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Abstract: In this study, 1H-NMR spectroscopy coupled with chemometrics was applied to study the
wine metabolome and to classify wines according to different grape varieties and different terroirs.
By obtaining the metabolomic fingerprinting and profiling of the wines, it was possible to assess
the metabolic biomarkers leading the classification (i.e., phenolic compounds, aroma compounds,
amino acids, and organic acids). Moreover, information about the influence of the soil in shaping
wine metabolome was obtained. For instance, the relationship between the soil texture and the
content of amino acids and organic acids in wines was highlighted. The analysis conducted in this
study allowed extraction of relevant spectral information not only from the most populated and
concentrated spectral areas (e.g., aliphatic and carbinolic areas), but also from crowded spectral
areas held by lowly concentrated compounds (i.e., polyphenols). This may be due to a successful
combination between the parameters used for data reduction, preprocessing and elaboration. The
metabolomic fingerprinting also allowed exploration of the H-bonds network inside the wines, which
affects both gustatory and olfactory perceptions, by modulating the way how solutes interact with
the human sensory receptors. These findings may have important implications in the context of
food traceability and quality control, providing information about the chemical composition and
biomolecular markers from a holistic point of view.

Keywords: 1H-NMR spectroscopy; metabolomics; chemometrics; wine; terroir

1. Introduction

Food traceability refers to the ability to access information related to food products,
ingredients, and raw materials through their entire life cycle [1]. It can be considered as
a key tool to assess authenticity, and refers to the assurance that a food product is gen-
uine, unadulterated, and accurately labeled with respect to its composition, origin, and
quality attributes. Different approaches exist to authenticate food products that aim at
analyzing the overall chemical composition and identifying biomolecular markers [2]. In
this context, the so-called omics sciences have proved to be optimal tools at the service of
traceability and authenticity of food and beverages [3]. Omics sciences encompass data-
driven approaches that aim to comprehensively analyze biological systems by employing
high-throughput technologies [4]. These sciences focus on the analysis of complete sets
of biomolecules, including DNA, RNA, proteins, and other metabolites. The study of
the ensemble of biomolecules provides a thorough overview of the molecular processes
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occurring in a biological system. Among the major omics sciences, which include genomics,
transcriptomics, proteomics, epigenomics, etc., metabolomics focuses on the metabolome,
that is the ensemble of all the metabolites contained in a biological sample in a specific
moment. Metabolomic science is defined as “the quantitative measurement of the dynamic
multiparametric metabolic response of living systems to pathophysiological stimuli or ge-
netic modification” [5]. It is a comprehensive approach that enables study of the metabolic
state of a system, by exploring the dynamic changes in metabolite profiles as caused by
genetic variations or changes in environmental conditions. One of the major analytical
methods used to perform metabolomic analysis is Nuclear Magnetic Resonance (NMR)
spectroscopy [6,7]. This technique is based on the absorption and re-emission of energy
by targeted nuclei due to the application of an external magnetic field [8]. Depending
on the type of nucleus being targeted by the applied magnetic field, different types of
NMR analysis can be conducted, including 1H-NMR, 13C-NMR, 31P-NMR, 19F-NMR, etc.
Among these, 1H-NMR spectroscopy plays a major role because it provides structural
and quantitative information on a wide range of metabolites simultaneously, based on the
abundance of the hydrogen-nuclei, in a non-destructive and highly reproducible way [5].
Metabolomics is currently applied to a great variety of subjects, including agricultural,
food and nutrition sciences [9–11]. Foods and beverages are evaluated by analyzing their
macro- and micro-component composition with the aim of investigating sensory quality,
nutritional content, safety, authenticity, and traceability [12,13]. With reference to wine
science, metabolomic analysis has been employed to characterize wines derived from
different grape varieties [14], geographical origins [15,16], vintages [17], and winemak-
ing techniques [18]. Despite that these studies have provided valuable insights into the
chemical composition, quality, and sensory characteristics of wines with respect to dif-
ferent environmental factors, some gaps and challenges still emerge, mainly related to
the limited capability of compound identification (especially of low-abundant analytes)
due to the complexity of the wine spectrum [19]. Moreover, the inherent heterogeneity of
wine composition, due to different environmental factors, geographical origins, agronom-
ical and oenological practices, introduces variability and batch effects into metabolomic
data, making it harder to extract information about the origin of the products. It is well
recognized that wines produced in different production areas develop different sensory
characteristics [20]. This phenomenon, identified with the French term terroir, is due to the
synergistic interactions among several factors, including grape variety, climate, soil, bio-
diversity features and human activities (e.g., viticultural and oenological techniques) [21].
Among these factors, the soil is a critical element for plant life, because it plays several
ecological functions, such as carbon storage and water regulation, and it is responsible for
the vehiculation of nutrients towards plant roots [21,22]. The role of the soil is complex and
multifaceted, and several authors have highlighted the importance of some soil features
(e.g., temperature, water supply, and mineral content, particularly nitrogen supply) in mod-
ulating vine vigor and grape composition [22,23]. However, the mechanisms regulating
the effects of the soil on wine quality have been only moderately addressed [24,25]. In one
of our previous studies [26], we employed 1H-NMR-based metabolomics to classify Nero
d’Avola red wines from different terroirs. In particular, we focused on the influence of the
soil in shaping the micro-component composition of Nero d’Avola wines. We proposed
a revised and boosted 1H-NMR-based metabolomic approach with the aim of enhancing
data quality and throughput performance. The analysis allowed us to point out that the
soil strongly affected wine metabolome. However, we reported that the workflow for
such analysis needed to be further optimized and verified. Therefore, in order to test the
powerfulness (and weaknesses) of our analytical methodology, the primary goal of this
new study was to evaluate the capability of our revised method to assess the chemical vari-
ability of wines obtained by different grape varieties. To attain this aim, the metabolomic
analysis of wines from two Vitis vinifera L. grape varieties (e.g., Nero d’Avola red and Grillo
white cultivars) was carried out. Moreover, in order to further verify the findings of our
previous studies [26–28], the second goal was to investigate the effect of the soil on the
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metabolome of white wines produced from Vitis vinifera L. cv Grillo grapes. The effects of
the main soil chemical–physical parameters (namely texture, pH, total carbonates, cation
exchange capacity, electric conductivity, organic matter, and mineral composition) on the
determination of wine metabolome were investigated.

2. Materials and Methods
2.1. Wine Terroirs

The study was performed on red and white wines obtained from grapes grown in
eight vineyards located in the hilly landscape nearby the city of Menfi (Agrigento), along
the southwestern coast of Sicily (Southern Italy). The vineyards hosted the cultivars Nero
d’Avola and Grillo of Vitis vinifera L. In order to investigate the effect of the soil on wine
metabolome, the main soil chemical physical parameters were considered, namely texture,
pH, total carbonates, organic matter, cation exchange capacity, electric conductivity, and
mineral composition [27]. According to the results of the aforementioned analyses, the
pedological classification was performed according to the Soil Taxonomy [29].

Soils were identified as Soil 1–8, where the soils from 1 to 4 hosted the Nero d’Avola
vines and the soils from 5 to 8 hosted the Grillo vines.

Details about the chemical–physical parameters of the soils are reported in the Soil
description section of the Supplementary Information and in Tables S1–S3 of the same
Supplementary section.

2.2. Wine Elaboration

Grapes from each vineyard were manually harvested in September 2021, when about
200 g L−1 of fermentable sugars were accumulated in berries. The red wines, made from
Nero d’Avola grapes, were obtained by applying the vinification process described in
Bambina et al. [26]. Briefly, 150 kg of grapes for each trial were destemmed and softly
crushed. Then, 5 g hL−1 of K2S2O5 were added in order to inactivate the grape polyphenol-
oxidase activity. The alcoholic fermentation was carried out by the inoculation of a
pied de cuvè prepared with 20 g hL−1 of Lalvin EC 1118 Saccharomyces cerevisiae yeasts.
0.06 g hL−1 of thiamine and diammonium phosphate (DAP) were added to achieve
200 mg L−1 of yeast assimilable nitrogen (YAN). The fermentation temperature was
25 ± 1 ◦C. A punching down per day was carried out until the achievement of 6 % v v−1

of ethanol. Then, punching down was performed twice per day till the end of the alcoholic
fermentation. Two pump-overs were performed: the first after 24 h from the beginning
of the alcoholic fermentation and the second at the achievement of 6 % v v−1 of ethanol.
The racking was carried out at the end of the alcoholic fermentation. Then, the malolactic
fermentation was started by inoculation of selected lactic bacteria (Enartis-ML ONE). At
the end of malolactic fermentation, wines were racked and K2S2O5 was added until wines
reached 25 mg L−1 of free SO2.

The white wines, made by Grillo grapes, were vinified according to Bambina et al. [27].
A total of 150 kg of grapes for each trial were stored in a refrigerated room (8–10 ◦C) for
24 h. Then, the grapes were destemmed, softly crushed, and pressed. The obtained musts
were added with 5 g hL−1 of K2S2O5 and clarified by static settling at 5 ◦C for 24 h, with
the addition of 3 g hL−1 of pectolytic enzymes (Endozym ICS 10 Èclairs, Pascal Biotech,
Negeri Sembilan, Malaysia). After racking, the clear musts were inoculated by a pied de
cuvè prepared with 20 g hL−1 of Lalvin QA23 Saccharomyces cerevisiae yeasts. 0.06 g hL−1 of
thiamine and 20 g hL−1 of DAP were added to the musts in order to achieve 200 mg L−1

of YAN. The fermentation temperature was 16 ± 1 ◦C. Oxygenations of 1/5 of each must
were performed at the achievement of 5–6% and 8–9% v v−1 of ethanol. At the end of the
alcoholic fermentation, wines were racked and K2S2O5 was added until wines reached
25 mg L−1 of free SO2. All wines were bottled and stored at 10 ◦C until the analyses.

In order to consider and reduce the natural variability derived from the vinification
process, three separate trials were vinified for each vineyard, obtaining a total of 24 wines
(3 trials × 8 vineyards). The results of the analyses are reported throughout the text as
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Mean ± Standard Deviation of the three trials for each vineyard. The main chemical–
physical parameters of the wines, measured by means of a WinescanTM instrument (FOSS,
Hilleroed, Denmark), are reported in Table S4 of the Supplementary Information.

2.3. 1H-NMR-Based Metabolomic Analyses of Wines

To ensure samples’ integrity and to minimize the variability associated with the
sample processing, the preparation step only involved the addiction of 0.1 mL of D2O to
0.5 mL of wine. The diluted wines were then analysed by means of a Bruker Avance II
400 spectrometer operating at a proton Larmor frequency of 400.15 MHz. The 1H-NMR
spectra were acquired by applying the NOESYGPPS1D pulse sequence, which allowed
suppression of water and ethanol signals. The suppressed signals included the singlet
produced by water (at 4.81 ppm), the quartet produced by ethanol methylene protons (at
3.60–3.68 ppm) and the triplet produced by ethanol methyl protons (at 1.15–1.20 ppm). The
acquiring temperature was 25 ± 1 ◦C. Free induction decays (FID) were collected with
a 64k time domain, with a spectral width of 8012.82 Hz, a relaxation delay of 4 s and an
acquisition time of 4 s. In total, 128 scans, 4 dummy scans, a shaped pulse of 0.08 mW and a
mixing time of 0.01 s were used. A line broadening of 0.3 Hz was applied to the exponential
function prior to the Fourier transformation. D2O was used to optimize the field frequency
lock. No quantitative internal standard was used. No artificial pH adjustment of wines
was carried out with the aim to avoid any kind of modification of the matrix. As a matter
of fact, wine pH could affect the chemical interactions among molecules (e.g., H bonding).
Therefore, its correction could affect the results of the study. Spectra were manually phased
and the baselines were manually corrected by means of the Whittaker smoother method.
These operations were performed by using MNova 14.2.3 software (Mestrelab Research,
Santiago de Compostela, Spain). To correct vertical scale errors deriving from the residual
water and ethanol signals, spectra were normalized to the total spectral area after having
removed the spectral regions containing the water protons signal (at 4.81 ppm), the ethanol
methyl protons signal (at 1.10–1.20 ppm) and the 13C satellites of ethanol (at 0.97–1.05 ppm
and 1.28–1.36 ppm). The spectral region containing the ethanol methylene protons signal
(at 3.60–3.68 ppm) was not removed because this region hosts signals produced by other
wine metabolites and its removal obstructs the identification of some compounds.

Wine samples were identified as Wine 1–8, where wines from 1 to 4 were Nero d’Avola
red wines and wines from 5 to 8 were Grillo white wines. The numbering of each wine
corresponds to the vineyard numbering reported above.

Untargeted and Targeted Metabolomic Approaches

In the elaboration of 1H-NMR spectroscopic data, two different approaches were ap-
plied, namely the untargeted and the targeted approach. The untargeted analysis gave the
metabolic fingerprinting by processing the entire 1H-NMR spectra. The targeted analysis
provided the wine profiling by identifying and quantifying an ensemble of metabolites.
Both type of analyses have been already described in Bambina et al. [26]. The input vari-
ables for the untargeted analysis were generated via bucketing the spectra. The bucketing,
performed by means of MNova software, allowed division of each spectrum into seg-
ments of constant width, called buckets. This operation enabled reduction of the large
number of original data points (about 64,000 data points for each spectrum) into a smaller
number of input variables. The bucketing operation was performed in the spectral range
0.50–9.70 ppm by using the width of 0.01 ppm. This operation yielded about 900 spectral
buckets, which were used as input variables for subsequent chemometric analysis.

To perform the targeted analysis, the signals assignment and the consequent metabo-
lites identification were carried out by comparison with the spectral information
(i.e., chemical shift, fine structure, and coupling constant) of the spectra of pure com-
pounds. The comparison was semi-automatically performed by using the Simple Mixture
Analysis (SMA) plug-in of the MNova software. This identifies single compounds inside
complex mixtures by building specific libraries with the spectra of the pure compounds.
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The library for wine metabolomic analysis was developed by collecting the spectra of about
60 pure compounds downloaded by the Natural Products Magnetic Resonance Database
(NP-MRD) [5]. The spectral information used for the identification of compounds is listed
in Table S5 of the Supplementary Information. A chemical shift range, rather than a single
specific value, was used for compound identification to account for the possible chemical
shift dispersion deriving from different wines’ pH and from different interactions among
wine molecules. A centroid tolerance of 0.10 ppm was applied.

The identification of minor compounds (such as polyphenols) was carried out by
applying the global spectral deconvolution method (GSD) to deconvolute overlapping
signals in crowded spectral regions.

Identified metabolites were semi-quantified as percentage of the assigned peaks on
the total spectral area, by using the qNMR plug-in of MNova software.

By means of the described protocol, up to 58 different metabolites were identified in
Nero d’Avola and Grillo wines, far more than the number of metabolites simultaneously
identified in other 1H-NMR-based metabolomic studies of wines.

2.4. Chemometrics

In order to extract meaningful information and to identify patterns inside the datasets,
Hierarchical Clustering Analysis (HCA), Principal Component Analysis (PCA) and Par-
tial Least Squares Discriminant Analysis (PLS-DA) were performed, which enable the
exploration, the visualization, and the interpretation of the multivariate data.

Hierarchical Clustering Analysis (HCA) is an unsupervised pattern recognition tech-
nique that aims at identifying metabolite patterns and to group similar samples into clusters
based on their chemical similarity, by means of a hierarchical tree-like structure (called a
dendrogram) [30]. It also allows visualization of the relative variation of the concentration
of the metabolites. The sample clusters were obtained by applying the Ward’s minimum
variance method, which works according to the minimum within-cluster variance.

PCA is an unsupervised pattern recognition method primarily used for dimensionality
reduction, data visualization and feature extraction. This method transforms the original
variables into a new set of uncorrelated variables, called principal components (PCs), that
capture the maximum variance of the dataset [31].

PLS–DA is a supervised method designed for classification and discrimination tasks.
It focuses on finding latent variables (LVs) that maximize the covariance between predictor
variables and class labels. The quality and the robustness of a PLS–DA model is tested
by the cross validation (CV) test, the number of misclassifications (NMC) and the Area
Under the Receiver Operating Characteristics (AUROC). The CV test provides the values of
accuracy, R2 and Q2. The accuracy indicates the overall correctness of the predictions, the R2

(also known as coefficient of determination) indicates the goodness of the fitting regression
model, and the Q2 is an estimate of the predictive ability of the model. The NMC measures
the number of misclassified samples by constructing a confusion matrix. The AUROC
measures the overall discriminative ability, or predictive performance, of a classification
model across different decision thresholds. The ROC curve plots the sensitivity, defined
as the number of true positives measured as percentage of all positives, against the 1-
specificity, i.e., the number of false positives expressed as percentage of all negatives. An
AUROC value near to 1 indicates a great discrimination performance, while an AUROC
value of =0.5 indicates the absence of discriminative power [32].

The statistical significance of the model is measured by the Permutation test [33]. In
this study, the PLS-DA was applied in a double cross validation scheme. This means that
the diagnostic tools were used not only to determine the quality of the discrimination
model but also to optimize the hyperparameters of the model, i.e., the optimal number
of LVs. The number of LVs was chosen in order to preserve the best balance between the
predictive performance and the interpretability of the model.

In order to ensure that the analyses were not biased by differences in the scales of the
concentrations of different metabolites, the chemometric elaborations were preceded by the
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preprocessing step, consisting of data normalization and scaling. While the normalization
turns the skewed distributions into Gaussian-like curves, the scaling reduces the relative
importance of the large fold changes on small fold changes, keeping the data structure
almost unchanged [34]. The type of data preprocessing was chosen after the visual evalua-
tion of the data distribution before and after normalization and scaling. All the statistical
elaborations were performed by means of the MetaboAnalyst 6.0 web-based tool.

3. Results and Discussion

3.1. 1H-NMR-Based Metabolomics to Classify Wines According to Different Grape Varieties
3.1.1. Wines Fingerprinting

The untargeted analysis led to the fingerprinting of Grillo and Nero d’Avola wines
by processing the entire 1H NMR spectra. The stacked spectra of the analysed wines are
reported in Figure 1. The spectra are divided into different regions. Namely, between 0 and
2 ppm, the proton Larmor frequencies of simple aliphatic protons are observed; between
2 and 3 ppm, the resonance of protons adjacent to unsaturated groups occurs; between
3 and 6 ppm, protons adjacent to electronegative atoms and vinyl protons resonate; between
6 and 9 ppm, the resonance of the aromatic protons is observed and, finally, between 9 and
10 ppm, the resonance of the aldehydic protons occurs.
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Figure 1. Stacked 1H-NMR spectra of the analyzed wines. In the figure, the ranges of Larmor
frequencies of chemically different protons are indicated. The numbering at the right of the plot
indicates the wine samples as explained in Materials and Methods.

Prior to chemometric analysis, the fingerprinting data were auto-scaled (mean-centered
and divided by the standard deviation of each variable). Then, the PCA was carried out,
which yielded two clearly distinguishable groups. As can be observed in the 2D PCA
Scores Plot of Figure 2A, Nero d’Avola red wines and Grillo white wines are grouped
separately. The spectral fragments responsible for the separation are listed in Table 1.
The table reports the contribution of each original variable (spectral fragment) to the PCs,
helping the interpretation of the spatial separation among wines.
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Figure 2. (A) 2D PCA Scores Plot showing the spatial separation among Nero d’Avola and Grillo
wines as based on untargeted analysis. The explained variance is shown in brackets. (B) 2D PLS-DA
showing the spatial separation among Nero d’Avola and Grillo wines. (C) Variable Importance in
Projection scores (VIPs) providing the measure of the importance of each variable (in this case, of
each spectral fragment) in the discrimination among wine groups.

The PC1 was mostly driven by simple aliphatic protons (which can be attributed to
aroma compounds and amino acids), protons adjacent to unsaturated groups (belonging to
organic acids), protons adjacent to electronegative atoms and vinyl groups (attributable
to carbohydrates and polyols), and aromatic protons (proper to polyphenols). The PC2
was mostly driven by protons adjacent to electronegative atoms and vinyl groups, and
aromatic protons. The separation and classification of wines obtained with the PCA was
mostly due to the protons from the most concentrated area (e.g., aliphatic area). Some
authors have already reported wine classification models based on differences on amino
acids, organic acids, and polyols [14–16]. However, the fact that amino acids, organic acids,
and polyols (especially glycerol) are some of the most concentrated and simply identifiable
compounds via 1H-NMR suggests that these results can be due to the approach used for
data extrapolation, preprocessing and statistical elaboration. In fact, it often occurs that
the relative variations of highly concentrated compounds overshadow small variations
of lowly concentrated compounds, possibly carrying the most interesting metabolomic
information. As a matter of fact, it is well recognized that some of the most important wine
sensory properties, such as color and mouthfeel (i.e., viscosity, astringency, bitterness, etc.)
are particularly due to low molecular weight polyphenolic compounds, that are present in
much lower concentration with respect to other compounds (e.g., glycerol, polysaccharides,
ethanol, organic acids, etc.). Therefore, the result of the PCA suggests that this statistical
model (PCA) may not be the best solution for the extraction of significant features and the
selection of possible biomarkers, despite yielding a good separation among wine types.
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Table 1. Spectral fragments mostly contributing to each PC for Nero d’Avola and Grillo wine
fingerprinting. The values indicating the contribution of each spectral fragment to the PCs represent
the strength and direction of the relationship between the original variable and the PC.

Spectral Fragment Contribution to PC1
(Positive Side) Spectral Fragment Contribution to PC2

(Positive Side)

0.89 0.06 3.43 0.06
2.08 0.06 3.45 0.06
2.37 0.06 3.52 0.05
3.67 0.06 3.61 0.05
3.75 0.06 3.70 0.05
3.76 0.06 3.71 0.06
5.68 0.06 5.42 0.07
5.89 0.06 5.93 0.05
6.52 0.06 6.17 0.06
7.18 0.05 6.18 0.05
7.23 0.06 7.12 0.05
7.24 0.05 7.26 0.06
7.39 0.05 7.28 0.06
7.88 0.06 7.35 0.06
7.93 0.06 8.58 0.06
7.95 0.06 8.94 0.07
8.29 0.06 9.26 0.07
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8.39 0.06

Spectral Fragment Contribution to PC1
(Negative Side) Spectral Fragment Contribution to PC2

(Negative Side)

3.89 −0.07 2.67 −0.08
3.90 −0.07 2.92 −0.08
3.98 −0.07 3.35 −0.08
4.42 −0.07 3.56 −0.08
4.43 −0.07 3.58 −0.08
4.44 −0.07 3.59 −0.07
5.15 −0.07 3.93 −0.07
5.20 −0.07 5.23 −0.08
6.03 −0.07 5.24 −0.08
6.04 −0.07 5.25 −0.08
6.05 −0.07 5.26 −0.08
6.07 −0.07 5.31 −0.08
6.12 −0.07 5.44 −0.08
6.79 −0.07 5.45 −0.07
6.80 −0.07 6.15 −0.08
6.82 −0.07 6.32 −0.08
6.89 −0.07 6.64 −0.08
6.91 −0.07 7.74 −0.08
7.61 −0.07 8.19 −0.08
8.63 −0.07 8.67 −0.07

The supervised chemometric method, namely the PLS–DA, provided a clear sepa-
ration among red and white wines (Figure 2B). The permutation test was performed by
using n = 1000 permutations and yielded a p value < 0.001, ensuring the significance of
the test. The CV test was performed by using the Leave-One-Out Cross Validation pro-
cedure (LOOCV) (Table S6a of the Supplementary Materials). By means of the CV test,
2 LVs were selected, which explained the 43% of the total variance of the matrix. For the
2 LVs model, the accuracy was 1, the R2 was 0.992, and the Q2 was 0.967, indicating the
correctness of the predictions, the goodness of the fitting model and the predictive ability
of the model. The NMC analysis (Figure S1A in the Supplementary Materials) ensured an
optimal classification performance of the model, yielding 0 misclassifications. The AUROC
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analysis (Figure S1B in the Supplementary Materials) provided an AUC (area under the
curve) = 1, that means a great discriminative performance.

Given the statistically significant discrimination between the two types of wine, the
Variable Importance in Projection scores (VIPs) shown in Figure 2C provides indicative
information about the metabolic biomarkers responsible for wines differentiation based
on different vine cultivars. The VIPs provide a measure of the importance of each vari-
able (in this case, of each spectral fragment) in discriminating among the groups. This
discrimination was essentially led by aromatic protons, which were more abundant in Nero
d’Avola red wines with respect to Grillo white wines. This is a remarkable result, since
the major differences between a red and white wine are known to lie in their polyphenolic
profile (e.g., the lack of anthocyanins and the lower concentration of flavanols in white
wines), which cause important implications into wines sensory characteristics, such as
color and mouthfeel. This result highlighted that this analytical methodology, consisting
of the combination between 1H-NMR spectroscopy and supervised chemometrics, was
able to detect significant variations in crowded spectral areas held by lowly concentrated
compounds (namely between 6.00 and 9.00 ppm). By using the traditional metabolomic
approaches [18,26,28], only big variations of highly concentrated compounds are usually
considered and evaluated, whereas the variations in lowly concentrated compounds (often
carrying the most important information) are left unnoticed. Thus, it can be pointed out
that the strong point of this method is the ideal combination between the parameters used
for data reduction, data preprocessing, and chemometric models.

3.1.2. Wine Profiling

Once the fingerprinting of the wines was obtained and the entire 1H-NMR spectrum
was explored, the next step in wine metabolomic characterization is the peaks annotation
and the identification of metabolites. Figure 3 shows the peaks annotation in the spectrum
of one of the Grillo wines. The Nero d’Avola spectrum with compounds identification has
been already reported in our previous study [26].

By applying the workflow described in Materials and Methods, up to 58 different
metabolites were identified in Nero d’Avola and Grillo wines. These belong to different
chemical classes, including aroma compounds, organic acids, amino acids, carbohydrates,
polyphenols, etc. The complete list of the identified compounds, together with the relative
concentration among the different wines are shown in Figure 4. This figure represents the
Hierarchical Clustering Analysis. The dendrogram at the top of figure clearly grouped
the wine samples based on different grapevine varieties, according to their chemical
similarities. Nero d’Avola wines showed higher concentrations of polyphenolic compounds
(e.g., anthocyanins and flavanols), acetaldehyde, some amino acids (e.g., proline, threonine,
arginine, valine), and some organic acids (shikimic acid, syringic acid, citric acid tartaric
acid, malic acid). Grillo wines showed higher concentrations of most of the identified
aroma compounds, together with a number of organic acids, including acetic acid, sinapic
acid, succinic acid and caffeic acid.

The PCA yielded two clearly distinguishable groups of wines, the first one for the red
and the second one for the white wines (Figure 5A). The metabolites mostly responsible for
the separation are reported in Figure 5B. The positive side of PC1 was essentially driven
by amino acids, aroma compounds and organic acids, while the negative side of PC1 was
mostly led by phenolic compounds. The PC2 was mostly driven by organic acids, phenols,
and aroma compounds. Even the PLS-DA supplied a clear discrimination among the two
kinds of wine (Figure 5C). The permutation test, performed by using n = 1000 permutations,
yielded a p value < 0.001, meaning that the classification model was statistically significant.
The CV test, carried out by means of the LOOCV algorithm, measured that the first
2 LVs (which explained the 63% of the total variance of the dataset) showed accuracy = 1,
R2 = 0.994 and Q2 = 0.986 (Table 2). These values ensured the exactness of the classification,
the goodness of fit and a great prediction ability. The NMC analysis highlighted that no
samples were misclassified in the analysis (Figure S2A in the Supplementary Materials).



Agriculture 2024, 14, 749 10 of 21

The AUROC = 1 highlighted the perfect discrimination power of the model (Figure S2B in
the Supplementary Materials).
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corresponds to a concentration value and it can be used to quickly identify similarity/differences
among wine samples. The dendrogram at the top of figure clearly grouped the wine samples based
on different grapevine varieties, according to their chemical similarities.
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Figure 5. (A) 2D PCA Scores Plot showing the spatial separation among Nero d’Avola and Grillo
wines as based on the targeted analysis. The explained variance is shown in brackets. (B) 2D PCA
Loadings Plot showing the metabolites mostly responsible for wines’ separation. (C) 2D PLS-DA
showing the spatial separation among Nero d’Avola and Grillo wines. (D) Variable Importance in
Projection scores (VIPs) providing the measure of the importance of the metabolites responsible for
wines’ discrimination.

The VIPs scores plot of Figure 5D highlighted that amino acids, organic acids and
phenols are the compounds mostly responsible for the separation and can be considered as
metabolic biomarkers.

Despite the good results obtained by both the unsupervised and supervised chemo-
metric models in separating samples according to metabolite concentrations and in extract-
ing the significant features, it must be noticed that the identification of compounds in a
1H-NMR spectrum inevitably leads to a loss of spectral information. This is essentially
because the targeted analysis involves the selective detection and quantification of sig-
nals corresponding to specific metabolites, which may lead to the neglecting of not
assigned signals.

However, the great number of metabolites identified with our method with respect
to the other studies reported in the literature [14,15] represents a step forward for further
improvements in the targeted analysis.



Agriculture 2024, 14, 749 12 of 21

Table 2. Spectral fragments mostly contributing to each PC for Grillo wines fingerprinting. The
values indicating the contribution of each spectral fragment to the PCs represent the strength and
direction of the relationship between the original variable and the PC.

Spectral Fragment Contribution to PC1
(Positive Side) Spectral Fragment Contribution to PC2

(Positive Side)

5.35 0.09 2.25 0.12
5.48 0.10 2.27 0.12
5.49 0.09 2.28 0.12
6.50 0.09 2.29 0.12
6.76 0.10 2.56 0.11
6.77 0.10 2.57 0.12
7.09 0.07 2.58 0.12
7.20 0.07 2.59 0.12
7.49 0.10 2.60 0.12
7.55 0.07 2.61 0.12
7.58 0.08 2.71 0.12
7.69 0.07 2.72 0.11
7.73 0.08 2.73 0.12
7.91 0.09 3.00 0.12
7.94 0.09 3.01 0.11
7.96 0.09 3.17 0.11
8.43 0.09 3.18 0.12
9.05 0.08 3.19 0.12
9.07 0.08 5.46 0.11
9.08 0.09 6.75 0.11

Spectral Fragment Contribution to PC1
(Negative Side) Spectral Fragment Contribution to PC2

(Negative Side)

1.37 −0.11 5.44 −0.11
1.38 −0.12 5.82 −0.10
1.45 −0.12 5.85 −0.10
1.47 −0.12 6.46 −0.10
1.49 −0.11 6.74 −0.11
1.50 −0.11 6.97 −0.10
1.51 −0.11 7.00 −0.11
1.52 −0.11 7.02 −0.10
1.54 −0.11 7.83 −0.09
1.56 −0.11 7.84 −0.11
1.57 −0.11 8.19 −0.11
1.58 −0.11 8.23 −0.10
1.59 −0.11 8.24 −0.10
1.60 −0.11 8.31 −0.10
1.61 −0.11 8.46 −0.11
1.63 −0.11 8.57 −0.09
1.68 −0.11 8.61 −0.11
1.71 −0.11 8.68 −0.09
1.73 −0.11 8.69 −0.10
2.74 −0.11 8.79 −0.11

The Study of the H-Bond Network

The overall wine metabolic composition is very complex. For this reason, when
the sensory properties of wine are considered, the interactions between the different
wine components must be accounted for. The role of the interactions among compounds
influencing food sensory properties has been already reported in some studies [20,35].
However, only the interactions among a few components were simultaneously studied.
This may lead to the underestimation of important information.

As already introduced in our previous paper [26], the study of the 1H-NMR chemical
shift dispersion allows the obtaining of information about the H-bond network where the
resonant protons are involved. In particular, protons involved into strong hydrogen bonds
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typically exhibit higher chemical shift values due to a major de-shielding effect. In fact,
when a proton participates in a strong hydrogen bond, its electron density decreases as it is
shifted towards the more electronegative atom [36].

Figure 6 shows the chemical shift dispersion is some spectral areas, such as the alkyl
zone (A), the unsaturated groups area (B) and the phenolic area (C). From the three sections
mentioned above, it can be observed that the spectral peaks differ not only in terms of
intensity (that reflects the abundance of resonant protons and, therefore, the concentration
of the molecule generating the signal), but also in terms of chemical shift values. This
leads to the conclusion that the H-bond network in which the showed protons are involved
is different.

Agriculture 2024, 14, x FOR PEER REVIEW 14 of 22 
 

 

suggested that the compounds in both Nero d’Avola 2 and Grillo 3 are involved in a 
stronger H-bond network with respect to the other wines. 

 
Figure 6. Chemical shift dispersion in the aliphatic zone (A), in the unsaturated groups area (B) and 
the phenolic area (C) in Nero d’Avola (left) and Grillo (right) wines’ spectra. The spectral peaks 
differ not only in terms of intensity but also in terms of chemical shift values. 

This has important implications into wine sensory properties. Interactions, such as 
H-bonds, may occur between volatile aroma compounds and other non-volatile systems, 
including carbohydrates, organic acids, and polyphenols. Due to this, aroma compounds 
may become less volatile and, hence, less readily released into the gaseous phase. As a 
result, the concentration of aroma compounds in the wine headspace is lower, thereby 
leading to a reduced perceived aroma intensity. Moreover, the complexation of aroma 
compounds with other wine components can alter their sensory properties, masking or 
modifying their characteristic aromas [37,38]. 

3.2. 1H-NMR-Based Metabolomics to Discriminate Wines from Different Terroirs 
As already introduced above, the second part of this study deals with the possible 

capability of 1H-NMR-based metabolomic analysis to explore how the metabolome of 

Figure 6. Chemical shift dispersion in the aliphatic zone (A), in the unsaturated groups area (B) and
the phenolic area (C) in Nero d’Avola (left) and Grillo (right) wines’ spectra. The spectral peaks differ
not only in terms of intensity but also in terms of chemical shift values.

For example, the signals of Nero d’Avola 4 in the alkyl zone (A) are shifted towards
higher chemical shift values with respect to other wines, while the signals of Grillo 3 are
shifted towards higher chemical shift values in the three zones showed in figure. This
suggested that the compounds in both Nero d’Avola 2 and Grillo 3 are involved in a
stronger H-bond network with respect to the other wines.
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This has important implications into wine sensory properties. Interactions, such as
H-bonds, may occur between volatile aroma compounds and other non-volatile systems,
including carbohydrates, organic acids, and polyphenols. Due to this, aroma compounds
may become less volatile and, hence, less readily released into the gaseous phase. As a
result, the concentration of aroma compounds in the wine headspace is lower, thereby
leading to a reduced perceived aroma intensity. Moreover, the complexation of aroma
compounds with other wine components can alter their sensory properties, masking or
modifying their characteristic aromas [37,38].

3.2. 1H-NMR-Based Metabolomics to Discriminate Wines from Different Terroirs

As already introduced above, the second part of this study deals with the possible
capability of 1H-NMR-based metabolomic analysis to explore how the metabolome of
Grillo wines can be affected by different terroirs and, in particular, by the different soil
types in which the grapes have grown.

The PCA analysis applied to the spectral fragments obtained by the untargeted analysis
reduced the number of original variables into 2 PCs that accounted for 80% of the total
variance of the data set. Figure 7A shows the 2D PCA Scores Plot, reporting a great
separation among Grillo wines derived from grapes grown on different soils. The spectral
fragments leading the two selected PCs together with their loading’s values (i.e., the
measure of the contribution of each spectral fragment to the selected principal components)
are listed in Table 2.

The spectral fragments leading the positive side of PC1 are essentially aromatic protons
(i.e., polyphenols), while the negative side of PC1 is mainly led by aliphatic protons
(i.e., aroma compounds and amino acids); the spectral fragments leading the positive side
of PC2 are protons adjacent to unsaturated groups, protons adjacent to electronegative
atoms and vinyl groups (i.e., carbohydrates and polyols); the spectral fragments leading
the negative side of PC2 are aromatic protons.

Even the PLS-DA provided a great separation among Grillo wines (Figure 7B). The
empirical p-value obtained from the Permutation test (n = 1000 permutations) was< 0.001
(Table S6c in the Supplementary Materials). The CV test suggested that the optimal number
of LVs was 3, showing accuracy = 1, R2 = 1, and Q2 = 1. The 3 LVs model explained the
100% of variance of the dataset. Given that both NMC and AUROC analyses are optimized
to evaluate the performance of binary classification models, the One-vs-All (OvA) approach
was applied in order to extend the analyses to the multi-classes classification models.
Therefore, one random wine class was treated against the other classes (considered as a
single class). The NMC analysis highlighted the absence of misclassifications of the samples,
while the AUROC value was 0.876 (Figure S3A,B of the Supplementary Materials). These
results indicated the correctness of the classification model and its good predictive ability.

Figure 7C reports the Variable Importance in Projections scores (VIPs), indicating
the most important variables leading the separation among wines. These were mainly
represented by aromatic protons (i.e., polyphenols) and protons adjacent to unsaturated
groups (i.e., organic acids).

With the protocol described for compounds identification and quantification, up to
44 compounds were identified in Grillo wines.

Chemometric elaborations of the dataset obtained by the target analysis (namely PCA
and PLS-DA) revealed that the metabolites mostly responsible for the separation included
organic acids, amino acids, and aroma compounds (Figure 8B,D), thus confirming the
results obtained by the elaboration of the untargeted data. The results of the diagnostic
tests are visible in Table S6d and in Figure S4 of the Supplementary Materials.
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Figure 7. (A,B) 2D PCA Scores Plot and PLS-DA Scores Plot, respectively, highlighting the dis-
crimination among Grillo wines derived from different soils obtained by the untargeted analysis.
(C) Variables Importance in Projection Scores (VIPs).

Experiences of how different soil managements affect the volatile [39,40] and the non-
volatile fraction of wines [41,42] are already reported in the literature. Mackenzie et al. [43]
found correlations between several plant-available trace elements in soil and sugar content
and titratable acidity in grapes, while Blotevogel et al. [25] observed that the soil type,
together with the climatic conditions, systematically influenced the elemental composition
of wines. Van Leeuwen et al. [21] assessed that the soil modulates vine development and
grape ripening through the soil temperature, and the water and nutrient supply. While soil
temperature seemed to have an effect on vine phenology, the water and nutrient supply
appeared to affect the accumulation of secondary metabolites, such as polyphenols and
aroma compounds.

The following section reports a discussion on the relationships between the soil fea-
tures and the metabolic profiles of Grillo wines observed in this study.
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3.3. Correlations between Soil Features and Grillo Wines’ Metabolic Profile

To analyze the effect of the soil on the determination of Grillo wines’ metabolome, the
relative concentrations of the metabolites obtained via the 1H-NMR targeted analysis and
the chemical–physical parameters of the soils were subjected to correlation analysis. The
Pearson’s correlation coefficient, also indicated as r, measures the strength and direction of
a linear relationship between two continuous variables. The r coefficient ranges from −1
to +1, where +1 indicates the perfect positive linear relationship, −1 indicates the perfect
negative linear relationship, and 0 indicates the absence of linear relationship. From a
practical point of view, a positive linear relationship means that, as one soil parameter
increases, the metabolite concentration in wine also tends to increase; on the contrary,
a negative linear correlation means that as one soil parameter increases, the metabolite
concentration in wine decreases.

Figure 9 reports the correlation heatmap graphically representing the correlation
matrix between soil and wine features. Each cell in the heatmap represents the correlation
between two combinations of variables. Positive correlations are indicated in red, while
negative ones are reported in blue.

The color intensity of the cell reflects the strength and direction of the correlation.
Only the significant correlations are reported (Pearson’s r correlation coefficient > |0.90|,
p value < 0.05). It can be observed that the clay and silt contents in soils established negative
correlations with D-glucose, tartaric acid, 1-propanol, and L-isoleucine. Conversely, sand
content established positive correlations with L-isoleucine, tartaric acid, and malic acid.
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Soil texture, i.e., the relative amounts of sand, silt, and clay particles in soil, plays a
crucial role in influencing water dynamics, particularly affecting water retention, drainage,
and the movement of water within the soil profile. Soils with high clay content have
high surface area and small pores, also called residual pores (diameter ≤ 0.5 µm) [44].
Water molecules are adsorbed on the negatively charged surface of clay particles and are
held against the force of gravity. Moreover, due to electrostatic forces, water molecules
move slowly through the soil profile, contributing to better moisture availability for plants
over time. However, excessive clay content can lead to poor drainage and potential
waterlogging issues.

Sandy soils are characterized by larger particles, lower surface area, and bigger pores
as compared to prevalently silty and clayey soils. The large pores in sandy soils are also
indicated as transmission pores (diameter ≥ 50 µm) [44]. Here, water molecules move
rapidly. Therefore, water tends to drain towards deeper soil layers, thus quickly drying the
soil. For this reason, sandy soils have lower water retention capacity and good drainage.
However, this also leads to faster nutrient leaching. Finally, silty soils have intermediate
particles size (as compared to the aforementioned soils) and moderate ability to retain
water. They do not retain water molecules as strongly as clayey soils but hold water better
than sandy soils. The packing of silty particles generates pores that are adequate for water
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retention. They are also referred to as storage pores (diameter 0.5–50 µm) and make water
available for plant uptake.

In light of the above, it appears evident that soil texture can significantly influence
vine growth, grape quality and, ultimately, wine production. In fact, water is the medium
for nutrient transportation towards plant roots. In particular, insufficient water availability
limits nutrient uptake, thus affecting plant growth. Differences in plant vegetative develop-
ment may modify the intensity of the sunlight irradiation in the cluster area. Consequently,
biological processes involving sunlight-sensible metabolites (such as sugar accumulation
and organic acids degradation) are greatly affected. This can explain the aforementioned
correlations. Moreover, the observed results accord with what has been reported by some
authors [40,45]. Namely, moderately reduced water regimes induce an increase of the
accumulation of several metabolites in grape berries.

High CEC was associated with high concentration of proline. High total carbonates
seemed to decrease the content of pyridoxine. Slightly basic pH determined low concen-
tration of tartaric acid in wines. Finally, high contents of organic matter in soils seemed
to produce high concentrations of valine and myo-inositol. All the aforementioned soil
parameters are related to the amount and availability of nutrients. As a matter of fact,
CEC is the capability of a soil to retain positively charged nutrients by electrostatic forces,
while EC is the measure of the total ion amount dissolved in the soil solutions. The pH
strongly affects many soil biogeochemical processes, such as the modulation of nutrient
availability, the mineralization of organic matter, ammonia volatilization, dissolution and
precipitation of organic matter and metals, nitrification, and denitrification. Finally, or-
ganic matter affects soil structure, soil water retention capacity and nutrient mobilization,
playing an important role in role in soil health and fertility. The influence of the nutrient
dynamics is further confirmed by the correlation patterns observed between soil nutrients
and wine chemical composition. Ca was negatively correlated with gallic acid, while Mg,
Na and Mn were negatively correlated with valine. However, the major correlations were
observed with soil Fe. In particular, Fe was negatively correlated with some organic acids
(such as citric, succinic and valeric acids) and some aroma compounds (such as 1-butanol,
2-phenylethanol and benzylic alcohol). Finally, it positively correlated with erythritol and
choline. Fe is an essential mineral for plant nutrition and plays a fundamental role in
many biological processes, including photosynthesis, respiration, nitrogen fixation and
assimilation, and DNA synthesis. Fe is also involved in the biosynthesis of plant hormones,
which play specific roles in plant development and adaptative responses to environmental
conditions [46]. It seems that high Fe availability shifts the equilibrium towards plant vege-
tative growth at the expense of metabolites accumulation in grape berries. Despite some
authors [47] stating that it is difficult to establish correlations between wine quality and
soil nutrients, the correlation pattern observed in this study suggested otherwise, namely
that soil mineral composition, as well as soil chemical–physical parameters modulating
nutrients dynamics, play a fundamental role in determining wine quality.

Finally, it is important to mention that the correlations patterns observed between
soil features and Grillo wines were quite different from those observed for Nero d’Avola
wines in our previous study [26]. This suggests that other site-specific factors, such as
grape varieties, climate, topography, etc., also play a role in how soil characteristics interact
with vine growth. This underlines the importance of the vine-environment combination in
the expression of wine terroir, justifying why oenological products show an extraordinary
diversity through space and time.

4. Conclusions

In this study, 1H-NMR spectroscopy coupled with chemometrics was successfully
applied to classify wines according to different grapes varieties and different terroirs. In
particular, the metabolomic fingerprinting and profiling of wines associated to the PLS-
DA technique provided the most indicative information about the metabolic biomarkers
responsible for wines differentiation. The metabolic biomarkers leading the differentia-
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tion between vine cultivars and terroirs were mainly phenols, aroma compounds, amino
acids, and organic acids. Therefore, our revised approach allowed us to extract relevant
spectral information even from the crowded spectral areas held by lowly concentrated
compounds (e.g., polyphenols). This is a remarkable result given that, to date, most wine
metabolomic studies considered only variations of highly concentrated compounds, while
overlooking lowly concentrated compounds. It can be assessed that the strong point of our
method is the combination of the parameters used for data reduction, preprocessing, and
chemometric models. Moreover, the method used for peaks annotation and metabolites
identification allowed identification of about 60 compounds, far more than the number of
metabolites identified with other approaches. The greater number of metabolites identi-
fied with our method represents a step forward for further improvements of the targeted
analysis. Finally, the study of the H-bonds network inside the wines provided informa-
tion about the strength of the interactions between the different wine components. This
knowledge is useful because the H-bond network in wine affect wine sensory properties
by modulating the way how the solutes interact with human sensory receptors. The study
of the H-bond network in wine opens new issues in the comprehension of the chemical
mechanisms involved in gustatory and olfactory perceptions. Further investigations on the
relationships between the H-bond structure and wine sensory properties are the subject of
ongoing studies.

The findings of this study are very useful in the context of traceability and authenticity
of food and beverages, providing a suitable methodology for assessment of the complete
metabolic composition of the wine and the biomolecular markers responsible for the
differentiation among different grape varieties and terroirs.
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