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A B S T R A C T   

Background and objective: Fluid-structure interaction (FSI) is required in the study of several cardiovascular en
gineering problems were the mutual interaction between the pulsatile blood flow and the tissue structures is 
essential to establish the biomechanics of the system. Traditional FSI methods are partitioned approaches where 
two independent solvers, one for the fluid and one for the structure, are asynchronously coupled. This process 
results into high computational costs. In this work, a new FSI scheme which avoids the coupling of different 
solvers is presented in the framework of the truly incompressible smoothed particle hydrodynamics (ISPH) 
method. 
Methods: In the proposed FSI method, ISPH particles contribute to define both the fluid and structural domains 
and are solved together in a unified system. Solid particles, geometrically defined at the beginning of the 
simulation, are linked through spring bounds with elastic constant providing the material Young’s modulus. At 
each iteration, internal elastic forces are calculated to restore the springs resting length. These forces are added in 
the predictor step of the fractional-step procedure used to solve the momentum and continuity equations for 
incompressible flows of all particles. 
Results: The method was validated with a benchmark test case consisting of a flexible beam immersed in a 
channel. Results showed good agreement with the system coupling approach of a well-established commercial 
software, ANSYS®, both in terms of fluid-dynamics and beam deformation. The approach was then applied to 
model a complex cardiovascular problem, consisting in the aortic valve operating function. The valve dynamics 
during opening and closing phases were compared qualitatively with literature results, demonstrating good 
consistency. 
Conclusions: The method is computationally more efficient than traditional FSI strategies, and overcomes some of 
their main drawbacks, such as the impossibility of simulating the correct valve coaptation during the closing 
phase. Thanks to the incompressibility scheme, the proposed FSI method is appropriate to model biological soft 
tissues. The simplicity and flexibility of the approach also makes it suitable to be expanded for the modelling of 
thromboembolic phenomena.   

1. Introduction 

A number of engineering phenomena are the result of the mutual 
interaction between fluid fields and solid bodies, where the solid bodies 
deform as effect of the load exerted by the fluid and the resulting 
displacement of the structure affects the fluid flow [1,2]. This two-way 
fluid-structure interaction (FSI) is crucial in the modelling of cardio
vascular problems, such as the dynamics of heart valves, where the 
mutual interaction of highly deformable soft tissues with pulsatile blood 

flows determines the correct physiological functions, and its alterations 
result into pathological conditions [3–5]. In this context, computational 
FSI methods have established as essential tools to simulate operating 
conditions and analyse the system biomechanics, improving the un
derstanding of complex pathophysiology and supporting the develop
ment of advanced clinical treatments [6,7]. In fact, despite their higher 
numerical complexity, FSI approaches are substantially more accurate 
when compared with the single solution for computational fluid and 
structural dynamics methods (CFD and CSD, respectively) [8]; and 
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become necessary when studying phenomena where the wall shear 
stress distribution and profiles are important [9]. 

Several FSI approaches were proposed in the past [4,8,10], which are 
generally classified as partitioned and monolithic approaches [10]. In 
partitioned approaches the fluid and structure solutions are obtained 
from separate well-established methods, independently implemented 
for the analysis of fluid dynamics and structural problems, that are 
asynchronously coupled at the fluid-structure interface. On the contrary, 
in monolithic FSI approaches both fluid and structure governing equa
tions are solved simultaneously by a unified matrix, automatically 
satisfying the conditions at the interface in the solution procedure. 
Partitioned approaches allow software modularity, since the most suit
able solver can be selected for each domain and no mesh matching is 
required at the fluid-structure interface. On the other hand, monolithic 
approaches are computationally more robust and efficient than the 
partitioned counterparts [11–14]. 

Traditionally, fluid flows are modelled using the Eulerian descrip
tion, whilst the Lagrangian formulation is long-established for structural 
analyses. Hence, appropriate strategies are implemented to combine the 
two formulations. In this framework, arbitrary Lagrangian Eulerian (ALE) 
[15–18] and immersed boundary (IB) [19–26] techniques are commonly 
used, which broadly differ for the discretisation of the fluid domain. In 
ALE approaches, originally proposed by Donea et al. [15], the fluid mesh 
can deform following the movement of the structure, thus providing a 
robust fluid-structure coupling. However, when large deformations of 
the structure occur, the remeshing of the fluid domain, essential to avoid 
severe distortion of the mesh elements, results in an increase in 
complexity and computational costs of the simulation [27]. Moreover, 
additional specialised algorithms must be introduced when simulating 
phenomena where the fluid domain can be partitioned into two un
connected regions. Typically, in these cases a minimum threshold dis
tance needs to be imposed between the structure walls that would 
physically get in contact, so as to preserve continuity of the fluid domain 
during the whole simulation [8,28] and to prevent highly distorted 
meshes [29]. This is a limitation in the simulation of a number of 
biomechanical problems, such as peristaltic phenomena or cardiac/ve
nous valves functioning, as it introduces artefactual leakage. 

The IB method was specifically introduced by Peskin [19] to simulate 
flow patterns around heart valves, and then widespread for modelling 
fluid-structure interaction problems in other fields [21]. In this 
approach, the fluid mesh is fixed, whilst the mesh of the structure is free 
to deform. Since only the mesh of the structure deforms and no fluid 
mesh refinement is required at the fluid-structure interface, IB ap
proaches have lower computational cost than ALE, and there are no is
sues related to ill-shaped elements of the fluid mesh. As a result, this 
method is usually preferred for FSI problems characterised by large 
deformations of immersed thin structures, such as for modelling heart 
valve dynamics [23]. Still, as in ALE approaches, a small gap of fluid 
cells around the immersed structures is required to allow structures’ 
separation. Therefore, achieving correct solid contact still remains un
resolved [30,31]. Moreover, since variables are obtained from interpo
lation rather than calculated, results at the fluid-structure interface are 
less accurate than with ALE approaches. 

Other FSI strategies are based on the fictious domain method, where 
Eulerian and Lagrangian formulations are employed for the fluid and 
solid, respectively, and Lagrange multipliers are used to enforce the 
kinematic condition associated to the moving internal boundaries [25, 
32,33]. Hsu et al. [34] presented a hybrid ALE/immersed-boundary 
technique to simulate a bioprosthetic heart valve implanted in a 
deformable artery. 

In this context, fully Lagrangian FSI approaches have been proposed, 
which lead to a strong coupling between the structure and the fluid. 
Khayyer et al. [35] highlight the potential robustness of these advanced 
solvers, which are particularly suitable for large deformation problems 
[36–38]. In particular, particle-based FSI schemes using the smoothed 
particle hydrodynamics (SPH) method are common choices [39–41]. 

SPH was originally introduced by Lucy [42] and Gingold & Monahan 
[43] in astrophysics, and then expanded to several fields of engineering 
and science [44,45], including FSI modelling [46,47]. Several parti
tioned FSI schemes are based on coupling SPH, which is used for the 
fluid modelling, with the accurate and robust finite element (FE) 
method, employed for the structure dynamics [48]. Fourey et al. [49] 
proposed this type of coupling to model violent FSI problems involving 
complex free surface flows with deformable structures. Long et al. [50] 
proposed a new ghost particle method to couple FE with SPH. Fuchs 
et al. [51] presented a novel SPH-FE formulation with sliding boundary 
particles, aiming to achieve an accurate representation of the interaction 
forces between fluid particles and structural elements. In the cardio
vascular area, Mao et al. [27] used a fully-coupled FSI combining SPH 
and FE to investigate the aortic and mitral valves structural response and 
the intraventricular hemodynamics in a realistic left ventricle model. 
Dabiri et al. [52] used SPH coupled with FE to simulate the blood flow 
through the tricuspid valve, with and without the MitraClip interven
tion, aiming at evaluating the procedure impact over tricuspid regur
gitation. McLoone and Quinlan [53] coupled a mesh-less finite volume 
particle method and FE to simulate thin elastic structures, applying the 
method to a 2D simulation of an idealised heart valve leaflet. SPH was 
also coupled with the element bending group method [54,55]. Zhang 
et al. [56] proposed a FSI approach where SPH is coupled with a 
smoothed finite element method. This FSI approach was further 
improved by Zhang et al. [57] introducing multi-resolution SPH to 
simulate complex hydroelastic FSI problems. Shimizu et al. [58] pre
sented an enhanced particle-based FSI scheme coupling a 
truly-incompressible SPH (ISPH) fluid model with a purely Lagrangian 
meshfree hydroelastic FSI solver, which allows consistent fluid
–structure time coupling adopting the equivalent time step sizes in both 
phases. Zhang et al. [59,60] combined SPH-based approaches with 
smoothed point interpolation method, where the coupling is achieved by 
introducing ghost and repulsive particles at the interface to recover the 
continuity of the support domain and prevent particle penetration into 
structural subdomain. Rahimi et al., 2022 proposed a different FSI 
approach that couples SPH with the Peridynamic mesh-free method, 
enabling structural damage modelling and tracking [61]. 

SPH was also used to analyse computational solid mechanics prob
lems [62–64] and, in FSI approaches, to describe both fluid and solid 
domains, using the weakly-compressible (WCSPH) [65,66] and the ISPH 
[67,68] techniques. Zhan et al. [69] implemented an approach coupling 
the total Lagrangian and WCSPH method to model 3D FSI problems. 
Khayyer et al. [68] developed an enhanced ISPH-SPH method where 
structure particles are considered as moving wall boundaries for the 
fluid, providing velocity and position boundary conditions in calculation 
of the pressure field. This scheme was further improved in Khayyer et al. 
[70], where ISPH is used to model fluid flows and Hamiltonian SPH is 
employed for the description of laminated composite elastic structures. 
Sun et al. [71] developed an FSI-SPH model by combining the 
multi-resolution δ+-SPH scheme and a Total Lagrangian SPH method to 
model complex 3D FSI problems. O’Connor et al. [72] proposed a 
GPU-accelerated SPH method to model FSI problems involving violent 
hydrodynamics of free-surface flows interacting with flexible structures. 

SPH was also coupled with the discrete element method for the solid 
phase, where particles are typically connected via spring-like forces [73, 
74]. Ariane et al. [75] developed a fully Lagrangian discrete 
multi-physics model to simulate the dynamics of free emboli in double 
venous valve systems with flexible walls. Within the context of lattice 
spring models [76], several FSI models based on SPH have been pro
posed in literature to simulate large deformation problems [77–81]. 
Recently, Monteleone et al. [82] proposed a partitioned 3D FSI 
approach, where the ISPH method is employed to simulate the motion of 
incompressible fluid flows, whilst a particle–spring systems solver is 
used for the structure description. 

In the present work, a novel FSI approach is presented, which 
overcomes the main drawbacks of traditional FSI strategies in the 
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modelling of cardiovascular problems. The model, fully integrated in the 
ISPH framework, is implemented in the code PANORMUS (PArallel 
Numerical Open-souRce Model for Unsteady flow Simulations) [83]. 

The method involves the representation of both fluid and solid do
mains by SPH particles and, in contrast with partitioned methods, em
ploys a single algorithm to solve the two domains. Moreover, differently 
from monolithic approaches, a single physics is employed. This is 
possible thanks to the fact that biological soft tissues exhibit incom
pressibility and similar density to the fluid they interact with [8,84–87]. 
In order to simulate the structural behaviour, the particles representing 
the solid domain are bounded to each other via spring links. The spring 
constant is calibrated through a basic relationship to describe the 
Young’s modulus of the material. 

The proposed method exploits the mesh-less features of SPH to model 
FSI coupling without interfaces, domains with complex geometries and 
challenging structural contact problems. The strength of the presented 
method is related to its simplicity in the handling of FSI coupling, that 
allows both fluid and solid particles to follow the same ISPH numerical 
scheme. As a result, no interface between solid and fluid domains is 
required, avoiding a well-known challenge in partitioned FSI schemes, 
where the fluid-solid interface must be handled to obtain sufficiently 
accurate matching solutions between the two domains. Modelling fluid 
and structure with a unified solver necessitates certain assumptions, 
such as uniform discretisation density for both domains, and a material 
density equal to that of the fluid, constant during the analysis; which 
implies incompressibility and a fixed Poisson’s ratio of 0.5. While these 
assumptions may seem restrictive, they are generally accepted for car
diovascular soft tissues [87,88], and fixed Poisson’s ratios are commonly 
employed in classical lattice spring models [76]. 

The proposed FSI approach is validated with a benchmark compu
tational test and applied to model the dynamics of the aortic valve, 
which is a complex cardiovascular test case. 

2. SPH basic idea and incompressible scheme 

SPH is a Lagrangian mesh-less method where particles are used to 
represent the computational domain. Variables at each particle are ob
tained by means of discrete convolution integrals with filter functions, 
known as kernel functions, W. A very important feature of kernel functions 
is the characteristic length, known as smoothing length, h, which defines 
the influence domain of W. The generic i particle placed at the xi position 
has a support domain, Ωi, which contains all the surrounding j particles 
whose distance from xi is lower than k ⋅ h, where k is a specific constant 
of W. In this study, the Wendland function [89] was used (where k = 2). 
Particles are distributed based on the isotropic initial particle distance 
Δx, which is proportional to h. In this study Δx was set equal to k ⋅ h/2, as 
recommended in the literature [83,90–92]. 

The generic function φ at the xi position, φi, can be obtained through 
the function value at the neighbouring j particles (φj) laying in Ωi, whose 
total number is Ni: 

φi =
∑Ni

j=1

mj

ρj
φjWij; (1)  

where mj and ρj are mass and density of j and Wij = W(xi − xj,h). 
Two different techniques can be adopted to model fluid flows: 

weakly compressible (WCSPH) and truly incompressible (ISPH) ap
proaches. In WCSPH, an equation of state is introduced to relate pressure 
and density; whilst ISPH uses a fractional-step procedure to solve the 
momentum and continuity equations. This work is based on the ISPH 
algorithm, where the pressure field is obtained implicitly by solving a 
system of pressure Poisson equations (PPEs), following the fractional-step 
technique of Chorin [93]. The employed fractional-step procedure, 
described in detailed in Monteleone et al. [92]. In brief, the momentum 
equation is firstly solved removing the pressure gradient term, to obtain 
the intermediate velocity u* (predictor-step): 

u∗
i − u(r)

i

Δt
+

3
2

D(r)
i −

1
2

D(r− 1)
i − f i = 0;

with

Di = −
∑Ni

j=1
mj
(
νi + νj

)
(
xi − xj

)
⋅∇Wij

d2
ij

(
ui − uj

)
;

(2)  

where Δt is the time step, the index r indicates the time instant, u∗
i is the 

intermediate velocity of the i particle, ur
i is the velocity at time r, fi is the 

force per unit mass acting on the i particle, Di is the diffusive term 
calculated using the Adams–Bashforth scheme [94], ∇Wij is the gradient 
of W, νi and νj are the kinematic viscosities of particles i and j, and dij is 
the distance between i and j. 

In order to correct the intermediate velocity, an irrotational correc
tive velocity field uc is introduced, whose potential ψ ⋅ Δt is obtained by 
solving the PPEs system: 

∑Ni

j = 1

2 mj

ρj

(
xi − xj

)
⋅∇Wij

d2
ij

(
ψi − ψj

)
=

1
Δt

∑Ni

j = 1

mj

ρj

(
u∗

i − u∗
j

)
⋅∇Wij; (3)  

where ψ is the pseudo-pressure. 
In this work, the BiConjugate Gradient STABilized method (BiCG

STAB) proposed by Van der Vorst [95] was employed to solve the PPEs 
system using a preconditioning algorithm [96]. The BiCGSTAB is 
particularly suitable, due to the non-symmetricity and diagonal domi
nant of the coefficient matrix of the PPEs system [92]. 

The updated velocity u(r+1)
i is therefore calculated in the corrector- 

step: 

u(r+1)
i = u∗

i + uc
i = u∗

i − Δt
∑Ni

j = 1

mj

ρj

(
ψi − ψj

)
∇Wij. (4) 

In this work, the use of mirror particles is employed to impose suit
able boundary conditions and to overcome the truncation of the kernel 
function at the walls. This method involves an adequate covering of near 
boundary regions through the mirroring of the particles close to the 

Fig. 1. 2D Sketch of the identification of the solid particles. Fluid particles: blue 
circles; structural domain: orange dashed line; solid particles: yellow circles; 
wall-bounded solid particles: red circles; ghost solid particles: empty red circles; 
boundary: dashed black line. (for interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article). 
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Fig. 2. 2D Sketch of the support domain (dashed lines) for two solid particles i and in with the springs associated to the neighbours solid particles.  

Fig. 3. Geometry and boundary condition for uniaxial tensile test used for the spring constant calibration. Perspective and front views on the top and bottom, 
respectively. a) Particles in the reference configuration; b) particles in the deformed configuration. 
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wall, enforcing the desired boundary conditions (adherence, free-slip, 
wall-law, Neumann, periodic, etc.), even for complex fluid domain ge
ometries [83,90–92]. For a detailed description of the mirror particle 
procedure see Napoli et al. [83]. Moreover, the approach described in 
Monteleone et al. [92] is used for the inflow/outflow boundaries 
handling. 

In order to overcome the tensile instability problem related to the 
particle clustering [97], the algorithm proposed by Xu et al. [98] is 
employed in this study. This procedure consists in shifting slightly the 
particles across streamlines, allowing to maintain an ordered particle 
distribution. 

3. The proposed FSI method 

3.1. Solid particles identification and treatment 

As discussed in Section 2, fluid particles are initially arranged at a 
constant distance Δx in all cartesian directions. The fluid particles lying 
within the structural domain are geometrically identified and labelled as 
“solid” particles. Although the process is applied to a volumetric 3D 
system, in Fig. 1 it is schematised in 2D for simplicity of representation. 
The structural domain representative of a volume is drawn as a rectangle 
(dashed orange line). The particles within the structural domain are 
identified as solid particles (yellow circles), and springs ties are intro
duced between them. Further, solid particles close to the boundary (red 
circles) are also bounded to the wall, introducing a ghost solid particle in 
the direction normal to the wall (empty red circles). 

At the start of the simulation, the list of the support domain used for 
the particle approximation is created per each particle (Eq. (1)) and then 
updated at each time step after the particles displacement. For each solid 
particle, an additional list of neighbour solid particles and resting dis
tances is generated and kept unchanged during the simulation. This 
defines the solid domains and its unloaded configuration. In the example 
shown in Fig. 2, the support domain of the solid particle i encompasses n 
= 8 neighbour solid particles (j1 to j8) with initial resting distance d0,i− jn . 
These particles are linked to particle i with springs. 

Springs that experience tension or compression respond by applying 
internal elastic forces in the attempt to restore their unloaded length. 
The total internal force per unit mass acting on the generic solid particle 
i, fi, can be expressed as: 

f i =
ke Δx

mi

∑N

j = 1

(
d0,ij − dij

)
x̂ij; (5)  

where the summation is extended to the total number N of solid 
(effective and ghost) particles connected to i (eight particles in Fig. 2), ke 
is the spring constant normalised over the initial distance (Δx), and x̂ij 

= (xi − xj)/dij is the unit vector directed from i to j. 
This force is added in the momentum equations as a mass force. 

Considering the fractional-step scheme used in this work, fi is included 
in the predictor-step (Eq. (2)). 

It is important to note that the FSI coupling is achieved inherently 
within the modelling framework, as both fluid and solid particles are 
solved simultaneously within a unified ISPH numerical scheme, without 
the need to explicitly define interfaces. 

3.2. Elastic constant calibration 

Springs connecting solid particles have a normalised elastic constant 
ke, whose value controls the stiffness of the structure. The calibration of 
the law associating ke with the Young’s modulus of the homogenised 
material was carried out by simulating uniaxial tensile tests on a solid 
cube, as described in Monteleone et al. [82] and Monteleone et al. [99]. 
The cube, of side 0.1 m, consisted of 8000 solid particles, with k ⋅ h equal 
to 0.01 m. The solid block was stretched by imposing a pressure load 
equal to 0.01 MPa on the top and bottom surfaces (see Fig. 3), and zero 

pressure on the other faces. 
A set of simulations was performed, measuring the Young’s modulus 

E and the Poisson’s ratio νs for a range of normalised spring constants ke 
ranging from 0 to 3.1 MPa. A basic linear law was identified (in Fig. 4), 
where E = λ ⋅ ke; with λ = 3.23. It was verified that, coherently with the 
material incompressibility condition commonly accepted for soft tissue 
constitutive models [87,88], νs remains constant and equal to 0.5. In 
order to verify the influence of the starting particle distance, the analysis 
was repeated with k ⋅ h = 0.005 m. Results confirmed that the variation 
in k ⋅ h did not produce any change in the relation identified between E 
and ke. 

3.3. Flow-chart of the proposed method 

The sequence of actions of the proposed FSI algorithm is reported 
below:  

• ACTION 1 – Identify solid and wall-bound particles. The solid particles 
are geometrically identified based on the solid domain boundaries. 
Moreover, the solid particles having a distance less than Δx are linked 
to the wall introducing ghost solid particles;  

• ACTION 2 – Create solid particles neighbour list. For each solid particle, 
the list of the neighbour solid particles at a distance inferior to k ⋅ h is 
created and recorded for the whole simulation;  

• ACTION 3 – Create support domain and mirror. The support domain of 
each particle is created including all the surrounding particles (fluid 
and solid) with distance lower than k ⋅ h. Moreover, to overcome the 
truncation of the support domain at the boundaries, the mirror 
particles procedure is used. Specifically, the particles having distance 
from the boundaries shorter than k ⋅ h generate mirror particles along 
the directions normal to the boundary. Mirror particles have the 
same physical properties of the generating particles, while the ve
locity is imposed to ensure that boundary conditions are satisfied;  

• ACTION 4 – Calculate internal solid forces. For each solid particle, the 
total force resulting from the system of neighbouring springs 
(effective and ghost) is calculated through Eq. (5).  

• ACTION 5 – Predictor-step. The intermediate velocity u* is calculated 
through Eq. (2), including for the solid particles the force calculated 
at ACTION 4;  

• ACTION 6 – PPE system. The pseudo-pressure ψ is calculated solving 
the system made of one PPE (Eq. (3)) per each particle;  

• ACTION 7 – Corrector-step. Eq. (4) is used to correct u*, obtaining the 
updated velocities ur + 1;  

• ACTION 8 – Update particle position. Particles are moved in the 
updated position xr + 1 using the mean value of the new and old 
velocities (ur+1

i and ur
i , respectively); 

Fig. 4. Relationship obtained from the spring constant calibration, where E = λ 
⋅ ke and λ = 3.23. 
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• ACTION 9 – Update support domain and mirror. After calculating the 
updated particle position, the particle support domain and the mirror 
particles are updated (see ACTION 3). 

After ACTION 9, the simulation time is advanced by one time step (t 
= t + Δt), and the procedure is reiterated from ACTION 4. Fig. 5 shows a 
flow-chart of the proposed FSI algorithm. 

4. Results and discussion 

4.1. Benchmark test case - Elastic beam immersed in a channel flow 

An elastic beam immersed in a channel was used as a benchmark case 
to validate the code. Fig. 6 shows the channel and beam dimensions and 
the boundary conditions. The channel was designed with height H = 0.3 
m and length 3H. An elastic beam of height H/3 and width H/20 was 

Fig. 5. Flow-chart of the proposed FSI algorithm. Actions specifically for the solid particles treatment are highlighted in orange. The actions inside the dashed 
rectangle are performed only once at the beginning of the simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article). 

Fig. 6. Benchmark test case – Channel and beam dimensions and boundary conditions. H = 0.3 m.  
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positioned at a distance H from the channel inflow section. The beam 
was fully constrained at the channel bottom surface. 

Adherence boundary condition was imposed on the top and bottom 
walls of the channel, while inflow and outflow boundary conditions 
were employed at the left and right sides of the fluid domain, respec
tively. Specifically, zero pressure was imposed at the outflow section, 
while a parabolic velocity was prescribed at the inlet as follows: 

u(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1.5 u
y (H − y)
(H/2)2

t
t∗

for t < t∗

1.5 u
y (H − y)
(H/2)2 for t > t∗

(6)  

where t is the time, u was set equal to 0.5 m/s and t* = 1. Hence, the inlet 
mean velocity increases linearly from zero to 0.5 m/s in the first second 

(from 0to t*), and then stabilises to the value of 0.5 m/s. 
Fluid and solid densities are imposed both equal to ρf = ρs = 1000 kg/ 

m3 and the fluid dynamic viscosity is imposed equal to μ = 1 Pa.s. The 
resulting Reynolds’ number is Re = u H ρf/μ = 150. The Young’s 
modulus of the beam material was set equal to 0.7 MPa. The parameters 
of the simulation are summarised in Table 1. 

The commercial software ANSYS (Ansys® Academic Research Me
chanical, Release 2022 R2) was used for comparison. Specifically, the 
structural domain was analysed using the ANSYS Transient Structural 
module, whilst the fluid dynamics simulation was performed with the 
ANSYS CFX package. For the structural domain, due to the inability of 
finite element methods to handle incompressible materials, a Poisson’s 
ratio νs= 0.4999 was imposed. The structural and fluid solutions were 
coupled by means of the System Coupling available in Ansys workbench, 
which handles the data transfer between individual physics solvers 
[100]. 

A smoothing length of 3.75 × 10− 3 m was selected for the SPH 
domain, resulting into 19,200 particles. A linear structured mesh with 
identical element size (3.75 × 10− 3 m) was used for the ANSYS 
discretisation. 

In the SPH simulation, the particles lying within the beam region 
were defined as solid, linking the beam particles in contact with the 
lower wall of the channel by introducing ghost solid particles, as dis
cussed in Section 3.1. 

Fig. 7 shows the velocity field at time instant t =1 s, obtained with 
the proposed FSI algorithm and with the ANSYS System Coupling 
approach. As it can be observed, results appear in very good agreement. 

Table 1 
Benchmark test case – parameters of the simulation.  

Parameter Value 

Channel height (H) 0.3 m 
Fluid density (ρf) 1000 kg/m3 

Dynamic viscosity (μ) 1 Pa s 
Inlet mean velocity (u) 0.5 m/s 
Reynolds number (Re) 150 
Structure density (ρs) 1000 kg/m3 

Young’s modulus (E) 0.7 MPa 
Poisson’s ratio* (νs) 0.4999  

* used for ANSYS simulation. 

Fig. 7. Benchmark test case – Streamwise velocity at t = 1 s: a) SPH; b) ANSYS. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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In order to provide a quantitative comparison, the beam deformation 
is compared for the two solvers at six different time instants, as shown in 
Fig. 8. For clarity of representation, the ANSYS fluid domain (blue re
gion) is superposed with the SPH solid domain (red particles). The ve
locity profiles computed downstream of the beam, at position x = 0.4 m 
(indicated with a black line in the figure) are reported. Differences in the 
velocities at each location are less than 3 %, confirming the accuracy of 
the proposed FSI algorithm. 

A comparison of the computational costs was also performed, 
running the simulation on an AMD EPYC 7402 − 2.8 GHz processor with 
2 sockets and 24 cores per sockets. Considering one CPU, the proposed 
FSI approach results 6.5 times more efficient than the method used for 
comparison. Still, thanks to its simplicity, the proposed FSI algorithm is 
fully integrated in the parallel computing scheme of Monteleone et al. 
[101], allowing further improvement of efficiency by increasing the 
number of CPUs. 

4.2. Aortic valve simulation 

The simulation of the heart valves function remains one of the most 
challenging FSI case studies in cardiovascular engineering, where the 
limits of the different FSI approaches commonly become evident. In 
particular, the aortic valve is one of the most relevant clinical compo
nents, as this valve is subjected to the severe operating conditions 
experienced in the left heart and is more prone to be affected by 
congenital or acquired diseases [102]. The aortic valve is a trileaflet 
valve located between the left ventricle and the aorta, which regulates 
the unidirectionality of the oxygenated blood flow ejected from the left 
ventricle to feed the body tissues. In particular, during systole (ven
tricular contraction) the valve is opened by the ejected flow and its 
leaflets should hamper the flow as little as possible. During diastole, 
when the ventricular muscle relaxes, the valve leaflets are driven into 
contact by the flow returning from the aorta to the left ventricle, 

Fig. 8. Benchmark test case – Comparison of beam position on the left: ANSYS fluid domain (blue region) and SPH solid domain (red particles); velocity profiles at x 
= 0.4 m on the right: ANSYS (dashed black line) and SPH (continuous red line). Considered time instants: a) t = 0.2 s; b) t = 0.4 s; c) t = 0.6 s; d) t = 0.8 s; e) t = 1 s; f) 
t = 3 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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resulting in the valve closure and arresting the backflow. During normal 
functioning, the valve is subjected to large transvalvular pressure dif
ferences up to about 120 mmHg. 

The modelling of such problem is very challenging due to the large 
deformations experienced by the structural components (the leaflets) as 
effect of their interaction with a pulsatile blood flow, and the periodical 
contact between the valve leaflets during coaptation [5]. 

In the test case presented, geometries of the aortic root and the valve 
are taken from Tango et al. [103]. In particular, the aortic annulus and 
sino-tubular junction (region where the aortic root returns circular after 

bulging out at the level of the leaflets) have identical diameter, equal to 
25 mm. The leaflets geometry is based on the description of the idealised 
healthy human aortic valve proposed by Thubrikar [104] and 
pre-expanded to a semi-opened reference configuration. The Valsalva 
sinuses, that are the three pouches at the base of the aortic root facing 
each of the valve leaflets (see Fig. 9), are assumed identical in shape and 
size. Their maximum cross section is defined by an epitrochoid cir
cumscribed to a circle of diameter equal to 25 mm and inscribed into a 
circle of diameter equal to 36.44 mm. The root inner volume (blood and 
leaflets) was discretised with a smoothing length of 0.325 mm, resulting 
in a total number of 583,000 particles. The leaflets were modelled with a 
thickness of 1 mm, comprising three layers of particles. 

Fig. 10 shows the computational domain of the root and the valve. 
Leaflets are modelled as separate solids (represented in magenta, blue 
and green), in order to allow the valve whole opening. Moreover, solid 
particles close to the aortic wall (indicated in red) are constrained by 
introducing ghost particles, as discussed in Section 3.1. 

Blood was treated as an incompressible Newtonian fluid, which is a 
common assumption [24,27,33,103,105–107], with dynamic viscosity 
of 0.0035 Pa.s and density of 1060 kg/m3. 

The material properties of the native aortic leaflets are reported to be 
non-linear, incompressible and anisotropic [108–111]. This behaviour is 
the result of the biomechanical synergy between elastin and collagen 
fibres, and supports the valve function by optimising the leaflets me
chanical response during the cardiac cycle. In fact, during valve open
ing, when the level of membrane strain is reduced, collagen fibres 
maintain a coiled configuration, which confers to the material high 
flexibility [112]. When the valve closes and leaflets coapt to retain the 
returning blood flow, fibres are uncoiled by the increasing transmural 
pressure, resulting in substantially higher tissue rigidity. This non-linear 
behaviour is neglected in the present study, where leaflets are modelled 
as linear elastic. Hence, in order to account for the described change in 
response of the material in the different phases of the valve cycle, 
different Young’s moduli are set for the valve opening and closing 
stages, equal to 20 kPa and 200 kPa, respectively. These values allow to 
obtain similar flexural rigidities as reported in the literature for the 
healthy aortic leaflets [31,113–115]. 

The aortic root walls are modelled as rigid with no-slip boundary 
conditions (aortic compliance is neglected). A pressure corresponding to 
the physiological transvalvular pressure difference is applied at the 
ventricular side of the domain, while pressure at the aortic outlet is kept 
equal to zero. Specifically, a maximum of 8 mmHg was imposed with a 

Fig. 9. Aortic valve simulation – Geometry of the Valsalva sinuses and leaflets. Sagittal and transversal views.  

Fig. 10. Aortic valve simulation – Solid particles defining the valve leaflets: 
blue, green and magenta circles; red circles: constrained solid particles at the 
commissures. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.). 

Table 2 
Aortic valve simulation – parameters.  

Parameter Value 

Fluid density (ρf) 1060 kg/m3 

Dynamic viscosity (μ) 0.0035 Pa s 
Inlet maximum pressure during opening 8 mmHg 
Inlet maximum pressure during closing 120 mmHg 
Structure density (ρs) 1060 kg/m3 

Young’s modulus of leaflets during opening (Eo) 0.02 MPa 
Young’s modulus of leaflets during closing (Ec) 0.20 MPa  
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Fig. 11. Aortic valve simulation – Velocity field and leaflet position at four time instants. a) Sagittal section; b) transversal cross section at the sino-tubular junction 
(STJ) indicated as dashed white line; c) transversal cross section at the Valsalva sinuses maximum expansion (SME) indicated as continuous white line; d) leaflets 
position; e) perspective view. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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linear ramp during valve opening; then the gradient inverts during 
closing, imposing a maximum transvalvular pressure difference of 120 
mmHg. Parameters used in the simulation are reported in Table 2. 

Fig. 11 shows the results at four different time instants corresponding 
to: partial and full closing, partial and full opening. The velocity field at 
the sagittal plane is reported in Fig. 11a, while the cross-sections at the 
sino-tubular junction (STJ) and at the sinuses maximum expansion 
(SME) are shown in Fig. 11b and c, respectively. Moreover, the valve 
configuration is displayed in Fig. 11d. 

Leaflets configurations appear to realistically reproduce the opening 
and closing of the aortic valve. In fact, in the closing phase, leaflets 
approach each other until complete coaption at the diastolic phase. 
Then, during the opening phase, leaflets move apart allowing a central 
jet. A perspective view is provided in Fig. 11e. Although only a quali
tative comparison can be made due to the simplifications in the material 
properties, results are coherent to those reported in Tango et al. [103]. 
In fact, leaflets expand widely into the Valsalva sinuses when open, 
minimising their interference with the ejecting flow (Fig. 12a). This 
effect allows to maximise the valve geometric orifice area and, as a 
consequence, the effective orifice area, which is a parameter descriptive 
of the systolic valve performance [116]. 

This result appears to be coherent also with the experimental study 
from Di Leonardo et al. [117], where leaflets of an ex vivo porcine aortic 
root show the same opening mechanism. In the closing phase, the back 
flow that forms along the aortic wall drives the leaflets from their fully 
open configuration towards the centre (Fig. 12b), and then separates 
producing a vortex into the Valsalva sinuses (Fig. 12c). This progres
sively expands and moves the leaflets centripetally (Fig. 12d), until 
complete closure is achieved (Fig. 12e). These washout vortices, already 
described by Tango et al. [103], are believed to form and propagate to 
prevent blood stagnation. 

The analysis confirms that the proposed SPH method is able to 
capture complex cardiovascular problems such as the aortic valve dy
namics, avoiding the main limitations of current competing approaches. 
In fact, thanks to the mesh-less nature of the SPH method, no issues 
associated with the remeshing procedure, which characterise ALE ap
proaches, are present. On the other hand, contrary to IB methods, the 
unique solution obtained by solving a single system requires no addi
tional coupling procedures nor interpolation at the interface. Further
more, contact between coapting structures (e.g. in valve closing 
simulations) is intrinsically permitted, requiring no artefactual gaps or 

complex contact algorithms. This implies additional saving in compu
tational time to what already discussed in Section 4.1. Furthermore, the 
proposed FSI algorithm is suitable to incorporate non-Newtonian and 
thrombogenic models, such as that recently proposed by Monteleone 
et al. [99], to investigate the thrombogenicity associated with different 
operating conditions or devices. 

A limitation of the method is the basic description of the material 
constitutive laws, which neglects non-linearity, viscoelasticity and 
anisotropy. This is common to current FSI solvers based on particle 
methods, although continuous advances are being made to improve the 
material description [35,118]. The implementation of non-linear re
sponses based on strain energy, viscoelastic and anisotropic behaviours 
will be the next steps of development. Also, the particle density must be 
sufficient to model thin wall structures, such as the valve leaflets 
(although the possibility to use multi-domain approaches with variable 
smoothing lengths [91] may address this issue). 

Finally, the method may not be accurate when modelling phenom
ena involving structure and fluid with very different densities, subjected 
to highly dynamic motion. 

5. Conclusions 

A novel FSI technique is proposed using the Lagrangian mesh-less 
SPH method. In this approach, both fluid and structural domains are 
represented by particles. In order to model the structural behaviour, 
spring bounds are introduced between neighbouring solid particles and 
elastic forces are determined aiming at restoring the springs resting 
length. The calculated forces are introduced in the fractional-step pro
cedure used in the ISPH scheme. 

Despite the simplicity in the structural modelling, the proposed 
approach shows good accuracy when compared with benchmark test 
cases typically used to validate FSI models. Moreover, the method was 
successfully applied to model a complex cardiovascular problem, con
sisting in the analysis of the aortic valve dynamics. 

The approach has shown the ability to overcome the typical issues 
related to this type of simulations, obtaining results in agreement with 
the literature. Since the approach is integrated in a truly incompressible 
method, it is particularly suitable to model soft tissues which exhibit an 
incompressible behaviour. However, material properties of the soft tis
sues are still simplified and incorporating non-linear behaviours, based 
on strain energy, and anisotropy will be the next step of development. 

Fig. 12. Aortic valve simulation – Velocity vectors at different instants of the closing phase. a) Full open valve configuration; b, c and d) partial closure; e) full 
closure. All vectors are represented with identical length, and their magnitude is indicated by their colour, as described in the colour bar on top of the figure. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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[64] È. Lluch, M. de Craene, B. Bijnens, M. Sermesant, J. Noailly, O. Camara, H. 
G. Morales, Breaking the state of the heart: meshless model for cardiac mechanics, 
Biomech. Model. Mechanobiol. 18 (2019) 1549–1561, https://doi.org/10.1007/ 
s10237-019-01175-9. 

[65] C. Antoci, M. Gallati, S. Sibilla, Numerical simulation of fluid–structure 
interaction by SPH, Comput. Struct. 85 (2007) 879–890, https://doi.org/ 
10.1016/j.compstruc.2007.01.002. 

[66] C. Zhang, M. Rezavand, X. Hu, A multi-resolution SPH method for fluid-structure 
interactions, J. Comput. Phys. 429 (2021) 110028, https://doi.org/10.1016/j. 
jcp.2020.110028. 

[67] A. Rafiee, K.P. Thiagarajan, An SPH projection method for simulating fluid- 
hypoelastic structure interaction, Comput. Method. Appl. Mech. Eng. 198 (2009) 
2785–2795, https://doi.org/10.1016/j.cma.2009.04.001. 

[68] A. Khayyer, H. Gotoh, H. Falahaty, Y. Shimizu, An enhanced ISPH–SPH coupled 
method for simulation of incompressible fluid–elastic structure interactions, 
Comput. Phys. Commun. 232 (2018) 139–164, https://doi.org/10.1016/j. 
cpc.2018.05.012. 

[69] L. Zhan, C. Peng, B. Zhang, W. Wu, A stabilized TL–WC SPH approach with GPU 
acceleration for three-dimensional fluid–structure interaction, J. Fluid. Struct. 86 
(2019) 329–353, https://doi.org/10.1016/j.jfluidstructs.2019.02.002. 

[70] A. Khayyer, Y. Shimizu, H. Gotoh, K. Nagashima, A coupled incompressible SPH- 
Hamiltonian SPH solver for hydroelastic FSI corresponding to composite 
structures, Appl Math Model 94 (2021) 242–271, https://doi.org/10.1016/j. 
apm.2021.01.011. 
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