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Abstract The use of biodegradable polymers for the production of membranes to be used in wastewater treatment has attracted increasing interest

considering the possibility of reducing the risk of second pollution. In this work, porous fibrous membranes based on polylactic acid and
polyethylene oxide (PEO) blends were prepared. The solutions were electrospun using two approaches: (i) conventional coaxial electrospinning
followed by leaching treatment (double-step, DS); (ii) coaxial wet electrospinning with in situ leaching (single-step, SS). By varying PEO type
and processing method it was possible to control membranes structure and porosity. DS leaching treatment lead to surface porosity (i.e. shell
leaching), while SS allowed obtaining hollow and porous fibers (i.e. with shell and core leaching). Process, properties and structure relationships
of devices were analysed trough rheological, morphological, mechanical and surface characterizations. Furthermore, the influence of the different
porous structures on oil sorption capacity and reusability of the membranes was evaluated. Results reveal that different porosities lead to a
variation in membranes mechanical performance, in their wettability and, consequently, in their oil spill cleanup capacity. Membranes obtained
with SS displayed higher performance in oil removal if compared to the DS ones, due to their hollow structure and higher surface area.
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Abstract

The use of biodegradable polymers for the production of membranes to be used in wastewater treatment has attracted increas-
ing interest considering the possibility of reducing the risk of second pollution. In this work, porous fibrous membranes based
on polylactic acid and polyethylene oxide (PEO) blends were prepared. The solutions were electrospun using two approaches:
(i) conventional coaxial electrospinning followed by leaching treatment (double-step, DS); (ii) coaxial wet electrospinning
with in situ leaching (single-step, SS). By varying PEO type and processing method it was possible to control membranes
structure and porosity. DS leaching treatment lead to surface porosity (i.e. shell leaching), while SS allowed obtaining hol-
low and porous fibers (i.e. with shell and core leaching). Process, properties and structure relationships of devices were
analysed trough rheological, morphological, mechanical and surface characterizations. Furthermore, the influence of the
different porous structures on oil sorption capacity and reusability of the membranes was evaluated. Results reveal that dif-
ferent porosities lead to a variation in membranes mechanical performance, in their wettability and, consequently, in their
oil spill cleanup capacity. Membranes obtained with SS displayed higher performance in oil removal if compared to the DS

ones, due to their hollow structure and higher surface area.
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PEO-A Polyethylene oxide Mw 100 kDa
PEO-B Polyethylene oxide Mw 600 kDa
PLA Polylactic acid

q Absorption capacity

SEM Scanning electron microscope
SS Single-step

TS Tensile strength

W Wet

WCA  Water contact angle

Introduction

Water pollution is currently one of the major global problem
[1-4]. To solve this issue the production of fibrous mem-
branes based on biodegradable polymers, able to absorb oil,
is of great interest as it would allow to solve the problem
of secondary pollution [5]. The ability of absorbing oil is
strictly related to pore morphologies of the membranes [1,
6]. In general, in fact, in biopolymeric fibrous devices, high
porosity is definitely a key factor for successful applications
such as: controlled drug release [7-9], pollutant removal
[10-14], biomedical items [15-18]. High porosity and, con-
sequently, high surface area, in fact, are essential to optimize
their final performance. Electrospinning (ES), together with
its variants, is one of the most reported techniques for the
obtainment of nanofibers [19]. In ES, the polymeric solution
is loaded into a syringe pump with a needle tip (the spin-
neret) and due to the supply high voltage power is charged
forming polymeric fibers. Moreover, ES is a very versatile
technique that allow to obtain complex nanofibers structures
by changing spinneret and (or) collector design. Recently,
coaxial electrospinning process has been used to fabricate
new nanofibers with core—shell structure [20]. In this latter
case, the spinneret is composed by two concentric needles
connected with two different syringe pumps. By appropri-
ately selecting the two different polymeric solutions, it is
possible to obtain nanofiber with particularly complex struc-
tures, including hollow fibers [20].

Over the last years, the traditional solid collector has
been replaced with a liquid one in several studies in order to
fabricated hierarchical structure [21]; functionalize [22] or
crosslink [23] the nanofibers; obtain hollow fibers by remov-

[l ing the core component [24].
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In polymeric based systems, porosity is commonly
obtained either by a main forming process followed by
post processing treatments or by the combination of sev-
eral processes in one, two or more steps [6, 14, 25]. Con-
cerning the first case, post processing leaching is one of the
most effective methods to obtain devices with high surface
area [26-28]. In the leaching method, after dissolving the
polymer (that is going to form the matrix) and a porogen
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(usually another polymer, salt or other additives) in a com-
mon solvent, the obtained solution is electrospun and, sub-
sequently, the prepared membrane is submerged in a solu-
tion, solvent of the porogen and non-solvent of the matrix, in
order to remove the porogen and obtain porous nanofibers.
Zhang et al. [29], for example, employed leaching method
to produce porous nanofibers by selectively removing the
water-soluble component of gelatine. Ning et al. [30], fab-
ricated porous Polyvinylidene fluoride (PVDF) nanofibers
by leaching method using polyethylene oxide (PEO) as
porogen. Moreover, an environmental friendly technology,
based on the combination of melt mixing and leaching of
salt in water, was developed to prepare porous three-layer
scaffolds [12, 31-33]. Post processing treatments, however,
are characterized by some negative aspects. Often, in fact,
beyond they require the use of chemicals that could be toxic
to human health and environment they definitely increase the
whole processing time which implies an increase of produc-
tion costs of the final device [34]. A possible strategy, to
overcome these limits, is to combine multiple processes or
treatments to get forming and pores generation by a single
step process. Polyacrylonitrile (PAN) fibers, for example,
were prepared in one-step by exploiting phase separation
during electrospinning process [35]. Moreover, highly
porous fibrous systems can be also obtained by inducing
phase separation in systems with different evaporation rates,
formulated using appropriate solvent/non-solvent couples of
the polymer [36, 37]. Porosity is a key factor in mass transfer
(release/removal) applications [7, 38, 39].

Polymers originated from biomass have recently gained
attention due to oil resources exhaustion and environmental
pollution. Polylactic acid (PLA) is a plant-based polymer
used in many applications because of its interesting physical
properties, renewability and biodegradability. Polyethylene
oxide (PEO) is a polymer prepared by polymerization of eth-
ylene oxide characterized by a high solubility in water and
non-toxicity. It is often added in mixture with other polymers
to increase their hydrophilicity, to enhance its processability
or used as a sacrificial phase to obtain highly porous struc-
tures after its leaching in water [40].

In this work, biodegradable porous fibrous PLA/PEO
membranes were produced by two different processing meth-
ods: a conventional coaxial electrospinning with a subse-
quent leaching treatment (double-step, DS) and a coaxial
wet electrospinning with in situ leaching treatment (single-
step, SS). PLA:PEO blends, in different ratio and using PEO
with two different M, were electrospun/leached following
both processing paths. The relationships between process,
properties and structure of the obtained devices were ana-
lysed through rheological, morphological, mechanical and
surface characterizations. Furthermore, the influence of the
different porous structures (obtained both for single-step and
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double-step method) on oil absorption capacity and reus-
ability of the membranes was evaluated.

Materials and Method
Materials

Polylactic acid 2003D Mw 98 kDa (PLA), was purchased
from Nature Works. Polyethylene oxide Mw 100 kDa
(PEO-A), Polyethylene oxide Mw 600 kDa (PEO-B), ace-
tone (Ac), chloroform (CF) and distilled water were pur-
chased from Sigma Aldrich. All the reactants were ACS
grade (purity >99%) and were used as received.

Standard oily motor 10W—40 (density =0.87 g/cm? kin-
ematic viscosity =97.7 mm?/s at 40 °C) was supplied by
Total S.A. Chemical composition of oil consists in hydro-
carbons between 18 and 34 carbon atoms per molecule.
Commercial food grade olive oil and sunflower oil were
used. The three oils were also tested in their exhausted
version, i.e. at their end-of-life.

Preparation of Polymeric Solution

PLA, PEO-A and PEO-B solutions ware prepared by dis-
solving the respective required amount of polymer in a
CF/Ac mixture (2:1 ratio) under magnetic stirring at 25 °C
overnight. A preliminary study of starting solutions and
blends were carried out in order to verify their processabil-
ity and detail are reported in Supporting Information. PLA
10 wt%; PEO-A 10 wt% and PEO-B 5 wt% were selected
for further investigations and from here on we will refer
to these concentrations by using acronyms PLA, PEO-A
and PEO-B. As regards the shell polymeric solutions, PLA
was mixed with PEO-A or PEO-B at different relative ratio
and PLA/PEO-A and PLA/PEO-B obtained blends were
stirring overnight in order to obtain a homogeneous solu-
tion. The compositions of blends here produced are listed
in Table 1. PEO-A (10 wt% in CF/Ac 2:1 mixture) was
used as core solution for PLA/PEO-A systems and PEO-B
(5 wt% in CF/Ac 2:1 mixture) for PLA/PEO-B ones.

Table 1 Composition of shell PLA/PEO-A and PLA/PEO-B blends

Sample code PLA (wt%) PEO-A (wt %) PEO-B (wt %)
PLA/PEO-A25 75 25 0
PLA/PEO-A50 50 50 0
PLA/PEO-A75 25 75 0
PLA/PEO-B25 75 0 25
PLA/PEO-B50 50 0 50
PLA/PEO-B75 25 0 75

Preparation of Porous Membranes via Double-Step
(DS) Processing

Membranes were prepared by using a conventional elec-
trospinning equipment consisting in a syringe pump and a
high voltage power supply (Linari Engineering-Biomedical
Division, Pisa, Italy). The polymeric solutions were filled
in a 10 mL glass syringe equipped with coaxial needles
manufactured in AISI 316 stainless steel. The outer nee-
dle was attached to the syringe pump containing the shell
solution (PLA/PEO-A or PLA/PEO-B) and the inner was
connected to a pump having, in the core solution (PEO-A
or PEO-B respectively). The process was performed using
the following parameters: supplied high voltage 15 kV; flow
rate, 1.5 mL/h; distance between coaxial needles tip and
collector, 12 cm; temperature, 25 °C; and relative humidity,
40%. The solutions were electrospun on a grounded collector
wrapped in aluminium foil for 1 h. Aiming to verify if the
gravity could affect the electrospinning process, preliminary
DS membranes were prepared with both horizontal and ver-
tical assembly of the electrospinning set-up. Any statisti-
cally significant differences have been noted between the
membranes obtained with the two set-ups from both mor-
phological and mechanical point of view. Considering that,
we decided to keep the horizontal arrangement of the set-up
for convenience.

In order to remove the sacrificial polymer (PEO-A or
PEO-B) from the membranes (~20 mm in diameter, about
100 pum in thickness), they were submerged in 20 mL of
distilled water at 25 °C for 30 min at 50 rpm stirring. After
immersion, the membranes were dried overnight in a vac-
uum oven. A summary schematic of the process is depicted
in Fig. la.

Preparation of Porous Membranes via Single-Step
(SS) Processing

Membranes were also prepared in SS processing using the
same electrospinning apparatus, appropriately modified,
with the same processing parameters reported above. More
in detail, as depicted in Fig. 1b, the polymeric solutions were
filled in a 10 mL glass syringe equipped with coaxial nee-
dles that was placed on a vertically arranged syringe pump.
The solutions were then electrospun for 1 h on a liquid-bath
grounded collector (known as wet collector) wrapped in alu-
minium foil at the bottom of the vessel. The wet collector
(previously equipped with a magnetic stirrer) and was placed
onto a stirrer set at 50 rpm in order to promote fibers disper-
sion in the liquid bath. A photographical image of the set-up
is provided in Fig. S1. The use of the wet grounded collector
allowed the fibers to be submerged in water contextually to
their formation [21, 24, 41] aiming to efficiently remove the
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DOUBLE STEPS
3 (DS)
\
! 4
S
Coaxial
electrospinning
2

Leaching

SINGLE STEP
b) (SS)

J

Wet coaxial
electrospinning

Fig. 1 Two-step preparation of dual porous membrane via coaxial electrospinning (a), One-step preparation of dual porous membranes via coax-

ial wet electrospinning (b)

sacrificial polymer in situ (single step). After processing, the
membranes were dried in a vacuum oven overnight.

Rheological Characterization

Rheological properties of polymeric solutions were tested
by rotational rheometer (ARES-G2). A 25 mm parallel-plate
geometry was used and all tests were performed at 25 °C.
Oscillatory frequency sweep tests were performed at a con-
stant stress of 1 Pa with an increase of angular frequency
from 1 to 100 rad/s. This frequency range was considered
since measurements below 1 rad/s reported unusable data
and only above 1 rad/s significant data was obtained.

Morphological Characterization

The morphology of the nanofibers was observed by using
a scanning electron microscope (SEM, Phenom ProX,
Phenom-World, The Netherlands) with optical magnifi-
cation range of 20-135x, electron magnification range of
80-130,000%, maximal digital zoom of 12X, acceleration
voltages of 15 kV. The microscope is equipped with a tem-
perature controlled (25 °C) sample holder. The samples were
positioned on an aluminium stub using an adhesive carbon
tape. Fibers diameter size distribution was measured using
Image J software, equipped with Diameter J plugin. This
plugin is able to analyse an image and find the diameter of
nanofibers at every pixel along a fibers axis. The software
produces a histogram of these diameters and summary sta-
tistics such as mean fibers diameter. The diameters of 100

@ Springer

fibers for each SEM image were measurement. Each meas-
urement was performed in triplicate.

FT-IR/ATR Analysis

Chemical and structural characterization of samples surfaces
were assessed by FT-IR/ATR analysis, carried out by using a
Perkin-Elmer FT-IR/NIR Spectrum 400 spectrophotometer.
The absorbance spectra were recorded in the wavenumber
range 4000400 cm™.

Water Contact Angle (WCA) Measurements

Surface wettability of the fiber mats were measured by an
FTA 1000 (First Ten Angstroms, UK) instrument. More in
detail, 4 pL of deionized water were dropped onto fiber mats.
Images of the water droplet were taken at a time of 10 s. At
least five spots of each fiber mat were tested and the average
value was taken.

Mechanical Properties

The mechanical performance of the membranes was investi-
gated by carrying out tensile test on a laboratory dynamom-
eter (Instron model 3365, UK) equipped with a 1 kN load
cell. Tests were performed on rectangular shaped speci-
mens (10X 90 mm) cut off from the membranes. A dou-
ble crosshead speed was used: 1 mm min~! for 2 min and
50 mm min~! until fracture occurred. The grip distance was
30 mm, whereas the sample thickness was measured before
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each test. Six specimens were tested for each sample and
the outcomes of elastic modulus (E), tensile strength (TS),
and elongation at break (EB), have been reported as average
values + standard deviations.

Oil Spill Clean-up Capacity

The absorption capacity of fibrous membranes were evalu-
ated by placing about 0.15 g of electrospun mat in a beaker
filled with 25 g of water and 50 g of oil and taken out instan-
taneously. The excess oil present on the fibers, not really
adsorbed by the membrane, was drained out for 30 s. All the
experiments were carried out in triplicate.

The absorption capacity (g) can be calculated by the
equation:

_ w,-Ww
q(g/g) = T

l

where W; is the initial weight of the membrane and W, is the
weight of the membrane after oil absorption.

Reusability

Oil absorption ability of the electrospun membranes was
monitored for five cycles in order to evaluate their reus-
ability. After each absorption cycle the membranes were
squeezed with padding paper, washed with ethanol aiming to
remove the absorbed oil and let it air dry. After each cleaning
step the membranes were reweighted and this latter weight
was taken as a new dry reference for absorption capacity
measurement. Moreover, g variation was considered in order
to evaluated reusability of the membranes.

Statistical Analysis

Statistical analysis was performed on obtained data through
unpaired Student t-test, using GraphPad Prism 9. Differences
between two sets of data were considered statistically signifi-
cant when the p-value obtained was lower than 0.05.

Results and Discussion

Rheological Characterization of the Polymeric
Solution

After a preliminary investigation (see Supporting Informa-
tion), PEO-B 5 wt% and PEO-A 10 wt% have been chosen
for further preparation. Different concentration of PEO-A
and PEO-B in PLA blend may play a key role to obtain the
desired porous structure. To investigate about processing

behavior of PLA/PEO blends, rheological tests have been
performed and the results are reported in Fig. 2a, b.

In general, all systems showed a pronounced non-New-
tonian behavior in the whole frequencies range and for both
PEOs, at any PLA/PEO ratio. Moreover, all the blends dis-
played higher viscosity if compared to neat PLA. As regards
PLA/PEO-A blends, in Fig. 2a it can be observed that their
rheological behavior is substantially dominated by PLA
up to 50 wt% PEO. Differently, PLA/PEO-A75 viscosity
curve, similarly to that of neat PEO-A, presents remarkable
non-Newtonianism with an ensuing more pronounced shear
thinning at higher frequencies, similarly to PEO-A. Regard-
ing PLA/PEO-B blends, presented in Fig. 2b, any depend-
ence on PLA up to 50wt% PEO can be noted. Contrariwise,
the progressive PEO-B addition induces a gradual increase
in the viscosity of the solutions [40]. The non-Newtonian
behavior is preserved for all PLA/PEO-B blends in the
whole frequencies range.

Considering that in our case the shear rate was estimated
as about 4 1/s and that consequently it was found (in the pre-
liminary investigation reported in Supporting Information)
that the effective operating viscosity range to achieve good
electrospun structures is therefore about 10>-5*%10° Pa*s, it
is possible to observe that all PLA/PEO-A and PLA/PEO-B

a) 1000000
;;‘ PEO-A
g 100000 PEO-A75
— ——  PEO-AS50
é\ 10000 —— PEO-A25
173 — PLA
S 1000
Az
-
Y 100-'
L
= .
g 10
e
© 1 T T T
1 10 100
Angular frequency [rad/s]
b) 1000000
PEO-B
100000 PEO-B75
-~  PEO-B50
10000—7 —— PEO-B25

Complex viscosity [Pa*s]

I 10 100
Angular frequency [rad/s]

Fig.2 Rheological curves of PLA/PEO-A (a), PLA/PEO-B (b) blends
solutions at different PLA/PEO ratio
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blend fall within this range. This outcome suggested the
potential electrospinnability of all the PLA/PEO blends.

Morphological Characterization of the Fibrous
Membranes

The morphology of PLA/PEO-A and PLA/PEO-B electro-
spun mats together with corresponding fibers diameters dis-
tribution diagrams are shown in Fig. 3.

It is well known that electrospinning of high viscosity
solutions leads to fibers with large and irregular diameters

PLA/PEO-A
PR
N 2 e

',

)
W)y SN
R

X

-

25

[42]. In accordance with the scientific literature, PLA/PEO-
A25 and PLA/PEO-B25 membranes (Fig. 3a, b respectively)
resulted in randomly oriented continuous fibers with rough
and large surface and bead-free morphology. Moreover, they
both displayed unimodal size distributions, whose mean val-
ues of 1 and 1.2 pum respectively (Fig. 3c). PLA/PEO-A50
and PLA/PEO-B50 membranes (Fig. 3d, e respectively) dis-
played fibers diameter average values of 1.2 pm and 1.23 pm
respectively (not statistically significant; Fig. 3f). Also
in these cases, a unimodal size distribution can be noted
(Fig. 3f). Moreover, it is possible to observe the presence

PLA/PEO-B

15
B PLA/PEO-B
PLA/PEQ-A
9
= 104
=
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-
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Fig. 3 SEM micrographs of PLA/PEO-A25 (a), PLA/PEO-A50 (b), PLA/PEO-A75 (d), PLA/PEO-B25 (e), PLA/PEO-B50 (g) and PLA/PEO-
B75 (h) electrospun membranes and corresponding fibers diameters distribution diagrams (c, f, i)
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of two distinct phases along the fibers, probably identifi-
able with PEO agglomerations can be identify along PLA
fibers (see for instance red line in Fig. 3e). On the contrary,
PLA/PEO-A75 and PLA/PEO-B75 (Fig. 3g, h respectively)
showed a multimodal size distribution with maxima and
mean values of 2 and 1.9 respectively (Fig. 31). Furthermore,
the presence of PEO agglomerations along the fibers are
even more evident in these cases. In general, the presence of
PEO agglomerations is more evident in PEO-B containing
systems if compared to PEO-A ones, for each PEO concen-
trations. This behavior can be reasonably explained consid-
ering that PEO-A and PEO-B have quite different molecular
weights. PEO-A (100 kDa), in fact, is likely characterized by
higher miscibility in PLA if compared to PEO-B (600 kDa)
as reported elsewhere for similar systems [40, 43]. Lower
miscibility of PEO-B reasonably lead to the formation of
larger PEO aggregates along fibers surface (see, for example,
red arrow in Fig. 3h). In order to ensure a better readability,
fibers diameters distribution diagrams have been also pro-
vided in Figure S2-4 in a larger version.

The presence of different concentrations of PEO-A or
PEO-B plays a key role in obtaining membranes with dif-
ferent porosity. Both PEO-A and PEO-B, in fact, are totally
soluble in water and for this reason they were chosen as
sacrificial phases. As regards DS process, by submerging
the obtained membranes in water, leaching of the PEO phase
was performed and a higher porosity in electrospun mem-
branes was verified by SEM, as shown in Fig. 4.

After leaching, PLA/PEO-A25L (Fig. 4a) showed a quite
stable structure with a good retention of fiber morphology
and the presence of pores along fibers surface. On the con-
trary, PLA/PEO-B25L membrane (Fig. 4b) exhibited porous
and non-homogeneous fibers with coalescence between
some of them. When 50% of PEO is added (Fig. 4d, e),
more marked differences can be observed between mem-
branes before and after leaching. In particular, PLA/PEO-
ASOL (Fig. 4d) showed an alteration of fibrous structure with
starting coalescence between fibers. On the contrary, PLA/
PEO-B50L (Fig. 4¢) showed a significant alteration of fibers
architecture with a bad retention of fiber morphology. More
in detail, fibers appear flattened and non-homogeneous rea-
sonably due to poor miscibility of PEO-B in PLA phase. In
fact, when 50% of PEO-B is leached, fibers collapse due to
lack of support of insoluble phase (PLA) [40]. This behavior
does not occur in the presence of PEO-A. Its better misci-
bility, if compared to PEO-B one, in fact, allows preserv-
ing fibers structure during leaching. Accordingly, in PLA/
PEO-A75L (Fig. 4g) only a partial collapse of the fibers can
be noted while PLA/PEO-B75L (Fig. 4h) showed a totally
collapsed fibrous structure and no fibers can be observed. In
order to ensure a better readability, fibers diameters distribu-
tion diagrams have been also provided in Figure S5 and S6
in a larger version.

Considering the good fibers retention after leaching of
PLA/PEO-A25 and PLA/PEO-B25, the corresponding solu-
tions were selected to be processed by adopting single step
process. The use of the wet collector (SS) lead to different
morphological structure due to in situ leaching occurrence.
In Fig. 5 SEM micrographs and schematic description of
leaching mechanism of PLA/PEO-A25W and PLA/PEO-
B25W membrane are shown. PLA/PEO-A25W membrane
(Figs. 5a, b, 6a) shows a quite stable structure with a good
retention of fiber morphology and the presence of nano-
porous and hollow fibers (Fig. 5f). Moreover, multimodal
size distribution can be noted (Fig. 5¢). PLA/PEO-B25W
membrane (Fig. 5¢, d) shows micro-porous and hollow fib-
ers, however a less stable and homogeneous fibrous struc-
ture with a micro-porous fibers can be observed (Fig. 6f).
Also in this case, a multimodal size distribution can be noted
(Fig. 5g). Furthermore, fibers opening occurs (see Fig. 5h
and, for example, arrow in Fig. 5¢).

This behavior could be reasonably attributed to the pres-
ence of large agglomerations of PEO-B in the shell surface
due to its poor miscibility in PLA [44]. In particular, when
the fibers were projected to the wet collector, during elec-
trospinning, sudden dissolution of PEO-B occurs inducing
fiber opening with a peculiar morphology, showing a con-
textual intense leaching of core and shell of the fiber with
pores widely distributed in both areas of the fiber, in some
cases forming deep superficial furrows likely due to intense
superficial leaching. This can be explained considering that
PEO-B tends to form large aggregates that will turn in larger
pores once leached.

Figure 7 shows a modelization of the leaching process in
the two cases, based on the obtained results. As regards DS,
Fig. 7a, post-processing leaching treatment occur in fibers
with a stabilized structure without residual solvent. Conse-
quently, 30 min of leaching is evidently not enough to grant
complete core leaching. On the other hand, for SS, Fig. 7b,
leaching and electrospinning occur simultaneously. During
spinning, prior to fibers deposition in the wet collector, part
of the solvent could remain inside the fibers. Therefore, the
presence of non-stabilized fibers, containing residual sol-
vent, promoted penetration of the leaching agent into the
core. The two proposed mechanism are in full agreement
with the observed morphologies in both cases.

FT-IR/ATR Analysis

In order to get further confirmations about leaching modeli-
zation in DS and SS, ATR-FTIR measurements were carried
out on neat PLA, PLA/PEO-A and PLA/PEO-B blends mats
before and after leaching. FTIR analysis was performed also
on PLA/PEO-A25W and PLA/PEO-B25W membranes. The
related FTIR spectra are shown in Fig. 8 and the relevant
characteristic peaks are resumed in Table 2. PLA revealed
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Fig.4 SEM micrographs of PLA/PEO-A25L (a), PLA/PEO-B25L (b), PLA/PEO-A50L (d), PLA/PEO-B50L (e), PLA/PEO-A75L (g), and
PLA/PEO-B75L (h) electrospun membranes and corresponding fibers diameters distribution diagrams (c, f)

a neat band at 1759 cm™! (=C =0 band referable to PLA
carbonyl groups) [45, 46]. As expected, PLA/PEO-A and
PLA/PEO-B blends show bands typical of both PLA and
PEO-A or PEO-B. In particular, it could be noticed a band
at 1344 cm™! (CH,), a peak at 1150 cm™! (related to the
C-0O-C stretching vibration of PEO) and CH stretching
mode at 2891 cm™! in PEO-A and PEO-B spectra [47-49].
The same bands also appeared in PLA/PEOs blends con-
firming the correct incorporation of PEOs in the nanofi-
brous membranes. It is also possible to observe that these
bands increase in intensity upon increasing the PEO-A or
PEO-B amount in the blends. On the contrary, it is possi-
ble to observe a band with decreasing intensity (1759 cm™"

@ Springer

carbonyl group PLA) upon increasing the PEO-A amount in
the blends [50]. However, this behavior cannot be noticed
for PEO-B blends.

Spectroscopical analysis therefore confirms that PEOs
have been removed by leaching process both in DS and in
SS. Moreover, in this latter case the decreasing of the related
bands is more pronounced, confirming the hypotheses that
more intense leaching occurs during SS process.

Water Contact Angle (WCA) Measurements

The membranes obtained by the two methods, are formed
by fibers with different architectures, also causing changes
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Fig.5 PLA/PEO-A25W and
PLA/PEO-B25W SEM micro-
graph (a, b and ¢, d respec-
tively), corresponding fibers
diameters distribution diagrams
(e, g respectively) and of
scheme of leaching mechanism
(f, h respectively)
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Fig.6 PLA/PEO-A25W (a) and PLA/PEO-B25W (b) fibers SEM micrograph

Fig.7 Schematic description

of fibers leaching mechanism a)
of shell leaching achieve with

double-step method (a) and core

and shell leaching achieve with

single-step method (b)

» PEO ¢ Water

in their wettability. In this view, water contact angle (WCA)
tests have been performed on all the systems and results are
reported in Fig. 9.

PLA showed a hydrophobic behavior with a WCA of
103° in accordance with the scientific literature [51, 52].
Non-leached systems containing PEO-A show higher WCA
if compared to the PEO-B ones (Fig. 9). This behavior,
according to the morphological characterization, could
be explained by considering the presence of larger PEO
agglomerations along the fibers in PLA/PEO-B blends if
compared to PLA/PEO-A ones before the leaching step.
WCA value of leached systems surprisingly showed an
increase in wettability if compared to the non-leached ones.
Moreover, this increase is even more evident for PLA/

@ Springer

PLA post ES" | PLA during ES

PEO-A25W and PLA/PEO-B25W. This behavior, according
to the morphological characterization, could be explained
by considering the increase in porosity of the leached mem-
branes: the presence of large pore and the achievement of a
hollow structure in the fibers, induced by in situ PEO leach-
ing, lead to the obtainment of membranes with long inter-
connected pores [43]. In fact, despite results seems to not
match Wenzel equation, is necessary to consider that the
hollow structure and the interconnected pores are responsi-
ble of liquid capillary transport through the membranes thus
leading to peculiar fibers architecture and consequent lower
WCA values [53].

Wenzel’s equation state that WCA value should decrease
as roughness increases. However, it is known in the scientific
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Fig.8 ATR-FTIR measurements carried out on neat PLA, PLA/PEO-
A, PLA/PEO-B blends mats before and after leaching and PLA/PEO-
A25W, PLA/PEO-B25W

Table 2 FTIR peak values and relative functional groups
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Fig.9 WCA values of neat PLA, PLA/PEO-A25, PLA/PEO-B25,
PLA/PEO-A25L, PLA/PEO-B25L., PLA/PEO-A25W and PLA/PEO-
B25W membranes

literature that, even though roughness increases, the pres-
ence of long interconnected channel in the membrane leads
to an increase in WCA value instead of decrease. The effect
of porosity on wettability, in fact, overcome the one induced
by surface roughness increases [54-56]. Considering that,
it is important to underline that the value obtained during
WCA test are distorted by liquid capillary transport effect
and shouldn’t be considered as an increase of hydrophilic-
ity. In addition, in PEO-B systems lower WCA value (if
compared to PEO-A ones) are obtained due to the already
commented differences in porous structure between PEO-A
(smaller pores) and PEO-B (larger pores).

Mechanical Properties

To evaluate different mechanical performance of the mem-
branes, elastic modulus (E), tensile strength (TS) and elon-
gation at break (EB) have been measured and results are
reported in Table 3.

PLA exhibits elastic modulus, tensile strength and elon-
gation at break of 60 MPa, 1.2 MPa and 45% respectively.
If compared to PLA, all the unleached systems containing
PEO-A does not show substantial differences i.e. mechanical
performance that is controlled by PLA. These results are in
accordance with other similar systems [40]. On the contrary,
PEO-B membrane shows a different behavior: as PEO-B
content increase mechanical performance of the samples
decrease. In detail, the addition of 25%, 50% and 75% of
PEO-B induced a remarkable decrease in elastic modulus
of PLA/PEO-B25, PLA/PEO-B50 and PLA/PEO-B75. If
compared to the corresponding non-leached systems, PLA/

@ Springer

Polymer Wave- Functional Vibrations Reference
number group
(em™)
PLA 1759 -C=0 Carbonyl stretch  [45, 46]
PEO 1344 CH2 Symmetric [47-49]
stretching
PEO 1150 C-0-C Stretching vibra- [47-49]
tion
PEO 2891 CH Stretching mode [47-49]
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Table 3 Elastic modulus (E), tensile strength (TS), and elongation at
break (EB) of the electrospun membranes

Sample E (MPa) TS (MPa) EB (%)

PLA 60 +2.3 12405 45+ 4.6
PLA/PEO-A25 58 +3.7 20404 56 +7.2
PLA/PEO-A50 62+ 12.8 0.9+03 48 £9.5
PLA/PEO-A75 57+7.7 0.8+03 43+£56
PLA/PEO-B25 44402 1.4+0.1 54+ 139
PLA/PEO-B50 26+ 112 0.1+0.1 42492
PLA/PEO-B75 12£35 0.4+02 26 + 13.1
PLA/PEO-A25W 52+85 0.8+02 45 +£65
PLA/PEO-B25W 10£2.1 0.5+04 18 £3.1
PLA/PEO-A25L 55+ 5.0 1.8+£06 38+ 11.0
PLA/PEO-B25L 12+20 0.5+ 0.9 15+6.0

PEO-A25W exhibits similar mechanical properties, on the
contrary, PLA/PEO-B25W shows a clear decrease in E, TS
and EB. PLA/PEOA-25L and PLA/PEO-B25L (DS) showed
the same behavior of their SS counterparts. The simultane-
ous decrease in modulus and elongation at break on increas-
ing PEO-B content, confirms the typical behavior of immis-
cible couples. In fact, poor miscibility of PEO-B phase leads
to the formation of an irregular and heterogeneous fibrous
structure with consequent disruption of some fibers. Accord-
ing to the morphological analysis, moreover, the presence of
PEO-B phase agglomerations along the fibers induces dis-
continuity in the membranes structure leading to the forma-
tion of weak points across them. On the contrary, the good
miscibility of PEO-A in PLA allows obtaining homogeneous
structures leading to better mechanical performance if com-
pare with PEO-B systems [40].

Oil Spill Clean-up Capacity of the Porous Membranes

The particular architecture observed for these mem-
branes suggests their potential use as sorbent materials

for oil spill cleanup. Six different kinds of oils (motor oil,
exhausted motor oil, olive oil, exhausted olive oil, sun-
flower oil and exhausted sunflower oil) were chosen and
their adsorption capacity by PLA, PLA/PEO-A25L, PLA/
PEO-B25L, PLA/PEO-A25W and PLA/PEO-B25W were
teste and results are shown in Fig. 10. As expected, PLA
membranes showed the lowest q value for all kind of oils
tested. DS leached systems showed a slight increase in
absorption capacity if compared to PLA membrane. The
maximum absorption capacity for every type of oil was
achieved by one-step leached systems. In particular, PLA/
PEO-A25W and PLA/PEO-B25W showed the highest oil
adsorption capacity for exhausted motor oil, with a q value
of 115 and 137 g/g respectively. According to the scientific
literature, the presence of high porosity, high surface area
or empty channels increase oil absorption capacity of a
membrane [6, 57]. The low q value of PLA membrane, in
fact, could be likely ascribed to its smooth and homoge-
neous fibers. The increase in absorption capacity values
displayed by DS systems, could be reasonably attributed
to the presence of fibers with porous surfaces. The best
q values displayed by PLA/PEO-A25W and PLA/PEO-
B25W are could be likely ascribed to the combination of
a shell with large pores (also structured in furrows) and
a core hollow structure. This particular structure, in fact,
likely caused an increase of surface area and the formation
of channels facilitated a deeper penetration of motor oil in
the whole membrane.

Moreover, PLA/PEO-A25W and PLA/PEO-B25W
exhibit the best adsorption capacities for motor oil and the
worst adsorption capacities for sunflower oil. According to
the scientific literature, this behavior should be addressed
to the higher viscosity of motor oil (if compared to olive
and sunflower oil ones) that make it difficult for the oil to
flow out of the membranes once it enters the channels of
the hollow fibers [6].

In Movie S1 and Fig. 11 is reported the oil spill clean-
up process successfully carried out by PLA/PEO-B25W.

Fig. 10 Oil adsorption capaci-
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Fig. 11 Olive oil spill clean-up process using PLA/PEO-B25W

Table 4 Comparison of oil adsorption abilities between wet coaxial electrospun PLA/PEO membrane and other adsorbents systems reported in

literature
Membrane Materials Additional chemicals Processing Absorption  Reference
capacity
le/e]
Coaxial and hollow fibers PAN, PMMA  Acetone, chloroform Electrospinning + stabilization +carboni- 1045 [58]
zation
Porous fibers PLA - Electrospinning +annealing for 12 h 22-42 [59]
Rough nanofibers PLA, PHB - Electrospinning 10-15 [60]
Rough nanofibers PLA, SiO2 - Solution blow spinning 20 [61]
Fibers and micro spheres PCL, MSO - Electrospinning + electrospray 22-32 [62]
Fibers and micro spheres PMMA, PDMS Hexane, curing agent Electrospinning + electrospray + curing 55-40 [14]
3h
Coaxial and hollow fibers PLA, PDLA n-eptan Electrospinning + leaching-two steps 90-200 [6]
Coaxial and hollow fibers PLA, PVA - Electrospinning + leaching-two steps 23 [25]
Coaxial and porous hollow fibers PLA, PEO - One step electrospinning and leaching 70-137 this work

The same representative steps for pure PLA-based mem-
branes were shown in Fig. S7 for comparison.

Table 4 shows the oil adsorption capacities of the wet
coaxial electrospun PLA/PEO membranes and other adsor-
bents reported in literature. It can be noticed that, compared
to other similar systems, wet coaxial electrospun PLA/PEO
membranes exhibited excellent oil absorption capacity.
Moreover, devices produced in this work were obtained in a
single step process without using any additional chemicals.

Reusability of the Porous Membranes

Exhausted motor oil absorption ability of the electrospun
membranes was monitored for up to five cycles to evaluate
their reusability and the related performance. In this direc-
tion, membranes were washed in ethanol after used and the
re-exposed to oil. The results are shown in Fig. 12.

After each cycle, PLA showed a decrease in absorption
capacity (q). This decrease in q is probably attributable to
the incomplete removal of oil from the membrane between

cycles due to difficulty of penetration of the solvent during
the rinsing phases.

A slight decrease (statistically significant only from
the III cycle onwards) in q can be also observed for PLA/
PEO-B25W after each cycle due to partial macroscopical
damage of the membrane during the rinsing phase. On the
contrary, no substantial variations can be evidenced for DS
leached systems even after five cycle of oil absorption. The
same behaviour can be observed for PLA/PEO-A25W and,
again, is probably attributable to the peculiar fibers structure
achieved for this system. During the rinsing phases, in fact,
the penetration of the solvent is promoted by the porous and
hollow structure of the fibers [14], thus granting a complete
oil removal.

Conclusion
In this work, a new method for produce, in one-step, bio-

degradable membranes with hollow and porous fibers with
high oil absorbance efficiency is presented. More in detail,
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Fig. 12 Exhausted motor oil 150
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membranes with hollow and (or) porous and fibers, based
on polylactic acid (PLA) and polyethylene oxide (PEO)
blends, were prepared using two approaches: (i) conven-
tional coaxial electrospinning followed by leaching treat-
ment (double-step); (ii) coaxial wet electrospinning with
in situ leaching (single-step). The relationships between
materials, process, properties and structure of the obtained
devices were analysed trough rheological, morphological,
mechanical and surface characterizations. Results reveal
that by varying PEO molecular weight and amount in the
PLA/PEO blends it was possible to tune the fibers structure,
especially after the leaching treatment, due to the difference
in miscibility of the phases. Moreover, wet electrospinning
production method allowed fabricating hollow and porous
fibers (i.e. shell and core leaching) which, otherwise, could
not be obtained with the double-step process that only leads
to surface porosity (i.e. shell leaching). In fact, during the
in situ leaching, not jet stabilized fibers, containing residual
solvent, come into contact with the leaching agent promoting
its penetration into the core creating the hollow structure.

Differences in polymeric compositions or morphology
have led also to a variation in membranes mechanical per-
formance: the occurrence of discontinuity in the fibers, due
to the presence of an immiscible phase or porosity, leads to
a decrease of membranes elastic modulus.

The two-step and the in situ leached systems both dis-
played morphological characteristics and mechanical prop-
erty potentially suitable for oil spill cleanup application. Oil
absorbance test reveal that membranes obtained via single-
step method displayed higher performance in oil removal,
if compared to the ones obtained through the post process-
ing leaching, due to their hollow and porous structure that
ensure higher exposed surface area.
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