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Summary 

While cross-spectral and information-theoretic approaches are widely used for the multivariate 

analysis of physiological time series, their combined utilization is far less developed in the literature. 

This study introduces a framework for the spectral decomposition of multivariate information 

measures, which provides frequency-specific quantifications of the information shared between a 

target and two source time series and of its expansion into amounts related to how the sources 

contribute to the target dynamics with unique, redundant and synergistic information. The 

framework is illustrated in simulations of linearly interacting stochastic processes, showing how it 

allows to retrieve amounts of information shared by the processes within specific frequency bands 

which are otherwise not detectable by time-domain information measures, as well as coupling 

features which are not detectable by spectral measures. Then, it is applied to the time series of heart 

period, systolic and diastolic arterial pressure and respiration variability measured in healthy 

subjects monitored in the resting supine position and during head-up tilt. We show that the spectral 

measures of unique, redundant and synergistic information shared by these variability series, 

integrated within specific frequency bands of physiological interest, reflect the mechanisms of short 

term regulation of cardiovascular and cardiorespiratory oscillations and their alterations induced by 

the postural stress. 
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1. Introduction 

The spontaneous oscillations exhibited by the physiological variables that describe the dynamic 

activity of the heart, cardiovascular and respiratory systems are the focus of an intense 

interdisciplinary research since more than three decades. In particular, the beat-to-beat variability of 

the heart period (HP), systolic and diastolic arterial pressure (SAP, DAP) and respiratory volume or 

flow (RESP) are of great physiological relevance as they reflect the short-term cardiovascular and 

cardiorespiratory regulation [1]. Such regulation results from the complex interplay of several 

physiological mechanisms of mechanical origin and/or mediated by the sympathetic and 

parasympathetic branches of the autonomic nervous system (ANS) [2]. The main investigated 

mechanisms are the arterial baroreflex whereby SAP and DAP changes induce changes in HP aimed 

to maintain pressure homeostasis [3,4], the Starling law and arterial Windkessel effect whereby 

variations of HP affect DAP and SAP through modifications of the end diastolic volume, of the 

systolic contraction strength, and of the diastolic blood pressure decay duration [5,6], and the 

influence of RESP on SAP and HP related to mechanical effects on intrathoracic pressure and stroke 

volume and to alterations of the central vagal outflow exerted by respiratory neuron firing [7,8]. 

These diverse mechanisms interact and even compete with each other to accomplish the homeostatic 

control of the physiological variables. Moreover, the degree of involvement of these mechanisms 

into the cardiovascular regulation changes in response to alterations of the physiological state such 

as those induced by different types of stress [6,9–13].  

The mechanisms responsible for the short-term cardiovascular and cardiorespiratory control 

can be probed non-invasively applying tools for multivariate time series analysis to the spontaneous 

variability of HP, SAP, DAP and RESP [14,15]. In this context, tools taken from the field of 

information theory are increasingly employed for the multivariate analysis of physiological time 

series [16]. The framework of information dynamics provides a versatile and unifying set of 

measures which allow to quantify, from multivariate time series describing the dynamic activity of 

multiple systems, the amounts of information produced and stored in each system, transferred from 

a ‘source’ system to a ‘target’ system, and modified as a consequence of the interaction between 

source systems sending information to a target [16–18]. These approaches are probabilistic and thus 

inherently model-free, but often their computation resides on linear parametric models whereby 

concepts of predictability and information storage, and Granger causality and information transfer, 

have been related [16,19,20]. With regard to physiological variability, the concept of information 

transfer can be used to assess the functional mechanisms underlying the coupling between two 

variables, while information modification allows to investigate the nature of the interactions among 

multiple variables. In particular, two sources are redundant if each carries individually information 

about the same aspects of the target, while synergy arises from independent mechanisms of 

interaction between each source and the target. These concepts, implemented in the measures of 

interaction information [18,21] and partial information decomposition (PID) [22,23], have been 

successfully used to investigate the mechanisms of cardiovascular and cardiorespiratory interaction 

in a variety of pathophysiological states [6,11,16,24–26]. 
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A drawback of information dynamic measures is that they are not frequency-specific, 

meaning that they evaluate the “overall” interaction among multiple time series without focusing 

on specific rhythms. On the other hand, heart rate, blood pressure and respiratory variability series 

display a rich oscillatory content, which is typically manifested within the so-called low frequency 

(LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands [1,2]. The frequency domain analysis 

of cardiovascular and cardiorespiratory oscillations is commonly performed using spectral 

measures of coupling and causality, such as the coherence and partial coherence or the directed 

coherence and partial directed coherence [14,27]. Nevertheless, tools for the spectral decomposition 

of multivariate information measures, able to provide a frequency-specific quantification not only of 

bivariate couplings but also of higher order interactions like the interaction information or the 

redundancy and synergy measures elicited by PID, are still lacking in the field of time series 

analysis. To fill this gap, the present work proposes a new framework for the spectral analysis of the 

information shared between a target process and two source processes, and for its decomposition 

into amounts related to how the sources contribute unique, redundant and synergistic information 

to the target. All measures are derived intuitively from the cross-spectral matrix of the three 

interacting processes, and are first tested in a theoretical example showing their behaviour in 

controlled conditions of multivariate coupling. Then, the framework is applied to the HP, SAP, DAP 

and RESP series measures from healthy subjects monitored in the supine and upright body 

positions in order to assess, separately for LF and HF oscillations, the mechanisms underlying 

cardiovascular regulation (series HP, SAP, DAP) and cardiorespiratory regulation (series HP, SAP, 

RESP) in a resting state and in response to the alterations in the sympatho-vagal balance induced by 

the postural stress. 

2. Framework for the spectral decomposition of information 
dynamics 

In this section we first review the measures typically used to assess dynamic interactions between 

two stochastic processes (i.e., interactions based on time-lagged dependencies) in the frequency 

domain, also evidencing the link between these measures and dynamic information quantities. Then 

we extend the formulation to the multivariate case, defining measures that quantify how the 

dynamic coupling between a “target” process and two “source” processes changes comparing 

collective interactions (i.e., interactions measured when the sources are grouped together) and 

individual interactions (i.e., interactions measured when the sources are kept separate). These 

higher-order interactions are evaluated in both the frequency and information-theoretic domains, 

providing a link between the two domains. The frequency domain information measures presented 

in this work are collected in the fdPID Matlab toolbox, which is publicly available at 

www.lucafaes.net/fdPID.html. 

2.1 Spectral and Information-Theoretic Coupling Measures in Bivariate 
Processes 

Let us consider two discrete-time zero mean stationary stochastic processes 𝒳 = {𝑋𝑛} and 𝒴 =

{𝑌𝑛}, 𝑛 ∈ ℤ, typically obtained sampling continuous-time processes 𝑋𝑡 and 𝑌𝑡 , 𝑡 ∈ ℝ, at times 𝑡𝑛 =
𝑛

𝑓𝑠
, 
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where 𝑓𝑠 is the sampling frequency. In a linear analysis framework, the dynamic analysis of the 

interactions between the processes is typically performed in the time domain relating the variable 

sampling the present state of one of the two processes, say 𝑋𝑛, to the variables sampling the past 

states of the other process, {𝑌𝑛−𝑘: 𝑘 ≥ 0}, through the cross-correlation function 𝑟𝒳;𝒴(𝑘) = 𝔼[𝑋𝑛𝑌𝑛−𝑘]. 

Moving to the frequency domain, a normalized measure of coupling between 𝒳 and  𝒴 is 

obtained considering the power spectral density (PSD) of each process defined as the Fourier 

Transform (FT) of its autocorrelation function (𝑃𝒳(𝜔) = 𝐹𝑇{𝑟𝒳(𝑘)}, 𝑟𝒳(𝑘) = 𝔼[𝑋𝑛𝑋𝑛−𝑘], and the same 

for 𝒴), and their cross PSD defined as the FT of the cross-correlation (𝑃𝒳;𝒴(𝜔) = 𝐹𝑇{𝑟𝒳;𝒴(𝑘)}), where 

𝜔 ∈ [−𝜋, 𝜋] is the normalized angular frequency (𝜔 = 2𝜋
𝑓

𝑓𝑠
, with 𝑓 ∈ [−

𝑓𝑠

2
,

𝑓𝑠

2
]). Specifically, the 

magnitude squared coherence is defined as [28] 

 Γ𝒳;𝒴
2 (𝜔) ≜

|𝑃𝒳;𝒴(𝜔)|
2

𝑃𝒳(𝜔)𝑃𝒴(𝜔)
 . (1) 

Note that the coherence function is symmetric, Γ𝒳;𝒴
2 (𝜔) = Γ𝒴;𝒳

2 (𝜔), and ranges from 0, indicating 

that 𝒳 and 𝒴 are uncorrelated at the frequency 𝜔 when 𝑃𝒳;𝒴(𝜔) = 0, to 1, indicating that 𝒳 and 𝒴 

are fully correlated at the frequency 𝜔 when |𝑃𝒳;𝒴(𝜔)|
2

= 𝑃𝒳(𝜔)𝑃𝒴(𝜔). 

An alternative, logarithmic measure of linear association in the frequency domain between 𝒳 

and 𝒴 is defined as [29] 

 𝑓𝒳;𝒴(𝜔) ≜ log
𝑃𝒳(𝜔)𝑃𝒴(𝜔)

|P[𝒳𝒴](𝜔)|
 , (2) 

where P[𝒳𝒴](𝜔) is the 22 matrix having the PSDs 𝑃𝒳(𝜔) and 𝑃𝒴(𝜔) as diagonal elements and the 

cross-PSDs 𝑃𝒳;𝒴(𝜔) and 𝑃𝒴;𝒳(𝜔) as off-diagonal elements, and |∙| stands for matrix determinant. 

The logarithmic coupling measure (2) can be related to the squared coherence observing that the 

latter can be formulated from the determinant of the PSD matrix of 𝒳 and 𝒴 as 

 Γ𝒳;𝒴
2 (𝜔) = 1 −

|P[𝒳𝒴](𝜔)|

𝑃𝒳(𝜔)𝑃𝒴(𝜔)
, (3) 

which yields [30]  

 𝑓𝒳;𝒴(𝜔) = − log (1 − Γ𝒳;𝒴
2 (𝜔)) (4) 

Contrary to the coherence, the logarithmic spectral coupling measure defined in (2) is unbounded as 

it is null when Γ𝒳;𝒴
2 (𝜔) = 0 but it tends to infinity when Γ𝒳;𝒴

2 (𝜔) = 1. Importantly, this measure has 

an information-theoretic interpretation, since it has been shown that for Gaussian processes it results 

as the constituent term of the spectral decomposition of the mutual information rate (MIR)  [31,32]. 

The MIR between 𝒳 and 𝒴 is defined as [31] 

 𝑀𝐼𝑅𝒳;𝒴 = 𝐼(𝑋𝑛; 𝑌𝑛) = lim
𝑛→∞

𝐸 [log
𝑝(𝑥1,…𝑥𝑛,𝑦1,…𝑦𝑛)

𝑝(𝑥1,…𝑥𝑛)𝑝(𝑦1,…𝑦𝑛)
] (5) 

where the vectors 𝑋𝑛 = [𝑋1𝑋2 ⋯ 𝑋𝑛] and 𝑌𝑛 = [𝑌1𝑌2 ⋯ 𝑌𝑛] collect the whole dynamics of the two 

processes observed up to time 𝑛, and 𝑝(𝑥1, … 𝑥𝑛) is the joint probability that the variables 𝑋1, … , 𝑋𝑛 

take the values 𝑥1, … , 𝑥𝑛 at the times 1, … , 𝑛 (the same holds for 𝑌). The link between frequency and 
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information coupling measures is established by the following relation, which holds when the 

processes 𝒳 and 𝒴 have a joint Gaussian distribution [31,32]: 

 𝑀𝐼𝑅𝒳;𝒴 =
−1

4𝜋
∫ log

|P[𝒳𝒴](𝜔)|

𝑃𝒳(𝜔)𝑃𝒴(𝜔)
𝑑𝜔

𝜋

−𝜋
 , (6) 

which evidences how the MIR is retrieved integrating the quantity 
1

2
𝑓𝒳;𝒴(𝜔) over the whole 

frequency spectrum. A similar decomposition was proposed by Geweke [33], who introduced the 

time domain measure of linear dependence 

 𝐹𝒳;𝒴 =
1

2𝜋
∫ 𝑓𝒳;𝒴(𝜔)𝑑𝜔

𝜋

−𝜋
, (7) 

which obtains an information-theoretic interpretation considering (6), i.e., 𝐹𝒳;𝒴 = 2 ∙ 𝑀𝐼𝑅𝒳;𝒴. Given 

this interpretation, and using the natural logarithm in eqs. (2) and (4-6), the quantity 𝐹𝒳;𝒴 is 

measured in natural units (nats), and the spectral quantity 𝑓𝒳;𝒴(𝜔) is measured in nats/rad. 

2.2 Spectral Information Decomposition in Multivariate Processes 

Let us consider a multivariate (vector) stochastic process composed by three zero-mean processes 

𝒴, 𝒳1, 𝒳2, where 𝒴 is assumed as “target” and 𝒳1 and 𝒳2 are assumed as “sources”; here the 

individual processes are taken as scalar, but our formulations extend intuitively to the vector case. 

To study the interactions among the three processes in the frequency domain, we consider the 3 × 3 

spectral density matrix 

 𝑃[𝒳1𝒳2𝒴](𝜔) ≜ [

𝑃𝒳1
(𝜔) 𝑃𝒳1;𝒳2

(𝜔) 𝑃𝒳1;𝒴(𝜔)

𝑃𝒳2;𝒳1
(𝜔) 𝑃𝒳2

(𝜔) 𝑃𝒳2;𝒴(𝜔)

𝑃𝒴;𝒳1
(𝜔) 𝑃𝒴;𝒳2

(𝜔) 𝑃𝒴(𝜔)

] . (8) 

Using this matrix, spectral and information measures of the coupling between each source and the 

target, i.e. between 𝒳1 and 𝒴 or between 𝒳2 and 𝒴, are obtained from the auto- and cross-PSDs as in 

(2) and (7). Moreover, measures of the coupling between the two sources taken together and the 

target, i.e. between {𝒳1, 𝒳2} and 𝒴, are defined extending (2) and (7) to the multivariate case as 

 𝑓[𝒳1𝒳2];𝒴(𝜔) ≜ 𝑙𝑜𝑔
|𝑃[𝒳1𝒳2](𝜔)|𝑃𝒴(𝜔)

|𝑃[𝒳1𝒳2𝒴](𝜔)|
 , 𝐹[𝒳1𝒳2];𝒴 =

1

2𝜋
∫ 𝑓[𝒳1𝒳2];𝒴(𝜔)

𝜋

−𝜋
  . (9) 

Then, following the principles whereby interaction information is defined for random variables  

[21,34], we define the following information-theoretic and spectral measures of source interaction: 

 𝐼𝒳1;𝒳2;𝒴 ≜ 𝐹𝒳1;𝒴 + 𝐹𝒳2;𝒴 − 𝐹[𝒳1𝒳2];𝒴 (10) 

 𝑖𝒳1;𝒳2;𝒴(𝜔) ≜ 𝑓𝒳1;𝒴(𝜔) + 𝑓𝒳2;𝒴(𝜔) − 𝑓[𝒳1𝒳2];𝒴(𝜔), (11) 

The two measures satisfy the properties of interaction information stated in the time or frequency 

domains. Specifically, if the two sources 𝒳1 and 𝒳2 exhibit a stronger additive degree of linear 

dependence with the target 𝒴 when they are considered separately than when they are considered 

together (𝐹𝒳1;𝒴 + 𝐹𝒳2;𝒴 > 𝐹[𝒳1𝒳2];𝒴), the time-domain source interaction measure is positive 

(𝐼𝒳1;𝒳2;𝒴 > 0), denoting redundancy; if, on the contrary, the linear association between 𝒳1 and 𝒳2 

considered jointly and 𝒴 is stronger than the sum of the linear association between  𝒳1 and 𝒴 and 

𝒳2 and 𝒴 (𝐹[𝒳1𝒳2];𝒴 > 𝐹𝒳1;𝒴 + 𝐹𝒳2;𝒴), the time-domain source interaction measure is negative 
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(𝐼𝒳1;𝒳2;𝒴 < 0), denoting synergy. The same properties are satisfied by the frequency domain source 

interaction measure, and hold for each specific frequency (i.e., redundant and synergistic interaction 

occur between 𝒳1 and 𝒳2 at the frequency 𝜔 respectively when 𝑖𝒳1;𝒳2;𝒴(𝜔) > 0 and 𝑖𝒳1;𝒳2;𝒴(𝜔) < 0). 

Moreover, thanks to the linearity of the integral operator, the time and frequency domain interaction 

measures satisfy the property of spectral integration, i.e., 𝐼𝒳1;𝒳2;𝒴 =
1

2𝜋
∫ 𝑖𝒳1;𝒳2;𝒴(𝜔)

𝜋

−𝜋
𝑑𝜔. 

The decompositions in (10) and (11) provide interaction measures which can take either 

positive or negative values, denoting respectively redundancy and synergy. An alternative 

decomposition, which is currently under development in the field of information theory, is the so-

called partial information decomposition (PID) [22]. With this decomposition, redundancy and 

synergy are quantified separately as positive quantities, according to an expansion of the overall 

interaction between the target and the two source processes that includes also “unique” 

contributions of each source to the target. Following the philosophy of PID, we define the 

frequency-specific decomposition of the coupling between {𝒳1, 𝒳2} and 𝒴 as 

 𝑓[𝒳1𝒳2];𝒴(𝜔) = 𝑢𝒳1;𝒴(𝜔) + 𝑢𝒳2;𝒴(𝜔) + 𝑟[𝒳1𝒳2];𝒴(𝜔) + 𝑠[𝒳1𝒳2];𝒴(𝜔) , (12) 

where, at each angular frequency 𝜔, 𝑢𝒳1;𝒴(𝜔) and 𝑢𝒳2;𝒴(𝜔) quantify the unique interaction between 

each source and the target, and  𝑟[𝒳1𝒳2];𝒴(𝜔) and 𝑠[𝒳1𝒳2];𝒴(𝜔) quantify the redundant and synergistic 

interaction between the two sources and the target. The measures in (12) are defined in a way such 

that the sum of the unique and redundant interaction between one source and the target yields the 

corresponding frequency domain coupling measure, i.e., 

 𝑓𝒳1;𝒴(𝜔) = 𝑢𝒳1;𝒴(𝜔) + 𝑟[𝒳1𝒳2];𝒴(𝜔) , (13a) 

 𝑓𝒳2;𝒴(𝜔) = 𝑢𝒳2;𝒴(𝜔) + 𝑟[𝒳1𝒳2];𝒴(𝜔) . (13b) 

Moreover, a fourth defining equation is needed to compute the PID measures unequivocally; here, 

exploiting the derivations obtained for Gaussian processes where the same linear representation of 

process interactions considered in this work is known to completely describe the dynamics [19], we 

define redundancy as the minimum of the interaction between each individual source and the 

target, i.e., 𝑟[𝒳1𝒳2];𝒴(𝜔) = min
𝑖=1,2

𝑓𝒳𝑖;𝒴(𝜔) [35]. This choice, together with (12) and (13a,b) sets a system 

of four equations in the four unknowns 𝑢𝒳1;𝒴(𝜔), 𝑢𝒳2;𝒴(𝜔), 𝑟[𝒳1𝒳2];𝒴(𝜔), and 𝑠[𝒳1𝒳2];𝒴(𝜔), which can 

thus be computed at each frequency from the three coupling measures 𝑓[𝒳1𝒳2];𝒴(𝜔), 𝑓𝒳1;𝒴(𝜔) and 

𝑓𝒳2;𝒴(𝜔). 

We note that the PID measures of redundancy and synergy are related to the interaction 

measure (11). Indeed, substituting (12) and (13) into (11) we obtain 𝑖𝒳1;𝒳2;𝒴(𝜔) = 𝑟[𝒳1𝒳2];𝒴(𝜔) −

𝑠[𝒳1𝒳2];𝒴(𝜔), showing that the measure of interaction quantifies the ‘net’ redundancy (i.e., the excess 

of redundancy over synergy) in the multivariate analysis of  the coupling between the two sources 

and the target. We note also that the frequency-specific PID measures defined above can be 

integrated to yield equivalent information-rate measures quantifying the unique information shared 

between 𝒳1 and 𝒴 and 𝒳2 and 𝒴, 𝑈𝒳1;𝒴 and 𝑈𝒳2;𝒴,  and the redundant and synergistic interaction 

between {𝒳1, 𝒳2} and 𝒴, which satisfy (12) in the time domain: 𝐹[𝒳1𝒳2];𝒴 = 𝑈𝒳1;𝒴 + 𝑈𝒳2;𝒴 +

𝑅[𝒳1𝒳2];𝒴 + 𝑆[𝒳1𝒳2];𝒴. This shows how (12) achieves a spectral decomposition of a time domain PID 
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based on mutual information rates. However, it should be remarked that defining redundancy as 

the minimum interaction at each frequency prevents from recovering the same property in the time 

domain, i.e. 𝑅[𝒳1𝒳2];𝒴 =
1

2𝜋
∫ 𝑟[𝒳1𝒳2];𝒴(𝜔)

𝜋

−𝜋
𝑑𝜔 ≠ min

𝑖=1,2
𝐹𝒳𝑖;𝒴. 

3 Theoretical Example 

To illustrate the methodology implemented for the evaluation of frequency domain multivariate 

interactions among coupled systems, we consider a theoretical example of three Gaussian systems 

whose associated processes are described by the vector autoregressive (VAR) model with equations 

 𝑋1,𝑛 = ∑ 𝑎11,𝑘𝑋1,𝑛−𝑘
4
𝑘=1 + 𝑈1,𝑛   

 𝑋2,𝑛 = ∑ (1 − 𝑐)𝑎21,𝑘𝑋1,𝑛−𝑘
𝑞+1
𝑘=1 + ∑ 𝑎22,𝑘𝑋2,𝑛−𝑘 +2

𝑘=1 𝑈2,𝑛 . (14) 

 𝑌𝑛 = ∑ 𝑐𝑎31,𝑘𝑋1,𝑛−𝑘
𝑞+1
𝑘=1 + 𝑎32𝑋2,𝑛−2 + 𝑈3,𝑛   

In (14), the simulated source processes 𝒳1 and 𝒳2 and the target process 𝒴 are generated through 

linear filtering of the innovation processes 𝒰1, 𝒰2, 𝒰3, which are set to be white Gaussian noise 

processes with zero mean and unit variance. The filters are set in a way such that 𝒳1 and 𝒳2 exhibit 

autonomous stochastic oscillations whose main frequency and bandwidth are modulated by the 

parameters 𝑎11,𝑘 and 𝑎22,𝑘, and causal influences are imposed from 𝒳1 to 𝒳2, from 𝒳1 to 𝒴 and from 

𝒳2 to 𝒴 respectively through the coefficients (1 − 𝑐)𝑎21,𝑘, 𝑐𝑎31,𝑘 and 𝑎32 = 1 (see, e.g.,  [36] for 

examples of simulated VAR processes). The multiplicative coefficient 𝑐 is a free parameter that is 

varied to modulate the overall strength of the connection from 𝒳1 to 𝒴 and the inverse overall 

strength of the connection from 𝒳2 to 𝒴. The coefficients 𝑎11,1, … , 𝑎11,4 are set to place two pairs of 

complex-conjugate poles in the complex plane, with modulus 0.85 and 0.9  and phases 2𝜋 ∙ 0.1 rad 

and 2𝜋 ∙ 0.4 rad; similarly, the coefficients 𝑎22,1, 𝑎22,2 are set to place one pair of complex conjugate 

poles with modulus 0.85 and phase 2𝜋 ∙ 0.1 rad. This determines oscillations at the normalized 

frequency 𝑓 𝑓𝑠 = 0.1⁄  Hz in the PSDs of 𝒳1 and 𝒳2 and at the frequency 𝑓 𝑓𝑠 = 0.4⁄  Hz in the PSD of 

𝒳1 (here we denote frequencies in Hz assuming 𝑓𝑠 = 1). The coefficients 𝑎21,𝑘, 𝑘 = 1, … , 𝑞 + 1, are 

obtained as the parameters of a finite impulse response (FIR) filter of order 𝑞 = 16, designed in the 

high-pass configuration with cutoff frequency of 0.25 Hz; the coefficients 𝑎31,𝑘 are set to obtain a 

low-pass filter of the same order and with the same cutoff frequency. The overall simulation design, 

depicting autonomous oscillations and the corresponding spectral content, as well as causal 

connections and the corresponding transfer functions, is depicted in Fig. 1(a). 

The VAR process described above can be studied in the frequency domain by first taking the 

Z-transform of (14) to yield 𝓧(𝑧) = 𝑯(𝑧)𝓤(𝑧), where 𝓧(𝑧) and 𝓤(𝑧) are the Z-transforms of the 

analyzed processes 𝓧 = [𝒳1𝒳2𝒴] and of the innovations 𝓤 = [𝒰1𝒰2𝒰3], and 𝑯(𝑧) is the 3 × 3 

transfer matrix, then computing the transfer function on the unit circle in the complex plane 

(𝑯(𝜔) = 𝑯(𝑧)|𝑧 = 𝑒𝑗𝜔), and finally deriving the 3 × 3 spectral density matrix as 𝑃𝓧(𝜔) =

 𝑯(𝜔)𝚺𝓤𝑯∗(𝜔) (where 𝚺𝓤 is the covariance of 𝓤 (𝚺𝓤 is the identity matrix in our simulation) and * 

stands for complex conjugate) [27]. This derivation allows to compute the theoretical profiles of the 

auto and cross-spectral densities contained in 𝑃𝓧(𝜔) (see also (8)) analytically from the VAR 

coefficients set in (14). In turn, this leads to compute the exact values of all the time and frequency 

domain information measures defined in Sect. 2 for the theoretical process, allowing to investigate 
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their behavior given the simulated oscillations and network structure and as a function of the 

coupling parameter 𝑐. An example of the analysis for 𝑐 = 0.5 is reported in Fig. 1(b). The left panel 

shows how interaction information can be elicited at each frequency comparing the joint coupling 

𝑓[𝒳1𝒳2];𝒴(𝜔) with the sum of the two individual couplings 𝑓𝒳1;𝒴(𝜔) and 𝑓𝒳2;𝒴(𝜔): when the joint 

coupling prevails, negative interaction denoting net synergy is detectable (yellow area around 0.1 

Hz); when the individual couplings prevail, positive interaction denoting net redundancy is 

detectable (green area around 0.4 Hz). The right panel reports the frequency domain PID, showing 

how redundancy is retrieved as the area below the minimum between the two coupling functions 

(green, in this case always 𝑓𝒳1;𝒴(𝜔)), unique contributions are retrieved as the areas between the two 

coupling functions (in this case only 𝑈𝒳2;𝒴 in orange, while 𝑈𝒳1;𝒴=0), and synergy results as the area 

depicted in yellow between the joint coupling and the larger of the two individual couplings (in this 

case always 𝑓𝒳2;𝒴(𝜔)). 

The results of information decomposition performed in the time and frequency domains for 

the analyzed VAR process are shown in Fig. 2(a) and Fig. 2(b), respectively. When the coupling 

parameter 𝑐 is increased from 0 to 1, the simulated interactions change in a way such that the causal 

coupling from the first source 𝒳1 to the target 𝒴 shift progressively towards a smaller importance of 

indirect interactions (i.e., interactions mediated by the second source 𝒳2) and a larger importance of 

direct (non-mediated) interactions. This results in a weakening of the interactions from the sources 

to the target measured by the decrease of the time-domain coupling measures 𝐹[𝒳1𝒳2];𝒴, 𝐹𝒳1;𝒴 and 

𝐹𝒳2;𝒴 (Fig. 2(a)). More importantly, the reorganization of the interaction structure with the coupling 

parameter alters the balance between redundancy and synergy: when 𝑐 = 0, the condition of fully 

indirect effects 𝒳1 → 𝒳2 → 𝒴 is reflected by positive interaction information (𝐼𝒳1;𝒳2;𝒴 > 0) and totally 

redundant interactions (𝑅[𝒳1𝒳2];𝒴 > 0, 𝑆[𝒳1𝒳2];𝒴 = 0); when 𝑐 = 1, the condition of fully independent 

direct effects 𝒳1 → 𝒴 and 𝒳2 → 𝒴 yields negative interaction information with strong prevalence  of 

synergy over redundancy (𝐼𝒳1;𝒳2;𝒴 < 0, 𝑆[𝒳1𝒳2];𝒴 ≫ 𝑅[𝒳1𝒳2];𝒴). We note also that, since in this 

simulated network the interaction between 𝒳1 and 𝒴 is always weaker than that between 𝒳2 and 𝒴, 

the unique interaction with the target is always ascribed to the second source (𝑈𝒳1;𝒴 = 0, 𝑈𝒳2;𝒴 > 0). 

The decomposition of the information measures performed in the frequency domain allows 

to evidence interaction mechanisms which are specific of the oscillations simulated in the bands 

centered at 0.1 Hz and 0.4 Hz. The simulation is designed to generate oscillations at 0.1 Hz 

independently in the two sources 𝒳1 and 𝒳2, and to couple them separately with the target through 

the links 𝒳1 → 𝒴 and 𝒳2 → 𝒴; on the contrary, the oscillation at 0.4 Hz generated in 𝒳1 is coupled to 

the target only indirectly through the chain 𝒳1 → 𝒳2 → 𝒴. These frequency-specific pathways of 

interaction are obtained thanks to the low- and high-pass filters that block the transmission of high-

frequency oscillations along the direction 𝒳1 → 𝒴, and of low-frequency oscillations along the 

direction 𝒳1 → 𝒳2 → 𝒴, respectively (see Fig. 1(a)), and determine the spectral patterns of 

information decomposition depicted in Fig. 2(b). The interaction measures peak at the coupling 

frequencies with a behavior dependent on the coupling parameter: when 𝑐 is low, the direct 

transmission of the slow oscillation from the second source to the target through the link 𝒳2 → 𝒴 is 

revealed by the peak at 𝜔 = 2𝜋0.1 rad in 𝑓[𝒳1𝒳2];𝒴(𝜔) and 𝑓𝒳2;𝒴(𝜔), while indirect transmission of 
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the fast oscillation the chain 𝒳1 → 𝒳2 → 𝒴 is revealed by the peaks at 𝜔 = 2𝜋0.4 rad in all the three 

interaction measures; when 𝑐 increases towards 1, the 0.1 Hz oscillation is transmitted 

independently from each source to the target still determining low-frequency peaks in the 

interaction measures, while the 0.4 Hz oscillation is blocked (by the coefficient 1 − 𝑐 along 𝒳1 →

𝒳2 → 𝒴 and by the low-pass filter along 𝒳1 → 𝒴) so that the high-frequency peaks in 𝑓[𝒳1𝒳2];𝒴(𝜔) 

and 𝑓𝒳2;𝒴(𝜔) vanish progressively at increasing 𝑐.  

As regards the interaction information and PID measures, their frequency decomposition 

reveals the nature and the strength of the interaction mechanisms simulated within specific 

frequency bands. In particular, when only the indirect coupling 𝒳1 → 𝒳2 → 𝒴 was simulated (𝑐 = 0, 

blue lines in Fig. 2(b)), the interaction information shows a positive peak at 0.4 Hz which 

corresponds to full redundancy (𝑖𝒳1;𝒳2;𝒴(𝜔) = 𝑟[𝒳1𝒳2];𝒴(𝜔), 𝑠[𝒳1𝒳2];𝒴(𝜔) = 0 for 𝜔 = 2𝜋0.4), while all 

three measures are null at 0.1 Hz; when only the two indirect couplings 𝒳1 → 𝒴 and 𝒳2 → 𝒴 were 

simulated (𝑐 = 1, red lines in Fig. 2(b)), the interaction information shows a negative peak at 0.1 Hz 

which corresponds to full synergy (𝑖𝒳1;𝒳2;𝒴(𝜔) = −𝑠[𝒳1𝒳2];𝒴(𝜔), 𝑟[𝒳1𝒳2];𝒴(𝜔) = 0 for 𝜔 = 2𝜋0.1), 

while all three measures are null at 0.4 Hz; in the intermediate case when both direct and indirect 

coupling mechanisms were active (𝑐 = 0.5, green lines in Fig. 2(b), corresponding to the case 

depicted in Fig. 1(b)), the interaction information peaks both at 0.1 Hz and at 0.4 Hz showing 

respectively full synergy and full redundancy (𝑖𝒳1;𝒳2;𝒴(𝜔) = −𝑠[𝒳1𝒳2];𝒴(𝜔),  𝑟[𝒳1𝒳2];𝒴(𝜔) = 0 at 𝜔 =

2𝜋0.1; 𝑖𝒳1;𝒳2;𝒴(𝜔) = 𝑟[𝒳1𝒳2];𝒴(𝜔), 𝑠[𝒳1𝒳2];𝒴(𝜔) = 0 at 𝜔 = 2𝜋0.4). This latter situation corresponds to 

the interesting case of coexistence of fully synergetic and fully redundant mechanisms operating in 

different frequency bands for the same three interacting signals. We note that, while the coexistence 

of synergy and redundancy with 𝑐 = 0.5 is evident looking at the spectral profile of the interaction 

information 𝑖𝒳1;𝒳2;𝒴(𝜔), it is not observable when only the time domain measure 𝐼𝒳1;𝒳2;𝒴 is 

computed. 

The simulation reported in this section illustrates the meaning of multivariate information 

measures computed in both time and frequency domains between three interacting signals. We have 

shown how indirect coupling effects (coupling between one source and the target mediated by the 

other source) are reflected by positive interaction information and prevalence of redundancy, while 

direct coupling effects occurring independently between each source and the target are reflected by 

negative interaction information and prevalence of synergy. Moreover, the spectral decomposition 

of the interaction measures allows to ascribe the observed coupling mechanisms to oscillatory 

behavior of the analyzed signals: we have reported instances of fully redundant and fully 

synergistic interactions, occurring either in an exclusive way at specific frequencies or even 

simultaneously in different frequency bands. Importantly, the use of frequency domain measures 

can elicit interaction mechanisms which are masked in the time domain, such as the simultaneous 

presence of synergistic and redundant coupling revealed when interaction information is integrated 

in distinct frequency bands but not when it is integrated over the whole frequency axis.  

4 Application to Cardiovascular and Cardiorespiratory Interactions 

This section reports the application of the framework for the analysis of multivariate interactions in 

the frequency domain to an historical database of short-term cardiovascular variability series 

previously studied in the context of information decomposition [13,16,25,26]. The present analysis is 
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performed on the beat-to-beat time series of heart period, systolic and diastolic arterial pressure to 

study cardiovascular interactions, and on the series of heart period, systolic pressure and respiration 

to study cardiorespiratory interactions. Spectral analysis is focused on the two frequency bands of 

physiological interest, i.e. the low frequency (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) 

bands, to illustrate how distinct physiological mechanisms operating within these bands can be 

described through the computation of frequency-specific measures of coupling, interaction 

information and redundancy/synergy. 

4.1 Experimental Protocol and Data Analysis 

We consider sixty-one healthy volunteers (37 females, 24 males, 17.5 ± 2.4 years old) free of 

medications or substances influencing autonomic nervous system or cardiovascular system activity, 

who were enrolled in a study aimed at monitoring cardiovascular variability during physiological 

stress [6,13]. All procedures were approved by the Ethical Committee of the Jessenius Faculty of 

Medicine, Comenius University, Martin, Slovakia, and all participants gave written informed 

consent. Here we study data acquired during a resting state in the supine body position (condition 

R) and during passive head-up tilt in the 45 degrees body position (condition T). Despite the small 

magnitude of the orthostatic challenge, during 45 degrees T evident signs of vagal withdrawal are 

detectable as suggested by the significant decrease of respiratory sinus arrhythmia and a decrease of 

baroreflex sensitivity [12] as well as signs of sympathetic activation as denoted by a remarkable 

increase of QT variability [37]. 

The acquired signals were the continuous finger arterial blood pressure recorded non-

invasively by the photoplethysmographic volume-clamp method (Finometer Pro, FMS, 

Netherlands), the electrocardiogram (horizontal bipolar thoracic lead; CardioFax ECG-9620, 

NihonKohden, Japan) and the respiratory volume recorded by respiratory inductive 

plethysmography using thoracic and abdominal elastic bands (RespiTrace, NIMS, USA). From these 

signals, four time series were measured on a beat-to-beat basis to quantify the spontaneous 

variability of the basic cardiovascular variables together with respiration: the heart period series (H) 

was obtained as the sequence of the temporal distances between consecutive R waves of the ECG (R-

R intervals); the systolic and diastolic blood pressure series (S, D) were obtained as the sequences of 

the maximum and minimum values of the arterial blood pressure signal measured within each 

detected R-R interval; and the series of respiration values (R) was obtained as the sequence of 

respiratory volume values sampled at the onset of each detected R-R interval, thus capturing 

information on tidal volume changes but also on phase and cycle length of the respiratory volume 

waveform. For each subject and experimental condition, stationary segments of N=300 points were 

selected synchronously for the four series (an example is reported in Fig. 3(a)). Before the analysis, 

the series were linearly detrended removing the best straight-fit line to limit the contribution of very 

low frequency components (VLF, < 0.04 Hz), and were then reduced to zero mean. The resulting 

time series were considered as realizations of the stochastic processes describing the dynamics of the 

heart period, systolic and diastolic pressure, and respiration (ℋ = {𝐻𝑛}, 𝒮 = {𝑆𝑛}, 𝒟 = {𝐷𝑛}, ℛ =

{𝑅𝑛}, 𝑛 = 1, … , 𝑁).  
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The analysis was performed considering two separate settings: to study cardiovascular 

interactions, the heart period was considered as the target process and the systolic and diastolic 

pressure were considered as sources, i.e., 𝒴 = ℋ, 𝒳1 = 𝒮, 𝒳2 = 𝒟; to study cardiorespiratory 

interactions, the target and first source were left unchanged and the second source was taken to be 

the respiratory volume, i.e., 𝒴 = ℋ, 𝒳1 = 𝒮, 𝒳2 = ℛ. For each of the two settings, and for each 

subject and experimental condition, parametric estimates of spectral information measures were 

obtained as follows. First, a VAR model was identified on the three time series, using the ordinary 

least squares method to estimate the model coefficients and setting the model order according to the 

Akaike Information Criterion [27]. Then, the estimated model parameters (VAR coefficients and 

covariance matrix of the prediction errors) were used to yield estimates of the PSD matrix for the 

three processes according to (8) and as described in Sect. 3. Finally, estimates of the frequency-

domain functions measuring the information shared between the target and the two sources taken 

separately (eq. (2)) or jointly (eq. (9)), the interaction information between target and sources (eq. 

(10)), as well as the unique, redundant and synergistic terms of the PID of target-source interactions 

(eq. (12)), were obtained from the estimated PSDs. 

All spectral measures were computed for frequencies ranging from 0 to the Nyquist 

frequency 𝑓𝑠/2, where the sampling frequency 𝑓𝑠 was assumed as the inverse of the mean RR 

interval. For each spectral information measure, values indicative of the overall information shared 

among the processes, and of the information shared in the LF and HF bands, were obtained by 

integration of the measure over the appropriate frequency ranges and multiplication by a 

normalization factor properly set to satisfy (7); for instance, values of the interaction information 

quantified accounting for the whole frequency range, for the LF range, and for the HF range, are 

obtained respectively as 𝐼𝒳1;𝒳2;𝒴 =
2

𝑓𝑠
∫ 𝑖𝒳1;𝒳2;𝒴(𝑓)𝑑𝑓

𝑓𝑠/2

0
, 𝐼𝒳1;𝒳2;𝒴(LF) =

2

𝑓𝑠
∫ 𝑖𝒳1;𝒳2;𝒴(𝑓)𝑑𝑓

0.15

0.04
, and 

𝐼𝒳1;𝒳2;𝒴(HF) =
2

𝑓𝑠
∫ 𝑖𝒳1;𝒳2;𝒴(𝑓)𝑑𝑓

0.4

0.15
. An example of computation of the spectral information measures 

and of their evaluation within the LF and HF bands is reported in Fig. 3. The analysis for this subject 

shows well defined power content (Fig. 3(a)) in the LF and HF bands for ℋ, 𝒮 and  𝒟, corresponding 

to LF and HF peaks for the coupling measures 𝑓[𝒮𝒟];ℋ, 𝑓𝒮;ℋ and 𝑓𝒟;ℋ (Fig. 3(b), upper panels), and in 

the HF band for ℛ, corresponding to a dominant HF peak for the coupling measures 𝑓[𝒮ℛ];ℋ, 𝑓𝒮;ℋ 

and 𝑓ℛ;ℋ (Fig. 3(b), lower panels); the cardiovascular interaction information 𝑖𝒮;𝒟;ℋ is negative in the 

LF band and positive in the HF band, reflecting nontrivial amounts of synergy 𝑠[𝒮𝒟];ℋ in LF and of 

redundancy 𝑟[𝒮𝒟];ℋ in HF (respectively, yellow and green areas in Fig. 3(b), upper panels), while the 

cardiorespiratory interaction information  𝑖𝒮;ℛ;ℋ is high and positive in the HF band, reflecting 

marked f redundancy 𝑟[𝒮ℛ];ℋ in HF (green areas in Fig. 3(b), lower panels). 

4.2 Results and Discussion 

Results of the spectral analysis of information measures are reported in Figs. (4) and (5) for the 

study of cardiovascular interactions (setting 𝒴 = ℋ, 𝒳1 = 𝒮, 𝒳2 = 𝒟) and in Figs. (6) and (7) for the 

study of cardiorespiratory interactions (setting 𝒴 = ℋ, 𝒳1 = 𝒮, 𝒳2 = ℛ). Results are presented 

showing the distributions (expressed as boxplots and individual values) of the spectral interaction 

measures (Figs. 4,6) and of the PID measures (Figs. 5,7) computed at rest (R) and during head-up tilt 

(T) and integrated over the whole frequency range (TOT) or within the LF or HF bands. For each 



12 

 

 

 

Phil. Trans. R. Soc. A.  

measure and frequency band, the distributions measured during R and T are compared with a two-

sided Wilcoxon signed rank test for paired data in order to assess the statistical significance of the 

changes induced in the measure by the orthostatic stress; a p-value <0.05 was considered as 

statistically significant for each comparison. 

The analysis of heart period, systolic pressure and diastolic pressure dynamics indicates the 

presence of strong cardiovascular interactions which occur mainly in the HF band of the frequency 

spectrum and tend to decrease with the transition from the supine to the upright body position. 

Indeed, Fig.4 shows high values (generally between 0.5 and 2 nats) of the information shared 

between the cardiac and the two vascular processes taken together (𝐹[𝒮𝒟];ℋ) or individually (𝐹𝒮;ℋ, 

𝐹𝒟;ℋ), with higher values for the measures integrated in the HF band, and statistically significant 

decreases from R to T of 𝐹[𝒮𝒟];ℋ and 𝐹𝒟;ℋ (both over the whole spectrum (TOT) and within LF and 

HF bands) and of 𝐹𝒮;ℋ (TOT and HF values). On the other hand, the application of PID (Fig. 5) 

reveals that, in comparison with rest, the unique information shared between the heart period and 

blood pressure dynamics during tilt is lower considering the diastolic pressure (𝑈𝒟;ℋ decreases 

significantly from R to T in all bands) but is actually higher considering the systolic pressure (𝑈𝒮;ℋ 

increases significantly from R to T in all bands). Redundant interactions between systolic and 

diastolic pressure dynamics are prevalent over synergistic interactions, as documented by the 

mostly positive values of 𝐼𝒮;𝒟;ℋ in all bands (Fig. 4). Interestingly, moving from R to T the net 

redundancy increases significantly in the LF band, and decreases significantly in the HF band. 

Decomposing the net redundancy in separate redundant and synergistic effects shows that 𝑅[𝒮𝒟];ℋ is 

stable in the LF band and decreases in the HF band, while 𝑆[𝒮𝒟];ℋ decreases significantly in both 

bands (Fig. 5). These results about interaction information decomposition suggest that the postural 

change is associated, in the LF band, with an increased importance of common mechanisms of 

interaction between systolic/diastolic pressure and heart period (interactions 𝒮 ↔ 𝒟 ↔ ℋ), which is 

due to a weakening of separate mechanisms (𝒮 ↔ ℋ and 𝒟 ↔ ℋ); in the HF band, a decreased 

importance of both common and separate mechanisms of vascular and cardiac interaction is 

observed. 

The high values observed for the measures of cardiovascular coupling can be explained 

physiologically with reference to several regulatory mechanisms which have been studied with 

similar information-theoretic approaches in the past and are here focused on the HF band of the 

spectrum and ascribed to respiration-related effects. These mechanisms include the arterial 

baroreflex that reflects feedback interactions from systolic pressure to heart period (interaction 

between 𝒮 and ℋ), the cardiac runoff that relates the duration of the heart period with ventricular 

filling and the pressure at the end of the diastole (interaction between ℋ and 𝒟), and the Frank-

Starling law that is responsible for the relation between the increased end-diastolic volume and 

strength of the systolic contraction (relation between 𝐻 and 𝒮) [5,6,38]. Our findings documenting 

higher strength of the interactions between ℋ and 𝒟 compared with those between ℋ and 𝒮 agree 

with those reported by Javorka et al. [6], who also detected strong directional interactions along the 

chain ℋ → 𝒟 →  𝒮 which are compatible with the dominance of redundancy (positive 𝐼𝒮;𝒟;ℋ and 

high 𝑅[𝒮𝒟];ℋ) observed in the present study. The findings in [6] include also a decreased strength of 

such directional interactions during head-up tilt, possibly related to the lower magnitude of heart 
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period oscillations which may have an effect on the cardiac runoff [39], which also agrees with the 

decreased interaction information observed in this study with the orthostatic challenge. In our work, 

the weakening of the interconnections among SAP, DAP and HP could be explained by a decreased 

amplitude of respiration-related HP oscillations – i.e. a decreased magnitude of respiratory sinus 

arrhythmia associated with the postural stress. A reduction of the net redundancy of the 

cardiovascular control during postural stress was observed also by Porta et al. [24], who also 

showed that net redundancy is under the ANS control as it decreases in proportion to the vagal 

withdrawal during graded head-up tilt. Here, we document that such a decrease is localized more 

in the HF band, thus confirming the involvement of parasympathetic withdrawal leading to 

decreased magnitude of respiration-related heart rate oscillations, in the weakening of the 

interactions between systolic/diastolic pressure and heart period observed during tilt. The opposite 

behavior of interaction information observed in the LF band suggests that the cardiovascular 

response to postural stress is more complex, with a probable involvement of the sympathetic 

nervous system in the control of the coupling of low-frequency oscillations of heart period 

systolic/diastolic pressure. Indeed, our results confirm also the relatively low coupling between ℋ 

and 𝒮 at rest and its increase with head-up tilt observed in previous works [6,9,13,40], documenting 

the baroreflex response typically associated with sympathetic activation and rise of LF components 

in the spectra of systolic pressure and heart period. In addition, the increased strength of the 

interrelation between SAP and HP (increased 𝑈𝒮;ℋ) observed in the HF band during orthostasis 

indicates a higher focus of the cardiac chronotropic baroreflex arm to compensate for SAP changes 

on this short time scale. 

The analysis performed including the variability of the respiratory volume, depicted in Figs. 

6 and 7, indicates that cardiorespiratory interactions are almost exclusively relevant to the HF band 

of the spectrum. This observation is supported by the small values of the information measures 

including the respiration process ℛ and computed in the LF band, as well as by the same response 

to tilt observed in all spectral information measures after integration in the whole frequency range 

or integration in the HF band only. Such a response indicates a general weakening of 

cardiorespiratory interactions during postural stress, as documented by the statistically significant 

decrease observed moving from R to T in the information shared both globally and in the HF band 

between heart period and respiration variability, either individually or jointly with systolic pressure 

(measures 𝐹ℛ;ℋ and 𝐹[𝒮ℛ];ℋ, Fig. 6) and even uniquely after PID (measure 𝑈ℛ;ℋ, Fig. 7). The 

transition from rest to tilt induced a significant decrease also in the interaction information 𝐼𝒮;ℛ;ℋ, 

that takes positive values in the large majority of subjects in both conditions (Fig. 6). This finding 

indicates a prevalence of redundancy over synergy that is confirmed also by PID looking at the 

small values of synergistic information 𝑆[𝒮ℛ];ℋ, and at the high values of the redundant information 

𝑅[𝒮ℛ];ℋ, which decreases significantly moving from R to T (Fig. 7). The prevalence of redundancy 

indicates the importance of common pathways of interaction occurring between ℛ and ℋ mediated 

by 𝒮. Finally, we note that the computation of measures not involving respiration (i.e. 𝐹𝒮;ℋ in Fig. 6 

and 𝑈𝒮;ℋ in Fig. 7) leads to similar results to those observed for the same measures computed in the 

presence of 𝒟 in place of ℛ (respectively, Fig. 3 and Fig. 4), showing a tendency of the information 

shared between heart period and systolic pressure to increase when computed in the LF band, and 

to decrease when computed in the HF band, with the transition from R to T. 



14 

 

 

 

Phil. Trans. R. Soc. A.  

The little relevance within the LF band of the measures of multivariate interaction involving 

the respiratory volume is due to the known fact that the variability of respiration and its effects on 

the variability of heart period and arterial pressure are almost exclusively confined in the HF band 

of the spectrum [2]. The significant decrease with tilt of the information shared between respiration 

and heart period (measures 𝐹[𝒮ℛ];ℋ, 𝐹ℛ;ℋ, 𝑈ℛ;ℋ) confirms a number of previous investigations based 

on entropy analysis [10,11,16,25] that documented a reduction of cardiorespiratory interactions 

during orthostatic stress. Physiologically, these findings reflect the vagal withdrawal and the 

dampening of respiratory sinus arrhythmia occurring with tilt [39]. Finally, the analysis of the 

measure of interaction information (𝐼𝒮;ℛ;ℋ) and of its expansion into purely redundant and purely 

synergistic terms (𝑅[𝒮ℛ];ℋ, 𝑆[𝒮ℛ];ℋ) helps in investigating the two physiological mechanisms that may 

explain the effects of respiration on the heart period known and respiratory sinus arrhythmia (RSA), 

i.e. the direct pathway whereby neural commands originating in the respiratory centers of the 

brainstem act on the sinus node independently of blood pressure [8], and the indirect pathway 

whereby respiratory effects on the arterial pressure are transmitted to the heart period via the 

baroreflex [7]. In a recent work [26] we have shown how the PID performed defining redundancy as 

the minimum information contributed by each source to the target [35] ascribes redundancy to the 

indirect mechanism ℛ → 𝒮 → ℋ, the unique cardiorespiratory transfer to the direct mechanism ℛ →

ℋ, and synergy to the simultaneous activation of both pathways. According to this interpretation, 

the dominance of redundancy 𝑅[𝒮ℛ];ℋ(HF) suggests that in our data respiratory sinus arrhythmia is 

mostly due to the baroreflex-mediated mechanism, and the decrease of both 𝑅[𝒮ℛ];ℋ(HF) and 

𝑈ℛ;ℋ(HF) with tilt suggests that the cardiorespiratory interaction is dampened with tilt in parallel 

with the physiological mechanisms associated to decreased HRV in this condition; such mechanisms 

can be of autonomic origin (i.e., related to parasympathetic withdrawal concomitant with 

orthostasis [9,13] or arising from the pacemaker dynamics of the cardiac system (i.e., related to the 

increasing mean heart rate which is intrinsically associated with decreased variability [41]). While 

the prevalence of baroreflex over central mechanisms of RSA was observed also in [26], a different 

interpretation was given to the response to tilt; we ascribe the difference to the fact that the analysis 

performed here can be focused on the HF band, and thus allows to exclude more safely the strong 

variations induced by tilt in the LF band which are otherwise incorporated in non frequency-specific 

analyses such as that in [26]. 

5 Conclusions 

The aim of this study was to introduce a spectral representation of information decomposition able 

to quantify, within predefined frequency bands associated to specific oscillatory rhythms, the 

unique, redundant and synergistic information shared by two source processes and one target 

process describing the activity of a multivariate dynamical system. The proposed framework was 

designed building upon long-known but not extensively developed relations between information 

measures and spectral measures valid for Gaussian systems [31,32];  note that our analysis can be 

performed also for processes without joint Gaussian distribution, even though in this case the tight 

relation with information theory is lost and nonlinearities possibly underlying the measured time 
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series may be missed. Importantly, although the proposed measures were developed on the basis of 

the linear parametric (VAR) representation of multivariate processes, they can be easily 

implemented also using non-parametric spectral estimators [28], as they are entirely derived from 

PSD functions. 

The main distinctive feature of the proposed framework is the combination of spectral 

decomposition and information decomposition, which allows to elicit aspects of the interaction 

among processes which cannot be observed by information measures alone or by spectral measures 

alone. The spectral decomposition of information measures allows to retrieve amounts of 

information shared by the observed processes within specific frequency bands, and thus related to 

specific oscillatory components. This can be seen, in the theoretical example, when redundant and 

synergistic amounts of information shared at different frequencies are evident from the positive and 

negative values of the interaction information measure 𝑖𝒳1;𝒳2;𝒴(𝜔) evaluated at those frequencies, 

but disappear in the integrated time-domain measure 𝐼𝒳1;𝒳2;𝒴. On the other hand, the information 

decomposition of spectral measures allows to evidence aspects of the coupling between processes 

that are masked in the analysis using classical frequency domain measures. This occurs in our 

simulation observing that the coupling between one source and the target is entirely redundant with 

the other source, so that it appears in the “global” measure 𝑓𝒳2;𝒴(𝜔) but is completely removed in 

the measure of unique information 𝑢𝒳2;𝒴(𝜔) obtained through PID. 

The potentiality of combining information and spectral decompositions was verified 

experimentally in the proposed application to cardiovascular and cardiorespiratory interactions. 

Indeed, although significant modifications of physiological dynamics induced by the transition from 

rest to tilt are detectable using simpler univariate variability markers (see, e.g., [12,37,42,43]), the 

proposed multivariate indexes can describe peculiar features that might be correlated with specific 

properties of the physiological dynamical systems that go beyond their traditional assessment based 

on power of oscillations, transfer function gain and latency but deal with higher level functions 

related to the overall organization of the cardiovascular control system like synergy and 

redundancy. Specific results observed in this work are the opposite response to tilt observed 

integrating the cardiovascular interaction information 𝑖𝒮;𝒟;ℋ(𝜔) within the LF and HF frequency 

bands, with the increase in LF band and the decrease in HF band associated to alterations in the 

sympatho-vagal balance and/or to the cardiac pacemaker dynamics, and the different trends 

observed with tilt for the global and unique measures of coupling between HP ad SAP, with 

tendency to decrease for 𝑓𝒮;ℋ(𝜔) and to increase for 𝑢𝒮;ℋ(𝜔) that highlight the dampening of 

redundant interactions in the response to postural stress.  

The results obtained here for short-term variability can be extended to long-term recordings 

to investigate interaction information in the VLF band, thus analysing slow oscillations with 

important physiological and clinical value [44]. To better describe the power-law correlations typical 

of long term variability, the parametric analysis can be extended to describe both short-term 

dynamics and long-range correlations (e.g., through the use of vector autoregressive models with 

fractional integration [45]). Future studies are also envisaged to extend the proposed framework to 

dynamic analysis, making it possible to achieve a spectral decomposition of directed information 

measures like the joint, redundant and synergistic transfer entropy, up to now available only in their 

time domain [16] and multiscale [18] formulations; the extension to causal analyses will help to 
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improve the interpretability of the changes across physiological states of the undirected interactions 

detected in the present study. From a practical viewpoint, the generalization of the framework to 

vector processes would allow to describe multi-system interactions in a more exhaustive way, with 

obvious applications in the fields of computational neuroscience and network physiology [15]. 
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Figure 1. Simulation of coupled linear stochastic processes and exemplary computation of frequency-domain 

interactions. (a) Schematic representation of the simulated process {𝒳1, 𝒳2, 𝒴} evidencing the autonomous 

oscillations generated in the sources 𝒳1 and 𝒳2 (spectral densities in violet) through the coefficients 

𝑎11,1, … , 𝑎11,4 and 𝑎22,1, 𝑎22,2, and the transfer functions (red curves) transmitting such oscillations from 𝒳1 to 

𝒳2 (high-pass, amplitude-modulated by 1 − 𝑐), from 𝒳1 to the target 𝒴 (low-pass, amplitude-modulated by 𝑐), 

and from 𝒳2 to 𝒴 (all-pass). (b) Spectral interaction measures computed for 𝑐 = 0.5, evidencing that the 

coupling between target and sources peaks at 0.1 Hz (black and red curves) and at 0.4 Hz (black, red, blue 

curves), that synergy (yellow area) and redundancy (green area) are generated at the two frequencies, and that 

only the second source provides unique contribution to the coupling (orange area). 
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Figure 2. Computation of time- and frequency-domain multivariate information measures for the simulated 

VAR process depicted in Fig. 1. (a) Time-domain measures of information shared by the two sources and the 

target jointly (𝐹[𝒳1𝒳2];𝒴), individually (𝐹𝒳1;𝒴, 𝐹𝒳2;𝒴) and uniquely (𝑈𝒳1;𝒴, 𝑈𝒳2;𝒴), and of interaction information 

(𝐼𝒳1;𝒳2;𝒴), redundant information (𝑅[𝒳1𝒳2];𝒴) and synergistic information (𝑆[𝒳1𝒳2];𝒴) plotted as a function of the 

coupling parameter 𝑐. (b) Spectral measures that decompose in the frequency domain the eight time-domain 

measures (spectral measures are denoted with lowercase letters), plotted as a function of the normalized 

frequency 𝑓/𝑓𝑠 for values of the coupling parameter ranging from the case of common mechanism  

𝒳1 → 𝒳2 → 𝒴 (𝑐=0, blue) to the case of separate mechanisms 𝒳1 → 𝒴 and 𝒳2 → 𝒴 (𝑐=1, red), passing by the 

case of balanced common and separate mechanisms (𝑐=0.5, green). 
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Figure 3. Example of frequency domain information-theoretic analysis of cardiovascular and cardiorespiratory 

multivariate interactions. (a) Time series of heart period (H), systolic pressure (S), diastolic pressure (D) and 

respiration volume (R) measured in the resting supine position for a representative subject; the power spectral 

density estimated for each time series are depicted on the right, with vertical lines delimiting the LF band 

(0.04-0.15 Hz) and the HF band (0.15-0.4 Hz). (b) Spectral profiles of the information measures computed 

taking systolic and diastolic pressure as sources and heart period as target process (𝒴 = ℋ, 𝒳1 = 𝒮, 𝒳2 = 𝒟, 

upper panels), and taking systolic pressure and respiration as sources and heart period as target process  

(𝒴 = ℋ, 𝒳1 = 𝒮, 𝒳2 = ℛ, lower panels). In the two cases, the left panels depict the computation of the 

interaction information (𝑖𝒳1;𝒳2;𝒴(𝜔)) as the difference between the information shared by the target and the 

two sources individually (𝑓𝒳1;𝒴(𝜔) + 𝑓𝒳2;𝒴(𝜔)) and jointly (𝑓[𝒳1𝒳2];𝒴(𝜔), black curve), with integrated 

contributions resulting as redundant (𝐼𝒳1;𝒳2;𝒴 > 0, green areas) or synergistic (𝐼𝒳1;𝒳2;𝒴 < 0, yellow areas); the 

right panels depict the frequency domain PID, showing how redundancy (𝑅[𝒳1𝒳2];𝒴, green areas) emerges as 

the information integrated by the minimum coupling function between each source and the target (𝑓𝒳1;𝒴(𝜔) 

and  𝑓𝒳2;𝒴(𝜔), blue and red/orange curves), unique information (𝑈𝒳1;𝒴 or 𝑈𝒳2;𝒴) is integrated between the two 

coupling functions (𝑓𝒳1;𝒴(𝜔) − 𝑓𝒳2;𝒴(𝜔), light blue areas, or 𝑓𝒳2;𝒴(𝜔) − 𝑓𝒳1;𝒴(𝜔), light orange areas), and 

synergy (𝑆[𝒳1𝒳2];𝒴, yellow areas) results as the information integrated between the highest coupling function 

and the joint coupling function. Band-specific values are obtained for each function limiting the integration 

within the LF and HF bands. 
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Figure 4. Spectral information decomposition of multivariate cardiovascular interactions (target: heart period 

ℋ; sources: systolic pressure 𝒮, diastolic pressure 𝒟). Plots depict the distribution across subjects of the 

information shared by the target and the two sources jointly (𝐹[𝒮𝒟];ℋ) and individually (𝐹𝒮;ℋ, 𝐹𝒟;ℋ), and of the 

interaction information between the two sources and the target (𝐼𝒮;𝒟;ℋ) obtained integrating the corresponding 

spectral measures over the whole frequency range (TOT), in the range 0.04-0.15 Hz (LF) and in the range  

0.15-0.4 Hz (HF) and computed in the resting state (R) and during head-up tilt (T). Wilcoxon test comparing R 

and T: *, p<0.05; **, p<0.005. 
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Figure 5. Spectral partial information decomposition of multivariate cardiovascular interactions (target: heart 

period ℋ; sources: systolic pressure 𝒮, diastolic pressure 𝒟). Plots depict the distribution across subjects of the 

unique information shared by the target and each source (𝑈𝒮;ℋ, 𝑈𝒟;ℋ), and of the redundant (𝑅[𝒮𝒟];ℋ) and 

synergistic (𝑅[𝒮𝒟];ℋ) information between the two sources and the target obtained integrating the 

corresponding spectral measures over the whole frequency range (TOT), in the range 0.04-0.15 Hz (LF) and in 

the range 0.15-0.4 Hz (HF) and computed in the resting state (R) and during head-up tilt (T). Wilcoxon test 

comparing R and T: *, p<0.05; **, p<0.005. 
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Figure 6. Spectral information decomposition of multivariate cardiorespiratory interactions (target: heart 

period ℋ; sources: systolic pressure 𝒮, respiration ℛ). Plots depict the distribution across subjects of the 

information shared by the target and the two sources jointly (𝐹[𝒮ℛ];ℋ) and individually (𝐹𝒮;ℋ, 𝐹ℛ;ℋ), and of the 

interaction information between the two sources and the target (𝐼𝒮;ℛ;ℋ) obtained integrating the corresponding 

spectral measures over the whole frequency range (TOT), in the range 0.04-0.15 Hz (LF) and in the range  

0.15-0.4 Hz (HF) and computed in the resting state (R) and during head-up tilt (T). Wilcoxon test comparing R 

and T: *, p<0.05; **, p<0.005. 
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Figure 7. Spectral partial information decomposition of multivariate cardiorespiratory interactions (target: 

heart period ℋ; sources: systolic pressure 𝒮, respiration ℛ). Plots depict the distribution across subjects of the 

unique information shared by the target and each source (𝑈𝒮;ℋ, 𝑈ℛ;ℋ), and of the redundant (𝑅[𝒮ℛ];ℋ) and 

synergistic (𝑅[𝒮ℛ];ℋ) information between the two sources and the target obtained integrating the 

corresponding spectral measures over the whole frequency range (TOT), in the range 0.04-0.15 Hz (LF) and in 

the range 0.15-0.4 Hz (HF) and computed in the resting state (R) and during head-up tilt (T). Wilcoxon test 

comparing R and T: *, p<0.05; **, p<0.005. 


