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A B S T R A C T

A computational framework for static aeroelastic analysis of composite laminated plates is proposed, whose
novelty is the conjoined use of a structural discontinuous Galerkin (DG) formulation and an aerodynamic vortex
lattice method (VLM), suitably coupled for the monolithic solution of the aeroelastic problem. The structural
method is built on variable-order generalized kinematics, which allows the seamless adoption of either beam
or plate modeling strategies, with on-demand order of polynomial approximation over the transverse and
in-plane dimensions of the structural elements. The underlying DG formulation also simplifies the coupling
between the structural and aerodynamic grids, thus providing a versatile tool for the aeroelastic analysis of
either low or high aspect-ratio composite wings. Several numerical tests have been performed to assess the
convergence features of the proposed framework as well as its accuracy with respect to available computational
and experimental benchmark data. The obtained results confirm its robustness and highlight its potential for
aeroelastic assessments in early aircraft conceptual design.
1. Introduction

Aeroelasticity, which lies at the intersection between structural me-
chanics and aerodynamics, plays an important role in several fields
of engineering, providing enabling technologies for the realization
of large civil infrastructures, such as long-span suspension bridges
and high-rise buildings [1,2], aircraft and aerospace structures [3–
5], turbo-machinery components [6], and energy harvesting devices,
including small-scale piezoelectric harvesters [7] as well as large-scale
and off-shore wind turbines [8–11], among other applications.

Composite materials have consolidated their role in high-
performance structural applications and are today widely employed in
the automotive and aerospace industries, as they deliver high stiffness
and strength at low weight, which is of interest for energy efficient
transportation. Additionally, leveraging on a wide design space in terms
of base materials selection and architecture (matrix, fibers, stacking se-
quence), they offer the opportunity to tailor the material manufacturing
and internal architecture on the specific application, e.g. optimizing
stiffness along specific directions in accordance with the considered
load paths, thus promoting structural performance and efficiency. As
exemplified by the development of the Grumman X-29, anisotropic elas-
tic couplings between bending and twisting in carbon fiber reinforced
composite plates and shells can be profitably exploited to delay or

∗ Corresponding author at: Department of Engineering, Università degli Studi di Palermo, Italy.
E-mail addresses: vincenzo.gulizzi@unipa.it (V. Gulizzi), ivano.benedetti@unipa.it (I. Benedetti).

avoid aeroelastic divergence in innovative aircraft configurations, in
the context of the so-called aeroelastic tailoring [12–14]. Aeroelastic
tailoring, implemented through composite structures, is gathering re-
newed relevance in the framework of emerging aerospace technologies
for green aviation, which consistently include the employment of high-
aspect-ratio wings for enhanced aerodynamic efficiency [15]. Indeed,
high-aspect-ratio wings tend to suffer from the effects of high flexibility,
which may promote aeroelastic divergence and flutter [16].

The above considerations motivate the interest in the development
of reliable tools for conceptual and preliminary analysis of aircraft
architectures. In the literature, several formulations and methods have
been proposed for the analysis of the aeroelastic behavior of compos-
ite aircraft structures [17–19]. Beyond specific technical aspects, the
adopted formulations may differ for the level of fidelity retained in the
analysis, ranging from high-resolution models coupling computational
structural dynamics (CSD) with sophisticated computational fluids dy-
namics (CFD) [20–24] to more simplified representations, where either
the structural response [25,26], the aerodynamic response [27], or both
the structure and aerodynamic fields are reconstructed using simpli-
fied models, such as aerodynamic potential flow theories or structural
beam theories [28–36], which are typically able to capture the main
features and trends of the considered problem. The development and
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practical employment of high-fidelity models is hindered by the high
computational costs attracted by such kinds of analysis, entailing the
coupled resolution of structural and fluids fields, which is the reason

hy considerable efforts are devoted to the development of reduced
rder modeling (ROM) strategies for aeroelastic analysis [37–39].

Although high-fidelity models, including the detailed representation
of structural and aerodynamic features, are certainly useful in advanced
stages of design, where they can complement pre-production experi-
mental assessments,fine-tuning or post-production adjustments, there
is relevant interest in fast and sufficiently accurate and reliable com-
putational tools to assist in the selection between alternative structural
or architectural configurations during conceptual design development,
when several alternatives need to be assessed before focusing on the
fewer most promising ones.

In this contribution we propose an original computational frame-
work for the static aeroelastic analysis of multi-layered composite
lates based on the conjoined use of a discontinuous Galerkin (DG)
ethod for structural analysis and a vortex lattice method (VLM) for

he resolution of the aerodynamic field and forces, coupled through
n interface ensuring the consistence between aerodynamic loads and
tructural deflections. Unlike similar solution strategies for solving
artial differential equations, such as the Finite Element Method (FEM),
he key feature of DG-based formulations is the use of a space of
iscontinuous basis functions and suitably defined boundary integrals
o weakly enforce boundary and interface conditions, including the
ontinuity of the solution between adjacent elements. The discontin-
ous nature of the basis functions allows enabling high-order accuracy
or conventional and non-conventional (e.g. polytopic) meshes, sim-
lifying the coupling between elements featuring different orders of
pproximation or different mathematical models in multi-physics prob-
ems, making the method amenable to massive parallelization. With
egards to the considered aeroelastic problems, the strength of the
ethod lies in the versatility of the underlying kinematic structural
odel, which offers the possibility of adapting the order of approx-

mation of the unknown fields, so to capture complex in-plane and
hrough-the-thickness kinematic and static patterns, and in the seamless
oupling with the adopted aerodynamic model. While the benefits of
he DG-VLM coupling for aeroelastic analysis had been first explored in
ef. [36], the novelty of the present contribution consists in proposing,

implementing, testing and validating the framework for the analysis of
general composite multi-layer plates, which is of relevant interest in the
context of aeroelastic tailoring for aerospace applications.

The paper is organized as follows. Section 2 describes the ba-
sic features of the analyzed aeroelastic problem, specifying the ref-
erence geometry and providing some background information about
the structural and aerodynamic grids employed in the computations.
Section 3 details the proposed structural model, from the kinematic
assumptions and associated constitutive relationships to the DG weak
form employed for its solution. Section 4 recalls the main features
f the selected VLM aerodynamic model, based on potential flow
heory. Section 5 explains how the coupling between the structural

model and the aerodynamic model is implemented, highlighting the
assumptions that allow the monolithic solution of the considered fluid–
tructure interaction problem. Section 6 presents and discusses the sets
f numerical tests considered for validating the developed framework.

Eventually, Section 7 critically discusses the main features of the pro-
posed method and identify potential directions for further investigation
and development, before drawing some summary Conclusions.

2. Aeroelastic problem description

This section identifies the class of considered aeroelastic problems
and provides some common background information for the developed
formulation.
 s

2 
2.1. Geometry and material properties

The considered class of aeroelastic problems is schematically repre-
ented in Fig. 1. General rectangular wings with reference surface 𝑆,
ingspan 𝑏, airfoils chord 𝑐, and sweep angle 𝛬 are considered. The
ings are described using a global reference system 𝑂 𝑥1𝑥2𝑥3 centered
t the quarter chord of the root section with: the axis 𝑥1 contained
n the plane of symmetry of the wing, aligned with the root chord
nd pointing towards the leading edge; the axis 𝑥3 perpendicular to
he axis 𝑥1, lying on the plane of symmetry of the wing, and oriented
owards the wing pressure side; and the axis 𝑥2 orthogonal to the
lane of symmetry and oriented so to define a right-handed reference
ystem together with the axes 𝑥1 and 𝑥3, see Figs. 1–2. The free-stream

aerodynamic speed 𝑉∞ is oriented so to identify the angle of attack 𝛼
with respect to the axis 𝑥1.

From the structural point of view, flat multilayered plates are con-
sidered. The generic wing plate has thickness 𝜁 and it is assembled from
a number 𝑁𝓁 of laminae or layers; each lamina 𝓁 has thickness 𝜁 ⟨𝓁⟩ and
features unidirectional fibers aligned along the local material axis 𝑥⟨𝓁⟩1 ,
defined so that 𝑥⟨𝓁⟩1 forms an angle 𝜃⟨𝓁⟩ with the global reference axis
𝑥1 and 𝑥⟨𝓁⟩3 coincides with the global reference axis 𝑥3, as shown in
Fig. 1(b).

The geometry of the problem is described by parametric coordinates
𝜉1, 𝜉2, and 𝜉3 running along the chord, span, and thickness of the
considered wing, respectively. In particular, a generic point 𝒙 = 𝒙(𝝃),
with 𝝃 ≡ (𝜉1, 𝜉2, 𝜉3), belonging to the wing volume is constructed as
ollows: let 𝒙𝑅 and 𝒙𝑇 be the locations of the quarter-chord points of
he root section and of the tip section, respectively, such that a point
𝑐∕4 on the quarter-chord line of the wing can be expressed as

𝒙𝑐∕4(𝜉2) = 𝒙𝑅 + (𝒙𝑇 − 𝒙𝑅)𝜉2, (1)

where 𝜉2 ∈ [0, 1]. It is worth noting that, for the case in Fig. 1(a),
𝑅 = 𝟎; however, the formulation is intended to allow also more general
arameterizations. Then, a generic point 𝒙0 on the mean surface of the
ing structure is given by

𝒙0(𝜉1, 𝜉2) = 𝒙𝑐∕4(𝜉2) + (𝑐∕4 − 𝜉1 )̂𝒊, (2)

where 𝜉1 ∈ [0, 𝑐] and 𝒊̂ = (1, 0, 0)⊺. Eventually, the expression of 𝒙 reads

𝒙(𝜉1, 𝜉2, 𝜉3) = 𝒙0(𝜉1, 𝜉2) + 𝜉3 𝒏̂ (3)

where 𝜉3 ∈ [−𝜁∕2, 𝜁∕2] and 𝒏̂ ≡ (0, 0,−1)⊺.

2.2. Computational grids

As detailed in the subsequent sections, the numerical treatment
of the aeroelastic problem will require a structural mesh and a dif-
ferent aerodynamic mesh, to be suitably coupled for the resolution
of the coupled equations. A schematic representation of the adopted
computational grids is shown in Fig. 2. The structural mesh is pro-
vided by the collection of generic brick elements, which will provide
he local supports for the DG formulation. On the other hand, the

steady aerodynamic field is addressed employing the VLM, in which
a vortex lattice is attached to the plate mean surface, mapped by
𝒙0(𝜉1, 𝜉2) in Eq. (2) as (𝜉1, 𝜉2) ∈ [0, 𝑐] × [0, 1], and consists of a grid
of ring vortexes plus a row of semi-infinite horseshoe vortexes, shed
rom the wing’s trailing edge. As shown in Fig. 2(b), which illustrates
he relative arrangement of structural and aerodynamic elements, in
eneral the aerodynamic ring/horseshoe vortexes do not coincide with
he structural elements; each ring/horseshoe vortex 𝑘 is associated with
 normal vector 𝒏̂𝑘, which is employed to enforce the aerodynamic flow
mpenetrability condition at specific control points and will be modified
y the deflection of the underlying structure; on the other hand, each
ortex element 𝑘 provides, upon resolution of a generic aerodynamic
tep, a specific aerodynamic force 𝒇𝑘, to be suitably transferred to the
nderlying structural element for the solution/update of the structural
olution. The above description is of general validity, and illustrates
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Fig. 1. (a) Geometry of the considered multilayered wing structures; (b) Definition of the local material reference system for the 𝓁-th lamina.
Fig. 2. (a) Discretization of the wing into a collection of structural DG elements (thick black lines) and aerodynamic VLM vortexes (green lines). (b) Closeup of a structural
element and of the set of related bound aerodynamic vortexes; a generic 𝑖th vortex is associated with the circulation 𝛤 𝑘, a unit normal vector 𝒏̂𝑘 and generates a force 𝒇 𝑘 on the
structural element.
the aeroelastic coupling in general settings in which iterative solution
searches are employed; however, in the present work, a monolithic so-
lution approach has been implemented, which provides an equilibrium
aeroelastic configuration from the solution of the coupled structural
and aerodynamic equations, as it will be detailed in Section 5.

3. Structural model

The wing is assumed to deform under the assumptions of small
strains and linear elasticity. The components of the displacement field
are collected within the vector 𝒖 = (𝑢1, 𝑢2, 𝑢3)⊺, while the strain and
stress components are collected in Voigt ordering and notation within
the vectors 𝜸 = (𝛾11, 𝛾22, 𝛾33, 𝛾23, 𝛾31, 𝛾12)⊺ and 𝝈 = (𝜎11, 𝜎22, 𝜎33, 𝜎23,
𝜎31, 𝜎12)⊺, respectively. The wing is subject to body forces acting over
its volume 𝑉 and surface tractions acting over the portion 𝜕 𝑉𝑡 of its
boundary 𝜕 𝑉 ; the components of the body forces are collected within
the vector 𝒇 = (𝑓1, 𝑓2, 𝑓3)⊺, while the components of the surface
tractions are collected within 𝒕 = (𝑡1, 𝑡2, 𝑡3)⊺. The wing is also subject
to essential boundary conditions 𝒖 = 𝟎 for 𝒙 ∈ 𝜕 𝑉𝑢 where 𝜕 𝑉𝑢 denotes
the root section of the wing, i.e. 𝜕 𝑉 ≡ {𝒙 ∈ 𝑉 ∶ 𝑥 = 0}.
𝑢 2

3 
The governing equations of the structural problem are derived
from the principle of virtual displacements (PVD) for three-dimensional
elasticity; for an 𝑁𝓁-layer laminate, the PVD reads
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝜸⟨𝓁⟩⊺𝝈⟨𝓁⟩ d𝑉 =
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝒖⟨𝓁⟩⊺𝒇 ⟨𝓁⟩ d𝑉 +
𝑁𝓁
∑

𝓁=1
∫𝜕 𝑉 ⟨𝓁⟩

𝛿𝒖⟨𝓁⟩⊺𝒕⟨𝓁⟩ d𝑆 ,

(4)

where 𝛿(∙) denotes the first variation of the quantity ∙, and the subscript
⟨𝓁⟩ denotes quantities associated with the 𝓁-th lamina. Then, the
adoption of different kinematic assumptions on the behavior of the
displacement components throughout the wing volume allows obtain-
ing different structural models, see e.g. Ref. [40]. Here, variable-order
beam theories (BTs) and variable-order plate theories (PTs) are consid-
ered. In both cases, the wing volume 𝑉 is discretized into a collection
of 𝑁𝑒 elements, i.e., 𝑉 =

⋃𝑁𝑒
𝑒=1 𝒟

𝑒, where 𝒟 𝑒 is the generic 𝑒th element,
and the 𝑘th displacement component 𝑢ℎ𝑘 is expressed in terms of 𝜉1, 𝜉2,
and 𝜉3 as

𝑢ℎ𝑘(𝒙 ∈ 𝒟 𝑒) =
𝑝1
∑

𝑖1=0

𝑝2
∑

𝑖2=0

𝑝3
∑

𝑖3=0
𝑏𝑒𝑖1 (𝜉1)𝑏

𝑒
𝑖2
(𝜉2)𝑏𝑒𝑖3 (𝜉3)𝑋

𝑒,𝑘
𝑖1𝑖2𝑖3

=
𝑁𝑝
∑

𝑖=1
𝐵𝑒𝑖 (𝜉1, 𝜉2, 𝜉3)𝑋𝑒,𝑘

𝑖 ,

(5)

where the superscript ℎ indicates that 𝑢ℎ𝑘 is an approximation of the
actual displacement component 𝑢 , 𝑏𝑒 (𝜉 ), 𝑏𝑒 (𝜉 ), and 𝑏𝑒 (𝜉 ) denote
𝑘 𝑖1 1 𝑖2 2 𝑖3 3



D. Campagna et al.

s
𝑝
a

𝑝
m

r

s
𝒄̃
o
c

i
f
b

t

̃

o

n

𝑛
̃

w

m

𝑏

Composite Structures 353 (2025) 118697 
the one-dimensional basis functions chosen to express the chord-wise,
pan-wise, and thickness-wise approximations, respectively, 𝑝1, 𝑝2, and
3 are the corresponding orders of approximation, and 𝑋𝑒,𝑘

𝑖1𝑖2𝑖3
are the

ssociated unknown coefficients. The product 𝑏𝑒𝑖1 (𝜉1)𝑏
𝑒
𝑖2
(𝜉2)𝑏𝑒𝑖3 (𝜉3) can be

written as a single basis function 𝐵𝑒𝑖 (𝜉1, 𝜉2, 𝜉3) of the coordinates 𝜉1, 𝜉2
and 𝜉3, leading to the second equality of Eq. (5), where 𝑋𝑒,𝑘

𝑖 is the
unknown coefficient associated to 𝐵𝑒𝑖 (𝜉1, 𝜉2, 𝜉3) for the 𝑘th displacement
component, the index 𝑖 is associated with the tuple (𝑖1, 𝑖2, 𝑖3), and
𝑁𝑝 = (1 + 𝑝1)(1 + 𝑝2)(1 + 𝑝3). Upon considering the three displacement
components, and collecting the unknown coefficients into the 𝑁𝑢𝑁𝑝-
dimensional vector 𝑿𝑒, with 𝑁𝑢 = 3 , and the basis functions into the
𝑁𝑢 ×𝑁𝑢𝑁𝑝 matrix 𝑩𝑒, Eq. (5) may be rewritten in matrix notation as

𝒖ℎ(𝒙 ∈ 𝒟 𝑒) = 𝑩𝑒(𝜉1, 𝜉2, 𝜉3)𝑿𝑒. (6)

It is worth noting that, in this work, the same expansion orders 𝑝1, 𝑝2,
3 are associated with the three displacement components, although
ore general choices could be made, as for example done in the case

of the first-order shear deformation theory [41]. BTs and PTs then
differ for the wing discretization, kinematic assumptions, and adopted
constitutive behavior, as detailed next.

In BTs the wing is discretized using a one-dimensional grid such
that the domain 𝒟 𝑒 of the generic 𝑒th element includes a portion of
the wing contained between the two transverse sections identified by
𝜉2 = (𝑒− 1)ℎ and 𝜉2 = 𝑒ℎ, i.e. 𝒟 𝑒 ≡ [0, 𝑐] × [(𝑒− 1)ℎ, 𝑒ℎ] × [−𝜁∕2, 𝜁∕2], where
𝑒 = 1,… , 𝑁𝑒 and ℎ ≡ 1∕𝑁𝑒. Regarding the kinematic assumption, the
𝑛th order BT is denoted by BT𝑛 and corresponds to setting 𝑝1 = 𝑝3 = 𝑛 in
Eq. (5), while 𝑝2 = 𝑝 is varied independently and will identify the order
of the chosen DG𝑝 formulation. Eventually, recalling the local material
eference systems shown in Fig. 1(b), the stress–strain relationship for

a point 𝒙 lying within the 𝓁-th lamina is expressed as

𝝈⟨𝓁⟩ = 𝒄̃⟨𝓁⟩𝜸̃⟨𝓁⟩, (7)

where 𝝈⟨𝓁⟩ and 𝜸̃⟨𝓁⟩ collect the components in the material reference
ystem of the stress and strain tensors, respectively, and the matrix
⟨𝓁⟩ contains the corresponding constitutive constants. Assuming an
rthotropic behavior, the 𝒄̃⟨𝓁⟩ is given in terms of the engineering
onstants as
𝒄̃⟨𝓁⟩ = (𝒔̃⟨𝓁⟩)−1 with

𝒔̃⟨𝓁⟩ ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1∕𝐸1 −𝜈12∕𝐸1 −𝜈13∕𝐸1 0 0 0
−𝜈12∕𝐸1 1∕𝐸2 −𝜈23∕𝐸2 0 0 0
−𝜈13∕𝐸1 −𝜈23∕𝐸2 1∕𝐸3 0 0 0

0 0 0 1∕𝐺23 0 0
0 0 0 0 1∕𝐺13 0
0 0 0 0 0 1∕𝐺12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⟨𝓁⟩

(8)

where 𝒔̃⟨𝓁⟩ is the compliance matrix of the 𝓁-th lamina in the local
material reference system, 𝐸1, 𝐸2, and 𝐸3 are the Young’s moduli, 𝐺23,
𝐺13, and 𝐺12 are the shear moduli, and 𝜈23, 𝜈13, and 𝜈12 are the Poisson’s
ratios. The constitutive relationship given in Eq. (8) is then expressed
n the global reference system using the transformation relationships
or fourth-order tensor components, which lead to the constitutive
ehavior written as

𝝈⟨𝓁⟩ = 𝒄⟨𝓁⟩𝜸⟨𝓁⟩, (9)

where 𝒄⟨𝓁⟩ ≡ 𝐓(𝜃⟨𝓁⟩) 𝒄̃⟨𝓁⟩ 𝐓⊺(𝜃⟨𝓁⟩) and 𝐓(𝜃⟨𝓁⟩) is a standard transforma-
ion matrix [41,42]. The constitutive relationship in Eq. (8) is employed

for BT𝑛 with 𝑛 ≥ 2; on the other hand, when 𝑛 = 1, the constitutive
coefficients are modified such that 𝑠̃⟨𝓁⟩12 = 𝑠̃⟨𝓁⟩13 = 𝑠̃⟨𝓁⟩23 = 𝑠̃⟨𝓁⟩21 = 𝑠̃⟨𝓁⟩31 =
𝑠⟨𝓁⟩32 = 0, and 𝑠̃⟨𝓁⟩44 = 1∕(𝜅𝑠𝐺23) and 𝑠̃⟨𝓁⟩55 = 1∕(𝜅𝑠𝐺13), where 𝜅𝑠 is the
shear factor, assumed constant and equal to 5∕6 in this paper.

On the other hand, in PTs, the wing is discretized using two-
dimensional elements 𝒟 𝑒 mapping a portion of the span, a portion
f the chord and the whole thickness of the wing, i.e., 𝒟 𝑒 ≡ [(𝑒1 −

1)ℎ , 𝑒 ℎ ] × [(𝑒 − 1)ℎ , 𝑒 ℎ ] × [−𝜁∕2, 𝜁∕2], where 𝑒 = 1,… , 𝑛 , being
1 1 1 2 2 2 2 1 1 ∫

4 
𝑛1 the number of elements along the chord, 𝑒2 = 1,… , 𝑛2, being 𝑛2 the
umber of elements along the span, ℎ1 ≡ 𝑐∕𝑛1 and ℎ2 ≡ 1∕𝑛2; in this

case, the total number of element is 𝑁𝑒 = 𝑛1𝑛2. In terms of kinematic
behavior, the 𝑛th order PT is denoted by PT𝑛 and corresponds to setting
𝑝3 = 𝑛 in Eq. (5), while 𝑝1 = 𝑝2 = 𝑝 is varied independently and it
is used to identify the order of the chosen DG𝑝 formulation. In terms
of constitutive behavior, wings represented by PT𝑛 models with 𝑛 ≥ 2
feature the stress–strain relationship given in Eq. (8), whereas, when
= 1, the constitutive coefficients are modified such that 𝑠̃⟨𝓁⟩13 = 𝑠̃⟨𝓁⟩23 =

𝑠⟨𝓁⟩31 = 𝑠̃⟨𝓁⟩32 = 0, and 𝑠̃⟨𝓁⟩44 = 1∕(𝜅𝑠𝐺23) and 𝑠̃⟨𝓁⟩55 = 1∕(𝜅𝑠𝐺13), where
𝜅𝑠 = 5∕6 is the same shear factor employed for BT1 models.

3.1. Discontinuous Galerkin formulation

Once the kinematic approximation given in Eq. (5) or Eq. (6) is
introduced for each structural element, the boundary conditions as

ell as the continuity of the solution between adjacent elements are
enforced by employing an Interior Penalty discontinuous Galerkin for-

ulation that has been recently developed for beam [36,43], plate [44,
45] and shell [46–49] structures. In particular, each basis function
𝑒(𝜉1, 𝜉2, 𝜉3) contained in the matrix 𝑩𝑒 of Eq. (6) is taken from a space
ℎ of discontinuous polynomial fields defined as

ℎ ≡ {𝑏 ∶ 𝒟ℎ → R ∣ 𝑏(𝝃 ∈ 𝒟 𝑒) ∈ 𝑒
𝑝1𝑝2𝑝3

∀𝑒 = 1,… , 𝑁𝑒}, (10)

where 𝒟ℎ ≡
⋃𝑁𝑒
𝑒=1 𝒟

𝑒 denotes the collection of the mesh elements and
𝑝1𝑝2𝑝3 denotes the space of polynomials up to degree 𝑝𝑘 in the variable
𝜉𝑘, with 𝑘 = 1, 2, 3. Then, it is possible to show, see also Ref. [50], that
the DG formulation for a small-strain linear-elastic problem is stated as
follows: find 𝒖ℎ ∈ (ℎ)𝑁𝑢 such that

𝐵(𝒗, 𝒖ℎ) = 𝐿(𝒗,𝒇 , 𝒕), ∀𝒗 ∈ (ℎ)𝑁𝑢 , (11)

where

𝐵(𝒗, 𝒖ℎ) ≡ ∫𝒟ℎ

𝜕𝒗⊺
𝜕 𝑥𝑘

𝒄𝑘𝑙
𝜕𝒖ℎ
𝜕 𝑥𝑙

d𝑉

−∫ℐ ℎ

[

[[𝒗]]⊺𝑘

{

𝒄𝑘𝑙
𝜕𝒖ℎ
𝜕 𝑥𝑙

}

+
{

𝜕𝒗⊺
𝜕 𝑥𝑘

𝒄𝑘𝑙
}

[[𝒖ℎ]]𝑙
]

d𝑆

+∫ℐ ℎ
𝜇[[𝒗]]⊺𝑘[[𝒖

ℎ]]𝑘 d𝑆 +

−∫ℬℎ
𝐷

[

𝑛𝑘𝒗⊺
(

𝒄𝑘𝑙
𝜕𝒖ℎ
𝜕 𝑥𝑙

)

+
(

𝜕𝒗⊺
𝜕 𝑥𝑘

𝒄𝑘𝑙
)

𝒖ℎ𝑛𝑙
]

d𝑆

+∫ℬℎ
𝐷

𝜇𝒗⊺𝒖ℎ d𝑆 (12)

and

𝐿(𝒗,𝒇 , 𝒕) ≡ ∫𝒟ℎ
𝒗⊺𝒇 d𝑉 + ∫ℬℎ

𝑁

𝒗⊺𝒕 d𝑆 . (13)

In Eq. (12), the subscripts 𝑘 and 𝑙 span the set {1, 2, 3} and imply
summation when repeated, 𝒄𝑘𝑙 are 3 × 3 matrices that contain subsets
of the elastic coefficients and are defined as 𝒄𝑘𝑙 ≡ 𝑰⊺

𝑘𝒄 𝑰 𝑙, where 𝑰𝑘 are
6 × 3 matrices containing ones and zeros only that can be found for
instance in [45], 𝑛𝑘 is the 𝑘th components of the unit normal vector at
the element boundaries, 𝜇 is the penalty parameter typical of Interior
Penalty DG formulations, and the terms {∙} and [[∙]]𝑘 represent the
average and the jump operators, respectively, defined at the interface
𝑖 between two contiguous elements 𝑒 and 𝑒′ as

{∙}𝑖 ≡ 1
2

(

∙𝑒 + ∙𝑒′
)

and [[∙]]𝑖𝑘 ≡ ∙𝑒𝑛𝑒𝑘 + ∙𝑒′𝑛𝑒′𝑘 . (14)

Additionally, the integrals appearing in Eqs. (12) and (13) are typically
referred to as the broken integrals and are defined as

∫𝒟ℎ
∙ d𝑉 ≡

𝑁𝑒
∑

𝑒=1
∫𝒟 𝑒

∙𝑒 d𝑉 , ∫ℬℎ
𝐷

∙ d𝑆 ≡
𝑁𝑒
∑

𝑒=1
∫ℬ𝑒

𝐷

∙𝑒 d𝑆 ,

∙ d𝑆 ≡
𝑁𝑒
∑

∙𝑒 d𝑆 , and ∙ d𝑆 ≡
𝑁𝑖
∑

∙𝑖 d𝑆 ,
(15)
ℬℎ
𝑁 𝑒=1

∫ℬ𝑒
𝑁

∫ℐ ℎ 𝑖=1
∫ℐ 𝑖
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where ℬ𝑒
𝐷 and ℬ𝑒

𝑁 are the portions of the 𝑒th element’s boundary
where Dirichlet boundary conditions and Neumann boundary con-
ditions, respectively, are enforced, while ℐ 𝑖 is a generic interface
between two contiguous elements and ℐ ℎ ≡

⋃𝑁𝑖
𝑖=1 ℐ

𝑖 denotes the col-
lection of all the inter-element interfaces associated with the considered
mesh. It is worth noting that volume and boundary integrals spanning
the thickness of the wing are computed accounting for the multilayered
structure of the wing and the constitutive behavior of each lamina;
in particular, on the basis of the order 𝑛 of the considered beam or
late theory, a suitable number of quadrature points are considered

throughout the thickness of each lamina and the matrices 𝒄𝑘𝑙 are
computed using the stiffness matrix 𝒄⟨𝓁⟩ when the generic quadrature
point falls within the 𝓁-th lamina.

Eventually, by letting 𝒗 span all the basis functions contained in
(ℎ)𝑁𝑢 , the following algebraic system of equations is obtained

𝐊𝖲𝐗𝖲 = 𝐅, (16)

where 𝐊𝖲 and 𝐅 are the stiffness matrix and the right-hand side stem-
ing from the terms 𝐵(𝒗, 𝒖ℎ) and 𝐿(𝒗,𝒇 , 𝒕), respectively, in Eq. (11),

and 𝐗𝖲 is the vector containing the unknown structural degrees of
reedom associated with the considered structural theory and DG for-

mulation. It is worth noting that the total number of degrees of
reedom (𝖣𝖮𝖥) associated with the structural model is given by 𝖣𝖮𝖥 =
𝑒𝑁𝑢𝑁𝑝. Additionally, for the sake of completeness, the explicit expres-

ion of the elemental contributions to the stiffness matrix within the
onsidered Interior Penalty DG formulation is reported in Appendix A.

4. Aerodynamic model

As anticipated above, the vortex lattice method [51] is employed
as aerodynamic model to be coupled with the DG structural model
for static aeroelastic analysis. The method is briefly recalled in this
section for self-completeness; however interested readers are referred
to Ref. [51] for further details.

In the formulation a set of bound ring and horseshoe vortexes
is associated with the wing mean surface, forming the well-known
vortex lattice. Each vortex 𝑖 features a strength 𝛤 𝑖, initially unknown,
and contributes to generate a spatial flow velocity field that can be
omputed through the standard Biot–Savart law. The superposition of
he free-stream speed 𝑽 ∞ and the velocity induced by the collection of

all vortexes generates a resulting flow field 𝒗 that, at a generic point 𝒙,
can be expressed as

𝒗(𝒙) = 𝑽 ∞ +
𝑁𝑣
∑

𝑖=1
𝒗𝑖(𝒙)𝛤 𝑖, (17)

where 𝒗𝑖(𝒙) is the velocity induced by the 𝑖-th vortex with unit strength
and 𝑁𝑣 is the total number of vortexes. To determine the vortex
trengths, the aerodynamic flow impenetrability condition 𝒗(𝒙𝑖𝑐 ) ⋅ 𝒏̂

𝑖 = 0
ust be enforced at the vortexes control points, where 𝒙𝑖𝑐 collects the

oordinates of the 𝑖th vortex control point and 𝒏̂𝑖 is the unit normal to
he wing mean surface at 𝒙𝑖𝑐 , see Fig. 2. By letting 𝑖 cycle over all the

vortexes, the linear system

𝐀Γ = 𝐛 (18)

is assembled, where the 𝑖𝑗-th term 𝐴𝑖𝑗 of the coefficient matrix 𝐀 is
given by 𝐴𝑖𝑗 ≡ 𝒏̂𝑖 ⋅ 𝒗𝑗 , the 𝑖th term 𝑏𝑖 of the right-hand side 𝐛 is given
by 𝑏𝑖 ≡ −𝒏̂𝑖 ⋅𝑽 ∞, and Γ is the vector containing the unknown strengths
associated with the considered lattice of vortexes.

Upon resolution of the aerodynamic field, the aerodynamic force 𝒇 𝑖

cting on the 𝑖th vortex can be computed as

𝒇 𝑖 = 𝜌∞𝒗(𝒙𝑖𝑚) × 𝒍𝑖𝛤 𝑖, (19)

where 𝜌∞ is the density of the flow, 𝒍𝑖 is the vector associated with
eading segment of the ring/horseshoe vortex, 𝒗(𝒙𝑖𝑚) is the local flow
elocity evaluated at the midpoint 𝒙𝑖𝑚 of 𝒍𝑖, and 𝛤 𝑖 is the net circulation
trength at the leading segment of the vortex, coinciding with 𝛤 𝑖 if
5 
the 𝑖th vortex is at the leading edge of the wing, or otherwise with
he difference between the circulation values of two adjacent vortexes
long the chord direction. As an example, considering Fig. 2(b), the
orce generated by the vortex 𝑖 is given by 𝒇 𝑖 = 𝜌∞𝒗(𝒙𝑖𝑚) ×𝒍𝑖𝛤 𝑖, whereas

the force generated by the vortex 𝑗 is given by 𝒇 𝑗 = 𝜌∞𝒗(𝒙𝑗𝑚) ×𝒍𝑗 (𝛤 𝑗−𝛤 𝑖).

5. Aeroelastic coupling

The discrete equations governing the structural and aerodynamic
problems are represented by Eqs. (16) and (18), respectively. These
equations are mutually coupled: the forces generated by the vortex
lattice enter the right-hand side of Eq. (16) via the body force term ap-
pearing in Eq. (13) as a set of concentrated forces, i.e., 𝒇 =

∑𝑁𝑣
𝑖=1 𝒇

𝑖𝛿(𝒙−
𝑖
𝑚), where 𝛿(𝒙 − 𝒙𝑖) is the Dirac delta function at the point 𝒙𝑖. On the
ther hand, both the coefficient matrix 𝐀 and the right-hand side vector
of Eq. (18) are computed using the unit normal to the wing’s mean

urface, which is affected by the deformation of the structure. As a
onsequence, assuming that the wing will be subject to aerodynamic

loads only, the two systems of equations can be re-written by explicitly
expressing the dependence of each term on the structural unknowns 𝐗𝖲

and aerodynamic unknowns Γ as
{

𝐀(𝐗𝖲)Γ = 𝐛(𝐗𝖲)
𝐊𝖲𝐗𝖲 = 𝐅(Γ),

(20)

which represents a non-linear system of equations that may be solved
via a root-searching technique, such as the Newton–Raphson method.
However, assuming small perturbations, another solution approach
consists in linearizing Eq. (20) with respect to the reference unde-
formed non-lifting configuration.

Using the subscript 0 to denote quantities computed for 𝐗𝖲 = 𝟎 and
Γ = 𝟎, the linearization is performed as follows: the aerodynamic coeffi-
cient matrix is replaced by the matrix 𝐀0, i.e., 𝐀(𝐗𝖲) ≈ 𝐀0 ≡ 𝐀(𝐗𝖲 = 𝟎).

he aerodynamic right-hand side is replaced by its first-order Taylor
xpansion with respect to the structural degrees of freedom, i.e.,

𝐛(𝐗𝖲) ≈ 𝐛0 +
𝜕𝐛
𝜕𝐗𝖲

|

|

|

|0
𝐗𝖲, (21)

where 𝐛0 ≡ 𝐛(𝐗𝖲 = 𝟎) is obtained by considered the unit normal
to the lifting surface in the undeformed configuration, while the ex-
licit expression of the entries of the matrix 𝜕𝐛∕𝜕𝐗𝖲|0 is provided in

Appendix B. It is worth noting that, in other similar approaches, such as
those implemented in NASTRAN or in the literature, see e.g. Ref. [29],
the coupling of the structural and the aerodynamic fields is performed
via a spline method, which allows reconstructing the displacement field
at points that are not the nodes of the structural mesh; here such spline
methods are not needed.

Moreover, the structural right-hand side is expressed as a first-order
Taylor expansion with respect to the aerodynamic degrees of freedom
as

𝐅(Γ) ≈ 𝜕𝐅
𝜕Γ

|

|

|

|0
Γ, (22)

where, also in this case, the entries of the matrix 𝜕𝐅∕𝜕Γ|0 are explicitly
iven in Appendix B.

Based on the hypotheses discussed above, Eq. (20) can be rewritten
as
⎧

⎪

⎨

⎪

⎩

𝐀0Γ = 𝐛0 +
𝜕𝐛
𝜕𝐗𝖲

|

|

|

|0
𝐗𝖲

𝐊𝖲𝐗𝖲 = 𝜕𝐅
𝜕Γ

|

|

|0
Γ,

(23)

leading, after a few algebraic manipulations, to the following linear
system of equations

𝐊𝖠𝖤𝐗𝖲 = 𝐅𝖠𝖤, (24)

where the aeroelastic stiffness matrix 𝐊𝖠𝖤 and the aeroelastic right-
and side 𝐅𝖠𝖤 are given as

𝐊𝖠𝖤 ≡ 𝐊𝖲 −
𝜕𝐅 |

| 𝐀−1 𝜕𝐛 |

| and 𝐅𝖠𝖤 ≡ 𝜕𝐅 |

| 𝐀−1𝐛0. (25)

𝜕Γ |

|0
0 𝜕𝐗𝖲

|

|0 𝜕Γ |

|0
0
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In this work the aeroelastic response of the considered composite
ulti-layer wings is computed employing Eqs. (23)–(25), while more

general cases will be considered in future investigations, as discussed
in Section 7.

Eventually, the linear aeroelastic problem given in Eq. (24) allows
performing a stability analysis and computing the divergence speed 𝑉𝐷
for the considered wing by solving the associated eigenvalue problem
(

𝐊𝖲 − 𝜌∞𝑉 2
𝐷 𝐊̂𝖠

)

𝐗𝖲 = 𝟎, (26)

where the matrix 𝐊̂𝖠 is obtained by considering unit density and unit
ree-stream velocity in the evaluation of the terms 𝐅 and 𝐛 of Eq. (23),

i.e.

𝐊̂𝖠 ≡
(

𝜕𝐅
𝜕Γ

|

|

|

|0
𝐀−1
0

𝜕𝐛
𝜕𝐗𝖲

|

|

|

|0

)

𝜌∞=1,𝑉∞=1
. (27)

6. Numerical results

This section reports the results of the computational tests per-
formed using the proposed DG-VLM aeroelastic method. The conver-
gence and accuracy of the results have been assessed considering
both the aeroelastic response and the static instability conditions. The
aeroelastic response has been expressed in terms of wing tip deflection
𝑢𝑧|tip, computed at the leading edge of the wing tip chord, and wing
tip twist 𝛥𝑢𝑧|tip ≡ 𝑢𝑧|LE − 𝑢𝑧|TE, while the static instability conditions
is described in terms of divergence speed 𝑉𝐷. Both single-layer and
multi-layer wing plates have been analyzed, considering the effects of
free-stream velocity 𝑉∞, wing aspect ratio, sweep angle 𝛬, material
properties and stacking sequence. Different single-ply properties have
been considered, as summarized in Table 1. Both beam theories – BT𝑛 –
and plate theories – PT𝑛 – have been tested for different DG𝑝 schemes,
where it is recalled that the subscript 𝑛 refers to the order of the
polynomial expansion of the kinematics over the transverse section of
the beam or along the thickness of the plate, while the subscript 𝑝
identifies the order of expansion of the kinematics along the beam span
or over the plate plane.

All the DG computations have been performed using PySCo,1 a
ython in-house framework for scientific computing that also imple-
ents the developed aeroelastic method. On the other hand, the refer-

ence FE solutions have been computed employing shell elements with
he NASTRAN SOL 144 aeroelastic module. Also, when DG and FE
olutions are compared, the same aerodynamic grid has been employed,
lthough DG is coupled with VLM while FEs are coupled with the
oublet lattice method (DLM) within 𝙽𝙰𝚂𝚃𝚁𝙰𝙽.

6.1. Static aeroelastic analysis of a single-layer wing plate

First, the formulation has been validated for single-layer wing
plates.

In the first set of tests, a single-layer wing with rectangular plan-
orm, no sweep, i.e. 𝛬 = 0◦, constant chord 𝑐 = 1 m, half span 𝑏∕2 = 2 m
nd thickness ratio 𝜁∕𝑐 = 0.01 is considered. It is worth noting that
uch a thickness ratio is employed for numerical purposes only. The
aterial properties are those of Material 1 in Table 1, and the layer is

riented so that the material reference direction 1 is aligned with the
xis 𝑥2, normal to the free-stream direction. The steady aerodynamic
low features an angle of attack 𝛼 = 1◦ and the aeroelastic response is
valuated at 𝑉∞ = 30 m∕s; in all the performed tests the aeroelastic
esponse has been computed considering 𝑉∞ ≈ 𝑉𝐷∕2, so to retrieve
eaningful but not excessive deflections.

Fig. 3 reports the convergence analysis for the wing aeroelastic
response and static divergence speed. The reference FE solution has
been computed using shell elements within the 𝙽𝙰𝚂𝚃𝚁𝙰𝙽 aeroelastic

1 https://gitlab.com/aeropa/pysco
6 
Table 1
Single-ply orthotropic material properties considered in the performed aeroelastic
analyses.

Property Symbol Mat.1 Mat.2 Mat.3 Unit

Longitudinal Modulus 𝐸1 20.5 98.0 181.0 GPa
Transverse Moduli 𝐸2, 𝐸3 10.0 7.9 10.27 GPa
Shear Moduli 𝐺23, 𝐺13, 𝐺12 5.0 5.6 7.17 GPa
Poisson ratios 𝜈23, 𝜈13, 𝜈12 0.25 0.28 0.28

module. The BT1 and PT1 DG theories assume plane stress and employ
shear correction factors, see Section 3. The same 10 × 50 aerodynamic
grid has been used with both DG and FE solutions. The dark and light
gray areas in the plots identify regions whose error 𝛥𝜖 with respect to
the 𝙽𝙰𝚂𝚃𝚁𝙰𝙽 converged value 𝑞 of the considered quantity 𝑞 lies within
𝛥𝜖 = ±1% and 𝛥𝜖 = ±5%.

It is observed that, for this case, both beam and plate theories
exhibit fully satisfying convergence to the converged finite element (FE)
solutions, both in terms of tip deflection 𝑢𝑧|tip (computed at leading
dge) and tip twist 𝛥𝑢𝑧|tip, as well as in terms of divergence speed
𝐷. Indeed only the lowest order beam theory BT1 converges to a

value of 𝑢𝑧|tip at the margin of the dark gray area for all orders of
span-wise expansion 𝑝 of the underlying DG𝑝 scheme, which signals
a 1% difference with respect the reference FE solution only for the
less slender wing. No other remarkable differences between beam and
plate theories are observed for this case study and also the order
of expansion 𝑛 along the transverse dimension has limited effect on
the convergence values and convergence speed with respect to the
number of 𝖣𝖮𝖥. On the contrary, a marked effect on the convergence
speed is exerted by the order of expansion 𝑝, as it can be observed
form the curves corresponding to 𝑝 ≥ 4. In particular, it is observed
that while FEs converge faster than the proposed scheme in terms of
tip deflection 𝑢𝑧|tip, faster convergence of DG𝑝 with respect to FEs is
generally obtained when 𝑝 ≥ 4 both in terms of wing tip twist 𝛥𝑢𝑧|tip
and divergence speed 𝑉𝐷, for both beam and plate theories.

Possible effects of the aspect ratio on the numerical convergence
of the computational scheme are investigated performing an analogous
nalysis on a wing with longer half-span 𝑏∕2 = 4 m, while the other

material and geometric features are kept the same as those in the
previous set of tests. The wing aeroelastic response is computed for
𝑉∞ = 10 m∕s.

Fig. 4 shows how, for the higher aspect ratio considered, no relevant
differences between beam and plate theories are detected, neither when
the lowest order beam theory is adopted, which confirms how beam
models may be preferable for analyzing high aspect ratio wings. The
same considerations as those reported above about the effects of the
selected transverse and span-wise orders of polynomial expansions
can be reported for this case, confirming the higher relevance of the
order of expansion 𝑝 of the underlying DG𝑝 scheme on its convergence
features. Regarding the comparison with the reference FE solution:
(i) faster convergence with respect to the number of 𝖣𝖮𝖥 of the FE
solution is observed for the wing tip deflection 𝑢𝑧|tip; (ii) a slightly faster
convergence of the DG scheme is revealed for the wing tip twist 𝛥𝑢𝑧|tip;
(iii) comparable convergence speed is observed for the divergence speed
computation.

Eventually, the accuracy of the proposed scheme for single-layer
ing plates has been assessed considering the effect of the material

amination angle 𝜃 on the wing static aeroelastic response and the
ombined effects of 𝜃 and the sweep angle 𝛬 on the wing static
ivergence. For the definitions of 𝜃 and 𝛬 see Fig. 1.

Fig. 5 reports both the wing tip deflection 𝑢𝑧|tip and twist 𝛥𝑢𝑧|tip
versus the lamination angle 𝜃 for a rectangular wing with no sweep
𝛬 = 0◦, constant chord 𝑐 = 1 m, half-span 𝑏∕2 = 10 m and 𝜁∕𝑐 = 0.1,
subject to a free-stream flow with 𝛼 = 1◦ and 𝑉∞ = 50 m∕s. Also in this
case, the considered thickness ratio is employed for numerical purposes
only. The DG solution is computed using 2 × 5 plate elements over the

https://gitlab.com/aeropa/pysco
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Fig. 3. Convergence of the computed aeroelastic response and divergence speed 𝑉𝐷 with respect to the number of 𝖣𝖮𝖥 for a single-layer wing subject to steady aerodynamic flow.
Wing features: rectangular planform, chord 𝑐 = 1 m, half-span 𝑏∕2 = 2 m, 𝜁∕𝑐 = 0.01, 𝛬 = 0◦, see Fig. 1 for reference. Wing material: Material 1, see Table 1, single-layer, lamination
angle 𝜃 = 90◦ (fibers aligned with the 𝑥2 global axis). Aerodynamic flow: steady flow, 𝛼 = 1◦; aeroelastic response evaluated at 𝑉∞ = 30 m∕s.

Fig. 4. Convergence of the computed aeroelastic response and divergence speed 𝑉𝐷 with respect to the number of 𝖣𝖮𝖥 for a single-layer wing subject to steady aerodynamic flow.
Wing features: rectangular planform, chord 𝑐 = 1 m, half-span 𝑏∕2 = 4 m, 𝜁∕𝑐 = 0.01, 𝛬 = 0◦, see Fig. 1 for reference. Wing material: Material 1, see Table 1, single-layer, lamination
angle 𝜃 = 90◦ (fibers aligned with the 𝑥2 global axis). Aerodynamic flow: steady flow, 𝛼 = 1◦; aeroelastic response evaluated at 𝑉∞ = 10 m∕s.
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Fig. 5. Wing tip deflection 𝑢𝑧|tip and twist 𝛥𝑢𝑧|tip of a single-layer composite wing plate as a function of the lamination angle 𝜃. Wing features: rectangular planform, 𝛬 = 0◦,
𝑐 = 1 m, 𝑏∕2 = 10 m, 𝜁∕𝑐 = 0.1, single-layer, Material 1 (see Table 1). Aerodynamic flow: 𝛼 = 1◦, 𝑉∞ = 50 m∕s.
Fig. 6. Deformed configuration of a single-layer orthotropic wing plate for the four values of the lamination angle 𝜃 = {60◦ , 45◦ , 0◦ , 90◦}. Wing features: 𝛬 = 0◦, 𝑐 = 1 m, 𝑏∕2 = 10 m,
𝜁∕𝑐 = 0.1, single-layer, Material 1 (see Table 1). Flow features: 𝛼 = 1◦, 𝑉∞ = 50 m∕s. The color-graded plots correspond to the solution computed using the proposed DG scheme;
the black continuous lines represent the solution provided by FE NASTRAN analysis.
wing reference plane, with polynomial expansion of order
(

𝑝1, 𝑝2, 𝑝3
)

=
(5, 5, 1) over each element – see Eq. (5) – which corresponds to the
DG5 PT1 theory featuring 216 DOF per element and 2160 DOF for the
whole structure. The reference 𝙽𝙰𝚂𝚃𝚁𝙰𝙽 solution has been computed
employing a structured mesh of 10 × 100 shell elements. The same
10 × 50 aerodynamic grid has been used for both the proposed and
benchmark methods. The two solutions match perfectly over the whole
range of 𝜃. It is also observed how the lamination angle plays an
important role for the aeroelastic response, as it is possible to identify
specific angles that minimize the wing tip deflection/twist in given
free-stream conditions.

Fig. 6 shows the deformed configuration of the wing considered
above – 𝛬 = 0◦, 𝑐 = 1 m, 𝑏∕2 = 10 m, 𝜁∕𝑐 = 0.1, 𝛼 = 1◦ and
𝑉∞ = 50 m∕s – for the four different values of the lamination angle
𝜃 = {60◦, 45◦, 0◦, 90◦}. The color-plot of the deformed wing plate
mid-plane, obtained from the DG solution, is superimposed on the FE
solution computed with NASTRAN, sketched in black continuous lines,
and a fully satisfying match is observed.
8 
The analysis reported in Fig. 7 explores the combined effect of
sweep and lamination angles, 𝛬 and 𝜃 in Fig. 1, on the divergence
speed 𝑉𝐷. Each curve corresponds to a selected sweep angle 𝛬 =
{0◦, -10◦, -20◦} and plots the divergence speed 𝑉𝐷 as a function of the
lamination angle -90◦ ≤ 𝜃 ≤ 0◦. The DG solution is computed
adopting 2 × 5 (5 along the wing span) DG5 PT1 plate elements and
it is compared with the FE results obtained using 10 × 100 shell
elements within 𝙽𝙰𝚂𝚃𝚁𝙰𝙽. Perfect match between the proposed and the
benchmark solution is recorded for all the considered combinations
of sweep and lamination angles. From a physical point of view it is
observed as the lamination angle represents an important parameter in
the context of aeroelastic tailoring, and how its interplay with other
configuration choices must be carefully considered, as it may have
a remarkable effect of the stability behavior of the lifting surfaces:
in the present case, as well known from the literature, sweeping the
wing forward has a tremendous effect on the divergence speed, for
example reducing its value to less than half the value associated with
the no-sweep configuration when 𝜃 = 0◦.
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Fig. 7. Divergence speed 𝑉𝐷 of a single-layer composite wing plate as a function of the lamination angle 𝜃 for different values of the sweep angle 𝛬. Wing features: rectangular
planform, 𝑐 = 1 m, 𝑏∕2 = 10 m, 𝜁∕𝑐 = 0.1, single-layer, Material 1 (Table 1). Aerodynamic flow: 𝛼 = 1◦.
6.2. Static aeroelastic analysis of a multi-layer wing plate

Upon validating its accuracy for single-layer analysis, the proposed
formulation has been tested for the analysis of multi-layer wing plates.

First, the static aeroelastic response and divergence speed of com-
posite laminate wing plates with different stacking sequences have been
computed. A multi-layer wing with rectangular planform, 𝛬 = 0◦,
chord 𝑐 = 76.2 mm, half-span 𝑏∕2 = 305 mm, and overall thickness
𝜁 = 0.804 mm subject to a steady aerodynamic flow with 𝛼 = 1◦ is
considered; the aeroelastic response is computed for 𝑉∞ = 10 m∕s. The
orthotropic properties of the individual plies considered in this set of
analyses are those of Material 2 in Table 1.

Tables 2–4 report the results for flat composite laminate wing
plates with stacking sequences [902, 0]S, [-452, 90]S, and [-602, 90]S
respectively. The aeroelastic response is again expressed in terms of
wing tip deflection 𝑢𝑧|tip and wing tip twist 𝛥𝑢𝑧|tip, while the instability
condition is identified in terms of divergence speed 𝑉𝐷. The DG solution
has been computed employing either beam – BT𝑛 – or plate – PT𝑛
– theories, with 𝑛 = 1, 3, and with different orders of polynomial
expansion 𝑝 = 2,… , 5 of the underlying DG𝑝 formulation; 10 beam
elements along the span have been employed for the beam theories,
while 5 × 10 in-plane plate elements have been used for the plate
theories. The reference FE solution has been obtained with 8 × 31 shell
elements within NASTRAN. The aerodynamic grid consists of 10 × 50
panels, both in the proposed formulation and in the NASTRAN solver.
The results reported in Tables 2–4 reveal that the solution provided
by the proposed DG scheme always matches well with that provided
by NASTRAN; on the other hand, some discrepancies with respect to
some of the other numerical or experimental data available in the
literature are observed for some of the analyzed test cases, probably to
be attributed to different structural/aerodynamic assumptions. Overall,
the obtained results are considered satisfactory and validate the method
for the static aeroelastic analysis of multi-layer configurations.

Eventually, the combined effects of stacking sequence and sweep
angle on the aeroelastic behavior of composite laminated wing plates
are explored. Fig. 8 plots the aeroelastic response in terms of wing tip
deflection 𝑢𝑧|tip and twist 𝛥𝑢𝑧|tip versus sweep angle 𝛬 for different
stacking sequences. The wing features 𝑐 = 1 m, 𝑏∕2 = 4 m, thickness
ratio 𝜁∕𝑐 = 0.01 and it is subject to a steady aerodynamic flow
with angle of attack 𝛼 = 1◦; the aeroelastic response is computed
for 𝑉∞ = 10 m∕s. Two different stacking sequences are considered,
namely [0◦, 90◦] and [0◦, -45◦, 45◦, 90◦] , with the properties of
2 2 𝑆 𝑆
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Table 2
Static aeroelastic response and divergence speed for a composite [902 , 0]S laminate wing
plate. Wing geometry: rectangular planform; 𝛬 = 0◦; 𝑐 = 76.2 mm; 𝑏∕2 = 305 mm; overall
thickness 𝜁 = 0.804 mm. Ply material properties: Material 2 in Table 1. Aerodynamic
flow: 𝛼 = 1◦; aeroelastic response computed for 𝑉∞ = 10 m∕s.

Theory 𝑝 𝑢𝑧 [mm] 𝛥𝑢𝑧 [mm] 𝑉𝐷 [m∕s] 𝖣𝖮𝖥

BT1

2 1.391 0.2694 28.77 360
3 1.398 0.2713 28.66 480
4 1.398 0.2713 28.66 600
5 1.398 0.2713 28.66 720

BT3

2 1.386 0.2694 28.75 1440
3 1.392 0.2713 28.64 1920
4 1.392 0.2713 28.64 2400
5 1.392 0.2713 28.64 2880

PT1

2 1.386 0.2696 28.73 2700
3 1.393 0.2717 28.60 4800
4 1.393 0.2720 28.59 7500
5 1.394 0.2722 28.58 10800

PT3

2 1.386 0.2696 28.73 5400
3 1.393 0.2717 28.60 9600
4 1.393 0.2720 28.59 15000
5 1.394 0.2722 28.58 21600

NASTRAN 1.397 0.2723 28.57 1728
Ref. [52] —— —— 30.60 510
Ref. [53] —— —— 25.00 ——

the individual plies corresponding to those of Material 3 in Table 1.
The response computed by using the proposed method, specifically
2 × 4 DG5 PT1 plate elements leading to 1728 total structural 𝖣𝖮𝖥,
is compared with the FE solution obtained by using 10 × 40 shell
elements within the NASTRAN aeroelastic module. In both cases, the
same 10 × 40 aerodynamic grid has been employed. From the compu-
tational point of view, it is highlighted how the DG solution perfectly
matches the FE solution, thus confirming the accuracy and robustness
of the proposed method. From the mechanical point of view, the
considered results confirm the importance of the wing configuration
and material architecture in determining the aeroelastic response: for
a given sweep angle 𝛬, the selection of a certain stacking sequence
may reduce or exacerbate the aeroelastic response. Accordingly, the
potentially problematic aeroelastic behavior of swept forward wings
can be addressed by selecting an appropriate stacking sequence and
thus attenuating both wing deflection and twist.

Fig. 9 shows the deformed configuration of the same multi-layer
wing plates, subject to the same aerodynamic free-stream conditions,
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Fig. 8. Wing tip deflection 𝑢𝑧|tip and twist 𝛥𝑢𝑧|tip of multi-layer composite wing plates as a function of the sweep angle 𝛬 and stacking sequence. Wing geometry: 𝑐 = 1 m, 𝑏∕2 = 4 m,
∕𝑐 = 0.01. Aerodynamic flow: 𝛼 = 1◦, 𝑉∞ = 10 m∕s. DG solution: (2 × 4) DG5 PT1 plate elements. FE solution: 𝙽𝙰𝚂𝚃𝚁𝙰𝙽, 10 × 40 shell elements. Aerodynamic grid: 10 × 40 elements
or both the structural methods (DG is coupled with VLM, FEM is coupled with DLM).
Table 3
Static aeroelastic response and divergence speed for a composite [-452 , 90]S laminate
wing plate. Wing geometry: rectangular planform; 𝛬 = 0◦; 𝑐 = 76.2 mm; 𝑏∕2 =
305 mm; overall thickness 𝜁 = 0.804 mm. Ply material properties: Material 2 in Table 1.

erodynamic flow: 𝛼 = 1◦; aeroelastic response computed for 𝑉∞ = 10 m∕s.
Theory 𝑝 𝑢𝑧 [mm] 𝛥𝑢𝑧 [mm] 𝑉𝐷 [m∕s] 𝖣𝖮𝖥

BT1

2 13.62 1.808 13.76 360
3 14.56 1.941 13.51 480
4 14.60 1.947 13.50 600
5 14.60 1.947 13.50 720

BT3

2 14.01 1.962 13.52 1440
3 15.06 2.113 13.27 1920
4 15.11 2.122 13.26 2400
5 15.12 2.123 13.26 2880

PT1

2 13.99 1.944 13.55 2700
3 15.04 2.089 13.31 4800
4 15.13 2.102 13.29 7500
5 15.15 2.106 13.28 10800

PT3

2 13.98 1.943 13.55 5400
3 15.03 2.088 13.31 9600
4 15.12 2.101 13.29 15000
5 15.15 2.105 13.29 21600

NASTRAN 14.79 2.057 13.35 1728
Ref. [52] - Numerical —— —— 13.70 510
Ref. [53] - Numerical —— —— 11.10 ——
Ref. [53] - Experimental —— —— 12.50 ——

for selected values of the sweep angle 𝛬. The color-plot of the deformed
surface, obtained form the DG solution, is superimposed on the solution
computed with NASTRAN, sketched in black continuous lines; also in
his case, analogously to what observed for the single-layer wing plate,

fully satisfying match is observed.
Eventually, Fig. 10 reports the divergence speed 𝑉𝐷 as a function of

he sweep angle 𝛬 for wing plates with different stacking sequences, as
omputed employing the same DG scheme described above, i.e. 2 × 4
G5 PT1 elements coupled with an aerodynamic 10 × 40 VLM grid.
he wing geometry is the same as that considered in Figs. 8–9 and
he same aerodynamic angle 𝛼 = 1◦ is considered. Also in this case,

a fully satisfactory match between the proposed and the benchmark
solution is recorded for all the considered combinations of sweep angle
nd stacking sequence.

7. Discussion and future developments

This work has successfully extended a DG-VLM framework previ-
ously developed for isotropic structures [36] to the static aeroelastic
10 
Table 4
Static aeroelastic response and divergence speed for a composite [-602 , 90]S laminate
wing plate. Wing geometry: rectangular planform; 𝛬 = 0◦; 𝑐 = 76.2 mm; 𝑏∕2 =
305 mm; overall thickness 𝜁 = 0.804 mm. Ply material properties: Material 2 in Table 1.
Aerodynamic flow: 𝛼 = 1◦; aeroelastic response computed for 𝑉∞ = 10 m∕s.

Theory 𝑝 𝑢𝑧 [mm] 𝛥𝑢𝑧 [mm] 𝑉𝐷 [m∕s] 𝖣𝖮𝖥

BT1

2 8.473 1.743 14.00 360
3 8.889 1.828 13.81 480
4 8.895 1.829 13.81 600
5 8.895 1.830 13.81 720

BT3

2 8.673 1.852 13.76 1440
3 9.167 1.958 13.56 1920
4 9.180 1.962 13.55 2400
5 9.180 1.962 13.55 2880

PT1

2 8.703 1.852 13.76 2700
3 9.243 1.965 13.55 4800
4 9.287 1.976 13.53 7500
5 9.379 2.003 13.49 10800

PT3

2 8.700 1.851 13.76 5400
3 9.242 1.965 13.55 9600
4 9.285 1.975 13.53 15000
5 9.214 1.952 13.57 21600

NASTRAN 9.170 1.950 13.57 1728
Ref. [52] - Numerical —— —— 13.80 510
Ref. [53] - Numerical —— —— 11.50 ——
Ref. [53] - Experimental —— —— 11.70 ——

analysis of general composite wings. The performed tests have val-
idated its accuracy and confirmed its robustness for the analysis of
both single- and multi-layer configurations. Thanks to the features
of the underlying DG formulation, the framework provides several
advantages over alternative approaches, which include: flexibility in
selecting the desired order of interpolation for the problem fields,
including the possibility of using different orders of approximation
over different mesh elements; simplification in the implementation of
parallel computing algorithms for the assembly of the discrete opera-
tors, which may be relevant for tackling large scale problems; easier
coupling with other numerical methods for multi-field analysis, which
is here exploited for implementing the fluid–structure interface. Such
advantages come at a cost of a more complex mathematical formulation
with respect to standard FEM, as shown, for instance, by the presence
of the boundary-integral terms in the bilinear form 𝐵(𝒗, 𝒖ℎ) given in
Eq. (12).

A few additional comments about the developed framework are
noteworthy, for complementing the discussion of the above results.
Focusing on the structural aspects:
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Fig. 9. Deformed configurations of the considered multi-layer wing plates for selected sweep angles. Wing geometry: 𝑐 = 1 m, 𝑏∕2 = 4 m, 𝜁∕𝑐 = 0.01. Aerodynamic flow: 𝛼 = 1◦,
𝑉∞ = 10 m∕s. The color-graded plots correspond to the solution computed using the proposed DG scheme; the black continuous lines represent the solution provided by the NASTRAN
FE analysis.
Fig. 10. Static divergence speed 𝑉𝐷 for multi-layer composite wing plates as a function
of the sweep angle 𝛬 and stacking sequence. Wing geometry: 𝑐 = 1 m, 𝑏∕2 = 4 m,
𝜁∕𝑐 = 0.01. AoA 𝛼 = 1◦. DG solution: (2 × 4) DG5 PT1 plate elements. FE solution:
𝙽𝙰𝚂𝚃𝚁𝙰𝙽, 10 × 40 shell elements. Aerodynamic grid: 10 × 40 elements for both the
structural methods (DG is coupled with VLM, FEM is coupled with DLM). Note: no
divergence speed has been detected for 𝛬 > 0◦ for the [0◦2 , 90

◦
2]𝑆 configuration, with

neither method.

• Tuning the order of approximation throughout the structural do-
main allows minimizing the number of degrees of freedom needed
to achieve convergence of quantities relevant for aeroelastic prob-
lems, such as the wing tip rotation or the divergence speed. This
is demonstrated by the convergence analyses presented in the pa-
per, which show how high-order in-plane approximations enable
much faster convergence than low-order in-plane approximations,
while, as expected, a low-order through-the-thickness approxima-
tion does not affect the accuracy of the solution, especially for
high-aspect ratio wings.

• When 𝑛 ≥ 2, the employed models employ a fully three-
dimensional constitutive law, as in Eq. (8), and it may be observed
that a PT𝑛 built using a single element along the chord coincides
in fact with a BT𝑛, as long as both models are subsequently
combined with a DG formulation with 𝑝 = 𝑛.
𝑝
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• In either BTs or PTs, the grids are always chosen to feature one
element throughout the wing thickness; as a consequence, these
models can be considered as equivalent single-layer beam or plate
models that automatically satisfy the inter-laminar continuity.
Nevertheless, the present framework allows introducing multiple
elements along the thickness and, as such, considering layer-
wise kinematic approximations; in this case, the inter-laminar
continuity could be enforced in a strong form by condensation
of the degrees of freedom, or in a weak sense by a DG-based
approach.

• The same shear factor is employed for both beam and plate (first-
order) models, regardless of the considered stacking sequence;
a more precise evaluation of the shear factors could also be
included in the present framework, differentiating between beam
and plate models as well as accounting for different stacking
sequences. However, as demonstrated by the numerical results,
these first-order models employing a constant shear factor provide
satisfactorily accurate results.

• The difference between the solution obtained by solving Eq. (20)
or the solution obtained by solving the linearized version of
Eq. (20), i.e., Eq. (24), has been investigated in Ref. [36] for wing
structures with isotropic constitutive behavior. It was found that
two solutions differ only for very high-aspect ratio wings, which
however would likely require large-strain structural models to ac-
curately capture their mechanical response. Such considerations
hold also for composite multi-layer wings.

Eventually, building on the validated results, a few directions for
further developments and investigation can be identified. First, along
the lines of the last comment reported above, a first interesting devel-
opment could be addressed at enabling large-strain kinematics in the
structural model, which would open to the possibility of investigating
highly flexible high-aspect ratio wing configurations [3]. Additionally,
the method could be extended to consider more complex structural
and/or material architectures, e.g. variable angle tow composites, with
more realistic representations of stiffeners, ribs and/or cut-outs [44,45,
47]. The inclusion of structural dynamics and unsteady aerodynamics,
e.g. with unsteady VLM [4] or DLM [54] would enable the analysis of
aeroelastic flutter. Moreover, considering the capability of higher-order
models to represent the presence and effects of damage [55,56], the
framework could be extended to numerically investigate the potential
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hazard that structural damage may pose upon altering the divergence
and flutter boundaries of the wing [57]. Finally, from the flight me-
chanics perspective, the present method could also be extended by
introducing the interaction of multiple lifting surfaces and/or the con-
sideration of different flight conditions, which would allow capturing
the aeroelastic response of a whole aircraft [4].

Conclusions

In this contribution a discontinuous Galerkin structural model has
een combined with the vortex lattice method to develop a frame-
ork for the static aeroelastic analysis of either single- or multi-layer

omposite wing plates. Thanks to the features of the underlying DG
formulation, the method offers variable-order accuracy and seamless
coupling with the aerodynamic method for the aeroelastic analysis.
The numerous computational tests performed have demonstrated that
the method always provides accurate aeroelastic solutions and in some
ases faster rates of convergence with respect to the number of degrees
f freedom. The study confirms that the proposed tool may be useful
n preliminary aeroelastic assessments during early conceptual design
tages.
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Appendix A. DG stiffness matrix

The stiffness matrix 𝐊𝖲 appearing in Eq. (16) is a block sparse matrix
onsisting of diagonal terms 𝐊𝑒

𝖲
, for 𝑒 = 1,… , 𝑁𝑒, being 𝑁𝑒 the total

number of elements, and off-diagonal terms 𝐊𝑒,𝑒′
𝖲

which are different
from zero only when the elements 𝒟 𝑒 and 𝒟 𝑒′ share an interface. Upon
recalling that the stiffness matrix is obtained from the bilinear form
𝐵(𝒗, 𝒖ℎ) given in Eq. (12), it is possible to show, see, e.g., Ref. [50], the
matrix 𝐊𝑒

𝖲
has the following expression

𝐊𝑒
𝖲 ≡ ∫𝒟 𝑒

𝜕𝑩𝑒⊺

𝜕 𝑥𝑘
𝒄𝑒𝑘𝑙

𝜕𝑩𝑒

𝜕 𝑥𝑙
d𝑉 − 1

2 ∫ℐ 𝑒

(

𝑛𝑒𝑘𝑩
𝑒⊺𝒄𝑘𝑙

𝜕𝑩𝑒

𝜕 𝑥𝑙
+ 𝜕𝑩𝑒⊺

𝜕 𝑥𝑘
𝒄𝑘𝑙𝑩𝑒𝑛𝑒𝑙

)

d𝑆

+∫ℐ 𝑒
𝜇𝑩𝑒⊺𝑩𝑒d𝑆 +

−∫ℬ𝑒
𝐷

(

𝑛𝑒𝑘𝑩
𝑒⊺𝒄𝑘𝑙

𝜕𝑩𝑒

𝜕 𝑥𝑙
+ 𝜕𝑩𝑒⊺

𝜕 𝑥𝑘
𝒄𝑘𝑙𝑩𝑒𝑛𝑒𝑙

)

d𝑆 + ∫ℬ𝑒
𝐷

𝜇𝑩𝑒⊺𝑩𝑒d𝑆 , (A.1)

whereas the matrix 𝐊𝑒,𝑒′
𝖲

is obtained by

𝐊𝑒,𝑒′
𝖲

≡ −1
2 ∫ℐ 𝑖

(

𝑛𝑒𝑘𝑩
𝑒⊺𝒄𝑘𝑙

𝜕𝑩𝑒′

𝜕 𝑥𝑙
+ 𝜕𝑩𝑒⊺

𝜕 𝑥𝑘
𝒄𝑘𝑙𝑩𝑒′𝑛𝑒

′

𝑙

)

d𝑆 − ∫ℐ 𝑖
𝜇𝑩𝑒⊺𝑩𝑒′d𝑆 .

(A.2)
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Appendix B. DG-VLM aeroelastic coupling matrices

The matrix 𝜕𝐛∕𝜕𝐗𝖲|0 is a sparse matrix linking the deformation of
the unit normal of the wing surface to the structural degrees of freedom.
Given a generic 𝑖th aerodynamic control point 𝒙𝑖𝑐 located within the
th element, the derivative of the 𝑖th term 𝑏𝑖 of the vector 𝐛 with
espect to the 𝑗th structural degree of freedom 𝑋𝑒,𝑘

𝑗 associated to the
th displacement component has the following expression
𝜕 𝑏𝑖
𝜕 𝑋𝑒,𝑘

𝑗

|

|

|

|

|

|0

≡
3
∑

𝑞=1
𝜓 𝑖𝑞

𝜕 𝐵𝑒𝑗
𝜕 𝑥𝑞

|

|

|

|

|𝒙𝑖𝑐

𝑛𝑖𝑘, being 𝜓 𝑖𝑞 ≡
(

𝑉∞𝑞 − 𝑛𝑖𝑞𝑽 ∞ ⋅ 𝒏̂𝑖
)

, (B.1)

where 𝐵𝑒𝑗 has been introduced in Eq. (5) and no implicit summation
is intended. Note that 𝜕 𝑏𝑖∕𝜕 𝑋𝑒,𝑘

𝑗 is zero if the 𝑖th aerodynamic control
oint does not fall within the 𝑒th element.

On the other hand, the matrix 𝜕𝐅∕𝜕Γ|0 appearing in Eq. (22) is
obtained using Eq. (19). In particular, given a 𝑗th ring vortex with the
associated midpoint 𝒙𝑗𝑚 of the leading segment, the derivative of the
structural right-hand side 𝐹 𝑒,𝑘𝑖 associated with the 𝑘th component of the
external forces acting on the 𝑒th element with respect to the circulation
𝛤 𝑗 is obtained as
𝜕 𝐹 𝑒,𝑘𝑖
𝜕 𝛤𝑗

|

|

|

|

|

|0

≡ 𝐵𝑒𝑖 (𝒙
𝑗
𝑚)𝜌∞[𝒗(𝒙𝑗𝑚) × 𝒍𝑗 ]𝑘𝑠𝑗 , (B.2)

where [∙]𝑘 indicates the 𝑘th component of the vector ∙ and 𝑠𝑗 is +1 or
−1 depending on how the circulation 𝛤 𝑗 appears in the definition of 𝛤 𝑗
in Eq. (19).

Data availability

Data will be made available on request.
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