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Abstract

Very little is known about the structure of the intersection of two k-generated monoids of words,
even for k = 3. Here we investigate the case of k-maximal monoids, that is, monoids whose basis
of cardinality k cannot be non-trivially decomposed into at most k words. We characterize the
intersection in the case of two 3-maximal monoids.
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1. Introduction

In this paper, we investigate the intersection of three-generated monoids of words in a special
case when these monoids are 3-maximal. A monoid of words is k-maximal if its generating set
cannot be non-trivially decomposed into at most k (shorter) words. Obviously, the intersection of
two finitely generated monoids of words is regular. However, already in the case of free monoids
generated by two words, the structure of the intersection can be quite complex as we recall in
Theorem 8, see [13, 11]. While monoids generated by three words have been classified (by Budkina
and Markov in [4] and by Spehner in [17], see also [9] for a comparison of the two classifications),
there is no classification of their intersection. It is useful to note, and we shall use this fact in the
paper, that the general question about the structure of the intersection of two k-generated monoids
is in fact a question about maximal solvable systems of equations over 2k unknowns, where the
left hand sides and right hand sides are formed from disjoint sets of k unknowns respectively. This
indicates why the question is so difficult for k = 3, where we have to deal with six unknowns.

It turns out, however, that when the condition of being k-maximal is added, the problem
simplifies considerably. In [5], a kind of defect theorem is shown for 2-maximal monoids, see
Theorem 10 below. In case of 3-maximal monoids, studied in this paper, we encounter a situation
which rather resembles the general case of two two-generated monoids. In fact, there is a close
similarity to the related problem of binary equality sets. In [6], it was shown that the binary
equality set is either generated by at most two words, or it is of the form (uw∗v)∗. While it was
later shown in [10] that the latter possibility never takes place for binary equality words, we show
in this paper that the set of possibilities given in the previous sentence is the exact description of
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intersection of two 3-maximal monoids. This setting therefore fits, from the point of its complexity,
somewhere between binary equality words, and the intersection of free two-generated monoids.

2. Preliminaries

Let Σ∗ (Σ+ = Σ∗ \ {ε} resp.) be the free monoid (free semigroup resp.) freely generated by a
countable set Σ which will be fixed throughout the paper. As usually, we shall call the set Σ an
alphabet, and understand elements of Σ∗ (resp. Σ+) as finite words (finite nonempty words resp.)
over Σ with the monoid operation of concatenation. Note however, that Σ, understood as the set of
generators satisfying Σ ⊆ Σ∗, is the set of words of length one, rather than a set of letters.

We say that a word u is a prefix (res. proper prefix) of w and we write u ≤ w (resp. u < w) if
w = uz for some z ∈ Σ∗ (resp. z ∈ Σ+). We say that u is a suffix of w if w = zu for some z ∈ Σ∗.
Two words v and w are prefix comparable iff either v ≤ w or w ≤ v. A word w is primitive if w = vn

implies n = 1 and w = v, otherwise it is called a power. If we consider pairs of words, we see Σ∗×Σ∗

as a direct product of monoids, that is, a concatenation is defined in the natural way on pairs. In
particular, we say that (u, v) ∈ Σ∗ × Σ∗ is a prefix (resp. proper prefix) ) of (r, s) ∈ Σ∗ × Σ∗, and
we write (u, v) ≤ (r, s) (resp. (u, v) < (r, s)) if u ≤ r and v ≤ s (resp. u < r and v < s).

Given u, v ∈ Σ∗, by u ∧ v we denote the longest common prefix of u and v. Let u ∈ Σ∗, by
first(u) we denote the first letter of u.

Given a subset X of Σ∗, by X∗ we denote the submonoid of Σ∗ generated by X. Conversely,
given a submonoid M of Σ∗, there exists a unique minimal (w.r.t. the set inclusion) generating set
B(M) of M , that we call the basis of M , namely

B(M) = (M \ {ε}) \ (M \ {ε})2. (1)

That is, the basis of M is the set of all nonempty words of M that cannot be written as a
concatenation of two nonempty words of M . For an arbitrary set X ⊆ Σ∗, we shall write B(X)
instead of B(X∗). The cardinality of B(X) is the rank of X, denoted r(X).

A submonoid M of Σ∗ with the basis B is said to be free if any word of M can be uniquely
expressed as a product of elements of B. The basis of a free monoid is called a code (see [3]).

It is well-known (see [18]) that for any set X ⊆ Σ∗ there exists the smallest free submonoid
〈X〉f of Σ∗ containing X. It is called the free hull of X. The basis of 〈X〉f is called the free basis of
X, denoted by Bf (X). The cardinality of Bf (X) is called the free rank of X and denoted by rf (X).
We refer to [8] for a procedure determining the free rank and the free basis of X.

For w ∈ 〈X〉f , let firstX(w) = b1 where w = b1b2 · · · bn, bi ∈ Bf (X), be the unique factorization
of w into elements of Bf (X). The words b1, b1b2, . . . , b1b2 · · · bn are called X-prefixes of w. We write
u <X w if u is a X-prefix of w. Moreover, given u,w ∈ 〈X〉f , by u ∧X w we denote the longest
common X-prefix of u and w.

Example 1. Let X = {abcac, bab, ab, cacabcacb, ca}. The free basis is B = {ab, b, ca, cac}, hence
rf (X) = 4. For u = ab · ca · ca · b · cac · b and w = ab · cac · ca · ca · ab ∈ X∗, we have firstX(u) = ab,
u ∧ w = abcac and u ∧X w = ab.

We have the following well-known lemma (see [2], Lemma 3.1).

Lemma 2. Let X a finite set of Σ∗ and B its free basis. Then for each y ∈ B there exists u ∈ X
such that firstX(u) = y.
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In order to see the importance of the above lemma, let us define the free graph of a finite set
X ⊂ Σ+ as the undirected graph G(X) = (X,EX) without loops where EX = {[u,w] ∈ X ×X |
u 6= w and firstX(u) = firstX(w)}. Let c(X) be the number of connected components of G(X).
By Lemma 2, we now have that

rf (X) = c(X).

Remark 3. The notion of the free graph is tightly related to the graph GQ of the system Q of
equations that is defined in [7, Section 3]. Namely, the graph of the system of all relations satisfied
by the set X corresponds to a subgraph of the free graph of X. We remark that the two graphs
would be equivalent if we considered the unique factorization hull instead of the free hull. We have
chosen the free hull because it is simpler and sufficient for our purposes. In any case, the preceding
equality immediately implies the Defect Theorem claiming that rf (X) < |X| if X is not a code (cf.
[2] and [7]).

Example 4. Consider X of the Example 1. The free graph G(X) has a unique edge [abcc, ab]
connecting the only two words starting with ab ∈ B. Note that there is no edge between ca and
cacabcacb, since firstX(ca) = ca 6= cac = firstX(cacabcacb).

The free graph is a frequently used tool in the paper because it allows us to easily establish the
free rank of a set by considering the properties of the edges of the associated free graph.

3. k-maximal Submonoids

In this section we study k-maximal submonioids introduced in [5]. With Mk we denote the
family of submonoids M of Σ∗ of rank at most k.

Definition 5. (cf. [5]) A submonoid M ∈ Mk is k-maximal if for every M ′ ∈ Mk, M ⊆ M ′

implies M = M ′.

In other words, the elements of the basis of M cannot be nontrivially factored into at most k
words.

Example 6. For every word v ∈ Σ+, the submonoid {v}∗ (denoted simply by v∗) is 1-maximal if
and only if v is a primitive word.

The submonoid {a, cbd, dbd}∗ is 3-maximal, whereas {a, cbd, dcbd}∗ is not 3-maximal since it is
contained in {a, cb, d}∗.

Let |X| = |alph(X)| = k, where alph(X) is the subset of letters of Σ occurring in the words
in X. Then X∗ is k-maximal if and only if X∗ = alph(X)∗. Also, a k-maximal submonoid is
obviously generated by primitive words. On the other hand, a finite set of k primitive words does
not necessarily generate a k-maximal submonoid of Σ∗ as we can see in Example 6.

In [5], it is proved that the basis of a k-maximal submonoid of Σ∗ is a bifix code, in particular
its free rank is k. We repeat the proof here.

Proposition 7. Let X be the basis of a k-maximal submonoid. Then, X is a bifix code.

Proof. If uv, u ∈ X, then X∗ ⊆ Y ∗ where Y is obtained from X by replacing uv with v. Hence X∗

is not k-maximal, since v /∈ X. Similarly for suffixes.
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The inverse is not true, see again Example 6 where {a, cbd, dcbd} is a bifix code.
Submonoids generated by two words, i.e., elements of M2, have been extensively studied in

the literature (cf. [14, 13, 15, 1]) and play an important role in many fundamental aspects of
combinatorics on words. It is known (see [13] and [11]) that if X and U have free rank 2, then the
intersection X∗ ∩U∗ is a free monoid generated either by at most two words or by an infinite set of
words. More formally, we have the following theorem.

Theorem 8. Let X = {x, y} and U = {u, v} be two sets of Σ∗ with free rank 2, then X∗ ∩ U∗ is
one of the forms

• X∗ ∩ U∗ = {γ, β}∗, for some γ, β ∈ Σ∗;

• X∗ ∩ U∗ = (β0 + β(γ(1 + δ + · · ·+ δt))∗τ)∗, for some β0, β, γ, δ, τ ∈ Σ∗ and some t ∈ N.

Example 9. Let X1 = {abca, bc} and U1 = {a, bcabc}. One can verify that X∗1 ∩ U∗1 =
{abcabc, bcabca}∗. Let X2 = {aab, aba} and U2 = {a, baaba}, then X∗2 ∩ U∗2 = (a(abaaba)∗baaba)∗.
Note that the submonoids here considered are not 2-maximal. Indeed, X∗1 , U

∗
1 ⊆ {a, bc}∗ and

X∗2 , U
∗
2 ⊆ {a, b}∗.

To our knowledge nothing is proved in general for the intersection of two monoids of free rank 3.
In [14] and [12], some properties of codes with three elements are studied.

Let us turn our attention to the intersection of k-maximal submonoids. For the intersection
of 1-maximals, that is, for the submonoids in M1, we have the following important property: If
x∗ and u∗ are 1-maximal submonoids (i.e., x and u are primitive words), then x∗ ∩ u∗ = {ε}. A
generalization of this result, given in [5], to the case of 2-maximal submonoids is the following.

Theorem 10. Let X = {x, y} and U = {u, v}, with X 6= U , be such that X∗ and U∗ are 2-maximal
submonoids of Σ∗. If X∗ ∩ U∗ 6= {ε}, then there exists a unique primitive word z ∈ Σ+ such that
X∗ ∩ U∗ = z∗.

Example 11. Let X∗ = {abcab, cb} and U∗ = {abc, bcb}∗ be two 2-maximal submonoids of Σ∗,
then their intersection is {abcabcbcb}∗.

The following example shows that Theorem 10 cannot be generalized to any k > 2.

Example 12. For k = 4 let X = {a, b, cd, ce} and U = {ac, bc, da, ea}. It is easy to see that X∗

and U∗ are 4-maximal and X∗ ∩ U∗ = {acda, acea, bcda, bcea}∗. For k = 5 the intersection can be
generated by 6 elements, see for example X = {a, b, cd, ce, cf} and U = {ac, bc, da, ea, fa} are two
5-maximal submonoids and X∗ ∩ U∗ = {acda, acea, acfa, bcda, bcea, bcfa}∗. Similar examples are
easily found for k > 5.

In the following section, we characterize the intersection of two 3-maximal submonoids.

4. The Intersection of a Pair of 3-maximal Submonoids

In what follows, X = {x, y, z} and U = {u, v, w} will be two distinct three-element subsets of
Σ+ such that X∗ and U∗ are 3-maximal. Let also Z = X ∪ U .

The following property holds:

Lemma 13. The free rank of Z, that is, the number of connected components of G(Z), is more
than three. Formally, 3 < rf (Z) = c(Z).
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Proof. If rf (Z) ≤ 3, then the inclusions U∗ ⊆ Z∗ and X∗ ⊆ Z∗ imply that X∗ and U∗ are not
3-maximal unless X∗ = U∗ = Z∗ which is excluded by the assumption that X and U are distinct.

When we search for the elements of X∗ ∩ U∗ we are searching for those words that can be
decomposed both into words x, y and z, and into words u, v, w. Consider, as an example, the
sets X = {abbc, da, db} and U = {abbca, b, cdad}. Then abbcabbcdadb is such a word as can be seen
from its factorizations abbc · abbc · da · db = abbca · b · b · cdad · b.

Double factorizations of this kind are best dealt with using two ternary morphisms as follows.
We set A = {a, b, c} and define morphisms g, h : A∗ → Σ∗ by

g(a) = x h(a) = u
g(b) = y h(b) = v
g(c) = z h(c) = w.

For better readability, we use the boldface style for elements of A∗. The example above is then
captured by the equality g(aabc) = h(abbcb) = abbcabbcdadb. That is, the word abbcabbcdadb has
the structure aabc if considered in X∗, and abbcb if considered in U∗.

We say that a morphism g : A∗ → Σ∗ is marked if for each pair of letters a1 6= a2 ∈ A we have
first(g(a1)) 6= first(g(a2)). Furthermore, if X is a finite set of Σ∗ and B its free basis we say that the
morphism g isX-marked if for each pair of letters a1 6= a2 ∈ A we have firstX(g(a1)) 6= firstX(g(a2)).

Let g, h : A∗ → Σ∗ be two morphisms. The coincidence set of g and h is the set defined as
follows

C(g, h) = {(r, s) ∈ A+ ×A+| g(r) = h(s)}.

The elements of the coincidence set are called solutions. A solution is minimal if it cannot be
written as the concatenation of other solutions. That is, if (u, v) < (r, s), then (u, v) is not a
solution. Obviously, any solution has a unique decomposition into minimal solutions. That is,
C(g, h) is a free submonoid of the direct product A+ ×A+, freely generated by the set of minimal
solutions.

The property of k-maximality guarantees (by Proposition 7) the following lemmas that are
responsible for a relatively simple structure of the intersection. In particular, complications related
to the second case of Theorem 8 are avoided.

Lemma 14. h(u) ≤ h(u′) iff u ≤ u′.

Proof. If u ≤ u′, then h(u) ≤ h(u′) holds trivially. Let now h(u) ≤ h(u′), and proceed by
contradiction. Assume that there exist a 6= a′ ∈ A such that u = pau1 and u′ = pa′u′1. Then
h(au1) < h(a′u′1) which implies that h(a) and h(a′) are prefix comparable, a contradiction with
Proposition 7.

Lemma 15. Let (r, s) and (r′, s′) be two distinct minimal solutions. Then r and r′ are not prefix
comparable, and s and s′ are not prefix comparable.

Proof. Assume that r and r′ are prefix comparable, and assume, without loss of generality, that
r′ = rq, with q ∈ A+. Then g(r′) = g(r)g(q) = h(s)g(q) = h(s′) and h(s) < h(s′). It follows by
Lemma 14 that s < s′, hence (r′, s′) is not minimal. Similarly, we prove that s and s′ are not prefix
comparable.
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a b c d c d a b

a b c d c d a b

a c b

a c c a

abc dab dc

ab cb cd

Figure 1: A representation of the solution (acca,acb) and the free graph of morphisms of Example 16.

.

Example 16. Let

g(a) = ab h(a) = abc
g(b) = cb h(b) = dab
g(c) = cd h(c) = dc.

The pair (acca,acb) is a solution. Indeed g(acca) = abcdcdab = h(acb). See Figure 1 for a
representation of the solution and the free graph. The free basis of Z = X ∪ U is B = {ab, c, cb, d}
and we highlight the decomposition into the free basis of Z by different colors. The edges of G(Z)
are Ez = {[g(a), h(a)], [h(b), h(c)]}. One can verify by a simple exhaustive search that the set of
minimal solutions is {(acib,aci+1a) | i ≥ 0} and the intersection is therefore (abc(dc)∗dab)∗.

This way, the problem of finding the intersection X∗ ∩ U∗ is reduced to the problem of finding
minimal elements of the coincidence set of morphisms g and h. Indeed, when we find a minimal
solution (r, s), with r, s ∈ A∗, then g(r) (which is equal to h(s)) is an element of the minimal
generating set of the intersection X∗ ∩ U∗. As we have seen in Example 16, the intersection of two
3-maximal submonoids can be infinitely generated. We shall see that in the case of a finite number
of generators, the cardinality is at most two. A trivial example of a two generated intersection is
{a, b, c}∗ ∩ {a, b, d}∗ = {a, b}∗. A less trivial example is the following.

Example 17. Let
g(a) = ab h(a) = abbc
g(b) = bcdd h(b) = abcb
g(c) = cbdd h(c) = ddab .

There are only two minimal solutions, namely (aba,ac) and (aca, bc), hence the submonoid
intersection is finitely generated by {abbcddab, abcbddab}. The free basis of Z = X ∪ U is B =
{ab, ac, bd, cd, da}, see Figure 2 for a representations of the two solutions and the free graph.

a b b c d d a b

a b b c d d a b

a c

a b a

a b c b d d a b

a b c b d d a b

b c

a c a ab bcdd cbdd

abbc abcb ddab

Figure 2: A representation of the solutions (aba,ac) and (aca, bc) and the free graph of morphisms of Example 17.

In what follows, we equivalently refer to X (resp. U) and g(A) (resp. h(A)). Since g(a), g(b),
g(c) ∈ 〈Z〉f and h(a), h(b), h(c) ∈ 〈Z〉f by definition, we have that w ∈ 〈Z〉f for any element w of
the intersection.
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As mentioned before, we often use the free graph of G(Z) as the source of information about
the free basis of Z = X ∪ U . The set VZ of nodes is the union of the images g(A) and h(A). In
figures, we graphically arrange nodes in VZ in two rows containing elements from g(A) and h(A)
respectively. We know that the number of connected components is the free rank of Z, which is at
least four. Moreover, we naturally distinguish two different kinds of edges. The edges that involve
nodes in the same set, either g(A) or h(A), are horizontal edges, and the edges that involve one
node of g(A) and one of h(A) are vertical edges.

The following two observations are immediate:

• A morphism g is Z-marked iff there are no horizontal edges in the corresponding row. Indeed,
by definition, [g(a1), g(a2)] ∈ EZ iff firstZ(g(a1)) = firstZ(g(a2)). Analogously for the
morphism h.

• A solution creates a vertical edge. Indeed, if (r, s) ∈ C(g, h), then firstZ(g(r1)) = firstZ(h(s1))
and [g(r1), g(s1)] ∈ EZ , where r1 = first(r) and s1 = first(s).

This implies the following property of our morphisms.

Lemma 18. If C(g, h) 6= ∅, then either g or h is Z-marked. Moreover, if h is not marked, then
there exist exactly two letters a1,a2 ∈ A such that firstZ(h(a1)) = firstZ(h(a2)).

Figure 3: Free graphs with a nonempty coincidence set and two horizontal edges.

Proof. Since the set of solutions is nonempty, there is at least one vertical edge in the free graph of
G(Z). Since the free rank of Z = X ∪U is at least four, according to Lemma 13, the free graph has
at least four connected components. Consequently, as attested by Figure 3, the free graph of Z
cannot contain two horizontal edges. The claim follows.

Examples 16 and 17 shows two cases in which the morphism g is Z-marked and h is not. The
following example shows two Z-marked morphisms g and h which have two minimal solutions.

a a b c

a a b c

a

a b

d a b

d a b

c b

c aa bc dab

aabc ab d

Figure 4: A representation of the solutions (ab,a), (c, cb) and the free graph of two Z-marked morphisms from
Example 19.

Example 19. Let
g(a) = aa h(a) = aabc
g(b) = bc h(b) = ab
g(c) = dab h(c) = d .

The free basis of Z = X ∪ U is B = {aa, ab, bc, d}, g and h are both Z-marked, and the only
two minimal solutions are (ab,a), (c, cb). In such a case each minimal solution introduces a vertical
edge, which yields four connected components (cf. Figure 4).
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Convention 20. By symmetry, we shall suppose in what follows that g is Z-marked, firstZ(h(a)) 6=
firstZ(h(c)) and firstZ(h(b)) 6= firstZ(h(c)).

Now we introduce the key ingredient of the proof of our theorem, namely the definition of the
critical overflow which was first introduced in [6] (see also [16, pp. 347–351]). We say that the
word o ∈ Σ∗ is a critical overflow if g(u) = h(v)o, for some u, v ∈ A∗, and there are pairs (u1,u2),
(v1, v2) in A+ ×A+ such that first(u1) 6= first(u2), first(v1) 6= first(v2) and both g(uu1) = h(vv1)
and g(uu2) = h(vv2). Moreover, we say that o is a critical overflow on (u, v).

Informally, if o is a critical overflow on a pair (u, v), then (u, v) is a prefix of at least two distinct
minimal solutions (uu1, vv1) and (uu2, vv2). It represents the situation when the continuation of
(u, v) is not given uniquely during the construction of the minimal solution neither for u nor for v.

a b c
a b

c b a b
b a b

d c b
c d c b

Figure 5: A critical overflow of morphisms of Example 21.

Example 21. Let g(a) = abc, g(b) = bab and g(c) = dcb, h(a) = ab, h(b) = cb and h(c) = cd. Then
c is a critical overflow on (u, v) = (a,a) and two minimal solutions are (ab,aba) and (ac,acb).
See Figure 5 for a representation.

Remark 22. Since g and h are morphism and 〈Z〉f is free, it follows that the critical overflows
belongs to 〈Z〉f .

The previous remark is a basic trivial property of free monoids and its free basis but it is
fundamental for the proof of the following results that characterize the critical overflows in our
setting and the corresponding properties of the free graph.

Remark 23. For sake of completeness, we should also consider the case when o is nonempty and
g(u)o = h(v) in the definition of the critical overflow. Note however, that such a situation is
excluded by the assumption that g is marked in Convention 20.

Proposition 24. If (r, s) and (r′, s′) are two distinct minimal solutions, then there is a critical
overflow o on (u, v), with u = r ∧ r′ and v = s ∧ s′. Therefore, h is Z-marked iff o is an empty
overflow.

Proof. By lemma 15, the components of the two minimal solutions are not prefix comparable
respectively. Therefore r = uu1, r

′ = uu2, s = vv1 and s′ = vv2 where u = r ∧ r′, v = s ∧ s′, and
all u1, u2, v1, v2 are nonempty. Let a = first(u1), a

′ = first(u2), b = first(v1) and b′ = first(v2)
where a 6= a′ and b 6= b′. The case u = ε and v 6= ε is excluded by the assumption that g is marked.
The remaining possibilities are as follows:

• If u = v = ε, then the empty word is a critical overflow on (ε, ε). Since G(Z) has two vertical
edges [g(a), h(b)] and [g(a′), h(b′)], it cannot have an horizontal edge, hence h is Z-marked.
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• If u 6= ε and v = ε, then g(u) is a nonempty critical overflow on (u, ε). We have h(b) 6= h(b′),
but firstZ(h(b)) = firstZ(h(b′)) i.e., h is not Z-marked.

• Finally, if both u 6= ε and v 6= ε, then we have h(v) < g(u) because g is marked and moreover
there is a nonempty critical overflow o with g(u) = h(v)o. By Remark 22 we have that
firstZ(o) = firstZ(h(b)) = firstZ(h(b′)), hence h is not Z-marked.

Figure 6: Free graphs in the three cases of critical overflows.

Remark 25. We can reformulate the three cases of critical overflows of the previous proof in
terms of properties of G(Z) as follows. Let (r, s) and (r′, s′) be two distinct minimal solutions and
u = r ∧ r′, v = s ∧ s′. Let r = uu1, r

′ = uu2, s = vv1 and s′ = vv2, a = first(r1), a
′ = first(r′1),

b = first(s1) and b′ = first(s′1) where a 6= a′ and b 6= b′. Then,

1. If u = v = ε, then G(Z) has two vertical edges [g(a), h(b)] and [g(a′), h(b′)] (see the first case
in Figure 6). Note that Example 19 with Figure 4 show such a situation.

2. If u 6= ε and v = ε, then G(Z) has two vertical edges [g(first(u)), h(b)] and [g(first(u)), h(b′)]
and an horizontal edge [h(b), h(b′)] creating a connected component of three nodes (see the
second case in Figure 6). Example 17 with Figure 2 illustrate such a case.

3. Finally, if both u 6= ε and v 6= ε, then G(Z) has a vertical edge [g(first(u)), h(first(v))] and a
horizontal edge [h(b), h(b′)] (see the first case in Figure 6). Note that Example 16 and Figure
1 show such a situation.

Note that in any of this cases, the graph G(Z) cannot have further edges.

Lemma 26. Let o be a critical nonempty overflow such that g(u) = h(v)o with u, v ∈ A∗. Let
u1,u2, v1, v2 ∈ A+ be such that g(uu1) = h(vv1) and g(uu2) = h(vv2) and

a = first(u1) 6= first(u2) = a′, b = first(v1) 6= first(v2) = b′ .

Then
o = h(b) ∧Z h(b′).

Proof. Note that o is prefix comparable with both h(b) and h(b′). If h(b) ≤ o or h(b′) ≤ o, then
also h(b) and h(b′) are prefix comparable, contradicting Proposition 7. Moreover o ≤ h(b)∧Z h(b′),
by Remark 22.

Let o < h(b)∧Zh(b′) and let o = (h(b)∧Zh(b′))o′. Then firstZ(g(a)) = firstZ(g(a′)) = firstZ(o′),
a contradiction with g being Z-marked. Therefore o = h(b) ∧Z h(b′).

We have the following corollary.

Corollary 27. The critical overflow is unique.

Proof. The critical overflow is empty if and only if h is marked by Proposition 24. If h is not
marked, then the critical overflow is given uniquely by Lemma 26 and Lemma 18.
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We prove the following useful lemma.

Lemma 28. Let g(u) = h(v)o and g(u′) = h(v′)o. If u′ ≤ u, then v′ ≤ v.

Proof. If u′ ≤ u, then also g(u′) ≤ g(u), hence h(v′) ≤ g(u′) ≤ g(u). Since both h(v) and h(v′) are
prefixes of g(u), they are prefix comparable. Lemma 14 now implies that also v and v′ are prefix
comparable. A length argument concludes the proof.

The following lemma constitutes an important part of the proof of the main theorem.

Lemma 29. Let (r1, s1), (r2, s2) and (r3, s3) be three distinct minimal solutions. Then the critical
overflow is nonempty. Moreover, let

u = r1 ∧ r2, v = s1 ∧ s2,

u′ = r2 ∧ r3, v′ = s2 ∧ s3,

u′′ = r1 ∧ r3, v′′ = s1 ∧ s3 .

be such that u′′ ≤ u ≤ u′. Then

u′′ = u < u′, v′′ = v < v′,

and there are nonempty words p, q, u1 and v1 such that

g(u) = h(v)o, og(p) = h(q)o, og(u1) = h(v1),

and

first(v1) 6= first(q).

Proof. We first show that the critical overflow is nonempty. Indeed, assume it is not empty. Then,
by the uniqueness of the critical overflow, we have r1 ∧ r2 = r1 ∧ r3 = r2 ∧ r3 = ε. By Remark 25
case 1, the graph G(Z) has three vertical edges, a contradiction.

By Proposition 24 and Corollary 27, we have

g(u) = h(v)o, g(u′) = h(v′)o, g(u′′) = h(v′′)o. (2)

where o is the (unique) nonempty critical overflow. From u′′ ≤ u ≤ u′, we have v′′ ≤ v ≤ v′ by
Lemma 28. Let

(r1, s1) = (uu1, vv1), (r2, s2) = (uu2, vv2) = (u′u′2, v
′v′2), (r3, s3) = (u′u3, v

′v3), (3)

(cf. Figure 7). From Lemma 15 we deduce that v1, v2, v
′
2 and v3 are nonempty, and

b1 = first(v1) 6= first(v2) = b2, b′2 = first(v′2) 6= first(v3) = b3. (4)

We show that u′′ = u < u′ and v′′ = v < v′. Assume u = u′, hence, by (2) and 3, also
v = v′ and v2 = v′2. This implies b1 6= b2 = b′2 6= b3. Note also that b1 6= b3 follows from
v′′ ≤ v. By Lemma 26, we have o = h(b1) ∧Z h(b2) = h(b′2) ∧Z h(b3), i.e., we have three different
elements of h(A) having a nonempty common prefix. Therefore G(Z) has two distinct horizontal
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h(s2) h(v) h(v2)

g(r2) g(u) g(u2)

h(s2) h(v′) h(v′2)

g(r2) g(u′) g(u′
2)

h(s1) h(v) h(v1)

g(r1) g(u) g(u1)

h(s3) h(v′) h(v3)

g(r3) g(u′) g(u3)

(a) (b)

Figure 7: The representation of three minimal solutions.

edges, a contradiction. We therefore have u < u′, hence also v < v′. From (3), we now obtain
u = r1 ∧ r2 = r1 ∧ u′ = r1 ∧ r3 = u′′. Similarly, we have v = v′′.

Suppose that u < u′ and v < v′, we obtain nonempty words p and q such that u′ = up, and
v′ = vq, and

g(u) = h(v)o, og(p) = h(q)o, og(u1) = h(v1).

Note that (r2, s2) = (upu′2, vqv
′
2). In particular, v2 = qv′2, hence (4) implies

first(v1) 6= first(q).

We can now prove the main result of the paper.

Theorem 30. Let X = {x, y, z}∗ , U = {u, v, w}∗ be different 3-maximal submonoids of Σ∗. Then
X∗ ∩ U∗ = {α, β}∗, for some α, β ∈ Σ∗

or
X∗ ∩ U∗ = {αγ∗β}∗, for some α, β, γ ∈ Σ+.

Proof. If there are at most two minimal solutions, then the first option takes place. In the rest of
the proof we shall assume that there are at least three distinct minimal solutions.

Let (r1, s1), (r2, s2) and (r3, s3) be three distinct minimal solutions, and let u, u′ and u′′ be as
in Lemma 29. Since u, u′ and u′′ are prefix comparable, we can assume, without loss of generality,
that u′′ ≤ u ≤ u′. Using Lemma 29 and canceling, if necessary, superfluous factors (w,w′) satisfying
og(w) = h(w′)o, we can now choose ub, vb, um, vm, ue and ve such that

g(ub) = h(vb)o, og(um) = h(vm)o, og(ue) = h(ve), (5)

and

first(ve) 6= first(vm), (6)

with the following additional minimality properties:

1. If (u, v) < (ub, vb), then g(u) 6= h(v)o.

2. If (ε, ε) 6= (u, v) < (um, vm), then og(u) 6= h(v)o.

3. If (ε, ε) 6= (u, v) < (ue, ve), then og(u) 6= h(v)o.

11



We call the pairs (ub, vb) and (um, vm) and (ue, ve) the beginning, middle and end block respectively,
which motivates the notation.

From (5) it follows that all elements of the set {(ubu
i
mue, vbv

i
mve) | i ≥ 0} are solutions. We

prove that it is in fact the set of all minimal solutions, i.e., we prove that a pair (r, s) is a minimal
solution iff (r, s) = (ubu

i
mue, vbv

i
mve) for a certain i ≥ 0. First, we prove that each minimal

solution is of the form (r, s) = (ubu
i
mue, vbv

i
mve) for a certain i ≥ 0. We have that (ubue, vbve) and

(ubumue, vbvmve) are minimal and have the desired form. We proceed by induction on the length
of r. Assume that r 6= ubue, r 6= ubumue, and that any minimal solution shorter than |r| is of the
desired form.

oh(vb) h(ve)

g(ub) g(ue)

o h(ve)

g(ue)

h(vm)

g(um)

h(vb)

g(ub)

o h(ve)

g(ue)

h(vm)

g(um)

h(vm)

g(um)

h(vb)

g(ub)

Figure 8: The block decomposition of minimal solutions (ubu
i
mue, vbv

i
mve), with i = 0, 1, 2.

From Proposition 24, we deduce

g(ubue ∧ r) = h(vbve ∧ s)o. (7)

A length argument implies that pairs (ubue, vbve) and (ubue ∧ r, vbve ∧ s) are prefix comparable.
Minimality of blocks, that is, properties 1, 2 and 3, then imply ubue ∧ r = ub and vbve ∧ s = vb.
Similarly, we obtain from the minimality of blocks that ubumue ∧ r is either ub or ubum. The first
possibility is excluded by Lemma 29, since ubue ∧ubumue = ub, and we would have u = u′ = u′′ for
the triple (ubue, vbve), (ubumue, vbvmve), (r, s). From 7, we obtain vbvmve ∧ s = vbvm. Therefore,
we have that (r, s) = (ubumt, vbvmw), where t,w 6= ε. Then og(t) = h(w), and (ubt, vbw) is a
solution. Furthermore, (ubt, vbw) is minimal, indeed, let (r′, s′) be the minimal solution such that
(r′, s′) ≤ (ubt, vbw). By the induction assumption, we have (r′, s′) = (ubu

i
mue, vbv

i
mve) for some i.

Hence (ubu
i+1
m ue, vbv

i+1
m ve) ≤ (ubumt, vbvmw) = (r, s), which implies (ubu

i+1
m ue, vbv

i+1
m ve) = (r, s)

since (r, s) is minimal.
It remains to show that (ubu

i
mue, vbv

i
mve) is minimal for each i ≥ 0. Consider the minimal

solution (r, s) ≤ (ubu
i
mue, vbv

i
mve). Then, as we have just shown, we have (r, s) = (ubu

j
mue, vbv

j
mve)

for some 0 ≤ j ≤ i. Then ve ≤ vi−jm ve, and we deduce i = j from (6).
The second option of the theorem now takes place with α = g(ub), γ = g(um) and β = g(ue).

5. Conclusions

The hypothesis of k-maximality considerably simplifies the structure of the intersection of
monoids and gives an interesting connection with the generation of binary equality set, in the
case k = 3. Our proof also shows the importance of the free graph in this context. Together with
combinatorial properties of k-maximal monoids investigated in [5], this is promising for further
investigation of cases with arbitrary k.
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