals and thus 

the extraction of several physiological parameters. 

The second solution involves implementing non-invasive and alternative measurement 

methodologies, or at least less pervasive than standard ones (Figure 1.2), to obtain the 

same physiological index or alternative surrogates. Examples of this solution include the 

use of photoplethysmographic (PPG) technology, a non-invasive and easily deployable 

technique compared to ECG, for detecting heart rate and its variability [29], [30], [31]. 

Indeed, from PPG signal equivalent indices can be obtained, such as heart rate, together 

with other indices, whose surrogacy is currently under study, such as heart rate variability 

assessed with the PPG signal compared to the ECG. Other examples include the detection 

of blood oxygen saturation levels, evaluated again using PPG technique, providing SpO2 

levels (pulsoxymetrically measured oxygen saturation) as an alternative to SaO2 (arterial 

oxygen saturation), as well as the respiration rate, that can be obtained using chest bands 

as an alternative to flow sensors, which require the use of nasal tubes [19], [30], [32], 

[33]. 

 
Figure 1.2 – Pervasive versus non-invasive measurement of the ECG track. (a) Representation 

of the standard acquisition of the ECG trace with a holter: electrodes are attached to the body 

using adhesives, and the signal reaches the device through numerous bulky cables, causing 

discomfort to the user. (b)Acquisition of the same signal using a portable biomedical solution, 

produced by AliveCor, through compact and user-friendly hand-held device.  

2CAP 1

(a) (b)
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Besides, equally important is the need to make biomedical devices used in healthcare not 

only performant and easy to use but also compact and comfortable, characteristics that 

would help reduce the pervasiveness of measurements. 

For this reason, research and development of these technologies have led to the 

emergence of two main categories of devices aimed at addressing this need: portable 

biomedical devices and Wearable Health Devices (WHDs). The first ones are devices that 

exhibit higher performance in terms of the quantity of acquirable biosignals and 

measurement accuracy. Indeed, less stringent requirements in terms of weight and 

compactness allow for the integration of more complex components and biomedical 

sensors. Moreover, due to their portable nature, they typically deliver superior 

performance and sometimes there is the option to directly use line power, thus resolving 

power consumption issues. On the other hand, portable biomedical devices are mainly 

limited to scenarios involving measurements in conditions of most or total absence of 

movement, a circumstance that effectively imposes a constraint on the extensive 

integration of healthcare to the extent that it has been discussed here. It is precisely in this 

context where WHDs come in, which, despite their technical specifications being almost 

always smaller compared to portable devices, thanks to their feature of being comfortably 

worn without hindering user actions throughout their usage, offer a continuous health 

status monitoring solution. 

 

1.3 WEARABLE HEALTH DEVICES: POTENTIAL AND CHALLENGES 

WHDs have emerged as revolutionary tools in the realm of healthcare, seamlessly 

integrating technology into our daily lives to monitor and enhance well-being [34], [35]. 

These devices, worn on the body as accessories or integrated into clothing, leverage 

cutting-edge sensors and electronics to collect a wide quantity of physiological data, 

transforming the way individuals manage their health. The rise of WHDs aligns with the 

growing emphasis on preventive healthcare, offering continuous monitoring and early 

detection of potential health issues [36], [37]. These technologies were recently 

introduced into the biomedical landscape focused on the user-consumer market with the 

initial goal of providing users with a qualitative insight into their well-being during daily 

routines, and subsequently began to integrate progressively more advanced functions, 

ranging from fitness tracking to sophisticated health monitoring.  
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In Figure 1.3, the main categories of WHDs are illustrated with respect to the body area 

where they are worn and, consequently, where they act to assess individual functionalities.  

 
Figure 1.3 – Types of commercialized wearable health devices and those currently in the 

research and development phase. It is noteworthy how the multitude of wearable devices, 

combined with the various body areas where they can be worn, promotes the multidistrict 

acquisition of multiple physiological parameters, contributing to a comprehensive and precise 

monitoring of the user's health status. 

 

Regardless of the type of device under consideration (e.g., t-shirt, glasses, wristband, 

etc.), they all share the integration of hi-tech components capable of performing the 

acquisition of biosignals comfortably and non-invasively, predominantly favoring 

biomedical sensors based on PPG signal acquisition and the use of electrodes for 

measuring biopotentials (such as ECG), as well as integrating inertial modules to track 

movement. Each of these devices boasts unique features, catering to different aspects of 

health and well-being. Indeed, they integrate an array of sensors, enabling users to track 

the main parameters of interest, such as physical activity and heart rate, also monitoring 

steps taken, sleep patterns, and providing insights into overall activity levels.  
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More advances models can go beyond that, by extracting vital parameters such as blood 

pressure (whose estimation methods are currently under investigation) and, at times, even 

recording entire ECG traces, thus transitioning from providing qualitative insight to 

becoming, in perspective, effective diagnostic tools capable of offering the user’s clinical 

picture [37], [38].  

Although each of these solutions has been specifically designed to acquire measurements 

in a particular body area, in last years we have witnessed a growing interest in wrist-worn 

and ring-shaped devices which, being much more versatile than others wearable 

solutions, they have become established in the market. Popular examples include 

smartwatch solutions, like the Apple Watch, Fitbit, Samsung Watch, and other even more 

compact and comfortable wearable technologies, such as ring-shaped devices like Oura 

Ring and Circul+. Table 1 lists and compares the main wrist-worn and ring-shaped 

devices available on the market, in terms of design, acquired biosignals, sampling rate, 

extracted features and computed physiological indices. 

Table 1.1 – Comparison of the main wearable wrist-worn and ring-shaped wearable devices 

available on the market in terms of design, recorded biosignals, features computed physiological 

indices and sampling rate [39], [40], [41], [42] 

Name Type of device Biosignals 
Features and 
physiological 

indices 
Sampling rate 

Apple Watch 
Wristband/smart

watch 

PPG, ECG, wrist 
temperature and 

motion 

SpO2 levels, HRV, 
sleep and 

physical activity 
tracking, fall 

recognition and 
atrial fibrillation 

detection   

500 Hz 

Galaxy Watch Wristband/smart
watch 

PPG, ECG, wrist 
temperature and 

motion 

SpO2 levels, HR, 
sleep and 

physical activity 
tracking 

25 Hz 

Oura Ring Ring 
PPG, finger 

temperature and 
motion 

SpO2 levels, HRV, 
sleep and 

physical activity 
tracking, 

respiratory rate 

250 Hz 

Circul+ Ring 
PPG, ECG, finger 
temperature and 

motion 

SpO2 levels, HRV, 
sleep and 

physical activity 
tracking, blood 

pressure 

100 Hz 
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Thanks to technological advancements and the increasing interest in healthcare, the 

potential of WHDs is set to grow, extending well beyond personal health tracking. In fact, 

they also hold promise in clinical and industrial settings, respectively facilitating remote 

patient monitoring and improving healthcare delivery, and monitoring the health status of 

workers, contributing significantly to the emergence of Industry 4.0, Telemedicine and 

IoMT [7], [43], [44]. However, the massive integration of WHDs also presents challenges. 

Primarily, data privacy and security are paramount concerns, given the sensitive nature of 

health information [45], [46]. This issue actually involves the entire network of smart 

devices connected to the cloud, and that is why we are witnessing the emergence of 

numerous entities aiming to act as guardians of privacy, that promote research and 

development of new methods for a more reliable data encryption and, above all, 

encourage the updating of regulations in favor of data protection. 

Ensuring the accuracy and reliability of the collected data is another hurdle that 

manufacturers must address to gain trust among users and healthcare professionals. In 

fact, the main limitation of wearable biomedical technologies concerns the loss of 

measurement accuracy under movement conditions [47], [48]. This is due to the fact that 

a significant portion of biomedical data is affected by motion artifacts, which degrade the 

signal, sometimes compromising the contained information and distorting the 

interpretation of extracted physiological indices. Furthermore, crucial importance lies in 

the selection of the most suitable data analysis algorithms for extracting relevant 

physiological indices. For this reason, current biomedical research is strongly focused on 

the research and development of data analysis algorithms capable of removing or at least 

reducing the effect of motion artifacts. Simultaneously, researchers are exploring the 

possibility of extracting advanced physiological indices that provide additional 

information, thus aiding WHDs in the pursuit of a comprehensive and accurate 

assessment of the user's health status. 
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1.4 DATA ANALYSIS FOR ASSESSING PHYSIOLOGICAL STATES 

Once the challenge of acquiring physiological parameters non-invasively and 

comfortably is resolved through the use of WHDs, the issue shifts to the correct and 

unambiguous extraction of information contained in the recorded biosignals. After 

acquisition, the signals undergo processing using suitable filtering techniques to isolate 

the frequency band of interest, varying depending on the considered signal, from noise, 

which is eliminated by the employed filter. Subsequently, time series are usually obtained, 

and algorithms are applied to extract the corresponding physiological information, 

primarily obtaining indices in the time domain, such as heart rate in the case of the ECG 

track and pulse rate, its surrogate, in the case of the PPG signal [49], [50], [51], [52] and 

performing what is well known as Heart Rate Variability (HRV) Analysis. Metrics in the 

time domain are considered the most important, as they are standard in clinical settings 

and are more straightforward to interpret. Advanced metrics, leveraging more complex 

algorithms, enable the observation of behaviors not deducible from standard indices 

alone. Consequently, there is a growing interest in identifying additional metrics that 

extract supplementary information from the same signal, sometimes allowing the 

detection of functionalities of systems other than the one originating the examined 

biosignal. This expansion has broadened the scenarios of biomedical data analysis 

towards additional domains, such as the frequency and information theoretical domains, 

the latter capable of obtaining crucial insights into the dynamics and regularity of time 

series and the systems from which they derive [53], [54], [55], [56]. Typically, time series 

are extracted over acquisition windows ranging from Long-Term (LT, > 24 hours) to 

Short-Term (ST, approximately 5 minutes) duration, depending on usage scenarios, to 

perform HRV analysis and understanding, among all, cardiovascular and ANS 

funcionalities. However, not all applications can accommodate acquisition scenarios 

falling within long-term and, at times, even short-term durations. This drives research 

towards investigating new algorithms enabling the extraction of physiological indices 

over significantly shorter time windows, performing what is termed Ultra-Short-Term 

(UST) HRV Analysis, entailing the analysis of time series over windows shorter than 5 

minutes [57], [58]. From the foregoing discussion, it becomes evident that continued 

research in both hardware and software aspects is crucial. Only a robust synergy between 

cutting-edge biomedical devices and efficient data analysis algorithms would be of 

fundamental importance to establishing WHDs as clinical tools supportive of healthcare. 
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CHAPTER 2 

 

BACKGROUND & METHODS 
 
 
 

2.1 NOTEWORTHY BIOSIGNALS FOR THE NON-INVASIVE EVALUATION 
OF HEALTH STATUS 

In order to develop a wearable biomedical device for the assessment of user physiological 

states, as well as the investigation into the use of methodologies and techniques for 

biomedical data analysis, an in-depth study was conducted to identify key bio-signals that 

can be non-invasively acquired and provide important health-related information [59], 

[60], [61]. This study identified the fingers as the body district that best met the 

specifications of such a device, namely compactness, comfort, and multiparametric 

measurement capabilities, leading to the idea of creating a ring-shaped wearable device 

which is capable of acquiring biosignals that allow the assessment of cardiovascular, 

respiratory, and ANS functions. 

Cardiovascular system functions are evaluated through the acquisition of ECG and PPG 

signals, which are among the most clinically important bio-signals. They allow obtaining 

crucial information about cardiac dynamics by analyzing both the temporal distance 

between successive peaks and the morphology of the two signals. Additionally, the 

synchronous acquisition of both signals enables the extraction of advanced indices, such 

as Pulse Arrival Time (PAT), providing information about the vascular system, detecting 

situations of arterial stiffness, and even estimating blood pressure (BP) with advanced 

techniques [16], [30], [62]. Finally, the PPG signal also provides information about the 

respiratory system, allowing to obtain information about SpO2 levels and, if appropriately 

filtered, respiration rate [19], [33]. 

In the second instance, there is the possibility of acquiring the SC signal. This signal 

tracks the sweat of the epidermal tissue, and the fingers are the body district where its 

variations can be significantly appreciated [63], [64]. It can provide important 

information about the occurrence of stressful events, aiding in understanding changes in 

the dynamics of signals coming from the cardiovascular system. 
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Finally, it proved useful to include an inertial module to track user movement, providing 

information about the presence of physical activity and other involuntary movements 

[47], [52]. Below are the bio-signals addressed in this work, discussing their nature, how 

they are extracted, and their use for biomedical analysis. 

 

2.1.1 ELECTROCARDIOGRAPHY (ECG) 

ECG is a gold standard diagnostic technique used in the field of cardiology to assess and 

monitor the electrical activity of the heart. This non-invasive procedure captures the 

electrical impulses generated by the heart muscle during each cardiac cycle. The resulting 

recording, commonly known as an ECG trace, provides a detailed representation of the 

heart's electrical behavior and is indispensable in diagnosing a wide range of 

cardiovascular conditions [65], [66].  

Figure 2.1 shows the rapresentation of body districts from which to acquire the ECG 

signal, together with the ECG trace. The process of the ECG acquisition involves 

attaching electrodes to specific locations on the body, typically on the limbs, known as 

peripheral leads and chest, called precordial leads. The peripheral leads include the 

standard Lead I, Lead II, and Lead III, which record the voltage differences between 

different limb pairs. The precordial leads, on the other hand, are positioned across the 

chest to provide a more detailed view of the heart's activity from different angles, offering 

insights into specific regions of the cardiac muscle [67], [68]. 

 
Figure 2.1 – (a) Representation of the positions of the ECG electrodes for extracting peripheral 

(RA, LA, RL, and LL) and precordial derivations (V1 to V6). (b) ECG trace with identification 

of the P, T waves, and the QRS complex. 

4CAP 2
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The ECG trace consists of various waves, with the most prominent being the P wave, 

QRS complex, and T wave [69]. The P wave represents atrial depolarization, the QRS 

complex describes ventricular depolarization, and the T wave corresponds to ventricular 

repolarization. Analyzing the morphology and temporal distances between these waves 

provides valuable insights into the heart's functionality. In fact, the QRS complex's 

duration and shape can indicate issues such as arrhythmias or conduction abnormalities. 

Changes in the ST segment may suggest myocardial infarction, while variations in the T 

wave can provide information about electrolyte imbalances [70], [71]. Among the various 

types of analyses applicable to the characteristics of the ECG trace, one of the most 

important is related to the temporal distances between successive R peaks. Indeed, the R 

peak is the key identifier of the cardiac beat, and from the RR time series, it is possible to 

study what is commonly referred to in literature as Heart Rate Variability (HRV), which 

is extensively employed in this study and will be further detailed in the subsequent 

sections [49]. 

While having access to all leads of the ECG trace allows for a comprehensive view of the 

propagation of the electrical signal, recording such information would be overly pervasive 

and somewhat challenging for a wearable device. On the other hand, peripheral 

acquisition of the ECG trace still enables the visualization of the typical morphology and 

accurate extraction of the distances between successive R peaks [41], [72], [73], [74], 

[75]. For this reason, the developed device incorporates a mechanism to perform the first 

of the three peripheral ECG leads, considering the right and left fingers as the points of 

electrode application.  

As well-established in the literature, this lead can be obtained by employing the 

physiological principle of Einthoven's Triangle, shown in Figure 2.2, which involves 

recording the electrical potential differences in specific body regions generated by the 

heart during the cardiac cycle. Specifically, these potential differences are detected by 

applying three electrodes at the vertices of an equilateral triangle drawn in the thoracic 

region of the human body, with one vertex facing downward. The ECG recorded from 

these three leads represents the sum of electrical signals from the heart according to the 

spatial orientation of the triangle, allowing for the analysis of the direction and intensity 

of the electric current flow through the heart. 
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Figure 2.2 – Einthoven's Triangle drawn around the heart. Electrodes applied to the vertices of 

the triangle allow for the detection of the electric field generating from the cardiac muscle by 

evaluating lead I, lead II, and lead III, which correspond to the sides of the triangle. 

 

2.1.2 PHOTOPLETHYSMOGRAPHY (PPG) 

Although the ECG is the most relevant clinical signal for assessing cardiac health, the 

pervasive measurement methodology entails a non-negligible level of discomfort for the 

user. Moreover, there is the need to obtain information about the functions of the vascular 

system, which is crucial to complete the assessment of cardiovascular health. Therefore, 

most wearable biomedical devices exploit PPG, an easy to apply, inexpensive and non-

invasive optical technique, which is able to detect blood volume changes in the peripheral 

vessels at different body locations [76].  

Figure 2.3 illustrates an example of the acquisition technique in reflection mode and the 

typical waveform of the PPG signal. The working principle of PPG is based on the fact 

that blood has a different light absorption coefficient compared to the surrounding tissues. 

In particular, the simplest PPG device is composed of a single light emitting diode (LED) 

illuminating the body district of interest through the emission of light at a specific 

wavelength, typically between 530 nm and 940 nm, and of a photodetector capturing 

reflected or transmitted light (Figure 2.3a).  
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Figure 2.3 – (a) Reflection mode PPG technique for the acquisition of the fingertip sphygmic 

waveform. (b) Path of the emitted light through the tissues that leads to the acquisition of both 

the pulsatile (AC) and non-pulsatile (DC) components that characterize the PPG signal. 

 

As shown in Figure 2.3b, a typical PPG signal acquired by a photodetector can be 

decomposed in both AC and DC components. The first one represents the pulsatile 

component of the PPG waveform, which contains information related to instantaneous 

volume changes in blood vessels of a given body location and can be considered as a 

function of the cardiac cycle. In particular, it is a periodic waveform with a fundamental 

frequency, depending on the heart rate, at around 1 Hz and consists in a rising trend 

followed by a falling one, respectively related to the systolic and diastolic phases of the 

cardiac cycle. In high-resolution acquisition systems it is even possible to detect a 

particular change in the pulsatile component between the systolic and diastolic phases, 

known as dicrotic notch, which has been widely related to aortic valve closure.  

The non-pulsatile component, which usually represents most of the total amplitude of the 

PPG signal, is instead mainly due to the presence of other tissues layers between the LED-

photodetector interface, such as skin, veins and bias blood volume inside the arteries, 

which involve a constant absorption of the light beam, resulting in a continuous 

component, so called DC component, constantly detected by the photodetector [77]. This 

component is subject to significant variations in the presence of ambient light and motion 

artifacts, sometimes degrading the pulsatile component of the PPG signal to the point of 

compromising its interpretation entirely. For this reason, modern integrated PPG sensors 

incorporate sophisticated DC component removal circuits, along with the ability to use 

inertial sensors for the detection and removal of motion artifacts [47], [78]. 
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Lastly, since AC component is proportional to the change in blood vessels volume given 

by the cardiac cycle, it can be employed for extracting important cardiovascular 

parameters such as oxygenation, heart rate and its variability, blood pressure estimation, 

pulse transit time, pulse wave velocity and pulse to pulse interval [79], [80]. Recent works 

have, indeed, demonstrated that PPG signal can be employed as a surrogate of ECG to 

perform heart rate variability analysis, given the high degree of similarity with the indices 

extracted from ECG R-R intervals [31], [81], [82]. 

 

2.1.3 SKIN CONDUCTANCE (SC) 

Another important biosignal that can be acquired in a simple and non-invasive manner is 

the skin conductance (SC), defined as the conductance exhibited by the epidermal tissue 

[51]. It is a signal that, under resting conditions, typically stabilizes at a constant and 

characteristic value for each individual, and it is subject to slow variation over time. 

However, it could undergo abrupt variations in response to stressful events, and for this 

reason it is interesting to study the variations and response of this signal over time, which 

is why it is referred to as Galvanic Skin Response (GSR) [83]. In fact, it reflects 

autonomic changes in the electrical properties of the skin due to the activity of the sweat 

glands, each one innervated by several sudomotor fibers [84], [85]. Specifically, this 

signal reflects the fact that the human organism reacts to a stressful event, either mental 

or physical, by activating the sympathetic nervous system (SNS), which produces 

sweating in several body districts, including the fingers. This defense mechanism is also 

known as general adaptation syndrome (GAS) and produces sudden changes in different 

physiological parameters (e.g., increased HR, blood pressure and sweating). Such 

changes are due to both sympathetic and parasympathetic (PNS) branches of the ANS, 

intervening to prepare the individual to react and overcome the stressor.  

Figure 2.4 shows an example of SC acquisition on the fingers, along with the typical 

trends of the same signal acquired on different body districts. In the literature, 

measurements of SC are reported in very different body districts, and there is no true 

standard [63]. Instead, it is recommended to identify areas of the body with a higher 

concentration of sweat glands, such as the fingers [51]. 
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Figure 2.4 – (a) Illustration of the electrode placement for acquiring GSR signals on index and 

middle fingers. (b) Skin conductance trends measured on different body districts. 
 

Moreover, the extremities of the limbs are involved in response to stressful events, both 

physical and emotional, through the phenomenon of Raynaud, which involves the sudden 

narrowing of blood vessels followed by a decrease in temperature and an increase in 

sweating [86]. Therefore, the possibility of acquiring SC directly on the fingers would 

allow for the discrimination of the presence of stressful phenomena, contributing to a 

correct interpretation of cardiovascular parameters as well as the user's health status. 

The working principle of the skin conductance measure relies on the volt-amperometric 

method to obtain skin resistance measurements. Two electrodes are applied on a body 

area, such as the phalanges of the fingers, characterized by a high concentration of skin 

sweat glands; by applying an electric potential to the first electrode and detecting the 

residual potential, knowing the current flowing in the electrodes, it is possible to obtain 

the value of the resistance offered by the epidermal tissue [64], [87]. In this study, with 

the aim of conducting SC measurements using the developed wearable ring-shaped 

device, SC measurements were initially taken on middle and index fingers of the hand to 

establish reference values for comparison with those obtained on the same finger. 

Through subsequent prototypes, the capability was achieved to perform SC 

measurements considering two diametrically opposed zones of the forefinger, thus 

leveraging the ring-shaped form of the device and simultaneously obtaining results 

equivalent to those obtained from measurements on two different fingers. 

 

7CAP 2

GSR Electrodes

(a) (b)
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While many literature works have demonstrated that stress can be properly estimated 

using only HRV [49], [88], [89], recent studies evidenced that GSR can be considered an 

excellent real-time correlation of stress, being linearly related to arousal [90], [91], [92]. 

Indeed, the GSR can be decomposed into two components, namely skin conductance level 

(SCL) and skin conductance response (SCR), which respectively provide information on 

the baseline level of SC (when the subject is at resting conditions) and stress levels, with 

SCR being more closely related to the activation of the SNS. Some researchers regard 

GSR as the foremost real-time indicator of stress, even superseding HRV measures, or 

suggest combining GSR as a measure of SNS activity and the high frequency HRV 

spectral component as a measure of PNS activity [93]. Therefore, stress detection 

accuracy can be enhanced through a multimodal approach that utilizes machine learning 

techniques to classify stress conditions based on a combination of both HRV and GSR 

indices, instead of relying solely on HRV measures [94], [95]. 

 

2.1.4 MEASURES OF MOTION 

In WHDs context, understanding and quantifying physical activity are integral 

components for a comprehensive health assessment. Measures of motion play a pivotal 

role in capturing the dynamics of a user's movements, providing valuable insights into 

their daily activity levels [96], [97]. 

Gyroscopes, key components in these devices, measure rotational motion with precision. 

They function by detecting changes in orientation and angular velocity, expressed in 

degrees per second, in the space, allowing the device to determine the direction and speed 

of movement in the three directions, namely as Gx, Gy and Gz, as shown in Fig.2.5. The 

gyroscopic data contribute significantly to recognizing activities that involve rotation, 

such as turning, twisting, or any other motion involving changes in orientation. This 

information is vital for assessing the diversity of physical activities and understanding 

how the body moves in three-dimensional space. On the other hand, accelerometers are 

crucial for capturing linear acceleration along the three axes, respectively called as Ax, Ay 

and Az.  
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These sensors enable the device to measure changes in velocity and direction, offering a 

comprehensive view of both rapid and gradual movements. The x-axis typically 

represents lateral movements, the y-axis captures vertical displacements, and the z-axis 

accounts for forward or backward motions. Through the combined data from 

accelerometers, wearable devices can track an individual's posture, detect changes in 

position, and quantify the intensity and duration of physical activities, thus enabling the 

detection of falls.  

 
Figure 2.5 – Spatial measurements in three axes performed by a generic inertial sensor in terms 

of gyroscope (Gx, Gy and Gz) and accelerometer (Ax, Ay and Az) readings. 
 

Moreover, the ability to track body movement, as well as the wearable device itself, could 

be crucial for investigating the presence of motion artifacts, as algorithms could be 

implemented to reduce and eliminate such artifacts [98], [99], [100], [101]. Finally, 

detecting even low-intensity involuntary movements would enable the recording of any 

tremors that could reveal pathological conditions, thus aiding in the early diagnosis of 

diseases affecting the nervous system [52], [102]. 
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2.2 DATA ANALYSIS: METHODS AND TECHNIQUES 

Once the physiological signals to be used for detecting physiological states are identified 

and selected, the next step is to determine data analysis methodologies, each specific to 

the respective signals, capable of adequately extracting the physiological information 

they contain. 

Below are the main data analysis techniques for extracting useful physiological indices 

from ECG, PPG, and SC signals. In particular, for the first two signals, data analyses 

based on RR and PP time series have been considered, respectively extracted by 

considering the temporal distance between two successive R peaks for the ECG signal 

and the peak of the photoplethymographic wave for the PPG signal. This allows the same 

data analysis methodology (i.e., HRV) to be applied to both time series. Although the term 

Pulse Rate Variability (PRV) is more suitable for the PPG signal, the type of analysis and 

implementable algorithms are the same. Therefore, the following paragraph will 

introduce HRV metrics that are applicable to both signals.  

Similarly, methodologies for the correct interpretation of the SC signal will be discussed. 

Finally, techniques for extracting the two main parameters of the respiratory system, 

namely SpO2 levels and respiration rate, directly from the PPG signal, are presented. 

 

2.2.1 HEART RATE VARIABILITY METRICS 

HRV is usually studied through the monitoring of ECG recordings, extracting the time 

series of R–R intervals (i.e., the time periods between successive heartbeats) [49]. In 

clinical settings, the use of 24 h recordings (i.e., LT analysis) is considered the “gold 

standard” for the investigation of cardiovascular control mechanisms, since such 

timeframe allows a better description of the physiological processes, taking into account 

slower temporal fluctuations (e.g., the circadian rhythms) and the response of the 

organism to a wider range of external stimuli [103]. On the other hand, ST measurements 

are typically based on 5 min recordings and have been more extensively employed for 

practical purposes, especially for assessing the balance between SNS and PNS activities, 

given that fluctuations mediated by ANS, reflecting respiratory, baroreflex and vascular 

tone regulatory mechanisms overlap to generate short-term dynamics and, finally, they 

are suitable for the study of autonomic tone. [31], [49], [103], [104], [105].  
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ST HRV is commonly investigated through different time-, frequency- and information-

theoretic domain indexes computed starting from ECG R-R interval time series. 

Specifically, time–domain indexes are used to quantify both average heart rhythm and the 

extent of beat-to-beat variability [49], [106], while frequency–domain indexes extract 

information specific to various time scales of oscillations. Furthermore, more recently 

developed entropy-based measures permit the assessment of the regularity and 

complexity of cardiovascular dynamics [56], [107], [108], [109], [110]. ST HRV analysis 

has also been proven useful outside clinical settings, e.g., to monitor health and wellbeing 

at home and in everyday life scenarios using wearable technologies [34], [111], [112], 

[113]. 

With the widespread adoption of WHDs, especially in domestic settings (e.g., smart-

healthcare), research now focuses on whether, and to what extent, shorter recordings can 

be exploited for cardiovascular variability analysis, given their lower computational and 

memory resources, in order to quickly extract useful physiological indexes [34], [36], 

[111], [114]. Several works have recently investigated on the so-called UST HRV 

analysis, which exploits recordings shorter than 5 min, comparing the results with those 

obtained using the ST standard [57], [115], [116], [117], [118], [119]. However, the 

choice of the time series length strongly influences the physiological indices derived from 

RR time series, in such a way that employing shorter recordings reduces the ability to 

resolve slower oscillations within the analyzed cardiovascular dynamics [106], [120]. 

Generally, at least 2 min recordings are recommended to observe Low-Frequency (LF, 

range: 0.04–0.15 Hz) dynamics, related especially to SNS, but also to PNS activity, and 

at least 1 min to observe High-Frequency (HF, range: 0.15–0.4 Hz) dynamics, mainly 

related to parasympathetic activity fluctuations associated with respiration [49], [106]. 

Longer recordings, i.e., 24 h period LT analysis, further allow detection of lower 

frequency components, such as the very-low-frequency (VLF, 0.0033–0.04 Hz) and the 

ultra-low-frequency (ULF, <0.003 Hz). Therefore, the use of recordings shorter than 5 

min may result in a loss of information related to slower dynamics if compared to ST 

analysis. The reliability of the cardiovascular parameters computed from UST recordings 

also depends on the acquisition protocol and on the dynamics of the response mechanisms 

to the task or stimulus [120].  
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On the other hand, the possibility of performing UST analysis would provide significant 

advantages such as simplicity of acquisition for biomedical devices (especially 

wearables), reduced data storage requirements, better immunity to motion artifacts (i.e., 

higher chances of extracting artifact-free acquisition windows, as they would be of short 

duration), greater potential to obtain stationary windows, which are crucial for 

implementing algorithms in the information domain that require process stationarity. In 

this sense, the use of validated and widely employed protocols used in HRV analysis 

could be envisaged, e.g., the passive head-up tilt test to evoke orthostatic stress, that are 

able to study cardiovascular autonomic responses [121], [122]. 

 

2.2.1.1 TIME DOMAIN 

In this work, HRV time domain analysis was performed on RR time series computing the 

average and the standard deviation of the series values, thus obtaining the two main 

indices in the time domain, which are respectively the temporal distance between two 

beats, from which the heart rate can be derived, and the standard deviation of the interbeat 

intervals between normal sinus beats (SDNN) [49].  Lastly, the root mean square of 

successive differences (RMSSD) was computed as follows to extract information about 

the beat-to-beat changes in heart rate mediated mostly by PNS [31], [49], [123]: 

𝑅𝑀𝑆𝑆𝐷 = '( !
"#!

)∑ +𝑥(𝑛 + 1) − 𝑥(𝑛)1$"#!
%&!                                     (1) 

being x(n) the n-th RR samples and N the time series length. 

The use of all three physiological indices is very useful for evaluating not only the 

functions of the cardiovascular system but also the levels of activation of the ANS. 

Indeed, analyzing heart rate values over time provides information about the subject's 

physiological state, allowing the discrimination of unnatural states, such as the presence 

of an accelerated heartbeat (i.e., tachycardia) or an excessively slow heartbeat (i.e., 

bradycardia). Furthermore, a lower heart rate often signifies a dominant parasympathetic 

influence, suggesting a state of relaxation and minimal stress, while a higher heart rate 

may indicate increased sympathetic activity associated with heightened stress, physical 

exertion, or other physiological demands.  
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The same concept can be extended to SDNN and RMSSD, which provide crucial insights 

into the autonomic balance shaping heart rate dynamics. Specifically, SDNN, reflecting 

overall heart rate variability, provides a comprehensive view of the dynamic equilibrium 

between sympathetic and parasympathetic influences. Higher SDNN values suggest a 

more adaptable autonomic nervous system, capable of responding effectively to stressors 

and promoting cardiovascular resilience. RMSSD, on the other hand, specifically focuses 

on parasympathetic modulation with higher values associated with increased vagal tone, 

promoting a relaxed state and efficient recovery. 

 

2.2.1.2 FREQUENCY DOMAIN 

Frequency domain analysis allows to estimate the power spectrum of the time series into 

different frequency bands of physiological interest [49], [124]. Among the physiological 

indices extracted by performing HRV in the frequency domain, the most noteworthy are 

the low-frequency (LF) and high-frequency (HF), from which the LF/HF ratio can be 

derived.  

In order to perform frequency analysis of time series, among the various methods, the 

Blackman-Tukey approach has been employed. This approach is a non-parametric 

method that allows for the estimation of power spectral density based on the computation 

of the fast Fourier transform (FFT) of the windowed autocovariance function. 

Specifically, a FFT of 512 points is performed on the windowed autocovariance function 

of the data, which is windowed using the Parzen window, which helps to reduce the 

spectral leakage of the spectral window (i.e., the FFT of the covariance lag window). The 

use of a windowing function, such as the Parzen window, ensures that the expected value 

of the spectral estimate coincides with the result of the convolution between the spectrum 

of the window and the true spectrum of the data. Consequently, in order to obtain a 

resolved estimate of the power spectral density, it is necessary to appropriately choose the 

truncation point M of the corresponding lag window, taking into account the bandwidth 

Bw of the spectral window, which, for the Parzen window, can be obtained considering 

the following equation: 

𝐵𝑤 = !,$()∙+!
,

                                                             (2) 

where Fs is the sampling frequency of the signal under examination. 
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If the raw signal has undergone resampling, Fs represents the sampling frequency of the 

signal. Otherwise, Fs is defined as the inverse of the average time series (e.g., RR interval 

or PP interval) duration. 

The LF band is primarily linked to the combined influence of sympathetic and 

parasympathetic activity, reflecting the modulation of heart rate by both branches of the 

autonomic nervous system. It is often considered an indicator of sympathetic modulation, 

particularly during conditions of stress or increased sympathetic activation. On the other 

hand, the HF band is largely influenced by parasympathetic (vagal) activity. This band 

reflects the respiratory sinus arrhythmia, the heart rate variability synchronized with the 

respiratory cycle. Increased HF power is generally associated with enhanced 

parasympathetic modulation, indicating a state of relaxation and recovery. Lastly, the 

balance between LF and HF components is crucial for understanding autonomic 

regulation, which is why typically, once the two indices are calculated, there is an interest 

in knowing their ratio. For instance, a higher LF/HF ratio may suggest increased 

sympathetic dominance, indicating a stress response, while a lower ratio could indicate 

parasympathetic dominance, signifying a more relaxed physiological state. 

 

2.2.1.3 INFORMATION DOMAIN 

Information theoretical measures, in their most general form, analyze the joint dynamics 

and interactions between multiple time series, allowing for the identification of 

connections between the values of these series and their variations. In this work, we have 

limited ourselves to studying the dynamics of a single series (i.e., RR, PP), by performing 

information-theoretic analysis to quantify the information carried by the physiological 

time series under examination, as well as their complexity. The latter is typically 

quantified as the unpredictability of the present sample given its past samples, and thus 

has been associated to the inverse of the regularity of the time series [110], [125].  

The static entropy (SE), dynamic entropy (DE), and conditional entropy (CE) measures 

have been computed on RR and PP time series using both a parametric and a model-free 

estimation. Starting from a stationary stochastic process X, we can denote as 𝑥 =

{𝑥!, 𝑥$, … , 𝑥"} the time series of length N, taken as a realization of the process X, as Xn is 

the variable obtained by sampling the process X at the present time n, and 𝑋%- =

[𝑋%#!, … , 𝑋%#-] the variable describing the collection of the past m states.  
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Using such notation, the static entropy quantifies the “static” information contained in 

the current state of the process X, without considering its temporal dynamics, and can be 

defined as [126]: 

𝑆𝐸 = 𝐻(𝑋%) = 	−𝐸[log 𝑝(𝑥%)]                                          (3) 

where 𝐸[∙] is the expectation operator and 𝑝(∙) the probability density, while 𝐻[∙] denotes 

the entropy. The dynamic entropy (DE) instead represents the “joint” entropy of the 

present and past variables comprising the process; therefore, it provides the amount of 

information provided by the current sample of the series and by its past samples as well, 

thus providing “dynamic” information on the entire process. This can be defined as 

[127]: 

𝐷𝐸 = 𝐻(𝑋%, 𝑋%-) = −𝐸[log 𝑝(𝑥%, 𝑥%#!, … , 𝑥%#-)]                            (4) 

where 𝐻(∙,∙) is the joint entropy of two random variables. Then, the conditional entropy 

(CE) quantifies the average uncertainty that remains about the present state of the process 

when its past states are known (i.e., the new information contained in the current sample 

that cannot be inferred from the past history), and is defined as [126]: 

𝐶𝐸 = 𝐻(𝑋%|𝑋%-) = 𝐻(𝑋%, 𝑋%-) − 𝐻(𝑋%-) = −𝐸[log 𝑝(𝑥%|𝑥%#!, 𝑥%#$, … , 𝑥%#-)]   (5) 

where 𝐻(∙ | ∙) denotes conditional entropy operator. 

The computation of SE, DE, and CE indices was carried out through two different 

estimation approaches, in order to identify which method allows the best trade-off 

between computational costs and ability to discriminate among physiological changes 

(i.e., rest versus stress). 

The first estimation method (hereinafter referred as lin) consists of a linear parametric 

approach based on the assumption that the observed process X is a stationary Gaussian 

process [126], which is a reasonable assumption given that many physiological data tend 

to follow a Gaussian distribution. Under this assumption, the above-mentioned entropies 

measures can be computed, after describing the dynamics of the process X with a linear 

regression model, from the covariance matrices of the variables sampling the process. In 

particular, the present and past variables of the process are related with the autoregressive 

(AR) model 𝑋% = 𝐴 ∙ 𝑋%- + 𝑈%, where 𝐴 is a vector of 𝑚 regression coefficients and 𝑈 is 

a white noise process modeling the prediction error.  
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AR model identification has been performed via ordinary least squares method [128] to 

obtain estimations of regression parameters and prediction error variance, thus estimating 

the variance and the covariance matrices of the process. Then, denoting as 𝜎I.$ the variance 

of the process, as 𝛴K."𝑿"# the covariance matrix of the present and past states of X, and as 

𝜎I0$ the predicton error variance, the above defined entropy measured can be computed as 

[127]: 

𝑆𝐸12% =
!
$
ln(2𝜋𝑒𝜎I.$)                                                (6) 

𝐷𝐸12% =
!
$
ln+(2𝜋𝑒)-3!P𝛴K."𝑿"#P1                                     (7) 

𝐶𝐸12% =
!
$
ln(2𝜋𝑒𝜎I0$)                                                (8) 

where e is the Euler’s number. 

The second estimation method (hereinafter referred as knn) is a model-free approach 

based on nearest neighbor metrics, which exploits the intuitive notion that the local 

probability density around a given data point is inversely related to the distance between 

the point and its neighbors. 

Using this approach, estimates of SE, DE and CE of the process X can be respectively 

computed through the following expressions [126], [127]: 

𝑆𝐸4%% = 𝜓(𝑁) + 〈log 𝜖%,4 − 𝜓+𝑁." + 11〉                               (9) 

𝐷𝐸12% =
!
$
ln+(2𝜋𝑒)-3!P𝛴K."𝑿"#P1                                     (10) 

𝐶𝐸4%% = −𝜓(𝑘) + 〈log 𝜖%,4 + 𝜓+𝑁."# + 11〉                          (11) 

where 𝜓(∙) is the digamma function, k is the number of neighbors chosen for the analysis, 

𝜖%,4 represents twice the distance between the n-th realization of (𝑋%, 𝑋%-) and its k-th 

nearest neighbor, 𝑁." and 𝑁."#, represent respectively the number of points with a 

distance from 𝑥% and 𝑥%- smaller than 5",%
$

, and 〈∙〉 is the average operator; the average is 

taken over all the 𝑁 −𝑚 realization of the patterns (𝑋%, 𝑋%-) that can be extracted from 

a series of length N. Here, estimation of the SE and CE has been performed exploiting the 

distance projection method for bias compensation described in [126], [127]. 
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Lastly, the number of neighbors chosen for the model-free estimator was k = 10, while 

the number of past components considered for the time series past histories was set equal 

to 2. Similarly, the order of the autoregressive model defined using standard least-squares 

regression for the lin approach was set to m = 2. 

 

2.2.1.4 GRANGER CAUSALITY MEASURES 

The methods and measures considered and discussed so far pertain to the domain of 

univariate data analysis, as they are types of data analysis aimed at extracting 

physiological information contained within a single process (i.e., biosignal or time series). 

In this paragraph, an additional measure is introduced that allows for expanding the scope 

of data analysis into the realm of multivariate analysis, specifically introducing Granger 

Causality measures to exploit the potential of the synchronous multiparametric 

acquisition.  

Multivariate analysis refers to the statistical examination of multiple variables 

simultaneously to understand the relationships and patterns among them. In the context 

of biomedical signal processing, acquiring multiple biosignals offers a wealth of 

information about physiological processes. Conducting multivariate analysis becomes 

crucial in deciphering the intricate relationships between these signals and how they may 

influence each other. For instance, by simultaneously measuring ECG, PPG, and 

respiratory signals, it is possible to explore how changes in one signal/process may 

correlate with or drive changes in another one. Specifically, the driver process refers to a 

biosignal that influences or drives changes in another signal, known as the target process. 

Identifying these driver-target relationships is essential for unraveling the complex 

interactions between different physiological systems. 

One quantitative measure commonly used to assess causality between biosignals is the 

Granger Causality measure, which evaluates the extent to which the past values of one 

signal can predict the future values of another signal, beyond what can be predicted by 

their own past values. In the context of biosignal analysis, Granger Causality provides 

insights into the directional influence between two signals, helping to elucidate causal 

relationships and uncover underlying physiological mechanisms. 
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In mathematical terms, it is possible to consider two processes 𝑌! and 𝑌$, representing 

respectively the target process and the driver process. Considering the use of an 

autoregressive (AR) model, each pair of stationarity zero-mean 𝑌! and 𝑌$and series form 

the bivariate process 𝒀(𝑛) which can be defined as [129]: 

𝒀(𝑛) = ∑ 𝑩(𝑘)𝒀(𝑛 − 𝑘) + 𝑈(𝑛)6
4&7                                     (12) 

where p is the model order and 𝒀(𝑛) = [𝑌!(𝑛)	𝑌$(𝑛)]8. The 2x2 coefficient matrix 𝑩(𝑘) 

relates the present with the past of the processes assessed at lag k, the latter taking the 

value 0 as well to bring instantaneous effects from 𝑌$(𝑛) to 𝑌!(𝑛) into the model in the 

form of the coefficient 𝑏!$(0) of the matrix 𝑩(0). The vector 𝑼(𝑛) = [𝑈!(𝑛)	𝑈$(𝑛)]8 

contains zero-mean uncorrelated white noises, with diagonal covariance matrix 𝚺 =

𝐸[𝑼(𝑛)𝑈8(𝑛)] = 𝑑𝑖𝑎𝑔{𝜎22$}, 𝑖 = 1,2. While the full AR model in the previous equations 

provides a global representation of the bivariate process, to describe the individual 

dynamics of the target process 𝑌!, a reduced AR model involving only that process was 

formulated as: 

𝑌!(𝑛) = ∑ 𝑎b!(𝑘)𝑌!(𝑛 − 𝑘) + 𝑈c!(𝑛)9
4&!                                (13) 

where the coefficients 𝑎b!(𝑘)	weight the past samples of the process 𝑌!(𝑛), and the 

innovation process 𝑈c!(𝑛) has variance 𝜎b!!$ . Note that to capture the full dynamical 

behavior of 𝑌!(𝑛) the order of the restricted AR process is infinite even when the original 

bivariate model has a finite order p [130]. The linear parametric formulation allows to 

compute the logarithmic measure of Granger Causality [131], [132] by comparing the 

variance of the residuals resulting from the two regressions: 

𝐹:→2 =𝑙𝑛 f
<=&&
'

<&&
'g                                                    (14) 

Moreover, from the full AR representation of the bivariate process, it is possible to 

represent the model coefficients in the Z domain through the Z-transform of the first 

equation, thus yielding 𝒀(𝑧) = 𝑯(𝑧)𝑼(𝑧), where the 2x2 transfer matrix is computed as 

𝑯(𝑧) = [𝑰 − ∑ 𝑨(𝑘)𝑧#46
4&! ]#!, being 𝑰 the 2x2 identity matrix.  
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Computing 𝑯(𝑧) on the unit circle in the complex plane, it is possible to derive the 

spectral density matrix of the bivariate process as 𝑺+𝑓̅1 = 𝑯(𝑓)̅𝚺𝑯∗(𝑓)̅, where 𝑓̅ ∈

[−0.5,0.5] is the normalized angular frequency 𝑓̅ = 𝑓/𝑓?, and * stands for the Hermitian 

transpose. This matrix contains the power spectral densities (PSDs) of the individual 

processes on the diagonal, and the cross PSDs between the two processes out of the 

diagonal. Moreover, a frequency-specific measure of Granger causality from 𝑌: to 𝑌2 can 

be computed as [132]: 

𝑓:→2+𝑓1̅ = 𝑙𝑛	 f @&&(B̅)

<&&
'EF&&(B̅)E

'g                                            (15) 

and interpreted as a measure of coupling strength, being 0 in the absence of directed 

coupling from 𝑌: to 𝑌2 at the frequency 𝑓,̅ and increasing to infinite in the presence of full 

coupling. The integration the last equation alongside the whole frequency axis, with the 

Nyquist frequency in each spectral representation taken as 𝑓? 2⁄ = 1 (2〈𝐻𝑃〉)⁄ , provides 

the correspondent time domain measure given in (14), i.e. we have 𝐹:→2 =

2∫ 𝑓:→2+𝑓̅1𝑑𝑓̅
! $⁄
7  [133].  

 

2.2.2 GALVANIC SKIN RESPONSE: SCL AND SCR COMPONENTS 

The GSR signal can be divided into two components: the skin conductance level (SCL) 

and the skin conductance response (SCR) [55], [83]. SCL is the measure of the basal level 

of the sweat glands activity (i.e., the sweating without stressors), which depends on the 

individual’s physical characteristics, and is considered as a reference level to evaluate 

sweating variations. SCR (i.e., the phasic activity) is a highly variable signal that detects 

sudden changes of sweating following stressful events, reflecting a fast variation in the 

autonomic arousal. Acquiring a high-quality GSR signal allows for extracting the two 

components and thus an effective assessment of the activity of the SNS. 

In this work, both SCL and SCR components were extracted employing the MATLAB-

based toolbox LEDALAB; this software allowed us to separate the two components, 

exploiting the continuous decomposition analysis based on a standard deconvolution 

method [55]. Specifically, this method is based on the assumption that the activity of the 

sudomotor nerve causes peaks in SC with short time constants, which trigger SCR 

exhibiting larger time constants.  
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Consequently, deconvolution between SC data with an appropriate impulse response 

function (IRF) would allow for reversing this transformation and, therefore, obtaining an 

estimate of SCR amplitudes from SC values.  

In mathematical terms, the sudomotor nerve activity is considered as a driver, which 

generates a sequence of mostly distinct impulses, that are the sudomotor nerve bursts, 

which trigger a specific impulse response (i.e., SCR). Therefore, the IRF describes the 

time course of this impulse response, which can be represented by the following equation: 

𝑆𝐶𝑅 = 𝐷𝑟𝑖𝑣𝑒𝑟HIJ?2K ∗ 𝐼𝑅𝐹                                             (16) 

where the (∗) operator defines the convolution product. 

SCL can also be equally represented as the convolution between the same IRF and a sort 

of tonic driver function, a circumstance that leads to the following equation: 

𝑆𝐶𝐿 = 𝐷𝑟𝑖𝑣𝑒𝑟LM%2K ∗ 𝐼𝑅𝐹                                              (17) 

Since the phasic activity was assumed to superimpose a slowly varying tonic activity (i.e., 

SCL), the whole SC activity thus can be assumed to be composed as: 

𝑆𝐶 = 𝑆𝐶𝐿 + 𝑆𝐶𝑅 = (𝐷𝑟𝑖𝑣𝑒𝑟LM%2K + 𝐷𝑟𝑖𝑣𝑒𝑟6IJ?2K) ∗ 𝐼𝑅𝐹                          (18) 

Finally, denoting as (−) the deconvolution operator and applying it to the right member 

of the (13), it is possible to obtain the final equations: 

@N
OP+

= 𝐷𝑟𝑖𝑣𝑒𝑟LM%2K + 𝐷𝑟𝑖𝑣𝑒𝑟6IJ?2K = 𝐷𝑟𝑖𝑣𝑒𝑟@N                             (19) 

Indeed, deconvolving SC data yields a driver function that includes both a phasic and a 

tonic component, thus identifying the driver of the whole SC activity. If one if the two 

components can be estimated, the other is implicitly determined. 

According to this approach, thus, the extraction of both tonic and phasic activity was 

carried out through deconvolution of SC data, where the phasic driver component exhibits 

a virtual-zero baseline and distinct phasic responses [55].  

Lastly, to assess variations among different physiological conditions, it is also important 

to evaluate the mean values of the GSR level and SCL component over time, together 

with the number of peaks of the SCR component, that could be potentially related to the 

level of cognitive and emotional stress [134]. 
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2.2.3 RESPIRATORY SYSTEM PARAMETERS 

As previously mentioned, the PPG signal is not only useful for assessing the cardiac and 

vascular health, but it also provides information about the respiratory system, as it allows 

for the determination of blood oxygen saturation levels through SpO2 calculations, 

together with the possibility to estimate the respiration rate.  

The SpO2 values can be computed exploiting the fact that the absorbance of a red blood 

cell coincides with that of a hemoglobin solution [135]. This “transparency” of 

erythrocytes allows measurements of oxygen saturation, expressed as the percentage of 

hemoglobin that is saturated by oxygen, typically included between 95% and 100% at sea 

level [136]. For this purpose, it is possible to take advantage of the knowledge of the 

variation in the absorption spectrum of hemoglobin in relation to its degree of saturation 

by oxygen, shown in Figure 2.6 [137]. 

 
Figure 2.6 – Absorbance curve of oxygenated and deoxygenated hemoglobin. 

 

Since the isosbestic point of the hemoglobin spectrum is located at 805 nm, a pulse 

oximeter usually exploits two LEDs emitting both a red light, typically with wavelength 

λ = 650–670 nm, and an infrared light, with λ = 870–890 nm, used in combination 

with a receiving photodiode. 
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After acquiring the two optical pulse waves from both the red and the infrared LEDs, is 

possible to express the so-called ratio of ratios “R” as [138]: 

𝑅 =
()*+,
-)*+,
()&*
-)&*

                                                            (20) 

R is a ratio of ratios of the pulsatile and non-pulsatile components of red-to-IR light 

absorption; the light absorption of two wavelengths is thus derived from the pulsatile-

added volume of oxygenated arterial blood [139], [140].  

The AC and DC components of both red (i.e., ACred and DCred) and infrared (i.e., ACir 

and DCir) PPG signals can be evaluated starting from the extraction of the minimum and 

maximum peaks of the respectively waveforms. In particular, the DC component can be 

evaluated as the mean value between the maximum and minimum peaks of the pulse wave 

signal, while the AC component can be evaluated as the difference between the two peaks. 

A widely employed linear empirical equation for computing SpO2 is the following [141]: 

𝑆𝑝𝑂$ = 𝑎 + 𝑏 ∙ 𝑅                                                    (21) 

where a and b are two constants to be determined through calibration according to the 

optical characteristics of the adopted device. 

As well-established in the literature, the PPG signal is modulated by respiration. 

Consequently, through specific data analysis techniques, it is possible to isolate the 

modulating component and extract the respiratory rate. Specifically, in this work have 

been considered two different techniques based respectively on a filtering-based approach 

and Empirical Mode Decomposition (EMD) [142].  

The first approach, which is the simplest, involves applying a bandpass filter to the PPG 

signal, accounting for a range of respiratory frequencies determined in accordance with 

the knowledge that respiration variability usually falls within the HF band (i.e., 0.15-0.4 

Hz) [32], [49]. The simplicity of this approach is counterbalanced by its weakness, which 

is due to the fact that, in this way, the respiratory signal is reconstructed within a band 

defined a priori, and this can lead to distorting estimates of respiratory frequency.  

In fact, depending on the subject's physical activity and physio-pathological conditions, 

the respiratory frequency could fall outside the selected band. This situation would lead 

to the inconvenient circumstance of having to adjust the filtering settings each time to fit 

the optimal band, which varies from subject to subject.  
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For this reason, although this technique is much simpler to use, the technique based on 

the EMD algorithm has also been investigated and employed. 

The EMD method has been already widely used for extracting breathing rate from PPG 

Signals [142], [143]. In this work has been used a simplified version of the EMD 

algorithm presented in [142], herein summarized: 

i. Find the local maxima (Mi) and the local minima (mi) of the PPG signal (x(t)); 

ii. Interpolate the maxima and minima using the same number of points of the PPG, 

so as to generate the upper M(t) and lower m(t) envelopes, respectively; 

iii. Compute the average envelope as 𝑒(𝑡) = ,(L)3-(L)
$

; 

iv. Subtract the average envelope to the PPG signal, 𝑥(𝑡) ≔ 𝑥(𝑡) − 𝑒(𝑡); 

v. The steps (i)-(iv) should be repeated until the new x(t) does not vary from the x(t) 

at the previous iteration. 
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CHAPTER 3 

 

DESIGN AND REALIZATION OF THE RING-SHAPED 
WEARABLE DEVICE 

 
 
 

3.1 OVERVIEW AND STRUCTURE OF THE CHAPTER 

In this chapter, the wearable biomedical device developed throughout the research 

journey is presented, providing details on the design and development stages, in terms of 

hardware, firmware, and, finally, software perspectives. 

The objective is to provide the reader with a thorough presentation of the choices made 

in terms of biosensors selection and layout design to realize a non-invasive 

multiparametric ring-shaped wearable devices capable of discriminating changes in 

physiological states, in response to the needs described in Chapter 1. 

This is firstly addressed by providing an overview of the device's hardware, describing 

the system architecture, and then focusing on all the various composing blocks, which 

consist in digital sensors, analog sensors, power management system, and finally, the 

Bluetooth Low Energy (BLE) communication module. 

For the same reason, the discussion includes the development of firmware that led to the 

programming of the system (i.e., microcontroller, digital sensors, and BLE module).  

To complete the picture, an introduction to the software used is provided, which 

encompasses a graphic-user interface (GUI) specifically designed for communication 

between the device and a personal computer. Additionally, a description of the offline 

post-processing algorithms and procedures relying on the MATLAB environment, is 

given. 
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3.2 HARDWARE: SYSTEM ARCHITECTURE 

The device proposed in this work has been designed to perform acquisitions of various 

physiological parameters of interest in a single body district in order to expand the kind 

of biomedical devices by introducing a solution fully exploiting the potential of wearable 

technologies. Specifically, herein is presented a novel ring-shaped wearable device 

capable to perform fingertips synchronous acquisitions of ECG, PPG, GSR, and motion 

signals, powered by a lithium battery and transferring data using BLE communication 

protocol. 

Since the device aims to perform high-quality multiparametric acquisitions on the fingers 

of the hand, during the design phase most of the efforts were focused on developing a 

compact and comfortable device that employs miniaturized highly integrated components 

without compromising the lightweight and compactness, which are the typical 

characteristics of a wearable device.  

Figure 3.1 depicts the system architecture of the device. It consists of a microcontroller-

based device, wherein the microcontroller serves as the core of the system, overseeing 

and managing both analog and digital modules, the acquisition of physiological 

parameters, and ultimately, data exchange over BLE communication protocol. 

The choice of microcontroller fell on the use of the ultra-low power STM32L4 series 

[144], manufactured by STMicroelectronics, which allows achieving the best trade-off 

between power consumption and a wide range of different interfaces for the parallel 

management of multiple analog and digital input/output peripherals, features needed for 

a multiparametric acquisition. In fact, the L4 series hosts the most commonly used 

communication protocols in the field of biomedical sensing, such as the Inter-Integrated 

Circuit (I2C) and the Universal-Asynchronous Receiver Transmitter (U-ART) digital 

communication protocols. Additionally, it includes a high-performance analog-to-digital 

converter (ADC) that enables the acquisition and management of measurements from the 

analog sensors integrated in the system. 

On the other hand, low power consumption is an essential requirement that a wearable 

device must satisfy and, for this reason, particular attention has been paid to the choice of 

all the remaining components in the system, favoring compact sensors and components 

capable of providing the same performance but with lower energy costs. 
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Figure 3.1 – Schematic block representing the architecture of the system. The ultra-low power 

microcontroller (MCU) manages all the peripheral connected by using three different buses: I2C 

BUS, which allows communications between MCU and digital sensors (PPG and inertial 

measurement unit); ADC BUS, used to connect analog signals output (ECG and GSR) to the 

MCU ADC; UART BUS, which is employed to communicate with BLE module in order to 

exchange the data collected by the MCU. Lastly, the battery management system (BMS) 

provides energy to the entire system. 

 

The management of peripherals is carried out through three distinct data BUS lines that 

have been specifically activated respectively to ensure communications with digital 

sensors, which occurs through the I2C protocol (I2C BUS), with the BLE module using 

U-ART serial protocol (UART BUS), and, finally, the reading of raw data originating 

from analog sensors (ADC BUS). The MAX30102 PPG sensor and the motion detection 

module MPU6050 (capable of gyroscopic and accelerometric measurements) together 

constitute the digital sensor system within the device. Although the BLE module also 

constitutes a digital system, since it does not detect any biometric data but simply handles 

the communication between the system and the computer, it is not considered within the 

biomedical sensing and is therefore treated and represented as a separate block. 
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The analog sensors block connected to the ADC BUS line consists of ECG and GSR 

sensors. As can be observed in the bottom right corner of Figure 3.1, each sensor can be 

divided into two main parts: the electrodes, which allow for the detection of electrical 

signals in specific areas of the fingers, and their respective conditioning circuits, which 

enable the generation of a high-quality signal for the subsequent sampling process 

performed by the MCU's internal ADC. In detail, the ECG signal is acquired through 

three electrodes and, unlike all the other extracted signals, it requires the use of fingers 

from both hands (specifically, the thumb of the left hand and the index and middle fingers 

of the right hand): the first captures the electrical potential on the phalanx of the left thumb 

(the same hand in which the device is intended to be worn); the second one serves the 

same purpose but operates on the right-hand index finger; finally, the third electrode is 

placed in contact with the right-hand middle finger and can optionally be used to exploit 

the right leg drive (RLD) circuit, which reduces electrical noise and enhances the quality 

of the recorded ECG signal. With this spatial arrangement due to the ECG configuration, 

the electrodes follow the geometry of the Einthoven's Triangle, avoiding the electrical 

potentials measurements from both the right and left body regions, thus enabling the 

acquisition of a single-lead ECG [145]. The signal detected by the electrodes is then sent 

as input into the AD8232 chip, an integrated analog front-end appositely designed for the 

measurement of biopotentials, directly allowing the extraction, amplification, and 

filtering of the small biopotentials detected by the electrodes. The AD8232 output is then 

connected to the ADC BUS line, where the high-quality ECG signal can be accurately 

sampled.  

The GSR signal is acquired through two electrodes placed in contact with two 

diametrically opposite areas of the index finger of the left hand. From a methodological 

perspective, the measurement of this signal relies on the volt-amperometric method for 

acquiring skin resistance measurements. By applying an electrical potential to one 

electrode and measuring the remaining potential in the other one (called sensing 

electrode) while also monitoring the current passing through the electrodes, it becomes 

possible to determine the resistance value provided by the epidermal tissue [51]. The 

signal detected by the sensing electrode is once again routed to a dedicated conditioning 

circuit that, through amplification and filtering operations, improves the signal quality. 

Finally, the output of the conditioning circuit is connected to the ADC BUS line. The 

acquisition of both analog signals output from their respective conditioning circuits is 

carried out by the internal ADC of the MCU. 
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For the wireless communication of the biosignals recordings, the choice has fallen on the 

BLE communication protocol, which, with an excellent trade-off between transmission 

speed and energy consumption, is among the most commonly used wireless 

communication protocols in the field of wearable technologies [34], [146].  

For the implementation of BLE communication, the HM-18 module based on Texas 

Instruments CC2640R2F IC has been utilized, which is controlled by the MCU through 

the UART BUS line and, once paired, enables data exchange with other nearby BLE 

devices. Finally, as depicted in the top right corner of Figure 3.1, the entire system is 

powered by the Battery Management System (BMS), which provides the voltage levels 

required by the other components (i.e., MCU and sensors). 

Beyond the architecture of the system, the shape of the device has been appositely 

designed in order to assure the flexibility in terms of acquiring the signals acquiring high 

quality signals without compromising the compactness and adaptability of the product. A 

ring-shaped device can satisfy both needs with the drawback of a slightly more expensive 

production process and more complex assembly procedure, due to the use of flexible 

printed circuits.  

Figure 3.2a shows both the top and bottom views of the printed circuit board (PCB) 

designed for the realization of our device. In detail, the rigid PCB (in green) houses all 

the above-described components except for the MAX30102 sensor, which is instead 

integrated into the flexible PCB (in yellow) to acquire the PPG signal on the underside of 

the finger. The yellow areas in the top view of the rigid PCB (highlighted by the red 

squares) represent the first two ECG electrodes, while the third electrode is indicated by 

the red rectangle in the bottom view of the flexible PCB. The PCB integrates two GSR 

electrodes as well, denoted by the two blue rectangles in the top view. The dimensions of 

these two conductive pads are 20x8 mm and 17x8 mm respectively for the two GSR 

electrodes and the ECG electrode on the finger, whose dimensions have been made long 

enough to guarantee a proper contact with the skin. Moreover, in order to improve the 

ECG electrodes usability, two hot air solder leveling (HASL) finished pads are positioned 

in the forward part of the PCB, which also avoid undesirable contacts between the fingers 

and other parts of the PCB. The potential problem with the reliability of ECG measures 

is solved with a proper choice of the electrode positions. Similarly, from preliminary tests, 

it has been observed that an 8 mm diameter allows for an adequate contact between the 

skin and electrodes and reduces inter-subject variability. 
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Figure 3.2 – (a) Top and bottom views of the rigid PCB (in green) and flexible PCB (in yellow), 

the latter hosting the PPG MAX30102 sensor for acquiring the PPG waveform on the underside 

of the finger. The ECG and GSR electrodes are highlighted with red and blue rectangles, 

respectively; the fingers used for the acquisition of the ECG signals are indicated in 

parentheses. (b) The realized ring-shaped device, in its main view (left) and while being dressed 

in the forefinger (right). 
 

The last design constraint imposes to avoid the placement of components on the top side 

of the PCB, in such a way to leave the whole space for Bluetooth module. Particular care 

has been put for BLE antenna positioning, that has been placed outside the PCB to 

maximize irradiation performances. The final circuit has been carefully designed to 

reduce mutual interferences between analogue highly sensitive traces and digital paths; 

for this reason, a multi-layer routing technique has been applied. The PCB is thought to 

be produced in factory with pick’n place machines and reflow soldering techniques only. 

In this way it has been possible to shrink components with tenths of millimeters tolerance. 

9

DESIGNED PCB

TOP VIEW BOTTOM VIEW

REALIZED DEVICE
MAIN VIEW DRESSED IN FOREFINGER

(a)

(b)

RIGHT HAND ECG ELECTRODES
(i.e., index and middle fingers)

LEFT HAND ECG ELECTRODE
(i.e., thumb)

GSR ELECTRODES
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The whole work has been done by using the CAE software Altium Designer 22. 

In Figure 3.2b the realized wearable device is depicted. The left panel represents the ring-

shaped device in its final form. Here, the main rigid PCB can be seen, encompassing all 

the electronic components besides the ones used for PPG acquisition. In the figure it is 

possible to distinguish a switch to turn on the device, the Bluetooth module used for 

wireless communications, the battery connector, the two circles-shaped ECG electrodes 

on the upper part, and a magnetic two pole connector used for battery charging. Compared 

to standard USB-C charging solutions, a magnetic connector significantly helps ensuring 

compactness on the device, however a dedicated charger for the device is needed. The 

black connectors have been used only for programming purpose during testing phases, 

and they are not an integral part of the circuit, in fact they can be easily removed once the 

final version of the firmware has been uploaded on the microcontroller. The yellow part 

is the flexible PCB, which is realized using a 0.2 mm polyimide film. It performs three 

functions, i.e. guaranteeing a proper wearing of the device around the finger (as shown in 

the right panel of Figure 3.2b), hosting the integrated circuit for PPG acquisition in 

reflection mode, and providing conductive surfaces usable as electrodes for ECG and 

GSR acquisition. For these measurements, the proper and good contact between skin and 

electrodes is essential. Therefore, the flexible PCBs have been realized with the 

electroless nickel immersion gold (ENIG) surface finish process, so as to avoid the 

oxidation problem. 

 

3.2.1 MICROCONTROLLER UNIT: STM32-L432KC 

The STM32L4 microcontroller family includes several solutions that offer different 

features and specifications and can thus be used for various applicative contexts. In this 

case, the STM32-L432KC (depicted in Figure 3.3a) has been chosen, which consists in a 

ultra-low power microcontroller based on the high-performance Arm Cortex M4 32-bit 

RISC core operating at frequencies up to 80 MHz, which hosts a 12-bit ADC, along with 

numerous communication interfaces, including USB 2.0 full speed, low-power U-ART, 

and two separate I2C channels [144]. Its characteristics enable efficient management of 

the data reading and exchange processes without latency issues while ensuring ultra-low-

power capabilities, essential for a battery-powered device. 
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Figure 3.3 – (a) Image of the STM32-L432KC microcontroller chip in both top and bottom 

views. (b) Electrical schematic displaying the pinout of the microcontroller pinout and its 

assignment to other peripherals in the system. 

 

Figure 3.3b depicts a detail of the device electrical schematic on the MCU pinout and its 

interfacing with other modules and peripherals. Indeed, it can be observed how both I2C 

and U-ART data lines have been enabled, respectively for managing digital sensors and 

the BLE module, along with its status signal (named Bluetooth EN) and the interrupt from 

the PPG sensor (MAXREFDES117-INT), which, as will be explained later, identifies the 

synchronization signal among all the biometric measurements carried out by the system.  

Finally, there are lines dedicated to acquiring the output signal from the analog sensors 

(ECG OUT, GSR OUT) by the ADC, and power supply lines, respectively for input (5V) 

from the BMS and supplied (3.3V) by the MCU. 
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3.2.2 PPG SENSOR: MAX30102 
The MAX30102 (manufactured by Analog Devices) is an integrated sensor designed for 

acquiring the PPG waveform using a reflective LED solution, which is achieved through 

the use of a photodetector and two light sources emitting at wavelengths in the red 

spectrum (660 nm) and in the infrared spectrum (880 nm), transferring data via I2C 

protocol [147]. The MAX30102 features a high-resolution (up to 18 bit) internal ADC 

with low noise characteristics, complemented by an ambient light rejection circuit. Both 

elements contribute to obtaining high-quality PPG signals under typical usage conditions, 

including situations with significant ambient light presence. In particular, the immunity 

of the front-end to the ambient light was checked through different measurements carried 

out, firstly, in dark ambient conditions and then by simulating the sunlight with an Oriel 

Sol3A solar simulator (manufactured by Newport), with the output set at 0.8 sun, i.e., a 

typical value in a sunny day condition. The measurement results showed the excellent 

behavior of the MAX30102, detecting only a slight percentage increase in the DC 

components of the PPG red (0.17%) and infrared (0.5%) waveforms. No changes were 

reported for the AC components, thus validating our probe for acquiring PPG signals even 

in the presence of a strong ambient light [64]. 

Figure 3.4 depicts the chip used for integrating the MAX30102 sensor within the system. 

Being a very small component, it was utilized in the form of a development board using 

the shield named MAXREFDES117, which enables an easier use of the above-mentioned 

PPG sensor. 

 
Figure 3.4 – MAXREFDES117 development board. The rectangles in red and orange highlight, 

respectively, the photodetector and both the red and infrared LEDs that are located in the 

MAX30102 sensor. 

 

 

12CAP 3

Photodetector
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An important feature consists in the possibility to increase the sampling frequency of the 

PPG signal without reducing the resolution of the internal ADC. 

In this application, the MAX30102 has been configured to acquire both wavelengths at a 

sampling frequency of 1 kHz, corresponding to a 16-bit ADC resolution. This sampling 

rate allows to carry out various analyses that necessitate high temporal resolution of the 

processed signals, such as HRV analyses and PAT computation, the latter enabling the 

detection of time delays on the order of milliseconds between ECG and PPG waveforms. 

 

3.2.3 ECG ANALOG FRONT-END: AD8232 

The acquisition of the ECG signal is entrusted to an analog front-end that stands out as a 

leading solution in the wearable device market: the AD8232. This component, 

manufactured by Analog Devices, is specifically designed for single-lead ECG 

measurements, making it widely applicable in fitness and activity heart rate monitors, 

remote health monitors, and other types of biopotential signal acquisition [148]. 

The AD8232 is designed to extract, amplify and filter very low biopotential signals, also 

in the presence of noisy conditions, elevating the signal initially detected by the electrodes 

to a higher level, and providing an output signal that can be adequately sampled by the 

ADC placed at its output. 

Among its main features, first and foremost, there is an excellent trade-off between the 

quality of the acquired signal and energy cost, making it a perfect component for 

integration into the wearable device. Another important feature is the ability to easily 

modify the type of filtering applied to the detected signal. For instance, the AD8232 can 

implement a two-pole high-pass filter to eliminate motion artifacts and the electrode half-

cell potential. This filter is coupled and integrated with the amplifier's instrumentation 

architecture, allowing both a large gain and high-pass filtering in a single stage, thus 

saving space and cost. Furthermore, it is also possible to create a three-pole low-pass filter 

to remove additional noise, and the user can always select the frequency cutoff of all the 

filters to suit different types of applications. 

The schematic diagram is presented in Figure 3.5, appropriately sized to integrate the 

AD8232 into the wearable device. The inputs LA, RA, and RL correspond to the 3 

electrodes that come into contact with the fingers through the different pads used by the 

system for ECG signal acquisition, as previously explained.  
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The resistive-capacitive network serves as a filtering circuit and has been specifically 

sized to operate the AD8232 in the cardiac monitor configuration. 

 

 
Figure 3.5 – Schematic diagram of the AD8232 and the external resistive-capacitive network 

implemented on the PCB in accordance with the manufacturer's datasheet instructions related 

to the cardiac monitor configuration. 

 

This configuration is designed for monitoring the shape of the ECG waveform. It assumes 

that the patient remains relatively still during the measurement, and therefore, motion 

artifacts are less of an issue. Indeed, the AD8232 is configured as a second order bandpass 

filter, with respectively lower and higher cutoff frequencies of 0.5 Hz and 40 Hz. 

Moreover, the third electrode could be used for optimizing the commode-mode rejection 

following the working principle of the RLD circuit. In addition to 40 Hz filtering, 

operational amplifier stage is configured for a gain of 11, resulting in a total system gain 

of 1100. To optimize the dynamic range of the system, the gain level is adjustable, 

depending on the input signal amplitude (which may vary with electrode placement) and 

ADC input range. 
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3.2.4 GSR ANALOG FRONT-END 

The acquisition of the GSR signal is also carried out by the internal ADC of the 

microcontroller, which is placed at the output of a fully analog conditioning circuit 

designed specifically for skin conductance measurements. The circuit is suitable for the 

MIKROE-2860 GSR module, produced by MikroElektronika, which allows GSR 

measurements based on the detection made by two electrodes applied to a specific body 

area [87]. For design reasons, the circuit has been modified and reproduced on a PCB, 

allowing for space optimization suitable for use in wearable devices like the one under 

consideration. 

Figure 3.6 depicts the schematic of the analog front-end for GSR implemented on the 

PCB. 

 
Figure 3.6 – Electric schematic of the analog front-end for the acquisition of the GSR signal, 

integrated in the PCB of the realized system. 

 

It is possible to describe the working principle of the circuit by tracing the path that the 

signal (GSR IN) takes step by step from the input to the output of the circuit. A constant 

voltage is applied to the electrode located on one side of the finger (GSR +), resulting in 

a current flowing from the second one (GSR IN). Knowing the residual potential at this 

second electrode (i.e. voltage on resistor R1 terminals) it is possible to calculate the 

current flowing on it which is the same flowing on the skin resistance. A passive first 

order low-pass filter composed by resistor R2 and capacitor C2 limits the signal response 

with a cut-off frequency of 15.9 Hz. 
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The detected and filtered potential on R1 is therefore doubled by the non-inverting op 

amp amplifier circuit which, thanks to R4 and R3 resistors of equal value present in the 

feedback loop, has a fixed gain of 2, and decoupled from the rest of the front-end by a 

final buffer stage. Finally, the output of the circuit (i.e. the buffer output) is connected to 

the internal ADC of the microcontroller, which is able to properly sample the GSR signal. 

 

3.2.5 GYROSCOPE AND ACCELEROMETER SIGNALS: MPU6050 MODULE 

The MPU6050 is a complete inertial measurement unit, known for its solid performance 

in capturing acceleration and angular velocity data [149].  

In Figure 3.7 the electrical schematic of the MPU6050 is shown, which has been 

interfaced on the PCB according to the manufacturer's specifications. These 

specifications correspond to the configuration present on the development board of the 

component, commonly known as the GY-521 module. 

 
Figure 3.7 – Detail of the electrical schematic of the MPU-6050 module implemented on the 

PCB of the wearable device, sized according to the manufacturer's datasheet provisions. 
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This compact module integrates both a 3-axis accelerometer and a 3-axis gyroscope, 

making it an invaluable tool to be integrated into the realized device. In this work, the 

MPU6050 has been implemented in the system to acquire reliable acceleration signals 

along the three orthogonal axes (i.e., x, y, and z directions).  

The communication and data transfer are carried out, as in the case of the MAX30102, 

via the I2C protocol. Furthermore, the PCB implementation has significantly reduced the 

footprint of the sensor, effectively occupying a much smaller portion of the entire 

wearable device. Lastly, in order to align the sampling frequency with that of the PPG 

sensor and to ensure the highest fidelity in data capture, this module has been set with a 

sampling frequency of 1 kHz, so that motion data can be ready to acquire whenever the 

interrupt of the MAX30102 occurs. 

 

3.2.6 BLUETOOTH LOW ENERGY: HM-18 MODULE 

The BLE is a wireless communication protocol designed for short-range communication 

with low power consumption. One of its main advantages is the energy efficiency, making 

it ideal for battery-powered devices and applications where power consumption is a 

critical factor. Furthermore, the latest versions of the BLE protocol (i.e. BLE 5.0 or 

higher) allow for a significant increase in data transmission speed, reaching theoretical 

values of up to 2 Mbps, reason for which BLE is widely used in various fields, including 

healthcare, fitness, home automation, and wearables [146]. 

The HM-18 module, for instance, is a Bluetooth Low Energy module which integrates 

BLE 5.0 version and facilitates the integration of BLE capabilities into electronic devices, 

thanks to its low cost, reduced size, ease of use, and wide availability on the market [150]. 

It is based on the CC2640 IC chip, which is a microcontroller developed by Texas 

Instrument appositely designed to manage the BLE radio frequency transceiver, 

optimizing performance in terms of data rate and energy cost and supporting U-ART 

communication. 

In Figure 3.8, the top and bottom views of the HM-18 module (Figure 3.8a) and the 

electrical schematic (Figure 3.8b) illustrating the interconnection of the component on the 

PCB are shown. As observed from the pinout, the integration of the module proved to be 

extremely straightforward, as most of pins, following the manufacturer's instructions, are 

set by default to remain unconnected.  
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The lines for communication via the U-ART protocol are enabled, allowing the BLE 

module to receive processed data from the wearable system and send it to the PC (and 

vice versa). 

 
Figure 3.8 – (a) Top and bottom views of the BLE module HM-18 in its chip version, integrated 

into the wearable system. (b) Electrical schematic of the same module arranged on the PCB of 

the developed system. 

 

3.2.7 BATTERY MANAGEMENT SYSTEM 

The hardware discussion related to the design and development of the wearable system is 

completed by the presentation of the last electronic sub-block, BMS. As evident from 

Figure 3.1, the BMS essentially consists of two blocks: the charge controller circuit and 

the Li-ion battery. The charge controller manages the lithium battery in terms of charging, 

regulating the current based on the charge level and indicating through two LED status 

indicators whether the battery is in the charging phase or currently discharging. The 

lithium battery, for instance, ensures high-performance and long-lasting operation of the 

device. However, there is the need to adjust the voltage levels provided when charged, 

which usually hover around 3.7V (e.g., when the battery begins to significantly discharge 

and therefore needs to be recharged), to those required by the implemented system.  
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For this reason, there is an additional small electronic circuit that interfaces the battery 

with the microcontroller, allowing the voltage levels to be adjusted to those required by 

the latter, and thus from 3.7V to 5V. Finally, as it was important to optimize space on the 

PCB of the wearable device, the BMS has been divided into two boards, in order to obtain 

an external circuit that is responsible for charging the battery, and an internal circuit which 

handles the voltage level interfacing, along with the power state (on or off) of the device, 

managed by a switch. 

The electric schematics of both circuits are shown in Figure 3.9. The charger control 

circuit is TC4056 IC [151], an electronic component that manages the charging process 

using the power supplied by the USB-C connector and providing a constant charge 

through a pogo connector (POGO-1). This connector magnetically connects to the 

lithium-ion battery (POGO2) present in the wearable device and directly links the outputs 

of the charger circuit (Battery+ and Battery-) to the terminals of the battery. 

 
Figure 3.9 – Electrical diagram of the BMS of the system. In the top panel, the charge 

controller circuit, implemented on an external board. At the bottom, the charge reception 

circuit, including the voltage regulator and the power-on switch, implemented on the wearable 

device. 
 

In the bottom panel of Figure 3.9, the BMS section realized within the wearable device is 

shown. There is a switch located to the positive of the battery that allows for system 

activation. Specifically, if the switch is in position 1, it connects the positive terminal of 

the battery directly to the input terminal of the ADP7118AUJZ-3-3R7 component, a 

voltage regulator that stabilizes the battery voltage level at 3.3V [152]. All other switch 

positions disconnect the power, leading to the shutdown of the device. 
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3.3 FIRMWARE: STM32 AND OVERALL SYSTEM PROGRAMMING 

The system programming was carried out programming the firmware of the STM32 

microcontroller, which includes code snippets to initialize and program the rest of digital 

sensor and components, such as the MAX30102 PPG sensor, the MPU6050 inertial 

module, and the HM-18 BLE module. The rest of the sensor components, being purely 

analog, are managed by the internal ADC converter of the microcontroller, which samples 

the outputs of both GSR and ECG signal analog front-ends. 

The programming of the STM32 has been carried out using two proprietary development 

environments from STMicroelectronics, namely STM32CubeMX and STM32Cube IDE 

[153], [154]. The first allows interfacing with the microcontroller by setting the pinout, 

enabling peripherals, and configuring the features (e.g., timers, connectivity, computing, 

security and system core). Furthermore, a second panel allows the clock configuration, 

enabling the setting of the operating frequency for individual data buses, which in this 

case involve the I2C and U-ART protocols, along with the sampling frequency of the 

internal ADC and the microcontroller frequency. This permits a more thorough 

programming approach, taking into account the energy cost of the system as well. The 

STM32Cube IDE environment, on the other hand, allows writing the firmware related to 

the routine that has to be performed by the system, which will be loaded onto the 

microcontroller, automatically preloading the code segments defined earlier in 

STM32CubeMX.  

Finally, once the firmware generation is completed in both development environments, 

the code is loaded directly from STM32CubeIDE using a simple USB cable for 

programming the microcontroller on the development board. However, it is as well 

possible to directly program the microcontroller, by loading the firmware using the ST-

LINK, a debugger and programmer circuit produced by STMicroelectronics. 

Figure 3.10 displays the main screen of the STM32CubeMX development environment 

with a detailed view of the pinout for the STM32-L432KC and the enabled functionalities. 

The I/O peripherals have been configured to interface the microcontroller with digital 

sensors by enabling I2C (I2C1) and U-ART (USART1) communication lines, setting the 

maximum transmission speed, and so 400 kbit/s and 230400 bit/s, respectively. 

Additionally, to capture the synchronization signal from the PPG sensor, the interrupt 

features (NVIC) of pin PB5 were enabled, directly connected to the interrupt of the 

MAX30102, along with the timer register (TIM7) to maintain proper event timing.  
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In addition, the interrupt of the U-ART reception pin (PB7) is also enabled so that, as will 

be explained later, it is possible to start and stop the acquisition at any desired moment, 

regardless of the interrupt from the PPG sensor. The internal ADC was also enabled in 

continuous mode with a conversion count of 2 to adequately acquire analog signals from 

the GSR and ECG analog front-ends (ADC1_IN2 and ADC1_IN6, respectively). The 

ADC was set to 10-bit resolution, applicable to both signals, and a sampling frequency of 

1 kHz. After multiple tests, it has been necessary to activate the direct memory access 

(DMA) on both the ADC and U-ART lines to allow quick access to ADC samples and 

facilitate data transmission via BLE.  

 
Figure 3.10 – At the top, the main view of the STM32CubeMX development environment 

displaying the pinout and configuration of the STM32-L432KC microcontroller programmed for 

the system. At the bottom, a detailed view of the enabled microcontroller functionalities. 

 

Finally, the clock frequency of the microcontroller has been set to 80 MHz, which is the 

maximum operative frequency, in order to ensure high performance in managing 

peripherals and executing tasks within the system. 

18CAP 3



Development of Wearable Technologies and Biosignals Processing Methods for the Assessment of Physiological 
States.                          Gabriele Volpes 
 

 69 

Once the microcontroller configuration is complete, STM32CubeMX generates the code, 

which consists of parts intended for compilation by the programmer (i.e., the user code), 

along with pre-compiled parts related to the microcontroller settings. Successively, the 

user code can be compiled in the STM32CubeIDE environment.  

For this application, the code has been written using the Hardware Abstraction Layer 

(HAL) functions, derived from the corresponding proprietary libraries by 

STMicroelectronics, that are specifically developed to optimize operations for STM32 

microcontrollers in terms of computational costs and power consumption [155]. 

Additionally, the “string.h” and “stdio.h” libraries were employed for string operations 

and to optimize the management of I/O peripherals, respectively. 

The code is designed to define a finite state machine, starting from a default state, waiting 

for instructions from the U-ART port (i.e., the BLE module) to switch to the operational 

state, in which signal acquisition and data exchange occurs.  

The default state is the one the system enters as soon as it is powered on, and a series of 

operations occur sequentially to initialize the two I2C sensors and the BLE module. The 

initialization process has been designed starting from the programming of the digital 

devices, thus considering the register structure of the MAX30102 and MPU6050, and the 

exchange of AT commands for setting up the BLE module. In particular, the initialization 

routine of the MAX30102 involves setting the registers to enter the defined SpO2 mode, 

where the dual acquisition of the PPG waveform with both red and infrared wavelengths 

occurs, also setting a sampling frequency of 1 kHz, and enabling the signaling of the 

completed acquisition through the interrupt pin. Similarly, the MPU6050 is programmed 

to provide gyroscope signals (Gx, Gy, and Gz) and accelerometer signals (Ax, Ay, and Az) 

at a sampling rate of 1 kHz, in order to have information regarding the subject's movement 

at the same temporal resolution as the previous signals. Finally, the BLE is initialized by 

sending an AT command on the U-ART port to set the bitrate to its maximum, i.e., 230400 

bits/s, making it compatible with the same speed set on the corresponding U-ART lines 

of the microcontroller.  

The operational state is enabled by sending a keyword from the GUI, which is transmitted 

to the BLE module in the system. Specifically, the arrival of a message via U-ART 

triggers corresponding interrupt routine of the system, where the message is decoded and 

interpreted.  
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There can be two messages which indicate the start and the end of acquisition, 

respectively. In the case of the start instruction, the system immediately transitions to the 

operational state; otherwise, it returns to the default state and waits for a new message 

from the BLE. 

The operational state is characterized by a series of tasks, which can be summarized in 

the sequential execution of the following subpoints: 

I. Enable the interrupt pin of the microcontroller connected to the corresponding pin 

of the MAX30102 and send an I2C instruction to initiate acquisition by the 

MAX30102; 

II. Start continuous mode acquisition by the ADC for GSR and ECG signals; 

III. Send an I2C instruction to initiate acquisition by the MPU6050; 

IV. Wait for the interrupt signal from the MAX30102; 

V. Save the measurements obtained by each module in a buffer with a size of 248 

bytes, matching the maximum size of data packets handled by the BLE HM-18; 

VI. Upon completing the buffer, send the data packet via U-ART to the HM-18 

module, which sends the entire packet to the GUI; 

VII. The routine restarts from point IV. 

Once in the operational state, the system executes the above-described tasks for an 

indefinite period until the stop signal is received. The presence of two interrupts enabled 

simultaneously (i.e., MAX30102 and U-ART reception channel) led to the need to mask 

the interrupts to avoid putting the system in an indefinite state in the event of the 

concurrent presence of both signals. For this reason, the U-ART interrupt was assigned a 

higher priority level and can therefore interrupt the acquisition routine at any time, 

returning the system to the default mode. 
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3.4 SOFTWARE 

Once the electronic device development phase, together the definition of the operating 

modes and data exchange type, have been completed, it has been necessary to consider 

the part related to the software implementation for the device control and management, 

as well as the processing and analysis of the measurements made by the device. To 

perform all these operations, two distinct software solutions have been implemented. 

These solutions enable the management of the remote device through the development of 

an ad-hoc realized GUI for the wearable system and the generation of code capable of 

analyzing measurements within a specific time window, extracting physiological indices 

from the examined parameters. Both solutions, described in the following subsections, 

have been developed in the MATLAB development environment. 

 

3.4.1 MATLAB BASED GRAPHIC-USER INTERFACE 

The MATLAB GUI has been designed with the aim to be used as a stand-alone 

application, allowing an easy installation and use directly on the user’s computer. For data 

transfer, it exploits BLE communication between the computer and the wearable system, 

enabling remote device management, which is achieved through the transmission of 

keywords that facilitate the transition between the different states, as previously 

described. Once the acquisition is started, the interface allows real-time visualization of 

all the acquired biosignals. Additionally, leveraging the existing MATLAB libraries for 

biomedical data processing and analysis, it also allows various real-time operations that 

can be performed with reduced computational costs, such as biosignal filtering and 

extraction of key physiological indices.  

The starting window of the application is depicted in Figure 3.11. The application screen 

features three mains button, namely "Connect BLE," "Start acquisition," and "Stop 

acquisition," used for system connection and management. Specifically, pressing the 

"Connect BLE" button the application initiates the search and pairing routine to the 

device, which ends when the BLE connection is established, indicated by the dedicated 

green indicator labeled "Status."  
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Before starting the acquisition process, it is necessary to set the sampling frequency of 

the device by selecting the desired frequency from the dropdown menu at the top right of 

the application screen (default set to 500 Hz but adjustable up to 1 kHz). Afterwards, it is 

possible to start the acquisition by pressing the “Start acquisition" button, which sends 

the keyword to enter the operational mode. Then, the windows showing in real-time the 

acquired signals, updated every second. Moreover, if the two checkboxes in the top right 

corner, named Gyro/Acc data and PPG/ECG peaks, are also checked, it is possible to 

show as well the signals from the inertial module and indicate in real time the markers 

for the peaks of PPG and ECG signals, respectively.  

 
Figure 3.11 – Graphical user interface created for the control and management of the wearable 

device, implemented using the MATLAB App Designer development environment. 

 

19CAP 3
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In the "Physiological Indices" section, output boxes have been set up to provide the user 

with key physiological indices extracted in real-time (i.e., respiration rate, ECG and PPG 

HR, and SpO2 levels). The application features are completed by the possibility to save 

the acquired data in comma-separated values (CSV) file. 

 

3.4.2 OFFLINE DATA PROCESSING 

As previously described, the acquired data are saved by the GUI in a CSV file consisting 

of a matrix composed of 10 columns, containing the infrared PPG, red PPG, ECG, GSR, 

Ax, Ay, Az, Gx, Gy, and Gz signals, respectively. The examined data are stored in raw 

format to allow the implementation of different filtering and processing techniques, 

depending on the types of data analysis to be performed on the signals. The CSV files can 

be directly opened using the MATLAB code developed for offline data processed. In 

detail, the filtering, processing, and analysis of the biomedical data are carried out 

separately depending on the considered biosignal. Due to the distinct characteristics in 

terms of shape and content, each biosignal needs to be treated with specific filtering 

techniques. In particular, the raw ECG signal was processed using a zero-phase fourth-

order bandpass Butterworth digital filter, with lower and upper cutoff frequencies set at 

0.1 Hz and 20 Hz, respectively. Subsequently, a Pan-Tompkins based simplified algorithm 

was employed to detect the R-peaks in the ECG trace [156]. The PPG signals (both red 

and infrared) were processed using a zero-phase fourth-order lowpass Butterworth digital 

filter, with a lower cutoff frequency of 8 Hz. A peak detection algorithm was implemented 

to identify the maxima and minima of the two signals. Lastly, the same filter, but with a 

cutoff frequency of 4 Hz, was also utilized for the GSR signal.  

Starting from the ECG signal, RR time series were extracted by considering the temporal 

distance between two consecutive R-peaks of the QRS complex. Similarly, PP time series 

were extracted by considering the temporal distance between two consecutive minima of 

the PPG waveform, detected using both red and infrared wavelengths [103].  
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Before performing frequency domain analysis, physiological time series were 

preprocessed applying a high-pass AR filter (cut-off frequency of 0.0156 Hz) and 

normalizing to zero mean and unit variance. In this work, the non-parametric Blackman-

Tukey method has been implemented to obtain the power spectrum of the time series 

[157], and the LF and high-frequency HF power contents were evaluated by integrating 

the distribution in the ranges 0.04-0.15 Hz and 0.15-0.4 Hz, respectively. These power 

values have been used to obtain the ratio between the LF and HF contents. The algorithms 

and methods described in Chapter 2 were implemented in the form of code snippets and 

dedicated functions so that, once the filtering procedures are completed, the analysis of 

the signals and the extraction of the corresponding physiological indices can be 

performed. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 
 
 
 

4.1 OVERVIEW AND STRUCTURE OF THE CHAPTER 

In this chapter, the results of the research conducted within the scope described by the 

thesis are collected and presented. This is done by dividing the chapter into four sections 

that discuss the results obtained using the methods introduced in the Chapter 2, 

implementing data analysis algorithms on biosignals recorded employing commercial 

biomedical devices, portable devices developed in the laboratory during the Ph.D. 

research period and, finally, the realized ring-shaped wearable system herein presented. 

In detail, it will be discussed: the implementation of ST and UST analyses on 

cardiovascular series, the extraction of the respiratory signal from the PPG signal, the 

acquisition of the GSR signal and its use for discriminating stressful situations, and 

finally, the use of the realized wearable device for detecting changes in physiological 

states.  

Each subsection follows a predefined structure, consisting of an initial part where the aim 

is defined and the work is briefly described. Subsequently, an experimental protocol 

section clarifies to the reader the type of biomedical data acquired and the methods (i.e., 

the measurement protocol used, together with the instrumentation used, if different from 

the already described wearable device). This is followed by the results section, where the 

findings of the conducted analyses are presented, and finally, the discussion of the results. 

If not specified, the processing data analyses are carried out using the same methodology 

described in the Methods section of Chapter 2 and in the offline data processing paragraph 

of Chapter 3. 

As the UST analysis proves to be of fundamental importance in the application context 

of wearable devices, it was deemed appropriate to dedicate a significant portion of the 

research to its implementation.  
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For this reason, a significant effort was made to compare the HRV indices computed 

through UST analysis to those achieved through ST standard reference, using an existing 

database that also includes levels of arterial BP, which, although not thoroughly described 

as a signal in this work, has proven to be very useful to analyze and is therefore presented 

alongside the analysis of other physiological signals of interest. Once the UST analysis 

for the detection of physiological states was validated, it was implemented again on the 

data acquired by the developed wearable device to confirm the previously obtained 

results.  

 

4.2 FEASIBILITY OF ST AND UST ANALYSIS ON CARDIOVASCULAR 
VARIABILITY SERIES FOR ASSESSING PHYSIOLOGICAL STATES 

Herein, a comparison between UST and ST indices extracted in the time and information 

domains is performed on a dataset composed of systolic arterial pressure (SAP) and RR 

time series acquired on a population of healthy subjects in rest and when undergoing 

orthostatic and mental stress. In this case, the acquisitions of both signals were made using 

commercial biomedical instrumentation, the same type typically found in hospital 

environments and used by specialized personnel for patient monitoring and vital function 

assessment. While such instrumentation offers the significant advantage of having been 

widely used and certified for biomedical and clinical measurements, it still poses the 

major limitation of the invasiveness of measurements (as in the case of the ECG signal) 

and the overall bulkiness (i.e., weight and size) of all the equipment, such as electrodes, 

sensors, cables, and central computers for signal analysis and display. On the other hand, 

this is precisely one of the main themes addressed in this thesis. For this reason, it was 

deemed important to firstly implement the data analysis algorithms on biosignals 

extracted from commercial biomedical equipment, in order to subsequently use the 

obtained results as a reference to confirm the same findings on the data analyses 

performed from the acquisitions of the wearable device, as will be reported later in this 

chapter.  

Standard cardiovascular variability time-domain indices are computed, together with 

entropy-based measures able to assess the regularity and complexity of cardiovascular 

dynamics, employing either a faster linear parametric estimator or a more reliable but 

time-consuming model-free method based on nearest neighbor estimates, which from 

now on are called lin and knn estimators, respectively.  
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Indeed, the present work aims at evaluating the extent to which the loss of physiological 

information due to UST reduced time series length can represent a good tradeoff for 

extracting physiological indices with lower real-time processing and storage costs, 

suitably for wearable devices. Moreover, while several works have focused on ultra-short-

term HRV [57], [119], [158], [159], there are no previous studies performing a UST blood 

pressure variability analysis.  

The analysis has been carried out by reducing the time series length from 300 (short-term, 

≈5 min) to 60 samples (≈1 min), in steps of 60, to assess the loss of information at 

decreasing window length and to verify whether the shortest length is still able to 

discriminate the transition from rest to stress. 

 

4.2.1 EXPERIMENTAL PROTOCOL 

Analyses were carried out on a historical dataset belonging to Comenius University and 

previously employed for assessing the effects of orthostatic and mental stress on 

cardiovascular dynamics. Data have been acquired from 61 healthy young volunteers (24 

males, 37 females) aged 17.5 years ±2.4 years, normotensive, and with a normal body 

mass index (BMI = 19 ÷ 25 kg m−2) [160], [161]. All participants signed a written 

informed consent form before taking part in the study, also requiring a parental or legal 

guardian permission to participate in the study when the subject was a minor (i.e., less 

than 18 years of age). All procedures were approved by the Ethical Committee of the 

Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.  

Subjects were asked not to take substances influencing the autonomic nervous system and 

cardiovascular system activities [160], [161]. Physiological signals recorded on the 

volunteers consisted of (i) ECG signal acquired through a horizontal bipolar thoracic lead 

(CardioFax ECG-9620, NihonKohden, Tokyo, Japan), (ii) continuous arterial blood 

pressure recorded on the finger through the volume-clamp method (Finometer PRO, 

FMS, Amsterdam, The Netherlands). The first device, indeed, allows for ECG signal 

acquisitions using wired electrodes, which are placed in contact with the skin by means 

of clips (peripheral ECG) and adhesive electrodes (precordial ECG). The second one, on 

the other hand, enables non-invasive acquisition of arterial pressure using a clip worn on 

the subject's index finger.  

 



Development of Wearable Technologies and Biosignals Processing Methods for the Assessment of Physiological 
States.                          Gabriele Volpes 
 

 78 

Both instruments are then connected via cables to a central computer, which facilitates 

data processing and real-time display of biosignals waveforms and main extractable 

indices. All signals were acquired synchronously with a sampling frequency of 1 kHz. 

Subjects were positioned on a motorized tilt table and a restraining strap was placed at 

the thigh level to ensure the safety and stability of the subject during the movement of the 

tilt table. Signals were acquired during a measurement protocol consisting of the 

following four phases, schematically represented in Figure 4.1a: 

• A resting condition (R1) with the subject laying in the supine position for 15 min, 

in order to stabilize the physiological signals on a baseline level; 

• A head-up tilt (T) test aimed at evoking mild orthostatic stress by inclining the 

motorized table by 45 degrees for 8 min; 

• Another resting condition (R2) with the subject laying in the supine position for 

10 min, in order to restore the physiological parameters to their baseline values; 

• A 6 min long mental arithmetic (M) task aimed to evoke cognitive load (i.e., 

mental stress), during which subjects were asked to mentally calculate the sum of 

three digits in the shortest possible time, indicating whether the result was an even 

or odd number. 

During the whole measurement protocol, the subjects were asked to avoid any movement 

or speaking, to decrease artifacts occurrence and minimize the non-stationarities during 

recording of the signals.  

Initially, time series of 300 heartbeats were extracted according to the standard of short-

term analysis. The time series duration varied in the different conditions according to the 

heart rate, being on average ≈4.5 min during rest conditions, 3.5 min at T, and 4 min 

during M. Afterwards, in order to perform UST analysis of cardiovascular parameters, 

shortened time series were obtained by reducing the series length each time of 60 samples 

down to a minimum of 60 heartbeats. The resulting UST time series were composed of 

240, 180, 120, and 60 samples, selected starting from the beginning of the reference ST 

series, as schematized in Figure 4.1b. 
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Figure 4.1 – (a) Schematic illustration of the experimental protocol, including baseline resting 

(R1), orthostatic stress (T), second resting (R2) and mental stress (M). Dashed boxes indicate 

the windows taken into account with regard to short-term (ST, 300 points) analysis. (b) 

Representative RR and SAP time series, extracted respectively from ECG and BP recordings, 

which have been investigated through univariate analysis performed after ST (red arrow) and 

ultra-short-term (UST, 240 to 60 points, blue arrows) time window segmentation. 

 

4.2.2 STATISTICAL ANALYSIS 

Sstatistical analyses have been carried out on distributions of time–domain and entropy 

measures obtained in the four phases (R1, T, R2, M) on both RR and SAP time series. 

Given that the normality of distributions for the analyzed indexes was verified according 

to the Kolmogorov–Smirnov test, the parametric Student’s t-test was used to perform the 

pairwise comparisons, with a significance threshold set to 𝑝<0.05. Specifically, the 

statistical tests were carried out to compare (i) orthostatic and mental stress conditions 

with the preceding resting states (i.e., T vs. R1 and M vs. R2) and (ii) ultra-short-term and 

short-term distributions (i.e., UST vs. ST).  
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However, the mere use of statistical tests has often been considered not sufficient for 

assessing the feasibility of the use of HRV indices evaluated through different techniques 

in studies where statistical tests have been complemented by other approaches, e.g., 

correlation analysis, Bland-Altman plots, or effect size [31], [119], [162], [163]. In this 

work, correlation analysis was carried out through the computation of the squared Pearson 

correlation coefficient 𝑟$ [164] to evaluate the strength of the linear relationship between 

each UST and the ST reference distribution, in order to quantify to what extent their 

agreement decreases when reducing the time series length. According to Shaffer et al. 

[118], [158], who selected a conservative criterion for the Pearson correlation coefficient 

(r ≥ 0.90), herein is set a threshold for the squared coefficient equal to 𝑟$ = 0.81 to 

establish the presence of a strong agreement between indexes derived from UST and ST 

analysis. 

Moreover, for all the time and information domain indices and time series length, it has 

been assessed the difference between the distributions during stress and during rest by 

computing the effect size. Measures of effect size represent a widely employed and useful 

tool to describe the strength of the association between two distributions, providing a 

description of the size of observed effects possibly independent of misleading influences 

on sample size, and thus can complement statistical tests that instead assess significance 

[165]. Large but nonsignificant effect sizes may indeed suggest that other statistical tests 

with greater discriminatory power should be employed, while small but significant effects 

due to large sample sizes can be indicative of overvaluing the observed effect. In this 

thesis, the effect size has been evaluated through the Cohen’s d measure as the difference 

between the means of the two distributions divided by the pooled standard deviation 

[166].  

Generally, the effect size is deemed as small, medium, and large, if the absolute value of 

d is lower than 0.2, between 0.2 and 0.5, or higher than 0.8, respectively. The Cohen’s d 

has been computed between stress and rest conditions (i.e., T vs. R1 and M vs. R2) for 

each time series length, in order to quantify whether and to what extent the strength of 

the relationship between the two distributions changes if compared to the ST reference. 
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4.2.3 RESULTS 

Figure 4.2 shows the comparison of ST (N = 300) and UST (N < 300) analyses performed 

for the time-domain indexes (MEAN, SDNN, RMSSD) computed over the RR time series 

across the 61 subjects in the four considered phases. For each panel, the top row subplot 

shows the boxplot distributions of the indices, the central one being the Cohen’s d 

measure (in absolute value), and the bottom one being the Pearson squared correlation 

coefficient. Results show a statistically significant decrease of all the three indexes during 

T vs. R1 and during M vs. R2 phases for the ST and for all the UST time window lengths 

taken into account. With regard to MEAN, statistically significant differences between 

UST and ST distributions are reported only for R2 already from N = 240 and for shorter 

time series (Figure 4.2(a2), top subplot). As regards SDNN, statistically significant 

differences have been detected comparing all the UST distributions to ST reference during 

head-up tilt (Figure 4.2(b1), top subplot).  

On the contrary, statistically significant differences have been reported only in the shortest 

UST distribution (N = 60) for both R2 and M (Figure 4.2(b2), top subplot). No statistically 

significant differences have been reported for RMSSD. Cohen’s d measures (central 

subplots in Figure 4.2) computed between stress and rest reported a medium-to-high 

effect size (|d| ≥ 0.7) for all the three indices, but lower for RMSSD during mental stress 

(|d| ≈ 0.5). Moreover, in all the cases the Cohen’s d showed higher values with regard to 

postural stress discrimination rather than mental stress. Furthermore, d remains almost 

constant at decreasing time series length, except for SDNN assessed during mental stress 

(Figure 4.2(b2)), in which it decreases with N. The squared Pearson correlation 

coefficient (bottom panels in Figure 4.2) computed between ST and UST distributions is 

very high and almost always above the threshold (𝑟$>0.81) for MEAN and RMSSD 

indices for all the time window lengths, except for RMSSD during T for N = 60.  

A considerable decrease in the correlation is reported for the SDNN index, going below 

threshold for T when N = 120 (Figure 4.2(b1), bottom panel), and for both R2 and M 

when N = 60 (Figure 4.2(b2), bottom panel). 
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Figure 4.2 – Boxplot distributions (top subplots) of time-domain indexes, i.e., (a) MEAN, (b) 

SDNN and (c) RMSSD calculated from RR time series during R1 (light gray) and T (light blue), 

(.1 panels), and during R2 (dark gray) and M (orange) (.2 panels) phases. Statistical tests: #, p 

< 0.05, T vs. R1 or M vs. R2; *, p < 0.05, ST vs. UST. Central subplots: Cohen’s d (in absolute 

value) evaluated between each stress condition and the previous rest phase (i.e., R1-T and R2-

M) for all the considered time series lengths. Bottom subplots: squared Pearson correlation 

coefficients computed between a given UST distribution and the ST reference, with a threshold 

of r2=0.81 (dotted gray line). 

 

Figure 4.3 shows the comparison of ST (N = 300) and UST (N < 300) analyses regarding 

time-domain indexes (MEAN, STD) of SAP time series across the 61 subjects in the four 

considered phases.  
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With regard to ST, MEAN decreases significantly during T if compared to R1 (Figure 

4.3(a1), top subplot), while it increases significantly during M if compared to R2 (Figure 

4.3(a2), top subplot); opposite trends are reported with regard to STD (Figure 4.3(b1,b2), 

top subplots). For both indexes, results show statistically significant differences for T vs. 

R1 and for M vs. R2 phases for all the UST time window lengths taken into account, 

except for T vs. R1 with regard to the shortest series length (N = 60) only for STD (Figure 

4.3(b1), top subplot).  

Regarding MEAN, statistically significant differences have been reported comparing 

UST vs. ST distributions during head-up tilt condition for N = 240 and shorter (Figure 

4.3(a1), top subplot); on the other hand, no statistically significant differences have been 

reported with regard to R1 and to both M and R2 conditions (Figure 4.3(a2), top subplot)). 

As regards STD, statistically significant differences have been reported comparing UST 

vs. ST distributions for N ≤ 120 and N ≤ 180, respectively, for R1 and T (Figure 4.3(b1), 

top subplot)), for N ≤ 240 for R2, and for just N = 60 for M (Figure 4.3(b2), top subplot)). 

Cohen’s d values evidence a high effect size (|d| > 0.8), except for STD index during R1-

T transition (Figure 4.3(b1), central subplot)) in which there is a medium-low effect size 

(|d| ≈ 0.5). An overall decrease in effect size is observed with the sample size N, especially 

for STD.  

The correlation analysis between UST and ST distributions reported a high squared 

correlation coefficient (r2>0.81) with regard to MEAN distributions (Figure 4.3(a1,a2), 

bottom subplots). On the other hand, with regard to STD, the correlation coefficient 

strongly decreases when shortening N, going below the threshold for N = 120 for R1, R2 

and M and for N = 60 for T (Figure 4.3(b1,b2), bottom subplots)). 
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Figure 4.3 – Boxplot distributions (top subplots) of time-domain indexes, i.e., (a) MEAN and (b) 

STD calculated from SAP time series during R1 (light gray) and T (light blue), (.1 panels), and 

during R2 (dark gray) and M (orange) (.2 panels) phases. Statistical tests: #, p < 0.05, R1 vs. T 

and R2 vs. M; *, p < 0.05, ST vs. UST. Statistical tests: #, p < 0.05, T vs. R1 or M vs. R2; *, p < 

0.05, ST vs. UST. Central subplots: Cohen’s d (in absolute value) evaluated between each stress 

condition and the previous rest phase (i.e., R1-T and R2-M) for all the considered time series 

lengths. Bottom subplots: squared Pearson correlation coefficients computed between a given 

UST distribution and the ST reference, with a threshold of r2=0.81 (dotted gray line). 

 

Figure 4.4 and Figure 4.5 depict the results of the information domain analysis carried 

out by computing SE, DE, and CE indices through both lin and knn estimators for RR and 

SAP time series, respectively, across the 61 subjects for each of the four physiological 

conditions (R1, T, R2 and M). For each panel, the top row subplot shows the boxplot 

distributions of the indices, the central one the Cohen’s d measure (in absolute value), and 

the bottom one the Pearson squared correlation coefficient. 
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Figure 4.4 – Results of information domain analysis on RR time series. Boxplot distributions 

(top subplots) of ST and UST indices of (a) SE, (b) DE and (c) CE calculated using both lin (.1 

and .2) and knn (.3 and .4) estimators during R1 (light gray) and T (light blue) (.1 and .3), and 

during R2 (dark gray) and T (orange) (.2 and .4) phases. Statistical tests: #, p < 0.05, T vs. R1 

or M vs. R2; *, p < 0.05 ST vs. UST. Central subplots: Cohen’s d (in absolute value) evaluated 

between each stress condition and the previous rest phase (i.e., R1-T and R2-M) for all the 

considered time series lengths. Bottom subplots: squared Pearson correlation coefficients 

computed between a given UST distribution and the ST reference, with a threshold of r2=0.81 

(dotted gray line). 
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Figure 4.5 – Results of information domain analysis on SAP time series. Boxplot distributions 

(top subplots) of ST and UST indices of (a) SE, (b) DE, and (c) CE calculated using both lin (.1 

and .2) and knn (.3 and .4) estimators during R1 (light gray) and T (light blue) (.1 and .3), and 

during R2 (dark gray) and T (orange) (.2 and .4) phases. Statistical tests: #, p < 0.05, T vs. R1 

or M vs. R2; *, p < 0.05 ST vs. UST. Central subplots: Cohen’s d (in absolute value) evaluated 

between each stress condition and the previous rest phase (i.e., R1-T and R2-M) for all the 

considered time series lengths. Bottom subplots: squared Pearson correlation coefficients 

computed between a given UST distribution and the ST reference, with a threshold of r2=0.81 

(dotted gray line). 
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The results of the analyses carried out on RR time series are shown in Figure 4.4. For 

both orthostatic and mental arithmetic conditions, the shift from rest to stress highlights 

significant decrease of SE, DE and CE measures computed with both lin and knn 

estimators. This variation is most appreciable under the postural stress, in fact statistically 

significant variations are always reported comparing T vs. R1, for both ST and all the 

UST distributions and for both estimators. On the other hand, using the lin estimator 

statistically significant variations are reported comparing M vs. R2, for both ST and 

almost all the UST distributions for all measures (except with regard to CE for N = 60), 

but only for SE (Figure 4.4(a4)) using the knn approach. SE appears to decrease while CE 

and DE tend to increase when decreasing the time series length N. This result is more 

evident using the knn estimator, in fact statistical analysis carried out between UST and 

ST distributions highlighted significant differences starting from time series of length N 

= 240 for almost any measure computed through the model-free approach. For DE and 

CE computed through lin estimator, the statistically significant differences between UST 

and ST at T occur only for N ≤ 180 and N ≤ 120, respectively.  

The Cohen’s d values obtained for lin estimator are higher than for the knn one (see 

central subplots in each panel in Figure 4.4). High effect sizes are reported for CE and 

DE during T, but medium values instead during M; with regard to the SE index, a 

medium-high effect size is assessed for both physiological state changes and for both 

estimators. In any case, d appears almost constant at decreasing N (down to N = 120), 

while a more marked decrease is observed when going to N = 60. Finally, the squared 

Pearson correlation coefficient (see bottom subplots in each panel in Figure 4.4) 

decreases, shortening the time series length N, and still largely shows a high degree of 

correlation (above the threshold) down to N = 120. 

As regards entropy measures computed on the SAP time series reported in Figure 4.5, 

both estimators (i.e., lin and knn) and analysis approaches (i.e., ST and UST) show an 

increase in SE (Figure 4.5(a1,a3), top subplots) as well as a decrease in DE (Figure 

4.5(b1,b3), top subplots) and CE (Figure 4.5(c1,c3), top subplots) from R1 to T, and, 

conversely, a decrease in SE (Figure 4.5(a2,a4), top subplots) and an increase in DE 

(Figure 4.5(b2,b4), top subplots) and CE (Figure 4.5(c2,c4), top subplots) from R2 to M.  
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Nevertheless, while differences between M and R2 distributions are always statistically 

significant, the comparison between T and R1 evidenced statistical significance only for 

lin estimation of CE using time series no shorter than 120 samples, and for SE obtained 

with both estimators and N ≤ 240. Regarding the comparison between ST and UST 

analyses, for both estimators and physiological state changes, CE and DE values increase 

as the time series length decreases, whereas the SE decreases more slowly. Statistical 

analysis highlighted significant differences already from the first window length (N = 

240) for almost all the information indices obtained with both estimators during R2 and 

M, while overall this is true for T vs. R1 in any cases only for shorter time series (N < 

180). The only exception is the knn estimation of SE, for which no significant differences 

are found between ST and UST analysis. The effect size assessed through Cohen’s d 

(Figure 4.5, central subplots in each panel) is always medium-low, except for SE index 

for M vs. R2, and overall decreases in absolute value when shortening the series length. 

The correlation analysis between UST and ST distributions (Figure 4.5, bottom subplots 

in each panel) shows that the squared Pearson’s correlation coefficient decreases when 

reducing time series length, still reporting values higher than the threshold (𝑟2=0.81) for 

almost all indices for N ≥ 180 (often even for N = 120), except for the SE estimated with 

the knn approach, for which 𝑟2 severely drops already for N = 240 (Figure 4.5(a3,a4), 

bottom subplots). 

Finally, it has been reported the results relevant to the computational times required for 

the calculation of the entropy-based measures, performed using both estimators. In order 

to compare ST and UST analysis times, we have selected N = 120 samples as UST time 

series length, since the previous results highlighted that this is the minimum length which 

overall guarantees a very good agreement between ST and UST distributions. The average 

computation time of all the entropy measures on 488 iterations (two time series in four 

different physiological conditions for 61 subjects) was 0.24 ms and 5.87 ms for lin and 

knn on ST 300-samples time series, respectively, and 0.17 ms and 1.90 ms on UST 120-

samples time series. Such computational times were obtained on a computer equipped 

with an Intel Core i7-11700K CPU (3.60 GHz), 64 GB RAM, 512 GB SSD, Windows 11, 

MATLAB R2021b. The computational times are similar for RR and SAP series and do 

not vary as well with the protocol phase. Moreover, while computational times remain 

almost constant as time series length decreases with regard to lin, they strongly decrease 

at shortening N with regard to model-free estimation. 



Development of Wearable Technologies and Biosignals Processing Methods for the Assessment of Physiological 
States.                          Gabriele Volpes 
 

 89 

4.2.4 DISCUSSION 

Time-domain HRV results (Figure 4.2) are in agreement with widely recognized findings 

in the literature which evidence an increased heart rate and a decrease of variability 

(SDNN) and RMSSD during stress conditions, in particular after head-up tilt [31], [167], 

[168]. In both stress conditions, but less markedly during mental stress, these trends are 

related to an enhanced sympathetic and reduced parasympathetic activity, resulting from 

an SNS activation and a PNS withdrawal which cause a shift in the sympathovagal 

balance [168], [169], [170]. In particular, the reduced parasympathetic contribution is 

evidenced by the decreased RMSSD (Figure 4.2(c1,c2)) which has been usually related 

to PNS activity [49], [106]. Nevertheless, physiological mechanisms involved during 

orthostatic and arithmetical stress are different, as demonstrated by the different SAP 

MEAN and STD trends in these two stress conditions (cf. Figure 4.3(a2) vs. Figure 

4.3(a1) and Figure 4.3(b2) vs. Figure 4.3(b1)). This is in agreement with previous studies 

highlighting the presence of a closed-loop regulatory mechanism between RR and SAP 

[105], [171], [172]. The decrease of the mean SAP together with the increase of its 

variability during postural stress (Figure 4.3(a1,b1)) have been related to the decreased 

venous return [173], [174], [175]. The resulting cardiac filling associated with SAP 

decrease leads to baroreflex activation and to vasoconstriction during postural stress, 

which in turn produce an increased heart rate [173], [174], [175], [176]. The opposite 

trends reported for mental stress (cf. Figure 4.3(a2) vs. Figure 4.3(b2) can be related to 

cortical mechanisms eliciting vasomotor reactions and are reflected by SAP changes 

[168], [177], [178]. 

The shift of the autonomic balance to the sympathetic branch caused by orthostatic and 

cognitive challenges produces a simplification of the cardiac dynamics, with reduced 

information contained in the RR time series (Figure 4.4(a1-a4)), which has been linked 

to the emergence of oscillations at the frequency of the Mayer waves [31], [161]. The 

elicited stress conditions lead also to a decrease in complexity, and thus lower CE and DE 

values using both linear and non-linear estimators (Figure 4.4(b1-c4)). Physiologically, 

this indicates a regularizing effect on the cardiac dynamics produced by sympathetic 

activation and vagal withdrawal already demonstrated in several previous works also on 

the same dataset [31], [110], [125], [179], [180]. 
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The entropy-based SAP analysis revealed opposite trends for T and M compared to the 

preceding resting condition (cf. Figure 4.5 right vs. left panels), confirming the different 

response to postural and mental stress. Mental challenge produced an SE decrease and 

increased complexity, while opposite trends have been observed for postural stress. These 

findings evidence that SAP dynamics are less affected by orthostatic stress than by 

cognitive load. Physiologically, this can be ascribed to the larger involvement of upper 

brain centers in controlling the vascular dynamics and resistance associated with 

sympathetic activation. A relatively complex pattern of vascular resistance changes 

results in an augmented SAP dynamical complexity, as demonstrated by previous works 

[125], [161], [177], [180], [181]. The trend towards lower SAP complexity values during 

tilt may be related to the synchronization of peripheral vascular activity due to 

sympathetic activation, contributing to regularizing the fluctuations of SAP [182]. 

Comparing the entropy measures obtained through the two estimators, it has been found 

lower values using knn than using the lin approach, especially with regard to RR and 

under rest and mental stress conditions. The reasons of such a difference are difficult to 

explain and may be related to several factors, ranging from local nonlinearities or 

nonstationarities to bias effects evident especially for the knn estimator and due to the 

difficulty of working on high-dimensional spaces [183]. Nevertheless, for the majority of 

measures both estimators exhibit concordant changes and are equally able to distinguish 

between rest and stress conditions. There are three exceptions, in which the knn is unable 

to detect differences, while lin does, i.e., CE for RR comparing M vs. R2 (Figure 4.4(c4) 

vs. Figure 4.4(c2)), DE for RR comparing M vs. R2 (cf. Figure 4.4(b4) vs. Figure 

4.4(b2)), and CE for SAP comparing T vs. R1 (cf. Figure 4.5(c3) vs. Figure 4.5(c1)). The 

augmented discriminative capability of the linear estimator, even if possibly related to the 

presence of non-linear dynamics [184], [185] which are not properly taken into account, 

may be a perspective used in practical applications for a more accurate and fast 

differentiation between rest and stress conditions [159], [180]. This is also reinforced by 

the very low computational times required for the lin estimator to compute the entropy-

based measures on 300-sample series length (ST standard), which is 24 times lower if 

compared to knn. 

Regarding the reliability of using UST RR time series to discriminate between stress and 

rest conditions, the obtained time-domain results (Figure 4.2) demonstrate that, overall, 

it is possible to make use of 60-sample recordings to detect the presence of either postural 

or mental stress compared to a rest condition.  
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This is true despite the fact that statistically significant differences between UST and ST 

series are detected in R2 with regard to MEAN, and in T with regard to SDNN even for 

240-sample time series (Figure 4.2(a2,b1)). Therefore, the results suggest that, while UST 

analysis implies a significant deviation of the analyzed metrics from their ST level, such 

deviation does not significantly impair the capability to detect the response to stress even 

when working with shorter time series. 

The above-discussed results are reinforced by correlation analysis, which reported 

squared Pearson correlation coefficient always above the adopted threshold for strong 

correlation, with the only exception being SDNN computed for N = 60. Analogous 

remarks can be made starting from Cohen’s d analysis between stress and rest conditions, 

with similar values for all-time series lengths, with only a noticeable decrease for N = 60. 

Such results are in agreement with previous studies in the literature on RR series reporting 

a good agreement between UST and ST both under physical stress [115], [186] and mental 

stress [57], [187] conditions. However, the agreement decreases during the execution of 

a task or in the presence of a stressful event that carries dynamicity in the control 

mechanisms [58], [118], [162], similar to the trends reported in our results with regard to 

squared Pearson correlation coefficient. A number of studies applying UST analysis to 

physical stress conditions focus on the following recovery phase, showing that the 

dynamics are strongly influenced by the intensity of the task and the response time of 

SNS and PNS [115], [188]; this may explain the statistically significant differences found 

in R2 with regard to MEAN, being R2 a post-postural stress rest. 

A quite common finding in previous works is that the SDNN index exhibits a lower 

agreement if computed through UST RR series [162], [189], and this is confirmed by my 

results analyzing the trend of the correlation coefficient (Figure 4.2(b1,b2), bottom 

subplots). On the other hand, the agreement is higher with regard to RMSSD index 

(Figure 4.2(c1,c2), bottom subplots). This finding appears to be directly related to the 

definition of metrics, since whereas SDNN reflects RR total power, the RMSSD is instead 

related only to the fastest variations (i.e., vagally-mediated ones) observable even from 

shorter time series [106]. Although it is not possible to refer to previous studies, the results 

obtained with regard to SAP (Figure 4.3) can be discussed similarly to RR. In particular, 

results highlight the capability of using UST SAP time series to discriminate between 

stress and rest conditions down to N = 60 (with the exception of STD for postural stress), 

even if statistically significant differences are reported between UST and ST distributions 

for MEAN during T and for most conditions for STD.  
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Similarly to RR, a very high squared Pearson correlation coefficient is reported between 

UST and ST distributions, decreasing with N and going below threshold for N ≤ 120 for 

STD. Likewise to RR, the agreement of the STD measure is lower for UST series, which 

is also confirmed by the lower effect size between the rest and stress conditions. 

Our results confirmed the feasibility of employing UST series to carry out computation 

of regularity and complexity measures (Figure 4.4 and Figure 4.5), already previously 

reported for CE and Approximate Entropy [57], [159], [190]. Results of statistical tests 

evidence that, apart from a couple of exceptions, the significant differences between the 

stressful and the preceding rest conditions reported using 300-sample recordings are also 

retained for all the analyzed metrics (SE, DE, CE) with shorter series down to a 60-sample 

duration. However, the results of correlation analysis have evidenced that the agreement 

between UST and ST distributions is overall very good (i.e., above threshold) only for N 

≥ 120 for RR and for N ≥ 180 for SAP, except for non-parametric SE that already 

exhibits a severe decrease of 𝑟2 from 4 min length recordings. The results of RR analyses 

are in agreement with some previous studies employing other non-linear measures for the 

analysis of predictability (e.g., Shannon Entropy [57], [118]), dynamics (e.g., Permutation 

Entropy [191]), and complexity (e.g., Approximate Entropy and Sample Entropy [57], 

[118], [191]), overall reporting that recordings of at least 2-3 min are necessary in order 

to have good consistency with respect to ST standard. The obtained results complement 

these findings, supporting the hypothesis that the variation in cardiovascular dynamics 

and the complexity produced by a physiological state change can be properly assessed 

using even shorter recordings (60 samples), but at the cost of a lower correlation with ST 

reference. Moreover, the lower correlation found for SAP in my analyses suggests that 

slightly longer recordings may be instead envisaged when performing UST blood 

pressure variability if compared to HRV. 

The Cohen’s d analysis on entropy measures evaluated on RR evidenced a better 

discrimination of postural stress than mental stress with a higher effect size (Figure 4.4, 

central subplots), in contrast to what is evidenced instead with regard to SAP (Figure 4.5, 

central subplots). In any case, the effect size decreases when shortening the time window 

length, thus suggesting a lower discriminative capability between stress and rest states 

caused by the information loss about slower dynamics due to the shorter time series. 
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Finally, regarding the comparison of estimation methods for entropy-based measures, the 

same considerations previously made also hold for the UST analysis. For the majority of 

measures, both estimators are similarly capable of distinguishing between rest and stress 

conditions. There are the same three exceptions discussed with regard to ST series, in 

which the knn is unable to detect differences while lin can, i.e., CE for RR comparing M 

vs. R2 (Figure 4.4(c4) vs. Figure 4.4(c2)), DE for RR comparing M vs. R2 (Figure 4.4(b4) 

vs. Figure 4.4(b2)), and CE for SAP comparing T vs. R1 (Figure 4.5(c3) vs. Figure 

4.5(c1)). This may be due again to the significant proportion of nonlinear dynamics also 

contributing to UST HRV and cardiovascular variability [161], [185], [192] that are 

detected by knn estimator but neglected by the model-based parametric approach. Also in 

this case, the increased discriminative capability of the linear estimator and its lower 

computational costs may be exploited for discrimination between rest and stress 

conditions [180]. Furthermore, these results demonstrate that using shorter time series 

also requires reduced computational costs for both estimators, with a decrease of ~1.7 

times for lin and ~3.1 times for knn when shortening the time series length from 300 to 

120 samples. Computing all the information indices exploiting time series of 120 samples 

through the parametric estimator is ~11 times less computationally expensive than using 

the model-free estimator. 

In conclusion, results indicate that both time-domain and entropy-based measures 

computed on RR and SAP series successfully distinguish between rest and stress, even 

with very short time series lengths, down to N = 120 or N = 60 samples in most cases. 

However, caution is advised when using very short UST segments, as a drop in correlation 

below the set threshold for the shortest windows (N ≤ 120) raises concerns, especially 

when analyzing SAP variability. Furthermore, comparing a reliable but time-consuming 

model-free estimator with a linear model-based approach suggests that the latter can 

effectively detect changes in physiological conditions while reducing computational 

costs. At this regard, the combination of UST analysis with faster linear estimators for 

entropy-based measures holds promise for integration into wearable devices for real-time 

monitoring of cardiovascular parameters allowing, thus, to extract information about 

cardiovascular dynamics quickly and employing very short observation windows. 
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4.3 EXTRACTION OF THE RESPIRATION RATE FROM PPG SIGNAL AND 
ASSESSMENT OF CARDIORESPIRATORY INTERACTIONS 

In this paragraph, the description and results of the work carried out on estimating and 

extracting respiratory frequency from the PPG signal are reported, using data extracted 

from a multiparametric biomedical system developed during the whole research period, 

along with the realization of the wearable device. Indeed, the path taken during these 

intense years of research for the development of the wearable device addressed in this 

thesis has been marked by the simultaneous design and implementation of other 

biomedical devices integrating the same sensor technology, with the aim of validating 

both the measurement methods and the electronic components to be subsequently 

integrated into the wearable device. Therefore, what has been said leads to considering 

the measurements taken by both devices (i.e., both portable and wearable) entirely 

equivalent, and consequently, the results of the analyses performed on the acquired data 

as well. The portable device under examination has been appropriately designed for 

synchronous, multiparametric, and non-invasive acquisition of ECG (both peripheral and, 

when necessary, also precordial), multi-channel PPG (thus facilitating multi-site 

acquisition such as finger and/or wrist), SC, and finally, the respiratory signal [87]. The 

ability to directly acquire this latter signal is of fundamental importance for understanding 

the reliability of algorithms for extracting the respiratory signal from the PPG signal, 

which will then be applied to the data acquired from the wearable device. Furthermore, 

the possibility of performing synchronous acquisitions of the respiratory signal and ECG 

also expands the horizons of biosignal analysis, allowing investigation into the joint 

dynamics linking the cardiovascular and respiratory systems, analyzing what are thus 

defined as cardiovascular interactions, reason for which it is also addressed in this work. 

Indeed, cardiorespiratory interactions encompass the complex relationship between the 

cardiovascular and respiratory systems, where each system influences and modulates the 

function of the other [193]. One notable aspect of this interaction is respiratory sinus 

arrhythmia (RSA) process, a phenomenon characterized by cyclic variations in heart rate 

synchronized with the respiratory cycle [50]. In particular, during inhalation, sympathetic 

activity increases, leading to a rise in heart rate, while during exhalation, parasympathetic 

activity dominates, causing a decrease in heart rate.  
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The synchronous acquisition of cardiac and respiratory signals in non-clinical contexts 

would allow to assess RSA process, to detect changes in the cardiorespiratory coupling 

in real-life scenarios, such as during mental stress or apneic events during sleep [193], 

and to predict clinically risky situations so as to avoid severe complications. Specifically, 

the continuous monitoring of cardiac and respiratory parameters is essential in assessing 

physiological control mechanisms and for an early detection of potentially pathological 

conditions driven by altered cardiorespiratory regulation.  

Starting from the time series extracted from the signals, the strength of the causal 

interactions directed from the respiratory process to the heart period (HP) is assessed 

through Granger Causality measures [131], [132]. The final aim of this study is to prove 

whether and to what extent the non-invasive and cost-effective PPG technique can be 

used alone to assess cardiorespiratory interactions without acquiring the ECG or 

breathing signals. 

 

4.3.1 EXPERIMENTAL PROTOCOL AND DATA ANALYSIS 

The portable biomedical device has been employed to synchronously acquire three 

different signals, i.e. a two-lead ECG, the PPG signal and the respiratory signal. The four 

ECG electrodes were positioned according to the Einthoven’s triangle on the wrists and 

legs; the PPG probe was positioned on the left wrist; the breath probe was placed on the 

nose. In particular, the breathing signal was recorded using a 10 kΩ negative thermistor 

(NTC) capable of detecting a voltage signal related to airflow that increases during the 

exhalation phase and decreases during the inhalation phase. All signals were sampled 

with 500 Hz sampling frequency and 24-bit resolution. 

An appositely developed GUI was used to show the acquired signals in real time and to 

send the recorded data wirelessly via Bluetooth to a personal computer, in order to save 

them for the subsequent offline analyses (refer to [194], [195] for further information). 

Measurements were carried out on 6 healthy subjects (3 males and 3 females; 24.3 ± 1.9 

years) monitored in a sitting position and undergoing a two-phase protocol consisting, 

respectively in a spontaneous (SB) and controlled breathing (CB, breathing rate: 20 

breaths/min, i.e. 0.33 Hz).  
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In order to ensure a correct execution of the paced breathing, the subjects were instructed 

to follow an appositely developed visual metronome application showing different colors 

according to the current breathing phase, i.e. inhalation/expiration (refer to [194] for 

further information). 

Four different respiration time series were extracted and used to compute 

cardiorespiratory interaction measures:  

(i) R_RRI: series extracted as the values of the respiration signal sampled at the 

times of ECG R peaks;  

(ii) R_PPI: series extracted as the values of the respiration signal sampled at the 

times of PPG peak minima;  

(iii) R_PPG_filter: series extracted as the values of the respiration signal 

reconstructed through the filtering approach sampled at the times of PPG peak 

minima; 

(iv) R_PPG_EMD: series extracted as the values of the respiration signal 

reconstructed through the EMD technique sampled at the times of PPG peak 

minima. 

The analysis was performed considering both lagged and instantaneous (i.e., not delayed) 

effects from respiration (driver process, labelled as R) to the heart period (target process, 

labelled as H), as the common adopted measurement convention assumes that 𝑅(𝑛), 

sampled at the onset of the nth RRI, could have a role in determining 𝐻(𝑛) variability 

[196]. The time series were first pre-processed using a high-pass autoregressive (AR) 

filter with cut-off frequency of 0.0156 times the sampling rate fs, the latter computed for 

each subject assuming the series as uniformly sampled with sampling period equal to the 

mean heart period 〈HP〉. Identification of the full and restricted models was performed 

via the vector least-squares approach, setting the model order p according to the 

multivariate version of the Akaike Information Criterion (AIC) for each subject (with 

maximum scanned model order equal to 8) [197].  

The PSD of the respiratory process in the HF band was computed as the integral of the 

auto-spectrum within the HF band, normalized with respect to the total power (i.e., the 

integral of the spectrum alongside the whole frequency axis) and labelled as 𝑃$(𝐻𝐹).  
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To study the causal effect from respiration to the heart period, it has been computed the 

equation (15) of the Chapter 2 from 𝑌$(𝑛) to 𝑌!(𝑛), and labelled it as 𝑓$→!+𝑓1̅, then 

integrated this spectral distribution alongside the whole frequency axis to obtain 𝐹$→!, 

and within the HF band of the spectrum, thus obtaining the value 𝑓$→!(𝐻𝐹). The width 

of the HF band was determined individually for each subject by first locating the 

respiratory peak and then selecting the band with a width of ±0.06 Hz around such peak. 

 

4.3.2 RESULTS AND DISCUSSION 

Figure 4.6 shows an example of ECG, PPG and breathing signals synchronously acquired 

during the measurement protocol.  

 
Figure 4.6 – Examples of (a) ECG, (b) PPG and (c) airflow breathing signals synchronously 

acquired using the  portable system. In (a) the ECG R peaks are indicated with red cross 

markers. In (b) the minima peaks are indicated with red cross markers.   
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Figure 4.7(a) depicts the extraction of the breathing signal (in black) as the average of 

maxima and minima envelopes of PPG signal through the EMD algorithm. Figures 4.7(b) 

and (c) depict the breathing signals obtained after EMD and using the HF-band filtering 

procedure, respectively, compared to the reference airflow breathing signal acquired 

using the NTC (Fig. 4.7(d)).  

 
Figure 4.7 – Reconstruction of respiration signals from the PPG waveform: (a) Illustration of 

extraction procedure through the EMD algorithm: starting from the PPG signal (blue line), the 

maxima (red dotted line) and minima (green dotted line) envelopes are obtained, and their 

average (black dotted line) represents the reconstructed breathing signal, shown in (b). (c) 

Reconstructed respiration signal through band-pass filtering [cut off frequencies: 0.15-0.4 Hz]. 

(d) “True” airflow breathing signal acquired through NTC. 

 

Figure 4.8 shows an example of the four respiration time series extracted according to the 

approaches previously described, from both the acquired and reconstructed respiration 

signal. In detail, it has been considered as the reference the series obtained as the points 

in the acquired breathing signal corresponding to the timing of ECG R peaks (R_RRI), 

shown in Fig. 4.8(a)), while the corresponding R_PPI series is depicted in Fig. 4.8(b).  
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The two respiration series reconstructed only using PPG through filtering and through 

EMD are shown in Fig. 4.8(c) and Fig. 4.8(d), respectively. It is possible to note that the 

respiration series obtained sampling the airflow signal (Fig. 4.8a,b) are very similar to 

each other, and small differences can be observed from those obtained sampling the PPG-

derived respiration signal (Fig. 4.8c,d). 

 
Figure 4.8 – Example of four respiration time series extracted as the points in the acquired 

breathing signal corresponding to the timing of ECG R peaks (R_RRI,  panel (a)) and of PPG 

peaks (R_PPI, panel (b)), and as the samples of the respiration signal reconstructed using the 

filtering approach (R_PPG_filter, panel (c)) and the EMD algorithm (R_PPG_EMD, panel (d))) 

also corresponding to the timing of PPG minima peaks. 

 

Figure 4.9 shows the subject-specific results of time domain and spectral analysis. The 

computed measures were the normalized PSD of the respiratory process (Fig. 4.9(a)), the 

time domain Granger causality (Fig. 4.9(b)) and the spectral Granger causality integrated 

within the HF band of the spectrum (Fig. 4.9(c)), in both phases of the protocol (panels 

above: SB; panels below: CB). The following combinations of respiratory and heart 

period time series have been analyzed:  

(i) heart period: RRI time series extracted from ECG; respiratory time series: 

R_RRI;  

(ii) heart period: PPI time series extracted from PPG; respiratory time series: 

R_PPI; 

(iii) heart period: PPI time series extracted from PPG; respiratory time series: 

R_PPG_filt; 
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(iv) heart period: PPI time series extracted from PPG; respiratory time series: 

R_PPG_EMD.  

Two subjects presented spontaneous breathing rates higher or lower than usual 

(respectively, ~0.45 Hz and ~0.1 Hz), falling out of the frequency band commonly 

referred to as respiratory band [0.15-0.4 Hz]. Surprisingly, it has been previously found 

that, in many healthy subjects, breathing frequency slows down to the LF band and 

entrainment of the cardiovascular rhythm around 0.1 Hz often occurs [198]. Slow 

breathing was found in one of the six subjects who performed the experimental protocol. 

This put a constraint in the selection of the HF band for the computation of spectral 

measures, as it has been chosen subject-specific HF ranges to take into account possible 

outliers.  

 
Figure 4.9 – Results of time domain and spectral analysis on the available time series H 

(process 1) and R (process 2). (a) Normalized power spectral density (PSD) of R in the HF band 

of the spectrum, computed as the ratio of the PSD in HF to the total PSD. (b) Time domain 

logarithmic Granger causality from the driver process (R) to the target (H), computed as the 

integral of (4) alongside the whole frequency spectrum. (c) Spectral measure of Granger 

causality from the driver process (R) to the target (H), computed as the integral of (4) within the 

HF band of the spectrum. Measures are computed in the two phases of the protocol 

(spontaneous breathing, SB, panels above; controlled breathing, CB, panels below) considering 

the four respiration time series described in section II.B (R_RRI, R_PPI, R_PPG_filter, 

R_PPG_EMD) for all 6 subjects (each subject is represented by a different color). 
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However, this approach may cause to fail detecting the whole power in HF band. Indeed, 

it has been noticed that the bandwidth around the peak is larger when reconstructing the 

respiration signals from PPG (i.e. R_PPI_filter and R_PPI_EMD) for both experimental 

conditions (SB, CB), probably due to “spurious” spectral content related to autonomic 

system activity not present in the “true” respiration-only signal. This may be the reason 

of the unexpected sudden decrease of respiratory PSD in HF when extracting RESP from 

PPG, both with filtering and EMD approaches, mostly visible in one of the subjects (e.g. 

orange point in Fig. 4.9(a)) but generally occurring for all of them in both experimental 

conditions. On the contrary, PSD values computed for the first two settings (R_RRI and 

R_PPI) are comparable between each other and expectedly slightly increase with 

controlled breathing, since all the respiratory variability is centered around the respiration 

peak (~0.33 Hz) and spectral leakage was observed to be negligible.  

As regards Granger causality measures, the results suggest that their overall behaviour is 

characterized by a decrease when these values are computed using respiratory time series 

reconstructed from the PPG, especially with regard to the spectral measure (see values in 

Table I). Generally, in the presence of bigger databases, statistical analysis is performed 

to detect significant changes of the investigated measures between experimental 

conditions or settings. 

Table 4.1 – Time and frequency domain Granger Causality values for each of the six analyzed 

subjects. 

 𝑭𝟐→𝟏 𝒇𝟐→𝟏(𝑯𝑭) 
 R_RRI R_PPI R_PPG_filter R_PPG_EMD R_RRI R_PPI R_PPG_filter R_PPG_EMD 
 SB CB SB CB SB CB SB CB SB CB SB CB SB CB SB CB 

S1 0.24 0.14 0.26 0.14 0.16 0.09 0.11 0.09 0.12 0.05 0.17 0.08 0.07 0.03 0.05 0.02 
S2 0.17 0.13 0.15 0.13 0.10 0.09 0.16 0.10 0.07 0.08 0.08 0.08 0.04 0.05 0.07 0.03 
S3 0.09 0.05 0.09 0.15 0.03 0.16 0.04 0.19 0.05 0.03 0.06 0.06 0.02 0.01 0.01 0.06 
S4 0.09 0.17 0.06 0.07 0.02 0.02 0.07 0.01 0.03 0.07 0.01 0.03 0.01 0.01 0.01 <10-2 

S5 0.19 0.11 0.17 0.05 0.16 0.05 0.20 0.06 0.09 0.06 0.10 0.03 0.07 0.03 0.07 0.02 
S6 0.12 0.09 0.19 0.09 0.06 0.03 0.17 0.05 0.07 0.05 0.09 0.06 0.01 0.02 0.07 0.02 

 

In previous works, this has allowed to characterize the possibly different behaviours of 

time domain measures and frequency-specific measures, which have been found to be 

more precise and informative than overall indices, especially when the observed 

processes exhibit frequency-specific oscillations [199], [200].  
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Several studies have documented that the magnitude of respiratory-related fluctuations of 

RRI (i.e., respiratory sinus arrhythmia) dramatically changes according to breathing rate 

[201]. Moreover, it has been demonstrated that paced breathing at ~0.25 Hz does not alter 

efferent vagal and sympathetic modulations in the frequency range from 0.04 Hz to 0.15 

Hz in healthy subjects [202], [203]. A decrease of both time and spectral measures in CB 

with respect to SB in 3 subjects (50%) was observed, while increased or unchanged values 

were detected in the remaining samples (Table I). These findings must be further 

investigated according to the subject-specific spontaneous breathing rate and with bigger 

datasets. The possibility to enroll a larger number of subjects and carry out statistical 

analyses represents one of the future extensions of this study, that will enable a clearer 

assessment of the feasibility of the proposed approaches for the extraction of respiration 

from the PPG. Nonetheless, these preliminary findings suggest that causality measures 

behave similarly if the PPG is used in place of the ECG for the detection of heart period 

and the sampling of respiration. On the other hand, the filtering and EMD approaches for 

the extraction of respiration from the PPG may be less accurate in the quantification of 

time domain and spectral measures, and especially of respiratory PSD. Indeed, applying 

a PPG bandpass filter to identify respiratory dynamics may cause misdetection of power 

content if other oscillatory components are present within the selected HF range or if the 

peak bandwidth is too large. Conversely, the EMD extraction technique is based on how 

well the detection of PPG peaks is performed, and this may pose a problem when the 

acquired waveform is noisy, due e.g. to motion artifacts. 

In conclusion, in this study were investigated two different techniques for extracting the 

respiratory signal from the PPG one introduced and discussed in Chapter 2 (i.e., the 

filtering-based and the EMD approaches), also leveraging the multiparametric nature of 

the acquired data to obtain insights into cardiorespiratory interactions on both PPG and 

ECG data. Specifically, the results highlight how the causality measures obtained 

considering both ECG and PPG signals are similar, suggesting the use of the latter, which 

are more easily accessible especially on wearable devices, as an alternative instead of the 

ECG to evaluate cardiorespiratory interactions. Furthermore, the results demonstrate how 

both the EMD and filtering-based approaches, although it emerged that for the latter one 

must pay attention to signal bandwidth variability, allowed for the extraction of a 

respiratory signal similar and comparable to that directly detected by the nasal probe, thus 

suggesting the implementation of these algorithms for extracting respiratory rate even on 

the realized wearable device. 
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4.4 STRESS DETECTION THROUGH GSR MEASUREMENTS 

The work presented in this subsection continues the investigation about the 

implementation of the multiparametric biomedical device already discussed in the 

previous paragraph, this time with the aim of detecting changes in the individual's 

physiological states in response to stressful events. The feasibility of using the GSR 

signal, in conjunction with ECG and PPG signals, was evaluated to assess physiological 

states of stress related to the effect of spontaneous and controlled breathing. Furthermore, 

the GSR signal has been acquired employing the corresponding analog circuit developed 

and analyzed in Chapter 3, to confirm its suitability for detecting stressful situations for 

the individual. Furthermore, since stressful events lead to changes in cardiovascular 

parameters, PPG and ECG signals were simultaneously acquired to verify and justify 

from the physiological point of view any changes in sweating. 

A controlled breathing measurement protocol was carried out to induce changes in ECG, 

PPG and GSR signals, thus showing the potential of integrating a GSR sensor in a 

synchronous multi-parametric acquisition system for detecting changes in physiological 

state related to stressful events. 

 

4.4.1 EXPERIMENTAL PROTOCOL 

Measurements were recorded on a normotensive healthy 22-years old female while sitting 

on a chair. Four ECG electrodes were positioned on the wrists and legs in accordance 

with Einthoven’s triangle for up to 3-lead electrocardiographic signal acquisition. The 

PPG probes were worn on the left wrist and forearm for pulse sphygmic detection, while 

breathing and GSR probes were worn respectively on the nose and on the index and 

middle fingers of the hand (according to [63]). All the signals were sampled at 24-bit 

resolution with a 500 Hz sampling frequency. Once again, data were transferred 

wirelessly via Bluetooth using the appositely developed GUI to a personal computer, 

plotting as well the signals in real-time, in order to visually detect any artifacts due to 

incorrect probes positioning (refer to [194], [195] for further information). 

In order to evoke physiological changes both in cardiovascular parameters and sweat 

glands activity during the real-time acquisition, the following experimental protocol was 

implemented: 
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• Rest 1 (R1): 360 seconds in which the subject was breathing spontaneously in a 

resting condition;  

• Controlled breathing (CB): a 360-s recording in which the subject was instructed 

to carry out a paced breathing with period of 6 seconds, in which each cycle 

consisted of 3-seconds inhale and 3-seconds exhale phases; 

• Rest 2 (R2): another 360-s recording in which the subject breathes spontaneously 

analogously to R1. 

An initial preparation procedure lasting around 150 seconds was carried out, recorded but 

not used for the analysis, in order to check the correct functioning of the system and 

installation of the probes and to allow acquiring data in stationary conditions. During all 

phases, the subject was instructed not to make any movement and to remain seated on a 

chair for the entire measurement protocol duration. During the paced breathing phase, the 

subject followed a visual metronome appositely developed to support the correct 

execution of controlled breathing (refer to [194] for further information). 

 

4.4.2 RESULTS AND DISCUSSION 

For data analysis, the ECG lead I and the PPG acquired on the left wrist were considered, 

in addition to the signals obtained by NTC and GSR sensors. Fig. 4.10(a) and (b) show 

the heart rate trend computed respectively from the RRI and pulse to pulse interval (PPI) 

time series extracted from ECG lead I signal and from the PPG signal. Fig.4.10(c) depicts 

the trend of the raw GSR signal during the measurement protocol from the R1 phase (0s-

360s), followed by the CB phase (360s-720s) to the end of the R2 phase (720s-1080s). 

Figure 4.11 reports a 25-seconds detail of recordings from second 150 to 175 s, i.e. across 

the transition between the spontaneous to the paced breathing conditions occurring at the 

second 150. The low values of the GSR signal (Fig. 4.11(c)) together with lower values 

of heart rate (see Fig. 4.10(a) and (b)) (typical for resting conditions [204]) suggest that 

the subject is relaxed during the R1 phase. GSR in the first phase moreover gradually 

decreases, indicating that the subject under test becomes more and more relaxed.  

A sudden change in the GSR signal occurs from the beginning to about the middle of the 

CB phase, indicating an increase of the skin conductance which may be due to a shift of 

the sympathovagal balance towards the sympathetic side.  
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Although a slower breathing rate typically induces a relaxation response [205], [206] the 

transient sympathetic activation reported during the transition from R1 to CB may be 

related to the temporary response of the organism to the different and non-spontaneous 

breathing pattern, possibly misinterpreted as a stressor or anyway as an external trigger. 

 
Figure 4.10 – Complete view of the whole acquisition time window; (a) heart rate ECG  lead I, 

(b) left wrist PPG heart rate, (c) GSR signals during the execution of the measurement protocol. 

The vertical red lines denote the transition between different breathing conditions according to 

the adopted experimental protocol. 

 

During the CB phase, a slight increase of the heart rate can also be observed, which may 

be related to the fact that the subject was not used to breath in a non-spontaneous way and 

thus appeared a bit uncomfortable (or even troubled) at the beginning.  Moreover, the 

change of the heart rate due to respiration could be related to the RSA phenomenon [50], 

[207].  
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The transition between controlled breathing and the second rest phase did not show any 

abrupt variations of GSR, which continues to gradually decrease towards the values 

observed during the first spontaneous breathing condition.  

 

 
Figure 4.11 – A 25-seconds recording detail of (a) ECG lead I, (b) left wrist PPG, (c) breathing 

and (d) GSR signals during transition from spontaneous to controlled breathing phases. In (a) 

red crosses indicate ECG R peaks; in (b) red crosses indicate PPG minima; in (c) the inhale 

period is indicated in red, while the exhale period in green. The vertical red line denotes the 

transition between spontaneous and controlled breathing. 

 

 



Development of Wearable Technologies and Biosignals Processing Methods for the Assessment of Physiological 
States.                          Gabriele Volpes 
 

 107 

Fig. 4.12 shows the analysis carried out on the GSR signal by LEDALAB, which 

performs the decomposition of the signal in SCL and SCR activities, as discussed in the 

related section of the Chapter 2. This analysis evidences the phasic activity, whose trend 

is shown at the bottom of the figure, only during the transition between R1 and CB (up to 

the center of this phase), confirming the previous interpretation and remarks. In fact, 

while on one hand, the analysis of the tonic component alone provides important 

information about the level of rest and any potential stress the subject is undergoing, on 

the other hand, extracting the phasic component, being much more reactive, allows 

obtaining information about the SNS response immediately after the occurrence of the 

stressor, thus completing the physiological interpretation related to GSR. 

 

Figure 4.12 – Analysis of GSR signal carried out using LEDALAB: At the top, GSR signal with 

both tonic and phasic (in blue) components. In red the peaks of the signal are highlighted. At the 

bottom, phasic component of GSR signal. 

 

In conclusion, thanks to this work it was possible to investigate the variations in 

physiological parameters affecting the cardiovascular system, as well as the sweating of 

the epidermal tissue, caused by the activation of the ANS following a stressful event, such 

as the transition from a resting state to paced breathing as in this case.  
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In particular, it was observed how the GSR signal undergoes sudden changes precisely at 

the beginning of the paced breathing phase, after which a consistent phasic activity 

occurs, thus confirming the potential of this signal in discriminating SNS activity and 

consequently identifying the presence or absence of stress on the individual involved in 

the measurement. Furthermore, the use of the portable device already developed in the 

laboratory allowed for the employment and verification of the behavior of the analog 

circuit developed for GSR signal acquisition, thus confirming its integration even on the 

wearable device. 

 

4.5 PRELIMINARY VALIDATION OF THE WEARABLE RING-SHAPED 
BIOMEDICAL DEVICE FOR PHYSIOLOGICAL MONITORING 

In the previous subsections, the results of the research on the use of the portable 

multiparametric device for the non-invasive acquisition of biosignals were presented. 

Simultaneously, data analysis algorithms were implemented to extract relevant 

physiological indices, with the aim of enabling discrimination between physiological 

states and, prospectively, assessing individual health status. The findings obtained from 

these studies are now collected and implemented to validate, in the final activity herein 

presented, the wearable biomedical device developed during the research, where the aim 

is to investigate its use and the feasibility of employing it for the detection of 

physiological states.  

As extensively discussed in Chapter 3, it consists in a wearable ring-shaped device 

performing non-invasive finger-based measurements of ECG, PPG (red and infrared), 

GSR, and motion signals. To evoke physiological changes, a measurement protocol was 

carried out on multiple subjects, involving the performance of different tasks 

characterized by alternating conditions of rest and physical activity. Subsequently, the 

data analysis algorithms discussed in Chapter 2 and already investigated by the works 

introduced in the previous sections, were applied to the measurements, i.e. the 

implementation of time domain, frequency domain and information-theoretic measures, 

also performing an UST analysis, which is of crucial importance in the context of WHDs, 

the extraction of respiratory parameters, finally monitoring the SNS activity considering 

the SCL component of the SC signal.  

 

 



Development of Wearable Technologies and Biosignals Processing Methods for the Assessment of Physiological 
States.                          Gabriele Volpes 
 

 109 

Furthermore, since the ring-shaped device is able to synchronously acquire PPG and ECG 

signals, it has been considered another important parameter known as Pulse Arrival Time 

(PAT), which is defined as the temporal interval between the R-peak extracted from the 

ECG and the peak of the pulse wave obtained from the PPG signal [208]. 

The PAT holds great potential in the assessment of cardiovascular physiology: by 

reflecting the time taken for the pulse wave to travel through the circulatory system, PAT 

can be utilized for estimating important parameters such as blood pressure and arterial 

stiffness [30], [209]. Moreover, it offers a non-invasive approach to monitoring vascular 

health and could provide valuable insights into overall cardiovascular function and 

dynamics. 

 

4.5.1 EXPERIMENTAL PROTOCOL AND DATA ANALYSIS 

With the aim of validating the use of the wearable device in everyday life scenarios, six 

healthy subjects of both sexes within the age range of 25-35 years (3 males and 3 females, 

age 27.3±2.9 years) were recruited and subjected to two different measurement protocols 

designed to simulate key activities typically performed in daily scenarios. Each protocol 

lasts for 12 minutes and consists of two phases that differentiate between a resting and 

stress conditions. The first measurement protocol comprises a resting phase, during which 

the subject lies on a bed in a supine position (SUPINE) for 6 minutes, followed by a 

standing phase (STAND) in which the subject remains immobile in an upright position 

for 6 minutes. The second measurement protocol, on the other hand, requires the subject 

to remain seated on a chair for 6 minutes, followed by a walking phase (WALK) lasting 

6 minutes with the subject instead moving at a normal walking speed. In order to 

standardize the walking speed, a sports treadmill set to a speed of 4 km/h was utilized. 

This speed was also chosen to minimize as much as possible any small movements of the 

wearable device, given by the fact that it might tend to slip during walking in case of not 

perfect adherence to the subject’s finger. The device was worn by all subjects on the index 

finger of the left hand, the body region where recordings of PPG, GSR, and movement 

were taken. During SUPINE, STAND, and SIT phases, the ECG signal was also acquired 

by requiring the subjects to put their left-hand thumb and their index and middle fingers 

of the right hand on the corresponding ECG electrodes, as discussed in the Chapter 3. 
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The acquired data underwent a visual inspection to ensure suitability for subsequent 

processing and analysis. Accelerometer data were also visually analyzed to proactively 

identify any motion artifacts that could potentially corrupt the relevant signals. For each 

phase of the measurement protocol, according to the standard short-term HRV analysis 

approach, a temporal sub-window was selected to obtain 300 beat-long time series [103]. 

From the ECG signal, RR time series were extracted by considering the temporal distance 

between two consecutive R peaks. Similarly, PP time series were extracted by considering 

the temporal distance between two consecutive minima of the PPG waveform, for both 

the red (PPred) and infrared (PPir) wavelengths. 

From literature, it is well known that the infrared PPG signal exhibits better resolution 

compared to the red PPG one due to the ability of the infrared wavelengths to penetrate 

deeper into human tissues [210], [211]. This is reflected in a more reliable detection of 

the minima of the PPG waveform, resulting in the extraction of PP time series that are 

more similar to the RR time series. In this work, this aspect was investigated using the 

Bland-Altman analysis [212], a useful tool for evaluating the agreement between two 

measurements. Specifically, the agreement coefficient between the PPred and PPir time 

series, as well as between each of them and the RR time series was obtained for each 

subject and acquisition phases by using the following formula: 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = !.RS∙?LT(U.#U')
-VJ%((U.3U')/$)

     (1) 

where x1 and x2 represent the two compared time series. Low and closer to zero values 

for this index are indicative of a good agreement between a measurement under 

investigation and a well-established reference gold standard. The agreement measures 

between PPir and PPred time series were computed for all the four phases (i.e., SUPINE, 

STAND, SIT, and WALK phases). On the other hand, the agreement between RR and PP 

time series was computed only for SUPINE, STAND, and SIT phases and not for the 

WALK phase, since the ECG signal was not acquired in this last part of the experimental 

protocol. In light of worse quality of red PPG signals, PPred time series have been 

discarded for further cardiovascular dynamic analysis. Similarly, the PAT time series, 

calculated by considering the time interval between the R-peak of the ECG and the peak 

of the PPG waveform within the same cardiac cycle [30], were obtained by using the 

infrared PPG signal.  
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The GSR time series were obtained by sampling the GSR signal at the peaks of the 

infrared PPG waveforms, and the analyses were focused on calculating the mean and 

standard deviation of the obtained GSR time series. 

Starting from the minimum and maximum values extracted from the red and infrared PPG 

signals, it was possible to calculate the SpO2 values using the methodology discussed in 

the Chapter 2 (i.e., by applying the empirical model and calibration process). In particular, 

the SpO2 calibration for the ring-shaped wearable device was carried out using a 

commercial pulse oximeter, that has allowed for the acquisition of the heart rate from 25 

to 250 bpm and SpO2 from 35% to 100%. The calibration procedure of the device was 

carried out on preliminary measurements from the volunteers to extract the a and b 

constants present in the equation (21) of the Chapter 2 from a calibration curve obtained 

by curve fitting. The regression line between the R and SpO2 values was computed using 

the least squares approximation method by curve fitting the data from volunteers [141], 

[213]. The obtained regression line was: 

𝑆𝑝𝑂$ = 112.07 − 31.44 ∙ 𝑅                                          (1) 

Lastly, following calibration, a comparison was made between the average values of SpO2 

samples obtained using the system and those recorded with the pulse oximeter. The 

findings revealed that the accuracy of the ring-shaped device is within a range of ±2%, 

relative to the commercial device employed as the reference. 

Finally, an estimation of respiratory rate was carried out from the PPG signal, by applying 

a bandpass filter to the infrared PPG waveforms, based on the knowledge that respiratory 

variability is typically contained in the HF band (0.15-0.4 Hz) [32], [214]. The respiratory 

time series were extracted by sampling the reconstructed breathing signal at the peaks of 

the infrared PPG signal, then estimating the power spectral density through the method 

discussed in the Chapter 2, thereby identifying the respiratory rate. 

The RR, PPir and PAT time series were analyzed to extract indices reflecting physiological 

changes in response to the different phases of the acquisition protocol. The classical HRV 

time-domain indices were calculated, i.e. the average (MEAN), standard deviation (STD), 

and the RMSSD on RR and PPir time series (referring in the latter case to PRV) [49]. 

Analogously, the time-domain indices of MEAN and STD were computed on the PAT 

time series. 

 



Development of Wearable Technologies and Biosignals Processing Methods for the Assessment of Physiological 
States.                          Gabriele Volpes 
 

 112 

Before performing frequency-domain and information-theoretic analysis, physiological 

time series were preprocessed applying a high-pass autoregressive filter (cut-off 

frequency of 0.0156 Hz) and normalizing the filtered series to zero mean and unit 

variance. The non-parametric Blackman-Tukey method (Hamming window, bandwidth 

of 0.04 Hz) was applied to obtain the power spectrum for each subject and condition of 

RR, PPir and PAT time series [157]. The LF and high-frequency HF power contents were 

evaluated by integrating the distribution in the ranges 0.04-0.15 Hz and 0.15-0.4 Hz, 

respectively [49]. These power values are generally used to obtain the ratio between the 

LF and HF contents. Although still debated, this index gives insight on the sympatho-

vagal balance in HRV analysis. Conversely, its role in the analysis of PAT variability is 

not clear and seems to be unrelated to the ANS regulatory activity [62]. 

Finally, the conditional entropy measure was computed to characterize the time series 

complexity in terms of its irregularity and unpredictability, quantifying the residual 

uncertainty about the current state of the process remaining when past dynamics are 

known [126]. Specifically, this index decreases as the predictability of the series increases 

and reaches zero for fully predictable dynamics. Under the hypothesis of Gaussianity and 

processes stationarity, this index was computed using the linear estimation method (i.e., 

equation (8) of the Chapter 2). The order of the AR model used to the describe the 

physiological processes was set to m=2, and the ordinary least squares method [215] was 

used to identify the variance starting from the regression coefficients. 

 

4.5.2 STATISTICAL ANALYSIS 

In order to assess the subject-specific feasibility of the computed indices in the 

identification of a position change during the acquisition, the activity foresee also a 

statistical validation. To this end, a statistical analysis was performed to assess the 

feasibility of using the above-described indices to discriminate changes between different 

physiological conditions. Bootstrap data analysis [216] was employed to assess the 

statistical significance of the results, generating a distribution of values for each subject, 

phase acquisition protocol, and feature computed on RR, PPir and PAT time series. 

Specifically, one-hundred data windows of 120 samples were randomly extracted from 

the original 300-points time series, and then time, frequency and information domain 

indices computed for each of the surrogate data.  
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This approach allows to obtain for each subject a distribution of the evaluated index in 

the different acquisition phases, thus becoming statistically comparable. Specifically, a 

parametric Student t-test for unpaired data was applied to compare the distributions of the 

indices evaluated on surrogates obtained in SUPINE and STAND positions, as well as in 

SIT and WALK conditions (in this case taking into account only the PPir time series in-

dices). For all the comparisons, the significance level was set at p < 0.05. 

 

4.5.3 RESULTS 

In this section, the results of the acquisitions carried out using the ring-shaped device 

during the measurement protocols involving the six participants are reported.  

Figure 4.13 shows the PPG waveforms (both red and infrared), ECG, GSR, and motion 

signals in terms of spatial acceleration across the three axes, acquired by the device during 

the SUPINE-STAND measurement protocol. In particular, Figures 4.13a and 4.13b show 

the detail of a 10-second acquisition window, allowing the visualization and qualitative 

appreciation of the high fidelity of the acquired biosignals. Both PPG waveforms exhibit 

the typical morphology reported in the literature [76], [217], with the dicrotic notch 

clearly visible, and the end of the systolic phase and the beginning of the diastolic phase 

(respectively indicated by maximum and minimum of the PPG signal) marked by red 

crosses. Both signals are well-defined, and it is noteworthy that the PPG infrared signal 

is consistently more resolved, because the infrared wavelengths have the feature to 

penetrate more deeply into the body skin and tissues [210], [211]. Similar remarks can be 

made with regard to the ECG signal being well-defined as well, with the R peaks (also 

marked by red crosses in Figure 4.13b) easily distinct from other points in the QRS 

complex. Figures 4.13c and 4.13d depict the waveforms of the skin conductance (or GSR) 

and motion signals over the entire duration of the first measurement protocol, which lasts 

approximately 12 minutes (more than 600 seconds, as visible on the t-axis of both graphs). 

Both signals remain stable during the acquisition, with the GSR signal showing a slight 

decrease over time, indicative of the subject being in a resting state during the 

measurement protocol. Furthermore, the trend and values of the GSR signal on the fingers 

align with those found in the reference literature [51], [63]. 
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Figure 4.13 – Exemplary signals acquired on a subject during the first measurement protocol: 

(a) PPG (both red and infrared) and (b) ECG signals on a 10-s time window; (c) GSR and (d) 

motion signals over the entire duration of the protocol. In (a) and (b), red crosses indicate PPG 

maxima/minima and ECG R peaks, respectively. 

 

A similar comment can be made for the accelerometric signals in the x, y, and z axes, 

whose variations allow for the identification of the subject's position and any voluntary 

or involuntary movements, substantially contributing to obtaining more information 

about the subject's motor activity during the measurement protocol. Indeed, a sudden 

change in the accelerometric data can be observed, indicating the actual change in the 

subject's position from supine to stand, which occurs precisely at the halfway point of the 

first protocol. At this regard, the GSR signal also identifies this transition, as evidenced 

by a sudden increase in sweating corresponding to the phase change. 

The visualization of all the biosignals acquired by the system is of great assistance in 

highlighting the capabilities and functionalities of my device, especially considering that 

all these traces are acquired synchronously, on the same body district, and using a device 

that occupies the space of just one finger on a hand. 
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Figure 4.14 shows the results of agreement measurements computed using the Bland-

Altman method between RR and PP time series extracted from the ECG trace and the two 

PPG signals. These analyses were conducted to assess the reliability of the interbeat 

interval time series extracted from the two PPG traces compared to those extracted from 

the ECG, which is used as the reference. Furthermore, this comparison is also crucial to 

assess the reliability of the time series during different phases of the protocol, aiming to 

understand whether motor activity might lead to corruption of the time series themselves. 

The agreement between PPir and PPred extracted during the two measurement protocols is 

shown in Figure 4.14a.  

 
Figure 4.14 – Boxplot distributions of agreement indices computed using computed using the 

Bland-Altman method between (a) PPir and PPred, (b) PPred and RR, and (c) PPir and RR, 

evaluated across all six subjects during the four phases (i.e., SUPINE, STAND, SIT and WALK) 

of the two measurement protocols. 

 

A very good agreement is observed for almost all subjects in phases without motor 

activity (i.e., SUPINE, STAND, and SIT phases), with values ranging between 0 and 0.2, 

except for the subject 2 (sub2) during SUPINE phase. Conversely, in the presence of 

motor activity, there is a noticeable deterioration in the agreement, with an average value 

of 0.35 and an increased dispersion of values among subjects. This finding is expected, 

as physical activity leads to worsened measurement conditions, primarily due to the 

presence of motion artifacts resulting in a reduced quality of the acquired physiological 

signals, with the PPG signal being particularly affected. This leads us to consider less 

reliable the physiological indices extracted from PPG signals, e.g blood oxygen saturation 

and respiration rate, during this phase.  

 

 

10

(a) (b) (c)
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Figures 4.14b and 4.14c show the agreements obtained by comparing RR with PPred and 

PPir, respectively. Even if similar distributions can be observed across the acquisition 

phases, it is interesting to note how agreement values range between 0 and 0.2 for PPred 

and are halved for PPir, thus confirming once again the overall better quality of the 

infrared PPG signals. 

Starting from the above-described results on the quality of the acquired signals, the 

subsequent analyses were focused on the extraction of most physiological indices from 

the PPir time series only. The evaluation of the blood oxygenation makes an exception, 

requiring both PPG waveforms. Besides, the same indices obtained on PPir time series 

have also been extracted for the RR time series in order to have reference levels to 

compare and assess the reliability of the PPG signal acquired by the device, thus allowing 

to consider it reliable even in situations where the ECG signal is not acquired, such as 

during the WALK phase in our case. 

Table 4.2 presents the physiological indices (expressed as mean value ± standard 

deviation) extracted in the time, frequency, and information domains from 300-point PPir, 

RR, and PAT time series, obtained from the six subjects during the two measurement 

protocols. The reported values during the SUPINE, STAND, and SIT phases, and for 

some of the time series even during the WALK phase, are consistently in line with what 

is typically reported in the literature, both for resting situations which are followed by the 

transition to a more stressful physiological condition [63], [218], [219]. In detail, the heart 

rate is lower in resting phases and increases during the following two physiological 

conditions. This response reflects the level of activation of the ANS as also indicated by 

an average decrease of the SDNN and RMSSD indices with STAND, and contrarily an 

increase during SIT (except for RMSSDPPir). Moreover, as expected, the LF/HF ratio 

increases during the other phases of the protocol if compared to REST. CE values are 

lower during STAND phase, indicating higher regularity and predictability of cardiac 

dynamics. All these results reflect the well-known prevalence of the parasympathetic 

branch activity in a resting condition, and the sympathetic activation occurring during 

stress states. In general, different considerations can be made for the measurements 

obtained during the WALK phase. Indeed, the consistent presence of motion artifacts 

leads to a degradation of the PPG signal and, consequently, of the PPir time series. This 

results in a loss of reliability in the extracted indices, since it is possible to observe an 

unexpected increase in SDNN, RMSSD, and LF/HF values, accompanied by an increase 

in CE, indicating an augmentation in the complexity of the PPir time series.  



Development of Wearable Technologies and Biosignals Processing Methods for the Assessment of Physiological 
States.                          Gabriele Volpes 
 

 117 

The worsening of the quality of the PPG waveform during WALK is also evidenced by a 

relevant increase in the variability of SDNN and RMSSD across subjects. 

Table 4.2 – Results of short-term analysis of PRV, HRV, PAT, GSR, blood oxygen saturation levels, 

and respiration rate (RESP), during the different phases of the measurement protocol and 

averaged across the six subjects. The values are expressed as mean ± standard deviation. 

Measure/Phase SUPINE STAND SIT WALK 
HRPPir [bpm] 73±12 87±16 77±8 100±10 

SDNNPPir [ms] 55.55±20.94 51.10±21.26 58.65±25.05 85.22±42.08 
RMSSDPPir [ms] 57.47±37.57 38.46±17.95 47.16±25.19 109.94±72.57 

LF/HFPPir 0.68±0.30 2.12±1.94 1.30±0.44 1.17±1.10 
CEPPir [nats] 1.20±0.12 0.94±0.31 1.07±0.10 1.27±0.23 
HRRR [bpm] 74±12 87±16 77±8 - 

SDNNRR [ms] 51.53±20.14 48.68±21.91 59.48±24.96 - 
RMSSDRR [ms] 44.55±19.79 31.31±21.63 50.14±26.06 - 

LF/HFRR 1.05±0.54 3.41±3.55 1.46±0.93 - 
CERR 1.13±0.12 0.76±0.34 1.08±0.21 - 

MEANPAT [ms] 372.60±51.01 349.92±26.47 396.31±60.71 - 
STDPAT [ms] 14.49±9.26 17.25±9.57 19.66±12.38 - 

LF/HFPAT 0.39±0.14 1.03±0.44 1.08±0.24 - 
CEPAT [nats] 3.92±0.80 4.15±0.51 4.07±0.59 - 

GSR [µS] 0.80±0.21 0.86±0.14 1.11±0.39 3.17±1.04 
SpO2 [%] 97.8±1.6 98.7±1.7 99.9±0.19 88.05±21.11 

RESP [Hz] 0.27±0.04 0.23±0.06 0.25±0.07 0.32±0.03 
 

The achieved results on PAT time series are also supported by previous works [62], 

reporting a decrease of the time of arrival of the pressure wave at the body periphery and 

an increase of its variability during physical stress. Contrarily, no supporting results have 

been achieved in literature about the reported findings in the frequency domain, which 

show an increase of LF/HF ratio during STAND and SIT. 

The modification in the ANS activity is also confirmed by the GSR values computed from 

GSR time series, which are lower during resting conditions and higher during stress, 

especially during the transition from SIT to WALK when the GSR triples its value. 

Similarly, respiration rate particularly increases during WALK, as expected. 

The SpO2 index is in line with the expected values (97-99%) during resting conditions, 

while the presence of artifacts degrades the PPG signal up to severely limiting its use for 

calculating blood oxygenation levels during non-static measurement conditions, given 

that the agreement between the two PPG signals worsens excessively (cf. Figure 4.14a). 
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Figures 4.15, 4.16 and 4.17 depict the results of the bootstrap analysis performed on the 

time, frequency and information domains indices computed for PPir, RR and PAT time 

series, evaluated  individually for each subject. Statistical analyses were performed on the 

distributions obtained in the SUPINE and STAND positions, as well as SIT and WALK 

positions for the PPir time series, in order to prove on a single-subject basis the capability 

of using the device for discriminating physiological changes. 

The results of the analyses conducted on PPir during the SUPINE and STAND phases are 

shown in Figure 4.15a. Both time-domain indices (i.e., MEAN and SDNN) decrease 

significantly from the first to the second phase for all the subjects except the fifth, 

showing instead a significant increase in SDNN. Frequency analysis reveals that in all 

subjects a significant increase in the LF/HF ratio is detected. Finally, CE measures 

undergo a significant decrease for all subjects except the first, for whom a significant 

increase is observed from the SUPINE to the STAND phase. In Figure 4.15b, the results 

obtained for the same time series during the SIT and WALK phases are reported. In this 

case, a significant decrease in MEAN values is observed for all subjects as well, while a 

statistical increase in SDNN values is observed for all subjects except the fifth, showing 

instead a significant decrease. The LF/HF ratio significantly decreases for four subjects, 

while a statistical increase is observed for the other two. Finally, CE significantly 

increases in all subjects except the first, for whom a statistical decrease is instead reported. 

The results of the analyses conducted on RR time series during SUPINE and STAND are 

depicted in Figure 4.16. They confirm most of the findings obtained from the analysis of 

the PPir time series, as nearly identical trends in the indices are reported compared to those 

highlighted with regard of Figure 4.15a. Indeed, also in this case both MEAN and SDNN 

undergo a significant decrease for all subjects, with the only difference being that, in this 

instance, no statistical difference is detected in SDNN values for the second subject 

between the SUPINE and STAND phases. The trend is also confirmed for LF/HF ratio, 

where a significant increase is once again observed for all subjects. Finally, CE shows a 

statistically significant decrease in all subjects. 
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Figure 4.15 – Results of PPir time series analysis in time, frequency, and information domains of 

MEAN, SDNN, LF/HF and CE evaluated on the six subjects during (a) the SUPINE-STAND and 

(b) the SIT-WALK measurement protocols. Statistical analyses were performed between the two 

different phases considering one hundred sub-windows of 120 points randomly extracted from 

PPir time series. Statistical test: Student’s t-test; *, p < 0.05, **, p < 0.001, SUPINE vs. STAND. 

11

(b)

(a)
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Figure 4.16 – Results of time, frequency, and information domains analysis on RR time series, 

evaluated on the six subjects during the SUPINE-STAND measurement protocol. Statistical 

analyses were performed considering one hundred sub-windows of 120 points randomly 

extracted from RR time series. Statistical test: Student’s t-test; *, p < 0.05, **, p < 0.001, 

SUPINE vs. STAND. 

 

Finally, the same analyses conducted on the PAT time series and depicted in Figure 4.17 

yielding results highly dependent on the subject. Specifically, a significant increase and 

decrease in MEAN are observed for two and three subjects, respectively, while no 

difference is detected for the fourth subject. Similarly, CE measures indicate an increase 

between phases for three subjects and a decrease for the other three. The results of the 

frequency analysis, on the other hand, show a significant increase in LF/HF ratio values 

for all subjects. 
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Figure 4.17 – Results of the analysis of PAT time series in time, frequency, and information 

domains, evaluated on the six subjects during the SUPINE-STAND measurement protocol. 

Statistical analyses were performed considering one hundred sub-windows of 120 points 

randomly extracted from the starting PAT time series. Statistical test: Student’s t-test; *, p < 

0.05, **, p < 0.001, SUPINE vs. STAND. 

 

4.5.4 DISCUSSION 

From Figure 4.13, it is evident how the device is able to acquire the biosignals of interest 

with high resolution, thus allowing the acquisition of key physiological parameters 

directly from the fingers, providing clear advantages in terms of usability and user 

comfort. Indeed, the biomedical sensors (i.e., the ECG and GSR electrodes) and the 

inertial module have been suitably placed to detect biosignals in strategic points on the 

fingers of the hand, enabling their acquisition in a simple and effective manner. The 

system architecture chosen during the design phase has proven to be crucial in enabling 

the synchronous high-resolution acquisition of all the recorded biosignals at a sampling 

frequency of 1 kHz. These characteristics effectively constitutes the main advantage of 

the device compared to currently available wearable technologies currently present in the 

market. 
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The results obtained from the agreement measurements between cardiovascular signals 

(i.e., PPG and ECG ones) have allowed considering PP time series as surrogates for RR 

ones during stationary physiological states (Figures 4.14b and 4.14c). This is a 

remarkably interesting result, given that, as well known in the literature, the ECG signal 

is more challenging to acquire due to its measurement methodology which, in the case of 

wearable devices, requires the use of both hands throughout the entire measurement 

duration [41], [75]. This paves the way for the deployment of PPG signal as a surrogate 

for ECG also in situations where it is impractical to require the user to engage both hands 

during recordings.  

The findings of the short-term analyses performed on the biosignals acquired with the 

device and resumed in Table 4.2 highlight the feasibility of the indices of clinical and 

research interest to reflect physiological changes, thus confirming that the device is 

capable of detecting these changes as a result of human motion within a small range of 

values (i.e., considering a 120-point window). Moreover, the single-subject analysis 

performed using combined bootstrap method and ultra-short-term analysis show how 

results achieved using PP and RR time series are in agreement and almost consistent 

among subjects. Indeed, the results of PRV (Figure 4.15a) and HRV (Figure 4.16) 

analyses, evaluated during the supine-stand protocol, agree with the widely documented 

evidence in the literature regarding variations in physiological indices between rest and 

stress conditions [81], [220], [221], [222], [223]. Specifically, a decrease in MEAN and 

SDNN and an increase in LF/HF and CE can be observed, trends which have been widely 

put in relation to a shift in the sympathovagal balance in favor of the sympathetic branch, 

which is typical during transitions from resting to stress physiological conditions [224], 

[225]. The activity of the SNS also causes an augmented activity of sweat glands, 

resulting in an increase of epidermal sweat: this physiological mechanism is detected by 

the GSR signal, whose values are higher during stress conditions (Table 4.2). 

Additionally, as well-established, the increase in sympathetic activity caused by 

orthostatic stress leads to a reduction in cardiac dynamics, as evidenced by the significant 

decrease in CE from the rest to stress phase [56], [161], [226]. Regarding the ultra-short-

term PRV analysis conducted during the sit-walk protocol (Figure 4.15b), it is possible to 

observe the same results highlighted by the indices extracted for the short-term analysis 

(Table 4.2). A decrease of the MEAN index is reported in all subjects, in line with typical 

trends of this parameter during stress situations. On the other hand, there are unexpected 

variations in SDNN and LF/HF, which show different trends between subjects. 
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Furthermore, there is a significant increase in CE in all subjects, indicating an increase in 

the complexity of the PP time series during the walk phase. The analyses conducted on 

the PAT time series (Figure 4.17) report average values of the extracted indices that align 

with those reported in the literature for healthy subjects in both resting and orthostatic 

stress conditions [62], [209], [219]. Lastly, findings highlight a strong deterioration of the 

agreement levels between the two PPG signals, especially during the walking phase 

(Figure 4.14a), confirming the well-known fact that the PPG signal is overly sensitive to 

motion artifacts typically encountered during physical activity.   

While on the one hand these results underscore the potential of the multiparametric 

acquisition capabilities of the device, at the same time, they highlight the well-known 

limitations of the reliability of PPG signals extracted during non-stationary conditions 

like walk (Figure 4.14a) [78], [99], [100], which entails the deterioration of the signal and 

consequently of the extracted physiological indices, as previously discussed. These 

findings strongly encourage the future implementation of motion artifact correction 

algorithms to allow for a more accurate detection of physiological parameters even during 

physical activities [98], [227]. In this regard, the embedded inertial module, which has 

been integrated into the device to enable the detection of voluntary and involuntary 

movements, is fundamental for providing useful data for a future use by artifact correction 

algorithms. In this way, it will be possible to automatically correct the noisy PPG signal 

by exploiting accelerometer data, enhancing the reliability of physiological indices 

extracted during non-stationary conditions.   

In conclusion, with the work herein discussed, the long but exhaustive presentation of the 

research results about the feasibility of the implementation of hardware solutions and 

biomedical algorithms on the wearable device is finally concluded. Indeed, these 

preliminary measurement results obtained during various physical activity conditions 

demonstrated that the wearable device can be successfully employed to monitor and 

discriminate among different physiological states. The combined analysis of 

cardiovascular variability indices in the time, frequency, and information domains and of 

the acquired GSR signals, allowed the assessment of the autonomic tone and especially 

the activation of the sympathetic branch of ANS, thereby providing insights into 

individual emotional arousal. Furthermore, the comparison of PRV indices with HRV 

indices, both extracted from the wearable device, yielded promising results that suggest 

the validation of PRV indices under stationary physical conditions (i.e., in absence of 

motor activity).  
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The results also confirmed the limitations, widely acknowledged in the literature, 

regarding the degradation of the PPG signal in the presence of motion artifacts. This 

finding encourages the implementation of algorithms for the removal and correction of 

motion artifacts in situations involving continuous physical activity. Finally, the features 

of the developed device, including its compact size, user-friendly simplicity, and the 

capability to continuously and non-invasively acquire key physiological parameters, 

alongside with the promising results from a first measurement campaign, position it as a 

potential tool for monitoring individuals during their daily routines.  
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CHAPTER 5 

 

CONCLUSIONS 
 
 
 

This thesis has been focused on the design and development of biomedical devices as well 

as on the implementation of data analysis algorithms aimed at providing non-invasive, 

simple, and comfortable monitoring of individual health and well-being. The main 

methods resulting from deep investigation on non-invasive measurement of key 

biosignals that provide crucial information about the subject's clinical condition have 

been presented. Data analysis methodologies related to the examined biosignals have 

been outlined, allowing for the effective extraction of physiological indices and 

information, enabling a detailed health assessment in a non-invasive manner. Finally, the 

ring-shaped wearable biomedical device has been designed and developed, encapsulating 

the research and reasoning on non-invasive acquisition and the implementation of 

effective data analysis, aiming to provide a solution to the need for innovative, simple, 

comfortable, and reliable methods for health assessment. 

The research results have identified the potential of both non-invasive multiparametric 

devices and computationally-efficient biosignals processing methods, confirming their 

utility in the biomedical field. In fact, the ring-shaped wearable biomedical device 

realized and discussed in this thesis enables the synchronous acquisition of many of the 

main biosignals that can be monitored non-invasively and are capable of providing 

information about the health status, i.e., the PPG, ECG and GSR signals. The results 

obtained from the measurement campaign allow to assert that all the processed biosignals 

can be easily acquired directly from the fingers. This circumstance, together with other 

features of the device, including its compact size, its user-friendly simplicity, and the 

capability to continuously and non-invasively acquire key physiological parameters, 

position it as a potential tool for monitoring individuals during their daily routines.  
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Furthermore, thanks to an in-depth study of the biomedical components available on the 

market, the device boasts a frequency rate of all signals equal to 1 kHz, thus ensuring 

temporal resolutions of each biosignal in the order of milliseconds, thereby expanding the 

scenarios for biomedical data analysis. 

From the biomedical data analysis standpoint, the synchronous acquisition of ECG and 

PPG signals, initially pursued using portable biomedical instrumentation and 

subsequently with the developed wearable device, has led to several important results. 

Foremost among these is the comparison between PRV and HRV analyses, the results of 

which have allowed considering the indices extracted from the first one as surrogates 

compared to those commonly extracted by performing HRV analysis, thus validating the 

use of the easier-to-employ PPG technique as an alternative to ECG signal acquisition for 

extracting such indices during stationary physical conditions (i.e., in absence of physical 

activity).  

In a second instance, having both ECG and PPG signals with the millisecond resolution 

allowed for PAT computation, which has been obtained directly from the signals acquired 

by the wearable device; the results obtained aligned with the PAT values typically 

observed in healthy subjects and under steady physiological conditions. These findings 

confirm the feasibility of extracting of the PAT on wearable devices, expanding the 

scenarios for biomedical analysis, thus enabling estimations of blood pressure and 

evaluating vascular system functionalities. 

The possibility of performing synchronous measurements has allowed also for 

multivariate analysis, investigating the joint dynamics between various systems, as 

demonstrated in the case of cardiorespiratory interactions, where the study of the causal 

effect from respiration to the heart period extracted from both PPG and ECG signals has 

been computed through Granger causality measures. The results have shown similar 

cardiorespiratory interactions, confirming once again the possibility of employing the 

PPG technique as an alternative to ECG.  

Finally, starting from the acquisition of both red and infrared PPG signals, it was possible 

to calibrate the wearable device to perform SpO2 measurements and, also, to estimate the 

respiration rate, thereby enabling the extraction of physiological information about the 

respiratory system. 

The investigation relevant to the implementation of multiparametric devices has revealed 

their significant potential not only for real-time monitoring but also for multilevel stress 

assessment.  
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Indeed, our results confirm evidences in the literature showing that the GSR signal is a 

valuable tool for stress assessment, as it allows the detection of new physiological 

conditions following the occurrence of physical stress situations; the present work has 

evidenced those that characterize a change in posture (e.g., sitting, standing, lying down) 

or a transition from normal breathing to paced breathing.  

In addition to device design, physiological indices extraction and parameter monitoring, 

it is also crucial to develop further robust analysis techniques that can effectively handle 

noise, artifacts, to align as closely as possible with the stationarity conditions of a process. 

Indeed, this is important since biomedical signals can be influenced by a variety of 

external and internal factors that generate disturbances or undesired variations in the data. 

With a decrease in the duration of the acquisition window, the number of motion artifacts 

detected potentially decreases as well. This is a very important point since, as it has been 

seen, motion artifacts are a major limitation in bio-signal measurements, especially for 

wearable devices. Finally, the ability to obtain physiological information in a short time 

would also avoid excessively stressing the user undergoing measurements, which is also 

one of the objectives set in this thesis. This has led to focusing the attention of this work 

also on the possibility of performing UST analysis, namely by considering very small 

acquisition time windows, thus reducing the possibility that the biosignal under 

examination may be affected by these factors. In this context, significant results have been 

obtained from the analysis of the use of UST indices for the detection of physiological 

states in the time, frequency, and information domains, where several findings obtained 

in the studies herein conducted highlight how physiological indices extracted from 

cardiovascular series in all three domains allow for discriminating physiological changes 

between resting and stress conditions, even considering time windows below 300 data 

points, particularly managing to go down to 120 points and sometimes as low as 60 points. 

These findings encourage the use of shorter time series, consequently enabling 

biomedical devices to consume fewer computational and energy resources during the 

measurement process.   

While on the one hand this work has yielded several important results, on the other hand, 

it has brought to light some issues related to the use of wearable devices and biosignals 

processing techniques.  
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Indeed, although the results suggest the reliability of the wearable device under stationary 

conditions, they also confirm the main limitations shared by WHDs regarding the 

acquisition of biosignals under non-stationary conditions and, particularly, in the presence 

of motion artifacts. In this context, the possibility of utilizing data from inertial modules 

would enable the implementation of algorithms for artifact correction and elimination, 

thereby improving acquisition performance during non-stationary conditions (i.e., 

conditions involving subject movement).  

Similar considerations can be applied in the biosignal processing techniques landscape, 

where there is a need to confirm the results of data analyses even for non-stationary 

conditions, which were not analyzed here. Furthermore, most of the reported results come 

from studies conducted on small sample sizes, which underscores the importance of 

continuing the implementation of the data analysis techniques discussed on a larger 

number of subjects, in order to confirm the findings of this study on a larger scale. 

In conclusion, like all research endeavors, the one presented and discussed here cannot 

be considered concluded; rather, it can be viewed as a solid foundation for further research 

in the fields of wearable bioinstrumentation and biosignal processing, with the final aim 

to gain a deeper understanding of ongoing new biomedical studies, methodologies and 

technologies aimed at human well-being. 
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