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Abstract

A novel pure penalty discontinuous Galerkin method is proposed for the geometrically

nonlinear analysis of multilayered composite plates and shells, modelled via high-order

refined theories. The approach allows to build different two-dimensional equivalent single

layer structural models, which are obtained by expressing the covariant components of the

displacement field through-the-thickness via Taylor’s polynomial expansion of different

order. The problem governing equations are deduced starting from the geometrically

nonlinear principle of virtual displacements in a total Lagrangian formulation. They are

addressed with a pure penalty discontinuous Galerkin method using Legendre polynomials

trial functions. The resulting nonlinear algebraic system is solved by a Newton-Raphson

arc-length linearization scheme. Numerical tests involving plates and shells are proposed to

validate the method, by comparison with literature benchmark problems and finite element

solutions, and to assess its features. The obtained results demonstrate the accuracy of the

method as well as the effectiveness of high-order elements.
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1. Introduction

Thin-walled multilayered composite components, in the form of plates, shells and their

assemblies, are of great interest in structural applications and are widely used to minimize

the weight while still being very effective in carrying applied external loads. In particular,

shells, which are characterized by a curved mid-surface, offer the designer the possibility

to take advantage of the strong coupling between flexural and membrane behaviours;

on the other hand, sometimes, the need for a curved surface is due to non-structural

requirements, e.g. in aerodynamic components. Generally, thin-walled structures operate

in the small displacements regime and the linear elastic analysis may be sufficient to predict

their response. However, in advanced applications they may undergo large displacements,

requiring non-linear analysis to characterize accurately their behaviour. In this framework,

a fundamental role is played by the modelling and analysis of these structure that need to

be carried out with appropriate fidelity and cost effectiveness to implement successfully

their design and optimization.

Due to their geometric characteristics, plates and shells are generally modelled via

two–dimensional (2D) theories, which allow to significantly reduce the computational cost

in numerical solutions. Focusing on nonlinear behaviour, the first model was developed

by Von Kármán [1] who supplemented with non-linear terms the classical Kirchhoff-Love

theory [2]. Afterwards, the First Order Shear Deformation Theory (FSDT) by Reissner

[3] and Mindlin [4] introduced the assumption of a constant shear deformation across

the thickness extending the accuracy of the model to moderately thick plates and shells.

A comprehensive review of the multitude of improvements developed to the above men-

tioned classical theories can be found in the work by Chia [5]. However, the wide use

of multilayered composite plates and shells showed the need of more accurate models

based on higher-order assumptions on the behaviour of the kinematic and mechanical
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fields throughout the thickness of the structure. Thus, to enhance the modelling accuracy,

refined theories have been developed based on high-order expansion of the model primary

variables across the thickness. The theories developed can be classified into two cate-

gories: i) Equivalent-Single-Layer (ESL) approaches that are based on common variable

expansions for all the layers of the laminate; ii) Layer-Wise (LW) approaches where each

layer has its own expansion and only the C0 continuity of the solution at the elements

interface is guaranteed by properly choosing such functions. ESL and LW theories have

been unified in the framework of the Carrera Unified Formulation (CUF) [6, 7] that is a

powerful technique to develop and implement general plates and shells theories and the

related solution numerical tools.

The nonlinear governing equations stemming from plates and shells two–dimensional

high-order theories are generally strongly coupled partial differential equations and their

solution in close form is very difficult and restricted to simple cases. Thus, numerical

methods need to be introduced to solve these structural models and the most common

approach in the literature is the finite element method (e.g. Refs. [8, 9, 10, 11, 12]).

To cite some amongst the alternatives to finite elements, the Ritz method was recently

used to study the buckling and post-buckling behaviour of plates using the FSDT [13, 14,

15, 16, 17, 18] and the third-order shear deformation theory [19, 20]. Mesh-less solutions

have been proposed using the smoothed particle hydrodynamics method [21], the mesh-

free collocation method [22], the meshless collocation method [23] and the radial basis

function method [24]. Also the isogeometric analysis approach (IGA) has been employed

to investigate the behaviour of shells using classical theories for both the linear [25, 26] and

non-linear regimes [27, 28, 29, 30]; IGA models have been also proposed in combination

with high-order theories for linear [31, 32] and non-linear [33] analysis.

The discontinuous Galerkin (dG) method has been recently used for elasticity problem

3



solutions [34, 35, 36]. It is based on the partition of the problem domain into elements

and some penalization integrals to enforce the continuity of the solution across these

elements and the boundary conditions. The dG method has interesting advantages in

the use of nonstandard element and shape functions, in the application of non conformal

meshes as well as high-order elements, in the implementation of meshing strategies such as

hierarchical refinement and adaptativity, in scalable implementations and in addressing of

locking phenomena. These features can underlie a robust treatment of complex geometries

and loadings such as those occurring in advanced lightweight structures. Indeed, the

examination of the relevant literature reveals that the dG method attracted interest in this

field. In particular, dG formulations and investigations have been proposed for the linear

analysis of: (i) plates, modelled by the Kircchoff [37, 38, 39] and Mindlin-Reissner [40, 41,

42] first order theories; (ii) shells studied by using the Kircchoff-Love [43], Koiter[44] and

Reissner-Mindlin [45] first order theories. As regard the non-linear regime, dG methods

have been employed for the solution of: (i) Kircchoff plates [46, 47, 48], (ii) Kircchoff-Love

shells[49, 50, 51] and (iii) shear flexible shells modelled with the first order theory[52, 53].

Also, refined shell models have been proposed for both the linear [54] and nonlinear [55]

analysis, based on finite elements built using a dG approach along the thickness direction.

Generally the reported formulations refer to isotropic, homogeneous sections whereas a few

works focus on multilayered structures [54, 55, 46]. Eventually, the authors and co-workers

proposed dG formulations for high-order theories of multilayered plates [56, 57, 58] and

shells [59, 60, 61] addressing linear static and buckling analysis.

In this framework, to the best of the authors’ knowledge, the dG method has never

been adopted in combination with high-order theories for the nonlinear analysis of plates

and shells. This is the main motivation of the present research, which extends previous

authors’ works [59, 60] where a dG approach is developed for linear behaviour of shells.
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Here, for the first time, a discontinuous Galerkin formulation for the geometrically non-

linear static analysis of multilayered shells is presented and validated, which is the novelty

of the present work.

In the context of a total Lagrangian approach, the proposed formulation provides

two-dimensional models of shells assuming the kinematic fields expansion along the thick-

ness up to a desired order and using equivalent single-layer modelization. The resulting

governing equations are solved via the dG method based on the pure penalty approach

exploring the use of high-order elements, which are expected to present high convergence

rates and high level of accuracy with a contained number of degrees of freedom. This

has been confirmed by the proposed validation examples, which illustrates the method

characteristics.

The paper is organized as following: in Sec.(2) the shell models and the corresponding

governing equations in their weak form are deduced for the geometrically non-liner static

analysis; Sec.(3) describes the discontinuous Galerkin method used to numerically solve the

shell models; in Sec.(4) some benchmark solutions and their comparison with literature or

finite element results are presented to validate the approach and assess its features; finally,

conclusions are drawn.

2. Shell model

Let us consider a composite, multilayered, generally-curved shell subjected to pre-

scribed external loads and boundary conditions. The shell is built by stacking Nℓ fiber-

reinforced layers, which are modelled as homogeneous and orthotropic and are assumed to

be perfectly bonded at their interfaces. A quantity referring to the ℓ-th layer is denoted

by a superscript ⟨ℓ⟩; as such, the volume occupied by the ℓ-th layer is denoted by V ⟨ℓ⟩

and its fiber deposition angle by θ⟨ℓ⟩. Each layer has uniform thickness τ ⟨ℓ⟩ and thus the
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thickness of the whole laminate is τ =
Nℓ∑
ℓ=1

τ ⟨ℓ⟩. The volume of the shell V ⊂ R
3 is obtained

as V = ∪Nℓ
ℓ=1V

⟨ℓ⟩ and its boundary is denoted as ∂V .

In the following, the Eisntein’s summation convention is used with Latin indices i and

j taking values in the set {1, 2, 3} and Greek indices α and β taking values in the set

{1, 2}.

2.1. Shell geometry

Let the mid-surface of the shell in the undeformed configuration be denoted as S ⊂ R
3

and let it be described mapping the so-called reference domain Ωξ ⊂ R
2 (see Fig. 1). The

map uses two curvilinear variables ξ1 and ξ2 that span in Ωξ. Introduced an orthogonal

reference system x1x2x3, a generic point x0 = {x01 x02 x03}T of S is obtained as

x0 = x0(ξ1, ξ2), for (ξ1, ξ2) ∈ Ωξ. (1)

Starting from Eq. (1), for each point on the shell mid-surface, the unit normal vector is

defined as

n0 =
a1 × a2

||a1 × a2||
, (2)

where

ai =
∂x0

∂ξi
i = 1, 2 (3)

A point x = {x1 x2 x3}T in the volume of the shell V has orthogonal coordinates described

by the map

x = x(ξ1, ξ2, ξ3) = x0(ξ1, ξ2) + ξ3n0(ξ1, ξ2), for (ξ1, ξ2, ξ3) ∈ Ωξ × Iξ3 , (4)
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where the thickness curvilinear coordinate ξ3 is introduced spanning the set Iξ3 = [−τ/2, τ/2].

Consistently, the volume of the ℓ-th layer is identified as the region of V where ξ3 ∈ I
⟨ℓ⟩
ξ3

=

[ξ
⟨ℓ⟩
3b , ξ

⟨ℓ⟩
3t ], being ξ

⟨ℓ⟩
3b and ξ

⟨ℓ⟩
3t the ξ3 coordinates of the bottom and top faces of the ℓ-th

layer, respectively. As such, it results that ξ
⟨1⟩
3b = −τ/2, ξ

⟨Nℓ⟩
3t = τ/2, τ ⟨ℓ⟩ = ξ

⟨ℓ⟩
3t − ξ

⟨ℓ⟩
3b and

ξ
⟨ℓ−1⟩
3t = ξ

⟨ℓ⟩
3b for ℓ = 2, ..., Nℓ. The map of the volume is used to define the vectors gi of

the local covariant basis and the vectors gi of the local contravariant basis as

gi =
∂x

∂ξi
(5a)

gi · gj = δji , (5b)

where δji is the Kronecker delta. Additionally, the ij-th covariant and contravariant com-

ponents of the metric tensor are obtained as gij = gi · gj and gij = gi · gj, respectively.

Eventually, to the aim of the formulation development, it is worth noting that a vector

in R3 is either described in terms of its components in the orthogonal reference system as

v = {v1 v2 v3}T or in terms of its covariant components as vξ = {vξ1 vξ2 vξ3}T. These

vectors obey the following transformation law

v = Rξvξ. (6)

where the matrix Rξ collects the contravariant basis as columns. For more details on the

differential geometry employed in the present work, the interested reader is referred to

[62].
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Figure 1: Mapping scheme for the shell mid-surface.

2.2. Shell kinematics

According to the geometrical description introduced in the previous Section, the shell

deformation can be described in terms of the displacement vector expressed either in or-

thogonal components as u = {u1 u2 u3}T or in covariant components as uξ = {uξ1 uξ2 uξ3}T.

The shell kinematics employed to develop the present formulation is based on the expan-

sion of the displacements component across the shell thickness through known functions

of ξ3. Thus, the covariant components uξi of the displacement vector are expressed as

uξi(ξ1, ξ2, ξ3) =

Ni∑

k=0

Zi
k(ξ3)Uik(ξ1, ξ2) (7)

where Ni is the order of the expansion assumed for uξi , Z
i
k(ξ3) is the k-th function of the

expansion of uξi and Uik(ξ1, ξ2) are the unknown generalized displacements. It is worth

noting that, according to the Carrera Unified Formulation underlying principles [6], in Eq.

(7) Ni can be considered as parameters whose values allow to build different order shell

structural theories falling within the ESL approach for multilayered structures . The shell
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theory corresponding to the expansion orders N1, N2 and N3 is denoted as EDN1N2N3 .

Collecting the generalized displacements as elements of the vector U(ξ1, ξ2), having size

NU = N1 + N2 + N3 + 3, and consistently arranging the functions Zi
k as elements of the

matrix Z(ξ3), the Eq. (7) is compactly rewritten in matrix form as

uξ = Z(ξ3)U(ξ1, ξ2). (8)

and, by using Eqs. (6) and (8), the displacement u in the orthogonal reference system is

obtained in terms of the generalized displacement vector U as

u = RξZU . (9)

It is observed that the expansion functions Zi
k(ξ3) can be chosen without particular re-

strictions (e.g polynomial, exponential, trigonometric). Here, they are taken as the Taylor

polynomials having order k ≤ Ni and scaled in the interval Iξ3 . As an example, for the

ED222 theory, the matrix Z is obtained as

Z =




1 2ξ3/τ (2ξ3/τ)
2 0 0 0 0 0 0

0 0 0 1 2ξ3/τ (2ξ3/τ)
2 0 0 0

0 0 0 0 0 0 1 2ξ3/τ (2ξ3/τ)
2




(10)

The Green-Lagrange strain components vector, namely γ = {γ11 γ22 γ33 γ23 γ13 γ12 }T,

expressed in the orthogonal reference system is given by

γ =

(
I i +

1

2
W i

)
∂u

∂xi

(11)
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where the following auxiliary matrices have been introduced

I1 =




1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0




, I2 =




0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0




, I3 =




0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0




, (12a)

W 1 =




∂u1

∂x1

∂u2

∂x1

∂u3

∂x1

0 0 0

0 0 0

0 0 0

∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

∂u1

∂x2

∂u2

∂x2

∂u3

∂x2




, W 2 =




0 0 0

∂u1

∂x2

∂u2

∂x2

∂u3

∂x2

0 0 0

∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

0 0 0

∂u1

∂x1

∂u2

∂x1

∂u3

∂x1




, W 3 =




0 0 0

0 0 0

∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

∂u1

∂x2

∂u2

∂x2

∂u3

∂x2

∂u1

∂x1

∂u2

∂x1

∂u3

∂x1

0 0 0




(12b)

The Eq. (11) extends the notation introduced in Ref.[56] including all the nonlinear terms

arising in the definition of the strain tensor. It is worth noting that additional assumptions

in the definition of the nonlinear strain, e.g. the Von Kármán approximation for plates,

can be accounted for by suitably modifying the definition of the matrices W i. Using

Eq. (9) and applying the chain rule to express the derivatives in the orthogonal reference

system coordinates through those in the curvilinear coordinates, one obtains

∂u

∂xi

= D0iU +Dαi
∂U

∂ξα
(13)
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where

D0i =
∂ξj
∂xi

∂Rξ

∂ξj
Z +

∂ξ3
∂xi

Rξ
dZ

dξ3
(14a)

Dαi =
∂ξα
∂xi

RξZ (14b)

Finally, upon introducing Eq. (13) in Eqs. (11), the Green-Lagrange strains are expressed

as

γ =

(
I i +

1

2
W i

)(
D0iU +Dαi

∂U

∂ξα

)
(15)

2.3. Constitutive behaviour

Each layer of the laminated shell is assumed to be homogeneous, orthotropic and

obeying a generalized Hooke’s law, meaning that a linear relationship between the second

Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor holds. As the layers

follow the curvature of the shell, the constitutive relationships in the orthogonal reference

system depend on the position on the reference domain. At a generic point of the ℓ-th

layer, the constitutive law can be expressed in the orthotropic material reference system

whose orthonormal basis is given by the vectors

m
⟨ℓ⟩
1 = Rn0(θ

⟨ℓ⟩)
g1

||g1||
, m

⟨ℓ⟩
3 = n0, and m

⟨ℓ⟩
2 = m

⟨ℓ⟩
3 ×m

⟨ℓ⟩
1 . (16)

where Rn0(θ
⟨ℓ⟩) is the transformation matrix that rotate a vector around n0 of an an-

gle correspondent to the lamination angle θ⟨ℓ⟩, which is measured with respect the g1

direction. In this local orthonormal basis, the relationship between the second Piola-

Kirchhoff stress σ̃⟨ℓ⟩ = {σ̃⟨ℓ⟩
11 σ̃

⟨ℓ⟩
22 σ̃

⟨ℓ⟩
33 σ̃

⟨ℓ⟩
23 σ̃

⟨ℓ⟩
13 σ̃

⟨ℓ⟩
12 }T and the Green-Lagrange strains

γ̃⟨ℓ⟩ = {γ̃⟨ℓ⟩
11 γ̃

⟨ℓ⟩
22 γ̃

⟨ℓ⟩
33 γ̃

⟨ℓ⟩
23 γ̃

⟨ℓ⟩
13 γ̃

⟨ℓ⟩
12 }T is given by

σ̃⟨ℓ⟩ = c̃⟨ℓ⟩γ̃⟨ℓ⟩. (17)

11



where the stiffness matrix c̃⟨ℓ⟩ is obtained from the orthotropic material properties as given

in Appendix A. The constitutive matrix c⟨ℓ⟩ expressed in the orthogonal reference system

x1x2x3 is then deduced applying the 4-th rank tensor transformation of axes formulas to

c̃⟨ℓ⟩ obtaining

σ⟨ℓ⟩ = T c̃⟨ℓ⟩T Tγ = c⟨ℓ⟩γ (18)

where σ⟨ℓ⟩ = {σ⟨ℓ⟩
11 σ

⟨ℓ⟩
22 σ

⟨ℓ⟩
33 σ

⟨ℓ⟩
23 σ

⟨ℓ⟩
13 σ

⟨ℓ⟩
12 }T is the vector of the stress components in the

orthogonal reference system and the transformation matrix T is defined in Appendix A.

2.4. Principle of virtual works

The governing equations for the introduced shell models are inferred from the principle

of virtual works that reads as

δLint = δLext (19)

where δLint and δLext are the virtual work of the internal and external forces, respectively.

For a multilayered structure they are expressed as

δLint =

Nℓ∑

ℓ=1

∫

V ⟨ℓ⟩
δγTσ⟨ℓ⟩dV (20a)

δLext =

Nℓ∑

ℓ=1

∫

V ⟨ℓ⟩
δuTbdV +

Nℓ∑

ℓ=1

∫

∂V ⟨ℓ⟩
δuTtd∂V , (20b)

where b and t are the volume forces acting on V ⟨ℓ⟩ and the applied tractions acting on

∂V ⟨ℓ⟩, respectively. From Eq. (11) the virtual strains are given by

δγ = (I i +W i)
∂δu

∂xi

(21)
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Inserting Eqs (21), (18) and (11) into Eq.(20a), the virtual internal work is written as

δLint =

Nℓ∑

ℓ=1

∫

V ⟨ℓ⟩

∂δu

∂xi

T

Cij
∂u

∂xj

, (22)

where

Cij =
(
IT
i +W T

i

)
c⟨ℓ⟩

(
I i +

1

2
W i

)
. (23)

Furthermore, introducing Eq. (13) into Eq.(22) and integrating along the thickness, one

obtains

δLint =

∫

Ωξ

[
∂δUT

∂ξα

(
Qαβ

∂U

∂ξβ
+Rα3U

)
+ δUT

(
R3α

∂U

∂ξα
+ S33U

)]
dΩξ, (24)

where the generalized stiffness matrices are introduced as

Qαβ =

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
αiCijDβj

√
g dξ3 (25a)

Rα3 =

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
αiCijD0j

√
g dξ3 (25b)

R3α =

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
0iCijDαj

√
g dξ3 (25c)

S33 =

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
0iCijD0j

√
g dξ3, (25d)

being g the determinant of the metric tensor. Similarly, introducing Eq. (9) into Eq.

(20b) and integrating along the thickness, for the external forces virtual work one writes

δLext =

∫

Ωξ

δUTB dΩξ +

∫

∂Ωξ

δUTT d∂Ωξ, (26)
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where B and T are the generalized domain forces and the generalized boundary forces,

respectively. They are defined, as

B = ZTRT
ξ t
√
g
√

nigijnj

∣∣∣
ξ3=±τ/2

+

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

ZTRT
ξ b

√
g dξ3, (27a)

T =

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

ZTRT
ξ t
√
g
√

nigijnj dξ3. (27b)

where the notation f |ξ3=ξ3
indicates evaluation of f at ξ3 = ξ3

Finally, the following expression of the principle of virtual works for the non-linear

static analysis of multilayered shells is obtained, which represents the weak form of the

problem governing equations

∫

Ωξ

[
∂δUT

∂ξα

(
Qαβ

∂U

∂ξβ
+Rα3U

)
+ δUT

(
R3α

∂U

∂ξα
+ S33U

)]
dΩξ =

∫

Ωξ

δUTB dΩξ +

∫

∂Ωξ

δUTT d∂Ωξ

(28)

After integration by parts of the Eq. (28), ensuring that the resulting relation holds for any

virtual variation of the primary variables provides the following shell governing equations

and the associated natural boundary conditions

− ∂

∂ξα

(
Qαβ

∂U

∂ξβ
+Rα3U

)
+R3α

∂U

∂ξα
+ S33U = B in Ωξ (29a)

να

(
Qαβ

∂U

∂ξβ
+Rα3U

)
= T on ∂ΩξN (29b)

where να are the direction cosines of the outer unit normal defined over the part ∂ΩξN of

the Ωξ domain where natural boundary conditions are prescribed.
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3. Discontinuous Galerkin formulation

The solution of the problem governing equations, stated in weak form by Eq. (28),

is addressed through the Pure Penalty discontinuous Galerkin (dG) method introduced

by Babuška in [63] for the Poisson problem and in [64] for the Kirchhoff plate problem

with homogeneous boundary conditions, and also employed by Gulizzi et al. in [56, 57]

for linear analysis of multilayered plates.

3.1. Pure Penalty discontinuous Galerkin method

Following the standard procedure for dG methods, the shell reference domain Ωξ is

partitioned into Ne elements. For the sake of simplicity and without lack of generality,

a simple rectangular mesh is adopted in this work; therefore, the domain of the e-th

element Ωe
ξ is identified by Ωe

ξ ≡ [ξe1b, ξ
e
1t] × [ξe2b, ξ

e
2t], where ξeib and ξeit are the minimum

and maximum values for ξi within the e-th element. Note that the superscript e is used

to denote quantities referred to the e-th element.

The primal form of the Pure Penalty dG method adopted in this work is stated as

B(V ,Uh) = F (V ,B,T ,U), ∀V ∈ VU
hp. (30)

where

B(V ,Uh) =

∫

Ωh
ξ

[
∂V T

∂ξα

(
Qαβ

∂Uh

∂ξβ
+Rα3Uh

)
+ V T

(
R3α

∂Uh

∂ξα
+ S33Uh

)]
+

∫

∂Ωh
ξI

µ[[V ]]Tα [[Uh]]α +

∫

∂Ωh
ξD

µV TUh

(31a)

F (V ,B,T ,U) ≡
∫

Ωh
ξ

V TB +

∫

∂Ωh
ξN

V TT +

∫

∂Ωh
ξD

µV TU , (31b)
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being Uh the approximation of the generalized displacements field resulting from the

solution of the dG statement, V the test functions belonging to the space VU
hp and U the

prescribed values of the generalized displacements stemming from the essential boundary

conditions of the problem. The integrals appearing in Eqs.(31) are typically referred to as

broken integrals and their definitions are

∫

Ωh
ξ

• ≡
Ne∑

e=1

∫

Ωe
ξ

•e dΩξ (32a)

∫

∂Ωh
ξI

• ≡
Ni∑

i=1

∫

∂Ωi
ξI

•i d∂Ωξ (32b)

∫

∂Ωh
ξD

• ≡
Ne∑

e=1

∫

∂Ωe
ξD

•e d∂Ωξ (32c)

∫

∂Ωh
ξN

• ≡
Ne∑

e=1

∫

∂Ωe
ξN

•e d∂Ωξ (32d)

where Ωh
ξ is the approximation of Ωξ that is obtained collecting the domains Ωe

ξ of the

elements, ∂Ωh
ξI is the collection of the Ni inter-element interfaces ∂Ωi

ξI that are generated

partitioning the reference domain, ∂Ωh
ξD and ∂Ωh

ξN are the collections of the elements

portions of boundaries ∂Ωe
ξ and ∂Ωe

ξN where the essential and natural boundary conditions

are enforced, respectively. Moreover, in Eqs. (32) the jump operator [[•]](i)α ≡ νe
α •e +νe′

α •e
′

appears, being νe = {νe
1 νe

2}T and νe′ = {νe′
1 νe′

2 }T the outer unit normal vectors defined

over ∂Ωe
ξ and ∂Ωe′

ξ , respectively.

In the primal form of the Pure Penalty dG method, namely Eqs. (30) and (31), µ is

the penalty parameter used to enforce the inter-elements continuity of the solution and the

essential boundary conditions through the corresponding integrals over ∂Ωh
ξI and ∂Ωh

ξD,

respectively. The choice of µ is crucial for the method to be efficient: a too small penalty

16



value leads high discontinuities of the solution across the interfaces of the elements and

a too high penalty causes an ill-conditioning of the resolving system. A typical choice

of the penalty parameter in the Pure Penalty dG formulation is µ = Q/h2p where Q is

a sufficiently large constant, typically proportional to the highest Young modulus of the

structure materials, and h is a characteristic mesh size [34]. It is remarked that differently

from other dG formulation, such as the Interior Penalty [65], in the Pure Penalty one the

value of µ has to be significantly higher and this has an adverse effect on the condition

number of the resolving system matrix [66]. On the other hand, the primal form associated

with the Pure Penalty approach accounts for integrals over the elements boundaries not

involving the internal forces, which are nonlinear for the problem in hand [56]. Actually

these boundary integrals are linear with respect to Uh and therefore they do not need

to be computed for each iteration of the solution scheme with consequent computational

advantages. For more details on the dG formulation development the reader is referred to

[56].

3.2. Non-linear resolving system

The statement in Eq. (30) is transformed into an algebraic system by choosing an

adequate approximation expansions for the test functions V and the primary variables

Uh. These are chosen within a space of discontinuous polynomial basis functions as

detailed in [34, 56, 57]. In particular, the k-th components V e
k and U e

k of the restriction

V e and U e
h of the fields V and Uh to the e-th element are approximated as

U e
k =

p∑

p1=0

p∑

p2=0

Le
p1
(ξ1)L

e
p2
(ξ2)X

ek
p1p2

(33a)

V e
k =

p∑

p1=0

p∑

p2=0

Le
p1
(ξ1)L

e
p2
(ξ2)δX

ek
p1p2

(33b)
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where Le
pj
(ξj) is the Legendre polynomial of order pj scaled in the interval [ξejb, ξ

e
jt], X

ek
p1p2

are the unknown expansion coefficients and δXek
p1p2

are the arbitrary parameters of the test

function. Accordingly, in compact matrix form, one writes

U e
h = P e(ξ1, ξ2)X

e, (34a)

V e = P e(ξ1, ξ2)δX
e (34b)

where the vectors Xe and δXe collect the unknowns Xek
p1p2

and the parameters of the test

function δXek
p1p2

, respectively, while the matrix P e(ξ1, ξ2) consistently collects the functions

used for the expansion of the components of U e
h and V e.

Substituting the expressions of U e
h and V e into Eq. (30) one obtains the Pure Penalty

dG discrete primal form and applying the standard variational calculus procedure the

following nonlinear algebraic system is inferred

K(X)X = F , (35)

where the vectorX collect as blocks the vectorsXe in such way that the degrees of freedom

corresponding to the same element appear as a sequence within X. The stiffness matrix

K can be decomposed into three kinds of contributes, namely K = KI + KII + KIII ,

which originates from the work of internal forces, the enforcement of the continuity of

the solution across the elements and the enforcement of the problem essential boundary

conditions, respectively. Thus, the stiffness matrix K and the right-hand-side F are

consistently obtained by an assembly procedure resting on the following rules:

a. the e-th element provides

– the contribution to the stiffness matrix K stemming from the work of the internal
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forces given by

Ke
I =

∫

Ωe
ξ

[
∂P eT

∂ξα

(
Qαβ

∂P e

∂ξβ
+Rα3P

e

)
+ P eT

(
R3α

∂P e

∂ξα
+ S33P

e

)]
dΩξ, (36)

and that sums to the rows and columns associated with the degrees of freedom of

the element;

– the contribution to the right-hand-side F due to the body forces, given by

F e
b =

∫

Ωe
ξ

P eTB dΩξ (37)

and that sums to the rows associated with the degrees of freedom of the element;

– the contribution to the right-hand-side F due to the boundary forces, given by

F e
t =

∫

∂Ωe
ξN

P eTT d∂Ωξ (38)

and that sums to the rows associated with the degrees of freedom of the element;

– the contributions due to the essential boundary conditions that are given by

Ke
III =

∫

∂Ωe
ξD

µP eTP e d∂Ωξ (39)

that sums to the K matrix at the rows and columns associated with the degrees of

freedom of the element, and

F e
u =

∫

∂Ωe
ξD

µP eTU d∂Ωξ (40)

that sums to the right-hand-side F at the row associated with the degrees of freedom

of the element.
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b. the i-th interface between the elements e and e′ provides four contributions to the

stiffness matrix K enforcing the inter-element continuity, namely

– the contribution

Kiee
II =

∫

∂Ωi
ξI

µP eTP e d∂Ωξ, (41)

that sums to the rows and columns associated with the degrees of freedom of the

e-th element;

– the contribution

Kiee′
II =

∫

∂Ωi
ξI

µP eTP e′ d∂Ωξ (42)

that sums to the rows associated with the degrees of freedom of the e-th and the

columns associated with the degrees of freedom of the e′-th elements;

– the contribution

Kie′e
II =

∫

∂Ωi
ξI

µP e′TP e d∂Ωξ (43)

that sums to the rows associated with the degrees of freedom of the e′-th and the

columns associated with the degrees of freedom of the e-th elements;

– the contribution

Kie′e′
II =

∫

∂Ωi
ξI

µP e′TP e′d∂Ωξ (44)

that sums to the rows and columns associated with the degrees of freedom of the

e′-th element;

The non-linear algebraic system in Eq. (35) is solved using a Newton-Raphson method

with the path-following arc-length iteration scheme proposed by Crisfield [67, 68]. To apply

this solution procedure the tangent stiffness matrix KT is required and then its expression

has been derived as reported in Appendix B.
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4. Results

To validate the proposed method and assess its capabilities, numerical tests are per-

formed considering different plates and shells benchmark problems. The material proper-

ties employed in the analyses are given in Table 1. The presented results refer to three

different theories, namely the EDkkk with k = 1, 2, 3. For the EDkkk theory, each covari-

ant component of the displacement vector is expanded using Taylor’s polynomials up to

the k–th order; for the ED111, the material stiffness matrix is also modified according to

the plane stress state hypothesis and to keep a shear stress factor equal to 5/6. In all

the proposed examples, the penalty parameter has been suitably chosen according to the

findings reported in Refs. [56, 34]. Four tests are presented: the nonlinear bending of an

isotropic plate, the post-buckling analysis of an isotropic slender plate, the snap-back and

snap-through of isotropic and laminated cylindrical shells and the nonlinear response of a

complex geometry composite shell. The first three of these tests are popular benchmarks

and they allow the present results to be compared with solutions available in the literature.

The last case is presented to illustrate the method capabilities in dealing with complex,

general shell geometries and its solution is compared with finite elements results.
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Table 1: Material properties.

Material ID Property Component Value

M1 Young’s modulus E 75000 MPa

Poisson’s ratios ν 0.3

M2 Young’s modulus E 75000 MPa

Poisson’s ratios ν 0.316

M3 Young’s modulus E 3102.75 MPa

Poisson’s ratios ν 0.3

M4 Young’s moduli E1 3300 MPa

E2, E3 1100 MPa

Poisson’s ratios ν23, ν13, ν12 0.25

Shear moduli G23 660 MPa

G13, G12 660 MPa

4.1. Isotropic plate nonlinear bending

The first validation test regards the nonlinear bending of a constant thickness, isotropic,

square plate referred to the x1x2x3 orthogonal coordinate system with origin in the mid-

plane at a plate corner, the x1 and x2 axes directed along the edges and the x3 axis directed

along the plate thickness. The plate is subjected to a uniform surface load q applied on

its upper surface and constantly oriented along the x3 axis during the deformation. The

map of the mid surface of the plate is obtained as x01 = ξ1, x02 = ξ2 and x03 = 0, where

ξ1, ξ2 ∈ [0, L], being L = 1200 mm the plate edge length. The plate consists of a single

layer with material properties as M1 in Table 1 and thickness τ . Two different values for

the thickness have been investigated corresponding to a thin plate having thickness ratio

τ/L = 0.02 and a moderately thick plate with τ/L = 0.1. Two sets of boundary conditions
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are considered: i) all edges clamped, labeled as CCCC, corresponding to uξ1 = uξ2 = uξ3 =

0 at the edge points of coordinates (0, ξ2, ξ3), (ξ1, L, ξ3), (L, ξ2, ξ3) and (ξ1, 0, ξ3); ii) all

edges simply-supported, labeled as SSSS, where uξ1 = uξ2 = uξ3 = 0 at the edge points of

coordinates (0, ξ2, 0), (ξ1, L, 0), (L, ξ2, 0) and (ξ1, 0, 0).

To assess the efficiency of the method, the hp-convergence for different theories was

investigated. The reference solution U ref employed for the convergence studies has been

obtained by the present method with a 4×4 grid of elements with polynomial trial function

of order p = 7, which can be considered as converged. For the simply-supported panel

with τ/L = 0.1 and the ED111 and ED333 theories, Fig. 2(a) and 2(b) show the solution

error versus the element size measure h = 1/
√
Ne for different approximation polynomial

order p; the error is computed at the step corresponding to a non-dimensional surface load

q = qL4/(Eτ 4) = 400 as

e(Uh) =
|Uh −U ref |∞

|Uh|∞
(45)

where | · |∞ is the ∞-norm defined over Ωξ. It is worth to note that the number of degrees

of freedom associated with the theory EDk1k2k3 is equal to (k1 + k2 + k3 + 3)(p + 1)2Ne.

The data of Figs. 2(a-b) evidences that higher polynomial orders are characterized by

higher convergence rates and lower errors. These findings are confirmed by similar studies

carried out for different cases whose results are not reported here for the sake of brevity. To

complement the illustration of the method convergence characteristics, Fig. 2(c-d) show

the plate equilibrium paths in terms of the non-dimensional surface load q = p0L
4/Eτ 4

and the transverse displacement at the central point of the plate u3 = u3/τ . They refer

to the case of τ/L = 0.1 and simply-supported edges, analysed by the ED111 theory.

In particular, Fig. 2(c) shows solutions for different polynomials orders and fixed spatial

discretization, whereas Fig. 2(d) reports the solutions for fixed approximating polynomials
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order and different number of elements Ne arranged in an m×m regular grid.
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Figure 2: Convergence study for the simply-supported, isotropic, square plate with edge length L =
1200 mm and thickness ratio τ/L = 0.1. Convergence is assessed with respect a reference solution
(labeled as Ref. in the figures), which is obtained by the present method using a 4 × 4 grid with
elements polynomial trial function order p = 7. (a) and (b) show the curves of the solution error e(Uh)
versus the element size h for the ED111 and the ED333 theories, respectively. Curves correspond to
different approximation polynomial order p. (c) and (d) show the convergence of the ED111 equilibrium
path of the non-dimensional transverse displacement u3 = u3/τ at the plate central point for different
polynomial orders p and constant number of elements Ne and for different number of elements Ne and
fixed approximation polynomial order p, respectively.

For the considered boundary conditions and thickness ratios, Fig.(3) shows the plate

equilibrium paths in terms of the non-dimensional surface load q = p0L
4/Eτ 4 and trans-

verse displacement at the central point of the plate u3 = u3/τ . The presented results
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are computed through a 2 × 2 mesh grid of quadrilateral elements with polynomial trial

functions of order p = 5 and they refer to the solution of the ED111 and ED333 models,

which consists of 864 and 1728 degrees of freedom, respectively. The results are compared

with those reported in Ref.[69], in which the FSDT with Von Karman geometrical nonlin-

earities is employed, and in Ref.[10] whose solution is based on a second order theory. It is

noticed that in general there is good agreement between the present and reference results.

In particular, for thick plates there is an excellent agreement for the high-order theory

whereas contained differences are observed for the FSDT case (Fig. 3(b)). As regard the

case of thin plates (Fig. 3(a)) excellent agreement is remarked for the simply-supported

boundary conditions whereas for the clamped plate the dG solution appears less stiff.

(a)

0 100 200 300 400 500
q̄

0.0

0.5

1.0

1.5

2.0

ū3
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ū3

}
SSSS}
CCCC

τ/L = 0.1

Present ED111

Present ED333

Ref. [10]

Ref. [69]

Figure 3: Nonlinear bending equilibrium paths of the isotropic square plates with edge length L =
1200 mm, different thickness ratio τ/L and different boundary conditions, namely simply-supported
(SSSS) and clamped (CCCC) edges. The curves show the non-dimensional transverse displacement at
the central point of the plate u3 = u3/τ versus the non-dimensional surface load q = p0L

4/Eτ4. Present
results for the ED111 and ED333 models, computed through a 2 × 2 mesh grid of quadrilateral elements
with polynomial trial functions of order p = 5, and literature solutions are plotted. (a) Thin plate case
with τ/L = 0.02. (b) Thick plate case with τ/L = 0.1.
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4.2. Post-buckling of isotropic plate

The second test regards the post-buckling behaviour of an isotropic, slender, rectan-

gular plate with edge lengths a = 300 mm and b = 60 mm and thickness ratio τ/b = 0.1,

see Fig. 4(a).
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(c)

Figure 4: Post-buckling response of the cantilevered, isotropic, slender, rectangular plate with edge lengths
a = 300 mm and b = 60 mm and thickness ratio τ/b = 0.1 under the compression load F and the
perturbation load P . (a) Plate geometry, loads and boundary conditions. (b) Equilibrium path in
terms of non-dimensional transverse displacement u3 = u3/a at the compression load application point
versus the non-dimensional load amplitude F = F (48a2)/(π2Ebτ3). Results refer to the ED222 theory
solved by a 2 × 2 mesh grid of elements with polynomial trial function order p = 5. (c) Post-buckling
configurations of the plate for different equilibrium states corresponding to the following compression loads
F = 0.0, 1.1, 1.72, 2.27, 2.75. The color map represents the normalized displacement magnitude |u| /a.

The material properties employed correspond to those of material M2 in Table 1. The

reference system x1x2x3 and the map of the plate are the same as in the previous case with

ξ1 ∈ [0, a] and ξ2 ∈ [0, b]. The plate is clamped on one edge, meaning uξ1 = uξ2 = uξ3 = 0

at ξ1 = 0, while the other edges are free. A compression point load F is applied at the

coordinates (ξ1 = a, ξ2 = b/2, ξ3 = 0), being constantly directed along the direction of

x1. Additionally, in order to enforce post-buckling behaviour, a perturbation consisting

of a small concentrated load P directed along x3 is applied at the point of coordinates
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ξ1 = a, ξ2 = b/2, ξ3 = τ/2. The results presented in the following have been obtained

through the ED222 theory solved by a 2 × 2 mesh grid of elements with polynomial trial

function order p = 5, which provides a resolving system with 1296 degrees of freedom.

These results are reported and discussed as representative; indeed, similar accuracy can

be achieved with different combination of polynomials order and number of elements as

illustrated in the previous section. Fig. 4(b) shows the equilibrium path of the plate

in terms of the non-dimensional load amplitude F = F (48a2)/(π2Ebτ 3) versus the non-

dimensional transverse displacement u3 = u3/a evaluated at the load application point.

The comparison of the present results with those of Ref. [10] evidences good agreement

with small differences noticeable for higher load levels, being the dG solution less stiff.

However, for both curves buckling starts in correspondence of very close load levels and

the agreement is very good for the first part of the post-buckling behaviour. To show

the evolution of the cantilever, slender plate kinematics with the applied load, some post-

buckling configurations are shown in Fig. 4(c) for different equilibrium states, which

correspond to the load levels F = 0.0, 1.1, 1.72, 2.27, 2.75; the color map represents the

normalized displacement magnitude |u| /a.

Eventually, computation of stresses has been carried out and representative results

are presented to complete the illustration of the method capabilities. They refer to the

cantilevered slender plate modelled by the ED333 theory and solved with the same dis-

cretization described above, resulting in 1728 degrees of freedom. Fig. 5(a) and 5(b) show

the through-the-thickness distributions of the normal stress σ11 and transverse shear stress

σ13 at the reference domain points of coordinates ξ2 = b/2 and ξ1 = a/3, a/2 for different

load amplitudes F . It is worth to note that as expected the third-order model is able to

inherently describe the quadratic distributions of the transverse shear stress.
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Figure 5: Through-the-thickness stress distributions at the reference domain points of coordinates ξ1 =
a/3, a/2 and ξ2 = b/2 for the cantilevered slender plate with edge lengths a = 300 mm and b = 60 mm
and thickness ratio τ/b = 0.1. Stress distributions computed by the ED333 theory are plotted for different
equilibrium states corresponding to the following compression loads F = 0.0, 1.1, 1.72, 2.27, 2.75. (a)
non-dimensional normal stress σ11a/Eτ ; (b) non-dimensional transverse shear stress σ13a

2/Ebτ .

4.3. Snap-back and snap-through of cylindrical shells

The third test focuses on the study of a cylindrical shell under loads and boundary

conditions that result in a snap-back or snap-through behaviour of the structure. Fig.

6(a) shows the geometry, boundary conditions and loads of the cylindrical shell along

with the orthogonal reference system x1x2x3. Only a quarter of the structure is modelled

for symmetry conditions. The mean surface of the shell is mapped as x01 = R sin(ξ1),

x02 = ξ2 and x03 = R cos(ξ1) where ξ1 ∈ [−θ, 0], ξ2 ∈ [0, L], L = 254 mm, R = 2540 mm

and θ = 0.1 rad. Three different shell sections have been considered: i) a single-layer

section of material M3 (see Table 1) and thickness τ = 6.35mm, which is labeled as

C1 case (thin shell); ii) a single-layer section of material M3 (see Table 1) and thickness

τ = 12.7mm, which is labeled as C2 case (moderately thick shell); iii) a three-layer section
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with [0/90/0] layup of 4.233 mm thick plies having properties as M4 material in Table

1), which is labeled as C3 case. The boundary conditions of the first edge correspond to

simply-supported, that is uξ1 = uξ2 = uξ3 = 0 at the points of coordinates (−θ, ξ2, 0); the

edge corresponding to ξ2 = 0 is free, while the boundary conditions on the other two edges

are used to enforce symmetry restraints, meaning uξ1 = 0 at the points of coordinates

(0, ξ2, 0) and uξ2 = 0 at the points of coordinates (ξ1, L, 0). A transverse point load

with amplitude F is applied at the coordinates ξ1 = 0, ξ2 = L, ξ3 = τ/2.

Fig. 6(b) shows the response of the analysed shells computed using the ED222 theory

and a 2 × 2 mesh grid of elements with polynomial trial function order p = 5 result-

ing in 1296 degrees of freedom. Once again, it is remarked that the results obtained

by this discretisation are representative and the same accuracy has been achieved with

different combinations of mesh and elements approximation order. The curves of Fig.

6(b) plots the value of the load amplitude F as a function of the transverse displace-

ment u3 at the load application point. Figs. 6(c-l) show the shell configurations for

selected equilibrium states. In particular, for the C1 section shell, Figs. 6(c-g) show the

shell deformed shape at the load levels F = 0.283, −0.315, 0.185, 1.576, 3.0 [kN], whereas

Figs. 6(h-l) illustrate the behaviour of the C3 section shell showing its configurations

at F = 1.043, 1.661, 0.861, 1.803, 3.045 [kN]. The shell configurations of Figs 6(c-l) are

supplemented by the displacement magnitude |u| maps, which refer to the colorbar of

Fig. 6(m). Clearly, snap-back or snap-through behaviour occurs depending on the shell

thickness ratio and the comparison of the present results with those available from Refs.

[11], [70] and [71] shows good agreement for both isotropic and multilayered cases.

Fig. 7 illustrates the through-the-thickness distribution of representative stress compo-

nents computed for the C3 section shell at the point ξ1 = θ/4 and ξ2 = L/4. These are com-
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Figure 6: Cylindrical shells with snap-back and snap-through behaviour. (a) Geometry, boundary condi-
tions and applied load: L = 254 mm, R = 2540 mm and θ = 0.1 rad. (b) Nonlinear equilibrium path in
terms of load amplitude F versus the transverse displacement u3 at the load application point for the three
examined shell sections: i) a 6.35mm thin homogeneous section of material M3, labeled as C1, ii) a 12.7mm
moderately thick homogeneous section of material M3, labeled as C2, and iii) a 12.7mm thick layered sec-
tion with [0/90/0] layup of M4 material, equal thickness plies, labeled as C3. M3 and M4 material proper-
ties are given in Table 1. Results are obtained using the ED222 theory solved by a 2×2 mesh grid of elements
with polynomial trial function order p = 5. (c-g) show the C1 section shell configurations for different
equilibrium states corresponding to F = 0.283,−0.315, 0.185, 1.576, 3.0 [kN]. (h-l) show the C3 section
shell configurations for different equilibrium states corresponding to F = 1.043, 1.661, 0.861 1.803, 3.045
[kN]. The color maps represent the displacement magnitude |u| and refer to the colorbar in (m).

puted for the equilibrium states corresponding to F = 1.043, 1.661, 0.861, 1.803, 3.045 [kN]

by using both the ED222 and ED333 models with the same domain discretization described

above. As expected, the results shows that both the models are able to capture the in-

plane stress distribution with the same accuracy level as evidenced by Fig. 7(a) where the

σ11 curves are almost coincident for the two theories employed. As regard the transverse
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shear stresses, Fig. 7(b) shows the σ13 stress results. They indicate that the ED222 model

is not able to provide reliable shear stress distributions, e.g. the traction-free surface con-

dition is not ensured; on the other hand the ED333 theory generally give physically reliable

and sound distributions.
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Figure 7: Through-the-thickness stress distributions for the pinched cylindrical shell with radius R =
2540 mm, central half-angle θ = 0.1 rad, half-length L = 254 mm and [0/90/0] layup with 4.233 mm thick
plies of M4 material (see Table 1). Stress distributions at the reference domain points of coordinates ξ1 =
θ/4 and ξ2 = L/4 are plotted for different equilibrium states corresponding to the load amplitudes F =
1.043, 1.661, 0.861, 1.803, 3.045 [kN]. (a) non-dimensional normal stress σ11L/E2τ ; (b) non-dimensional
transverse shear stress σ13L

2/E2τ
2, being E2 the M4 material transverse Young’s module and τ the shell

thickness.

These results illustrate the capabilities of the proposed method to deal with complex

nonlinear behaviour of shells.

4.4. NURBS-based laminated shell

In the last test, a generally-curved shell is considered, whose geometry is shown in Fig.

8(a-c) being L = 600 mm, H = 500 mm and D = 50 mm.
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Figure 8: NURBS-based shell undergoing compression loading. (a-c) Geometry and loading conditions of
the shell: L = 600 mm, H = 500 mm and D = 50 mm; NURBS data to replicate the geometry are given
in Ref. [60]. (d) Equilibrium path in terms of the average x2-directed edge force resultant per unit length
Nav

22 versus the applied edge displacement u2. Color maps of the non-dimensional displacement vector
magnitude |u| /u2max

at the reference surface points are also shown at the following percentage levels of
the loading: (e) 1%, (f) 20%, (g) 40%, (h) 60%, (i) 80%, (j) 100%; they refer to the colorbar shown in (k)
where u2max is the maximum loading amplitude.

The shell geometry is described via NURBS functions and for its data, including the
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coordinates of the control points, the degree of the basis functions and the knot vectors,

the reader is referred to [60]. The shell section is a four layers laminate with 1 mm thick

plies of material M4 (see Table 1) and [0, 30, 60, 90] layup. The shell is clamped on the

edge corresponding to ξ2 = 1 and it is subjected on the opposite edge to an uniform,

compression displacement u2 directed along x2. The shell is modelled with the ED222

theory and the simulation has been carried out using a 10 × 10 grid of elements with

polynomial order p = 4 resulting in 22500 degrees of freedom.

Fig. 8(d) shows the shell load-end displacement curve in terms of the average x2-

directed edge force resultant per unit length, namely Nav
22 , versus the applied edge dis-

placement u2. The curve is compared with that obtained by finite elements using the

Abaqus® software [72] evidencing very good agreement. Additionally, Fig. 8(e-j) show

the contour maps of the displacement vector magnitude |u| of the reference surface points

at the loading steps corresponding to 1%, 20%, 40%, 60%, 80% and 100% of the maximum

applied compression displacement u2max . It is evidenced the complex behaviour of the in-

vestigated shell which experiences coupling effects related to its geometry and layup. It is

worth to note that a thin shell has been used in this test. This allows to consider accurate

the finite element solution obtained with the first order shear deformation theory whereas

a second order theory has been employed in the dG modelization, so as to validate the

proposed refined approach in the framework of such a complex shell geometry.

In conclusion, the favourable comparison of the presented solutions with the literature

and finite elements results validates the proposed approach whose accuracy can be tuned

acting both on the employed number of mesh elements or on the order of the elements

polynomial approximation.
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5. Conclusions

This work presents a novel pure penalty discontinuous Galerkin method for the geo-

metrically nonlinear static analysis of multilayered plates and shells.

In the context of a total Lagrangian approach, it allows to implement refined equivalent

single-layer shell theories with generality of the through-the-thickness resolution. The

corresponding governing equations are obtained by the principle of virtual works and,

for the first time, their discretised form is inferred by a discontinuous Galerkin approach

resting on the pure penalty formulation. Based on Legendre polynomial expansion of the

primary variables, high-order elements are developed. The resulting nonlinear algebraic

system is solved with a Newton-Raphson arc-length scheme.

A set of test cases is carried outto validate the proposed approach and assess its

features, focusing on nonlinear bending and post-buckling response of plates, the snap-

back and snap-through of shells, and the analysis of complex shell geometries. The tests

prove the ability of the method to deal with complex nonlinear behaviour of plates and

shells.

Indeed, the obtained results reveal very good agreement with those from the literature

or from finite element analyses. The convergence studies show that the method is effective

with respect to the element order, which entails good accuracy with reduced computational

effort especially for high-order theory modelling. From this point of view, it is observed

that the use of the pure penalty approach in the formulation requires to compute the

elements interface boundary integrals only once, thus saving computational time during

the iterative solution scheme.

On the other hand, it is observed that the method tends to provide less stiff response

for high loading levels. This behaviour might be induced by the pure penalty approach,

which enforces in a weak sense the kinematical compatibility at the element interfaces
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without ensuring internal forces equilibrium. This aspect deserves further investigations.

Overall, the proposed pure penalty discontinuous Galerkin method can be an alterna-

tive and useful mean for the nonlinear analysis of multilayered plates and shells modelled

with high-order, refined two-dimensional theories. The class of configurations that can be

analysed is relatively wide. Future development should be directed towards the extension

of the method to handle typical features found in practical applications such as nonlinear

material behaviour, nonlinear dynamics, damage.
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Appendix A. Layer stiffness matrix

The layer stiffness matrix in the orthotropic material reference system is built as

c̃⟨ℓ⟩ =




1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12




−1

(A.1)

where Er, νrs and Grs are the orthotropic material Young’ moduli, Poisson’ coefficients

and shear moduli, respectively.
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In turn, the layer stiffness matrix in the orthogonal reference system x1x2x3, namely

c⟨ℓ⟩, is obtained via Eq. (17) by using the following transformation matrix

T =




λ2
11 λ2

12 λ2
13 2λ12λ13 2λ11λ13 2λ11λ12

λ2
21 λ2

22 λ2
23 2λ22λ23 2λ21λ23 2λ21λ22

λ2
31 λ2

32 λ2
33 2λ32λ33 2λ31λ33 2λ31λ32

λ21λ31 λ22λ32 λ23λ33 λ22λ33 + λ23λ32 λ21λ33 + λ23λ31 λ21λ32 + λ22λ31

λ11λ31 λ12λ32 λ13λ33 λ12λ33 + λ13λ32 λ11λ33 + λ13λ31 λ11λ32 + λ12λ31

λ11λ21 λ12λ22 λ13λ23 λ12λ23 + λ13λ22 λ11λ23 + λ13λ21 λ11λ22 + λ12λ21




(A.2)

where λij is the directional cosine of mi on xj.

Appendix B. Tangent stiffness matrix

The stiffness matrix K appearing in the resolving system is a function of X and

can be decomposed into three kinds of contributes, namely K = KI + KII + KIII ,

which originates from the work of internal forces, the enforcement of the continuity of

the solution across the elements and the enforcement of the problem essential boundary

conditions, respectively. Since adopting a Pure Penalty formulation the contributions KII

and KIII do not depend on X. Therefore, the tangent stiffness matrix KT associated

with the stiffness matrix K is expressed as

KT =
∂(KIX)

∂X
+KII +KIII = KJ

I +KII +KIII . (B.1)

45



The term KJ
I = ∂(KIX)/∂X stems from the variation of the virtual work of the internal

forces

δ(δLint) =

Nℓ∑

ℓ=1

∫

V ⟨ℓ⟩
δ(δγTσ⟨ℓ⟩)dV (B.2)

which, after some manipulations, accounting for Eqs. (11) and for the constitutive equa-

tions, Eq. (B.2) is written as

δ(δLint) =

Nℓ∑

ℓ=1

∫

V ⟨ℓ⟩

∂δu

∂xi

T

CJ
ij

∂δu

∂xj

dV (B.3)

where

CJ
ij = (I i +W i)

T c (Ij +W j) + σ
⟨ℓ⟩
ij Id, (B.4)

being Id the 3× 3 identity matrix. Using Eq. (13) and integrating over the thickness, Eq.

(B.3) becomes

δ(δLint) =

∫

Ωξ

[
∂δUT

∂ξα

(
QJ

αβ

∂δU

∂ξβ
+RJ

α3δU

)
+ δUT

(
RJ

3α

∂δU

∂ξα
+ SJ

33δU

)]
dΩξ, (B.5)

where the generalized tangent stiffness matrices are introduced as

QJ
αβ ≡

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
αiC

J
ijDβj

√
g dξ3, (B.6a)

RJ
α3 ≡

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
αiC

J
ijD0j

√
g dξ3, (B.6b)

RJ
3α ≡

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
0iC

J
ijDαj

√
g dξ3 (B.6c)

SJ
33 ≡

Nℓ∑

ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

DT
0iC

J
ijD0j

√
g dξ3. (B.6d)
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Accordingly to Eq. (B.5) the e-th element provides a contribution to KJ
I given by

Ke
I =

∫

Ωe
ξ

[
∂P eT

∂ξα

(
QJ

αβ

∂P e

∂ξβ
+RJ

α3P
e

)
+ P eT

(
RJ

3α

∂P e

∂ξα
+ SJ

33P
e

)]
dΩξ, (B.7)

that sums to the row and columns of the tangent stiffness matrix associated with the

degrees of freedom of the element.
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