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Abstract

The transfer of excitations between different locations of a quantum many-body system is of primary
importance in many research areas, from transport properties in spintronics and atomtronics to
quantum state transfer in quantum information processing. We address the transfer of n > 1 bosonic
and fermionic excitations between the edges of a one-dimensional chain modelled by a quadratic
hopping Hamiltonian, where the block edges, embodying the sender and the receiver sites, are weakly
coupled to the quantum wire. We find that perturbative high-quality transfer is attainable in the weak-
coupling limit, for both bosons and fermions, only for certain modular arithmetic equivalence classes
of the wire’s length. Finally we apply our findings to the transport of spins and the charging of a many-
body quantum battery.

1. Introduction

Quantum many-body dynamics lies at the core of most of theoretical and experimental physics [1]. Applications
of quantum many-body dynamics are found in countless technologies, ranging from electronics to spintronics
where characterising transport properties is of paramount importance [2, 3]. However, quantum many-body
systems are notoriously difficult to solve. Already finding the ground state of a one-dimensional two-body local
Hamiltonian is a QMA-complete problem [4]—Iet alone its dynamics—and many strategies have been
proposed to tackle the many-body problem, from DMRG to Quantum Monte Carlo, just to name a few
algorithms, as well as quantum simulators [5]. A notable exception is constituted by the class of integrable
models [6], where analytical methods are available for determining the full spectrum of the Hamiltonian. Still, a
complete characterisation of the dynamical behaviour of, say, an observable is a formidable task. The class of
quadratic Hamiltonians in creation and destruction bosonic and fermionic operators embody a small, but
significant, subset of integrable models. Their computationally manageable dynamics rests on the fact that they
can be mapped onto non-interacting models.

Recently, significant steps forward have been achieved experimentally in simulating many-body systems, e.g.
with cold atoms [7]. Likewise, the capacity of manipulating single- or few-body subsets of a many-body system
[8] is becoming key for many quantum devices, spanning from quantum information to quantum
thermodynamics applications. In these experiments, significant attention has been devoted to the transport of
excitations along one-dimensional quantum systems [9—12].

The transfer of excitations between edges of a spin chain, some instances of which can be mapped toa
quadratic Hamiltonian, has been addressed in several works, with particular emphasis given to the quantum
state transfer of a single qubit in quantum information processing. Fully engineered wires are able to achieve
such a goal with unit fidelity in a ballistic time [13—16]. Nevertheless, a precise control over each coupling
constant is experimentally demanding, especially in solid state systems. Alternative methods have been proposed
where only a few couplings are required to be addressed, generally being that between the sender (receiver) site
and the quantum channel [17-22]. The case of a higher number of excitations, or the transfer of an arbitrary
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Figure 1. Setup of the excitation transfer protocol. Sender and receiver block, with the excitations residing in the former, are weakly
coupled by J, at both edges of a wire. Each part is made up by a 1D lattice described by the Hamiltonian in equation (1) with J; = J = 1,
butforJ, < 1,and h; = h.

two-qubit state, has received less attention [23—25], whereas the transfer of a state of more than two qubits has
not been addressed yet in a setting where the quantum channel is made up of a chain with uniform couplings.

In this paper we address the problem of the transfer of # > 1 excitations between the edges of a system
described by a 1D quadratic many-body Hamiltonian. Due to the Hamiltonian’s non-interacting nature, we are
able to express the many-body dynamics in terms of one-body transition amplitudes. Exploiting this property,
we identify the equivalence classes for the length of the 1D system for which the transfer for up to four excitations
occurs, regardless of their bosonic or fermionic nature. The transfer happens, for specific lengths of the chain,
via Rabi-like dynamics in the weak-coupling regime, which we consequently dub as perturbative excitation
transfer.

The paper is organised as follows. In section 2 the nearest-neighbour hopping Hamiltonian, the setup for n
excitation transfer and its transition amplitude matrix are introduced. Moreover, the definition of perturbative
transfer and the single-particle eigenenergies resonance conditions between the sender (receiver) block and the
wire energy spectrum are defined. In section 3 the many-body dynamics for up to four excitations in the sender
block is analysed for each of the equivalence classes of the wire defined by the resonance conditions. In section 4,
the n excitations dynamics is applied to magnetisation and energy transport. Finally, in section 5 we draw our
conclusions.

2. The model

We consider a hopping Hamiltonian with nearest-neighbour interaction J;and an on-site potential h;ona 1D
lattice

i

H:

M=
b |

Il
_

(&1 8+ &l e + hieles, e))

where the ¢’s represent either fermions or bosons, and open boundary conditions are assumed,

& i1 = &y = 0.Inthe subsequent sections, we will assume that the couplings J; are all uniform but for the
couplings J; = Jo between the sender (receiver) block and the wire (see figure 1). We will also set the coupling
within the sender (receiver) block and within the wire as our time and energy unit J; = ] = 1. Inthe present
section, these assumptions are unnecessary for the diagonalisation of the model we are going to outline.

As a consequence of the U(1) symmetry of the model, the number operator, N = >N éf¢;, commutes
with the Hamiltonian in equation (1), implying conservation of the total number of excitations. This allows the
dynamics to be addressed in excitation-number invariant subspaces. Moreover, due to the non-interacting, i.e.
quadratic, nature of the Hamiltonian, single-particle eigenstates are sufficient to investigate the full many-body
dynamics.

The hopping Hamiltonian in equation (1) in the single-particle sector is diagonalized as

N N
H=> wdo ol = > wil e (2)
=1

k=1

where {wy, |¢;) = A,j |0) } are the eigenvalues and the eigenvectors of the tridiagonal matrix,
A= (i| H|j) = g((si,]’+1 + 6;j—1) + hid;j, describing the single-particle dynamics in the direct space basis,
|i) = &]|0). Here, and in the following, |i) = |00... 1; ... 00) represents a state with one excitation sitting on site i.
The symbol A has been used to stress the equivalence between H @ and the adjacency matrix used in
graph theory [13].

From equation (2) one obtains that the eigenenergies (eigenvectors) in the n-particle subspace are given by
the sum (tensor product) of the single-particle eigenenergies (eigenvectors). The fermionic or bosonic statistics

of the particles determines the size of the Hilbert space, reading the binomial factor (N

) for nfermionsona
n

2
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N+4+n-1

lattice with N'sites and ( ) for bosons. In the next section we will write the many-body dynamics in

terms of single-particle transition amplitudes.

2.1. Many-body dynamics

Having sketched in the previous subsection the spectral decomposition of the Hamiltonian operator, one is able
to express the dynamics of an arbitrary number of excitations in the initial state in the chain in terms of single-
particle dynamics [23, 25, 26]. We will however restrict in the following to initial states featuring only one
excitation residing on each of the sender sites, while the wire and the receiver sites are empty. Whereas the
restriction of at most one excitation per site is a necessary conditions if equation (1) models spinless fermions,
for bosons multiple excitation-occupancy per site would be allowed initial states. We will not consider the latter
initial state conditions also in view of comparing the role of the particle statistics in the investigated dynamics.
Clearly for bosonic excitations, the dynamics brings along multiple excitation-occupancy per site.

The transition amplitude for the transfer of n, excitations, residing on the sender sites {#n;} = {s;, s52,..., Sp.},
to the receiver sites r, residing on the receiver sites {n,} = {1, n,..., 1, }, canbe expressed in terms of the
submatrix F{{,Z’}} (t) of the transition amplitude matrix F(f), where only the rows (columns) corresponding to the
sites in the block {n,} ({n,}) are taken into account. The transition matrix F(¢) itself is built from single-particle
transition amplitudes

N N

ﬁj(t) = (j| e7 i) = > e k(] @) (dyli) = Zefiwktﬁﬁjk‘b:i (€)

k=1 k=1

as follows

o ffo - Mo
F(t) = le.(t) fzf\"(t)) @

fi® 0]

where H is the Hamiltonian in equation (2) and ¢y its eigenvectors. Being F unitary,
YIff®PF =1,Viand ) |f/ ()P = 1, V), (5)
j=1 i=1

embody the normalisation condition for the single-particle transition probability from a fixed site index i, or to a
fixed site index j, as expected by excitation number conservation.

As depicted in figure 1, in the presence of the mirror symmetric Hamiltonian in equation (1), the
eigenvectors of the tridiagonal matrix A are known to be either symmetric or antisymmetric [27]:
G = (—DF gy oy, withJ; > 0and eigenvalues wy listed in decreasing order. This yields fl.j t) = fJ’ (t)and

fij ) = fgjll_’ij (t), resulting in both a persymmetric and centrosymmetric transition matrix F. Clearly, once
sender and receiver blocks (of the same size) are chosen at each edge of the chain, the resulting submatrix will
retain only its persymmetry. Furthermore, the effect of a uniform potential / on the eigenvalues wy in
equation (2) equals only to a uniform shift of their values at zero potential. As a result of the mirror-symmetry,

the eigenvalues are symmetric around their middle value. Thus, one has wy ,; = —wy ., ;, where

i=1,2,.., % foreven Nand wvi1 ; = —wwsij, wherei =0, 1, 2., % for ‘odd N’. All these conditions
. . ] . . . .

translate in having f/(¢) purely real (imaginary) for even (odd) 7 + j.

In view of the previous results, we now explicitly construct the submatrix F{{:_’}} (t) for an arbitrary number of
excitations n; = n,. For n; = n,, the transition amplitude is identically null because of the excitation number
conserving nature of the Hamiltonian.

Let us assume, without loss of generality, that each of the n, excitations resides on each site of the lattice at
both edges,ie. {n;} = 1,2,...,n,and{n,} = N+ 1—n,N + 2—n, ..., N, see figure 1. Dropping henceforth
the time-dependence, the relevant submatrix, F[{,Z’}} of F, is obtained by selecting the first #, rows and the last n,
column,

le+17n,(t) le+27n,(t) le(t)

N+lin’ ces e N
i =] : © . fzz(t)- (6)
AR S A6
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Finally, the transition probability for n; excitations initially on the sender block to be retrieved on the receiver
block is obtained from the square modulus of the determinant and the permanent of F ) ! for fermions and
bosons, respectively [1]. In the determinant (permanent) expansion, each term represents an allowed many-
body transition amplitude channel—in the form of a product of one-body transition amplitudes from a sender
to areceiver site. Hence, the square modulus accounts for interference amongall these channels.

Itis interesting to stress that, although in general | det(F r}) P = |perm(F ) |2, equality is retrieved
whenever all non-vanishing terms in the determinant have the same signature. Th1s results, as we will show in
the following, that at specific times—including when max; [F{{:f}} ]is achieved—the transition probability of n;
excitations between the edges of the chain is independent of its fermionic or bosonic nature.

In order to relax a bit the notation, hereafter we will label the n, receiver sites starting from the edge, n, = 1,
2, ..., n,. This allows to highlight the persymmetry of the submatrix F{{:s'}}

fr@ 27w - flo

715 ces ces 1
Fl = fzz(t) . fzft) )
fre@ o f @

M distinct transition amplitudes

which now translates in fij () = f]’ (t). Asa consequence, there are only
in the submatrix in equation (7). Still, finding the conditions by which the transrtron probability approaches one
is a formidable task. A determinant (permanent) of a n,-dimensional square matrix is made up of a sum of !

terms, each given by a product of #, transition amplitudes, of which, at most, [E—I terms are equal because of

persymmetry, with [+] being the ceiling function. Therefore, at least [ —I transition amplitudes have to reach one
at the same time. Notice also that both det (F},, {” /) and perm (F ) are purely real (imaginary) for odd (even)

lengths of the chain. Because F{ .} Isacorner submatrrx of equatron (4), itis not unitary, but IF{ ) F,f |1-]- <
and

> WP <L Vi€ {nand 37 Iff(OF < 1,Vj € {n}, ®)
je{n,} i€ {ns}
hold as a consequence of the particle-number conservation.

In this work, we derive the conditions for which the transition probability, both for fermions and bosons,
approaches one by weakly coupling the sender and receiver block to the wire. We dub this dynamical regime
perturbative transfer. Notice that the transfer becomes perfect, i.e. det (F ) [perm (F )] — 1in the limit
Jo — 0, which, however, implies also infinite transfer time. In the followrng weset J, = 0 01, although we
checked that perturbative transfer does not depend on the specific value of ] insofar the weak-coupling
condition J, < J = 1issatisfied.

2.2. Perturbative transfer

Perturbative couplings have been used in several settings, from quantum-state transfer to entanglement
generation. However, previous works focused mainly on one-excitation transfer [28—30], with some exceptions
dealing with two-excitation transfer [24, 25, 31]. The case of n > 2 excitation transfer has not yet been addressed
in the perturbative regime. Let us first recap a few results for the one- and two-excitation perturbative transfer
which will be useful to describe the relevant dynamical features taking place also for n; > 2.

For one-excitation transfer, the bosonic or fermionic nature of the particle does not play any role, as there is
no statistics involved and the transfer amplitude, is given by equation (3). Because of the perturbative coupling,
only the two (three) eigenvectors, lying in the middle of the single-particle spectrum, have non-negligible
overlap with the initial and final state, see ﬁgure 2. This reduces the transition probability to

‘ZZH 71“’“<Z5Nk¢k1 H Gy | (1 — coswet) ‘ for N odd
I Or =1 ) , ©)
‘Zk::j; e pp b 2i ‘ Py, ‘ sinw,t | for N even
EEH—E, EN+1—EN+1_
where, foreven N, w, = % ~ J¢and gbw 1 \/_,and foroddN, w, = % ~ Jp,and

| ¢¥ ol = % only for N > 1. The approximate values for these coefficients can be obtained by a simple
procedure, which we illustrate below for even N. When J, = 0, the sender and the receiver each have one
eigenenergy state in the single-excitation sector with energy E = h, that|1) and | N), respectively. In the presence
of a perturbative coupling, J, < 1, the degeneracy between the sender and the receiver eigenstate is broken and,
in the single-particle sector, the eigenstates are | U+) ~ %(| 1) &+ |N)), because of mirror-symmetry. From
equation (9), we see that excitation transfer can be achieved with a probability perturbatively close to one. A

4
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Jo =0 Jo < 1 b =0 Jo < 1

A Energy A Energy

sender wire receiver chain sender wire receiver chain

=||— = =

Figure 2. Single-particle energy spectrum of the chain, composed by one sender, one receiver, and a wire of even and odd length n,,,
respectively, left and right panel. In both cases, the energy levels, before and after the coupling is switched on, are shown. Notice that,
for an even length of the wire (left panel) no resonances occur between the sender (receiver) eigenenergy and the ones of the wire, at
variance with the case of an odd length of the wire (right panel). As a consequence, for 1,, even, two quasi-degenerate eigenenergies,
whose eigenstates are localised on the sender and receiver site, enter in equation (3). For n,, 0dd, instead, a wire energy eigenstate is
resonant with the sender (receiver) energy and three quasi-degenerate eigenstates enter the dynamics depicted by equation (3). This
yields, in the latter case, a non-zero probability for the excitation to be found in the wire. The green line highlights the quasi-degenerate
states.

similar procedure yields perturbative transfer of one excitation also for odd N. The main difference between the
two cases lies in the fact that, for even N, there are no resonances between the sender (receiver) and the wire
single-particle energy states, whereas, for odd N such a resonance occurs, see figure 2. Consequently, in the
former case the energy splitting is a second-order perturbative effect, whereas, in the latter, it is a first-order one.
This translates in shorter transfer times for the odd-length wire.

The characteristic feature of 1-excitation transfer in equations (9) is the presence of a single frequency, which
gives rise to Rabi-like oscillations of the excitation between the pair of two-level systems embodied by the sender
and the receiver qubit. For n = 1 excitation transfer, this is a direct consequence of the weak-coupling which
couples perturbatively only two (three) single-particle levels. On the other hand, forn > 1, there will be more
levels entering the dynamics (the precise number will be given in the next subsection) and, therefore, more
frequencies enter the sum of the transition amplitude in equation (3). As a consequence, Rabi-like oscillations
are much harder to achieve. Nevertheless, if one of the frequencies is much smaller than every other, then it will
dominate the dynamics, i.e. it will form the envelop of the transition amplitude in equation (3) and, therefore,
unit probability is achievable in a Rabi-like dynamical scenario. Such a scenario is here defined as perturbative
transfer. Let us also specify that here we are referring to perturbative transfer of excitations, that is, having the
determinant (permanent) of equation (7) equal to one. Although every physical quantity in quadratic models
can be expressed in terms of single-particle amplitude, perturbative transfer of excitations does not necessarily
imply perturbative transfer of, say, an arbitrary quantum state. Nevertheless, as we will see in section 4,
perturbative transfer of excitations implies perturbative transfer of energy and magnetisation, for instance.

2.3.Resonances in sender-wire-receiver system

In order to determine the number of eigenstates giving a non-negligible contribution to the transition amplitude
in equation (3), it is necessary to identify which states of the sender (receiver) block exhibit resonances with the
wire’s eigenstates. In the weak-coupling regime, this identifies different lengths of the wire giving rise to
resonances between its eigenenergies and those of the sender (receiver) block.

As mentioned in the previous subsection, for an excitation sitting initially on the first site, | 1), only two or
three terms are relevant in the wave packet in equation (3), depending whether Nis even or odd, respectively
[28]. In the former case there are only two eigenvectors | ¢, ) of the system having a non-negligible overlap with
sites 1 and N, whilst in the latter they amount to three. This can be deduced by considering the number of
resonant energy levels of the uncoupled system, sender, receiver, and wire. For J, = 0, there is only one single-

particle energy eigenstate for the sender and the receiver, respectively, with energy E = h. The energy spectrum
km

n, +1

of the wireis given by Ex = h + cos [32]. Therefore, in order to have degeneracy between the sender

(receiver) and the wire, N has to be odd as the condition cos - ki -=0 has to hold. When J, is switched on in the
weak-coupling limit, J, < 1, the degeneracy is lifted by 6. For even N, it becomes a second-order perturbation
effect, and the energy splitting is O(J;), whereas, for odd N, the effect is of first order yielding an energy splitting
O(Jo)- Being the transfer time 7 oc §~ ', perturbative transfer in odd-length chains is faster than in even-
length ones.

Now we consider the case of n; = n, > 1.In order to have resonant energy levels with the wire, made of n,,,
sites, the following condition has to hold
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N 1 2 3 4
N |20 20+1 1301 3l+1[31+2 |4l |4 +1|4l+2|4+3|5|5+1|5l+2|5+3]|5+4
Nyes | 0 1 0 0 2 0 1 0 3 0 0 0 0 4

Figure 3. Table showing the number of resonances between the sender and the wire 1, for n; senders up to 4 and a wire of length ,,,,
withl = 0,1,2, ....

krm qm

= , k=1, .,n,andg=1, .,n,. 10
ns + 1 n, + 1 1 (10)
which, when put in the following form
n, + 1
= 71(, 11
1 ns + 1 (1D

shows that whenever two length of wire, #,, and m,, are congruent modulo n; + 1,1.e.

n,, = m,, (mod (n; + 1)), the two wires share the same number of resonant modes with the sender. Asa
consequence, different lengths of wire n,,, but belonging to the same equivalence class, will exhibit similar
dynamical behaviour, in particular, with respect to perturbative excitation transfer. To find the number of
resonant modes 71, one has to solve equation (11) for each integer p in the least residue system mod (1, + 1),

ie.p =0,1,...,n[tturns out that the mode g of the wire is resonant with the mode k of the sender for
s+ 1 1 1
gom D Ap L (L prLY )
ns + 1 ns + 1

where m is an integer and the length of the wireis n,, = m(n; + 1) + p.
A few instances, relevant in the following, will be analysed. For p = 0, hence a wire of length
n,, = m(ns + 1), equation (12) reads

ns + 1

This equation never holds as k < #; + 1and therefore no resonances are present between the wire and the
sender for arbitrary n,. Forp = 1and n,, = m(n; + 1) 4+ 1, 0ne gets

q = mk + k, (14)

ng + 1

which is satisfied only for n;0dd and brings about resonance between the mode k = "TH andgq = ””2_ L+ lof
the sender block and the wire, respectively. Furthermore, because of the reflection symmetry of the energy
spectrum of both systems, this is the only resonance present. Finally, we consider the case p = n,, corresponding
ton,, = m(n; + 1) + n,. Equation (12) becomes g = (m + 1)k, meaning that each sender energy eigenstate is
resonant with one eigenstate of the wire. This is the maximum number of resonances in the system as the energy
levels of the uncoupled blocks in figure 1 are non-degenerate.

Following such a procedure for each p we build the table in figure 3 for an arbitrary number of senders ;.

3. Many-body dynamics

Now, before dealing with the case 1, > 2, we first discuss some of the results obtained in [24] for the case of two-
excitation transfer. Our previous discussion about the perturbation order of the sender-wire resonances
immediately explains the reason wires of length n,, = 31 + 2 perform perturbative quantum-state transfer ina
faster time than wires of length n,, = 31 4- 2.Indeed, the former case exhibits first-order perturbation
correction to the three-fold quasi-degenerate energy eigenstates relevant to equation (3), whereas, in the latter
case, the first correction to the two-fold quasi-degenerate eigenstates is of second-order. For the details about the
transfer time and the perturbative expansions we refer the reader to [24], and for the generation of entangled
states between the sender and receiver block to [31].

Here we highlight the fact that the bosonic or fermionic nature of the excitations plays a key role in the
dynamics because of the different dimensions of the Hilbert space of the Hamiltonian in equation (1) due to
their different statistics. Indeed, as for fermions the receiver’s Fock space is made up of a single state in the two-
particle sector, namely | 11), for bosons, in addition to the latter, also the states |02) and |20) build up the Fock
space. Consequently, the transition probability between the states |12) and [N — 1 N for fermions and bosons
are not equivalent at all times. Nevertheless, the fermionic transition amplitude envelops the bosonic one, with
the two bosons exploring the receiver’s Hilbert space on a time scale J, see figure 4. It is worthwhile to anticipate
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1.0
J]'.“N N*I‘ —— bosons
12 ;
0.8 —— fermions
0.6 02

ool VA VINVINYUNFL
1660 1665 1670 1675

0.4

0.2

0.0

0 1000 2000 3000 Jt 4000 5000 6000 7000

Figure 4. The transition probability of two excitations from sender sites {n,} = 1,2 toreceiversites {n,} = N — 1, N for fermions
and bosons, respectively. Excitations bounce back and forth between the sender and the receiver block via a Rabi-like dynamics, where
the green curve is for fermions and constitutes the envelop of the blue curve for bosons. The inset shows the dynamics in a interval of
around unit transfer probability for fermions, highlighting the boson dynamics on a time scale of order of J. The length of the chain is
N = 45.

that such a difference of their respective transition probabilities does not have consequences on several
observables, such as the average excitation number on each site, as we will show in section 4.

3.1. Equivalence between bosonic and fermionic perturbative excitations transfer
As can be seen from figure 4, the two-fermion transition probability is the envelop for the bosonic one. Asa
consequence, perturbative transfer is achieved at the same time for both classes of particles. This is a general
feature of the model and can be explained by means of perturbation theory.

In the weak-coupling limit, and in the absence of resonances with the wire, we can approximate the
perturbed eigenstates having non-zero overlap with the sender and the receiver sites as the symmetric and
antisymmetric linear combination of the degenerate single-particle eigenstates of the sender and the receiver

block
1 2 & krl krl
Uy = — sin I sin N+1-1D| 15
%) ﬁ[VnSJrllz_:l nerll> Vns—HZ s+1| >] (1)

It turns out that the transition amplitude in equation (3) is bounded by

N

Z e—iwkt ¢jk ¢;{kl

k=1

sin sin
ns + 1 ns + 1

maxlfl.j(t)l = max (16)

kmji . kmi ’

N 2
<Yl = —— >
k=1 R

ns + 1y

The last term on the rhs of equation (16) is equal to one only for i 4+ j = n; + landi = j. This translatesina
submatrix F{{;’} (equation (7)) which can, at most, have unit single-particle amplitudes either on the main
diagonal or on the skew-diagonal, respectively. Although, the determinant (permanent) of F{ ’}} may become
one also due the contribution of many terms in their respective expansion, it is highly improbable that such a
fully constructive interference between wavepackets fiJ (1), for arbitrary i and j, will take place, especially in the
presence of many frequencies entering the dynamics. As a result, also in view of the normalisation condition in
equation (5), perturbative transfer is most likely to occur when all the terms either on the main, or on the skew-
diagonal, will reach unit single-particle transition amplitude. It is now immediate to realise that perturbative
transfer for an arbitrary number of excitations is independent from their bosonic or fermionic nature as the
signature of the determinant of equation (7) does not play any role.

3.2. Heuristic approach to PP transfer
The result in equation (16) and the resonance conditions derived in section 2.3 allow us also to give arule of
thumb as to whether perturbative excitation transfer is achievable for an arbitrary number of excitations n;in a
wire of given length n,, by means of the protocol of figure 1. Building on the argument for one-particle transfer in
section 2.2, the single-particle transition amplitudes entering the submatrix in equation (6) are given by
equation (3), where only resonant modes have to be kept.

Let us consider the case wherej = N + 1—i, i.e. mirror-symmetric sites in the sender and receiver block,
respectively, corresponding to the elements on the diagonal of the matrix in equation (7). In the absence of
resonant modes with the wire, equation (3) reads

7



10P Publishing

New J. Phys. 22 (2020) 033030 W Chetcuti et al

. ) . " ) %, _is o .
fij(t) — an:sl e Mktqﬁjkd)ki — anzsl ¢jk¢ki(e it elékt)e iwgt

. . . . . a B
=3, (Z)jk(bz(e‘l‘skt — eldt)(eiwnt 4 ety = —j . ’k4 k. sin 6kt cos wit, (17)

where in the last line, without loss of generality, we have considered an instance of even i 4 jand mirror-
symmetry of the energy spectrum has been exploited. The transition amplitude is hence given by a wavepacket of
n, travelling waves, each given by a product of harmonic functions, being sines or cosines depending on n,,,, 11,
and k. The specific form of the harmonic function of wy not being relevant, we notice that the frequencies
entering the functions satisfy §; << wy, as the energy shift of the kth energy level is negligible with respect to its
unperturbed value. As a consequence, sin 6 ¢ shapes up the envelop of kth wave of fij (t). Thereforeit s
straightforward to conclude that, in order to have fij (t) = latsome specific time t = 7, the §;’s should be all

commensurate, which is a hard condition to fulfil, or only one § ’,f should be much smaller than all the others.
The latter condition defines the rule of thumb for perturbative excitation transfer:

! 6 < b, (18)

where the §’s are the energy shifts of the corresponding energy levels entering equation (17). Equation (18) states
that if in the wavepacket of equation (17) there is only one energy being corrected at a higher order in
perturbation theory, perturbative excitation transfer is attainable. Indeed, being n-excitation transfer achievable
by the product of the single-particle transfer on the (skew) diagonal, each evolving with the same eigenenergies
asin equation (17), the transfer time is given by 7 >~ %.

An identical argument applies in the presence of resonances with the wire where the single-particle
transition amplitude reads

2ng+1n,,

=3 e gl (19)
k=1
and the energy shifts ¢, are evaluated taking into account the triple quasi-degenerate nature of the energy level(s).

3.3. 3- and 4-excitation perturbative transfer
Let us now address the case of n; > 2. For three fermionic excitations, in order to have perturbative transfer

N-2 ¢N-1 N
h | h

|F5r|2 — f2N72 21\171 1N71 ~ 1) (20)
N—-2 N-2 N—-2
f3 2 1

where, without ambiguity, we have labelled by s and r the sender and receiver sites, respectively. According to the
arguments in the previous sections, we analyse the contribution of main diagonal to the determinant, with
similar arguments holding for the skew diagonal contribution,

A [ A & A o (21)

For the case of nn,, = 4n + 1, the single-particle transition amplitude in equation (3) now reads
7
fl@0) =3 e gy o (22)
k=1

From figure 3 we notice that two double quasi-degenerate and one triple quasi-degenerate eigenstates have non-
negligible overlap with the sender and receiver sites. As the former degeneracy is resolved at second-order in
perturbation theory, and the latter at first-order, this implies that, for J, — 0, we may expect the rule of thumb
in equation (18) to hold as 2nd-order energy shifts are O(J7) wheareas 1st-order shifts are O(Jp).

Indeed, we see that perturbative transfer is ruled by the following term

IFL ()] =~ [sin?wigt 2, (23)
B, — Eg

where w7, = is the 2nd-order perturbation energy shift of the double quasi-degenerate energy eigenstate.
The positions of Eg and E; of equation (2) in the single-particle energy spectrum of the chain, ordered in

increasing values, are given by k = [% cos™! % J — land [% cos™! %J — 2, respectively.

Concerning the other lengths of wire n,, in figure 3, for n; = 3, we notice that they all have exclusively 1st- or
2nd-order perturbation energy corrections. By the rule of thumb in equation (18), we do not expect perturbative
transfer, being all the energy shifts of the same order of magnitude for a given #,,. In addition, we show that also
non-perturbative transfer does not occur, being the energy shifts incommensurate.

Let us first analyse the non-resonant cases in figure 3 n,, = 41,41 + 2. As only six eigenstates take part in the

dynamics, the single particle transition amplitude between a sender and a receiver site reduces to

8
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. 6 .
fi = Y e, b, 24
k=1

From the perturbative expansion of equation (15), the envelop of the transition amplitude in equation (24) can
be written as

1(. . Es—Es Y . Es—E
|FI(t)] = —(51nE4t + sin ¥l‘) sin —=>— ¢ |, (25)
4 2 2
where E, is given by the energy level labelled by k = % + 1,Egand Esby k = [% cos™! %J and
l% cos™! %J + 1, respectively. From equation (25), it is evident that, in order to achieve transfer of 3
excitations, E;and Eg — Es have to be commensurate. This implies that
E4t _ (4n1;1)7r E4t _ (4nw;3)7r
EéfEst _ @m+Dr7 and EéfEst _ m+3)7’ (26)
2 B 2 2 B 2

have to hold with # and m integers, in order to have the oscillatory functions in equation (25) be 1 or —1 atthe
same time. Hence, one of the two following conditions has to be fulfilled

Es — E 4 1 Es — E 4
6 5 4m+ and =2 > — m+3' 27)
2E,4 n + 1 2E, an + 3

The impossibility of the transfer arises because, for Jy — 0, we find numerically that the energy ratio
% — % Therefore, equations (27) can not be fulfilled by any integer pair n and m, as can be readily seen from

the fact that they can be cast into
8m = 4n — 1 and 8m = 4n — 3, (28)

respectively. The same argument about incommensurability of the eigenfrequencies entering equation (24)
applies for wires of length n,, = 4n + 3. Notice that, in the latter case, according to figure 3 there are 3 sets of
triple quasi-degenerate eigenstates, all coming from 1st-order perturbation expansion. Nevertheless the same
argument applies as the ratio of the energy shifts is found numerically to be % for Jy — 0.

Notice that, as we are reporting a limiting procedure, there may be instances of J, where the ratio becomes
quasi-commensurate, and after a very large amount of time a transfer probability close to one may be achieved.
Such fortuitous cases, however, are not the topic of our investigation, as we are considering the conditions to be
fulfilled in order to achieve perturbative transfer in the generic limit of weak coupling instead of some specific
values of ], which may eventually be a set of zero measure and hence extremely sensible to disorder.

To summarise, we have found that for n, = 3 excitations, placed at one edge of a wire of length #,,and in the
weak-couplinglimit J; — 0, perturbative transfer is achievable only for n,, = 4/ 4+ 1 where the unique 2nd-
order perturbation eigenenergy correction determines the transfer time. Other equivalence classes of the wire’s
length do not achieve unit transfer of three excitations because all the energy shifts belong to the same
perturbation order and commensurability between frequencies is not achieved. In figure 5 we depict the results
only for the case of successful perturbative transfer.

Let us now address the case of n, = 4. From figure 3 we see that all energy shifts, for a given ,,, are of the
same order in perturbation theory, either 1st-order for n,, = 51 + 4 or 2nd-order in all the other case.
Therefore, at variance with the case n; = 3, the condition for perturbative excitation transfer given by
equation (18) is not satisfied. Nevertheless, there are lengths of the wire 1,, exhibiting successful n; = 4
excitation transfer, whereas other lengths do not. The reason, as we will show, can be traced back to the fact that
for some length of wires n,,, the energy splitting at 2nd-order in perturbation theory is almost one order of
magnitude lower for some energy levels than it is for others. Let us analyse first the successful case.

Forn,, = 5] + 2, the perturbated eigenstates are located at position k = [% cos™! %J — land

k= [M cos 1 L+ J for the higher energy state,and k = [? cos™! (%)J and

™ 4

k= l% cos™! (%)J + 1for the lower one. By numerical evaluation, we obtain that the ratio w74 to wx

goesto 0.14, for J, < 1andirrespective of I. The same situation occurs for n,, = 5/ 4 1.In these cases n, = 4
excitation transfer occurs, although it is not ruled by a single frequency and hence, according to our definition, is
is not perturbative excitation transfer. Indeed, in order to determine the transfer time, one has to find the
maximum of two-single particle transition amplitudes entering the 4 excitation transition probability between
the edges of the chain,
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Figure 5. Transition probability for the transfer of three excitations fromssites 1,2, 3 tosites N — 2, N — 1, Nfor a chain length of
N = 47inatimeinterval of t € [0, 160000/]]. The blue (green) line shows the exact dynamics for bosons (fermions), whilst the red
dotted line is the envelop of the three-particle transition as calculated in equation (23). In the inset, a zoom around the time of
perturbative transfer is shown.
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Figure 6. Transfer times 7 for n, = 1,2, 3, 4 excitations in wires of different length ,, fulfilling the (quasi) perturbative condition for
all considered n,. Notice that, whilst for #; = 1 the transfer time increases as /71, because the relevant frequency is obtained by first-
order perturbation theory, in all other cases the slowest frequency is given by second-order perturbation theory, yielding thus a linear
increase with n,,. In the lower right panel, for n; = 4, the blue curve is the exact numeric transfer time, whereas the red one reports

7 = —. Both follow a linear increase, although with different slope.
w7s

IEP = 1G22 P (29)

The fact that one energy shift is almost one order of magnitude lower than the other entering the dynamics
allows one to determine the order of magnitude of the transfer time as given by 7 = 2— Infigure6a

comparison of the latter with the exact numerical result for excitation transfer is shown in panel d. On the other
hand, for n,, = 51,51 + 3,5] + 4, one has ws; ~ wyg, with the ratio going to 0.38. perturbative transfer does not
occur and also non-perturbative transfer has not been found for several instances within time intervals related to
the inverse of the energy splits. Clearly, this does not mean that the excitations may not be transferred at a certain
time, being only two frequencies involved and occasional instances of commensurability may occur between the
energy shifts, but this would hardly be robust against the length of wire and perturbations of J;.

Finally, we present an unified scenario for the shortest transfer time achievable via perturbative transfer for
ns = 1,2, 3 excitations in the sender block in figure 6. We have also added the case n; = 4 to highlight its
qualitatively similar behaviour to perturbative transfer. Here we assume that the sender and receiver are
connected by a wire able to transfer from one to four excitations by weakly coupling the respective blocks to the
end to the wire. In order to have a wire able to perform such a task, its length r,, has to fall in all the equivalence
classes allowing perturbative transfer for n; = 1, 2, 3 and quasi-perturbative transfer for n; = 4. Whereas n,, can
bearbitrary for n, = 1,2, for n, = 3, 4, the length of the wire hastobe n,, = 4/ 4+ landn,, = 5/ 4+ 1or

w = 51 + 2, respectively. This yields to wires length of n,, = 20! + 1 and n,, = 20l + 17, respectively. In
figure 6, we report the transfer times for the former case, noticing its linear increase with the wire’s length for
ns = 2,3,4.On the other hand, for n, = 1, theincreaseis ./, as the frequency involved in the perturbative
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transfer is derived from resolving the degeneracy via first-order perturbation theory, as shown for odd Nin
section 2.2.

4. Applications of many-body perturbative transfer

In the previous sections, we have shown that perturbative transfer of n excitations is possible between the edges
of a quantum wire. Now we analyse some cases where perturbative transfer is applied to the transport of relevant
physical quantities, such as magnetisation and energy, highlighting first the invariance with respect to the
fermionic or bosonic nature of the excitations.

4.1. Equivalence of fermionic and bosonic observable’s dynamics
An arbitrary one-body observable in second quantisation is given by

0= Z anmEJEm + h.c., (30)
nm

where the ¢’s are bosonic or fermionic operators acting on site n and . Expressing average of the observable’s
dynamics in Heisenberg representation, where H is given by equation (1) yields

(O0W) =3 aan Ppn B P8 2,). (31)

nm
As the single-particle spectrum of the Hamiltonian in equation (1) is identical both for fermions and bosons, the
only difference between the dynamics of an observable on a fermionic or bosonic many-body system that can
possibly arise has to come from the average on the initial state of the operators on the RHS of equation (31).
In our setting the initial state is given by one or zero excitations per site

[w©) = [] ¢&flo), (32)

i={ng}

which is also the only initial state that fermions and bosons can have in common. Evaluating the average on the
rhs of equation (31) on this initial state reads

(0] &8 84,8] 848, ... 2] 8]0). (33)
Expressing all operators in the position basis reads

Z% (0] &6 ... 8n8feje) ... 85 10). (34)

By using Wick’s theorem, we notice that the non-zero fully-contracted terms are those having an even number
of permutations. As a consequence, the dynamics of an arbitrary one-body observable, such as in equation (31),
is independent of the bosonic or fermionic nature of the excitations. For instance, the average number of
particles on alattice site, (A (t)) = (& (£)¢,(t)) is the same whether the Hamiltonian in equation (1) refers to
bosons or fermions, notwithstanding Pauli’s exclusion principle holds for fermions whereas bosons allow for
multiple occupation.

It is easy to show that the same holds for n-body observables of the form

0= Q. & emCi &6 6 + huc, (35)
nmijrs ...
when the average is evaluated on an initial state of the form of equation (32) and the dynamics is ruled by a

quadratic Hamiltonian such as in equation (1). A relevant example of a 2-body observable of the form of
equation (35) independent from the statistics of the excitations is the density-density fluctuations (;(¢);(t)).

4.2. Magnetisation transport
As it is well known, the Hamiltonian in equation (1) models alsoa 1D spin-% chain with isotropic interactions on
the XYplane, i.e.,

N
=788+ 8/ S + miS; (36)

when the standard Jordan—Wigner transformation is carried out [33]. Because of the Jordan—Wigner mapping,
the (fermionic) Hamiltonian in equation (1) can model an XX spin-% open chain, where the average total
magnetisation (alongthe z direction) of a set of spins residing on sites {i} is given by

(8% = 24y (S5 = Z{Z 2 *. Asa consequence, the magnetisation of the receiver block evolves as
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Figure 7. Average magnetisation of the receiver block, equation (38), for n; = 3 inachain of N = 47. Notice that the occupation
number entering equation (37) oscillates between two and three on a timescale much larger than the transition probability reported in
figure 5.

L) =Y e ) - 2 (37)
{r}

where the average is evaluated over the initial state having all the spins in the sender block flipped. In the
Heisenberg picture and using Wick’s theorem, it is possible to express the receiver’s block magnetisation as a
function of single-particle transition amplitudes f/():

() = Z Z If/F = = = IF Ol - 7’ (38)

where ||*||r is the Frobenius matrix norm and F; () is the submatrix defined in equation (7). The result for

ny = 3isshown in figure 7. Notice that, although the transition probability oscillates, for bosons, between 0 and
1 on a timescale of  in the the corresponding scenario in figure 5, the average number of bosons on the receiver
block varies only between 2 and 3. Therefore, on a large time interval, with respect to J, around the transfer time
T at least two excitations out of three are located on the receiver block irrespective of their bosonic of fermionic
nature. Indeed, the dynamics of the occupation number (7;(¢)) of site i entering equation (37) is identical for
bosons and fermions, as by the argument of section 4.1. As an example, let us consider the case n; = 2. Although
the dynamics of the transition probability differs, as reported in figure 4, the subspace spanned by the two
photons in the receiver block is composed by {|11), %(l 02) £ |20))}, which are all states having the

same (7; (£)).

4.3. Energy transport

The transfer of energy from one spatial location to another has always been a central topic in physics. Recently, a
lot of attention has been devoted to the so-called quantum batteries, i.e. quantum devices able to store energy
and release it upon demand at specific times [34—37]. Devising a protocol to extract the maximum amount of
energy from a charged battery, establishing a bound on its amount, and stabilising the battery’s charge has been
addressed in several works [38—42]. Another line of research is embodied by the investigation of the charging
protocol of a quantum battery [43—45], and, apart from a few instances [46], mainly non-interacting systems
embodying the quantum battery have been considered.

Our work can be immediately rephrased in terms of a charging protocol of a many-body quantum battery.
Dubbing the sender block as charger, the receiver block as battery and the wire as a quantum cable connecting
the charger to the battery, a quite natural set-up for charging a quantum battery is represented by figure 1.

Nevertheless, in order to reinterpret the excitations dynamics in section 2 as a charging protocol, a few
precautions are in place. As shown in [45], the charging protocol should involve a time-dependent Hamiltonian

H(t) = Hy + AN H, (39)

where Hy = HC + H,, + Hg, are the time-independent Hamiltonians of the charger, the wire, and the battery,
respectively. H is the Hamiltonian connecting the charger (battery) to the wire and A(£) is the coupling constant
responsible for switching on and off the interaction between the charger (battery) and the wire when the charging
protocol starts and ends. Generally, it is assumed that A(#) is given by a step-function having a value of 1 for

t € [0, T]and 0 otherwise. Because of that time dependence, energy may not be conserved and there could be
some switching energy 6E;,, injected or extracted from the system during the protocol. This can be evaluated [45]
by
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8Eu(1) = tr[Hi(p(0) — p(1)], (40)

where p is the density matrix of the full system. By definition of the switching energy in equation (40), for

[Ho, Hi] = 0, one has §E,, (1) = 0. However, this is not the case for our model, since the commutator does not
vanish. Nevertheless, evaluating equation (40), we obtain a zero switching energy due to the mirror-symmetry of
our model. The two terms entering equation (40) are equivalent to

tr[Hp(0)] = (U(0)| &) &y, + & &, + h.c|T(0)), (41)

tr[Fip(m)] = (B(0)] & (T)éw,(T) + &) (T)E,(T) + h.c.]T(0)), (42)

where the last equation is written in the Heisenberg representation. Equation (41) is identically null because of
the choice of the initial state of our system, whereas, expressing equation (42) in terms of single-particle
transition amplitudes, results in

w[Bip(M] = Y (fF)f + (ffF + ce), (43)

ne{nc}

with c.c. denoting complex conjugation. The above expression is identically null as each ( f;)* f;“ results to be
purely imaginary according to the conditions outlined in section 2.1 for mirror-symmetric matrices.

As a consequence, the figures of merit for the charging protocol of a quantum many-body system viaa
quantum wire, are those reported in [45]. The mean energy stored in the battery and the mean storing power are,
respectively,

Ep(7
Ex(r) = t[Hapy(r)], B(r) = 22, (44)
T
Other useful quantities are the maximum energy stored and the maximum power,
E (1) = max[E«()] = E(7), R(7) = max[R(7)] (45)
and their corresponding optimal charging times,
7= min [7], 7= min [7]. (46)
E(T)=Ey(7) P(F)=Kk(7)
Lastly, the charging power obtained at maximum energy is defined as,
_ Ey(7
pm =22, 7)

which is generally different from the maximum power because the times at which maximum energy and
maximum power are achieved, 7 and 7 respectively, may not coincide.

In this subsection we choose i > 1, so that the charger state with all spin aligned in the positive z-direction is
the highest energy eigenstate of Hg, with energy ”;—h Applying the same magnetic field /i to the rest of the system,
wire and battery, allows us to use the formalism of section 2 to evaluate the above figures of merit, as a uniform
magnetic field in equation (1) implies only an uniform shift by h of all single-particle eigenenergies, with the
eigenvectors remaining unchanged. Such a uniform shift brings along only an irrelevant overall phase factor in
the dynamics as itamounts to adding a constant to the Hamiltonian in equation (1).

Interestingly, only the one-body terms in Hj contribute to the mean energy Ep(7) in equation (44). This can
be immediately seen as, at time 7, the density matrix of the battery pg(7) represents the state with all the spins
flipped as perturbative transfer has occurred. In addition, it results also that the energy due to the inter-spin
interaction term is vanishing at all times, as a result of the following equation

1.+ 4 .

E= Y —(,&+he)= 3 (Y + e, (48)
ic{ng} i€ {np}
née{nc}

again because of the conditions on fij (t) for mirror-symmetric matrices, as already derived for the switching
energy OEj,.

This allows us immediately to use our results to confirm that all the charger’s energy is transferred to the
battery and, remarkably, no energy is stored in two-body correlations at any time. This has several advantages:
on the one hand, only single-qubit operation are necessary to extract the energy from the many-body battery
and, on the other hand, the n spins embodying the battery can be split in independent, non-interacting
partitions without any loss of the initially stored energy. An instance of the charging process of a quantum many-
body battery is shown in figure 8 for the case of n, = 4. Notice that the power at maximum energy as by
equation (47) is obtained at a considerably larger time than the maximum power, equation (45).
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Figure 8. Energy and charging power for a battery made out of 4 qubits nz = 4, left and right panel, respectively. The dotted line in the
left panel corresponds to the transfer of the four excitations from the sender to the receiver. The orange line is the contribution of the
one-body term in Hj, whereas the green line that of the two-body term. In the right panel, the black dotted line is the time at which the
maximum power is achieved, whereas the blue dotted line is the time at which the maximum energy is stored in the battery,

equation (47). The corresponding energy stored in the battery is reported in the left figure by the same lines. The colour of the curve
Py(7) indicates the amount of energy stored in the battery at that time. The length of the wire is 32, for a total length of the chain of 40.

5. Conclusion

We have investigated the many-body transfer of bosonic and fermionic excitations in a one-dimensional open
chain modelled by a nearest-neighbour hopping Hamiltonian. The set-up consisted of a block of sender sites,
each hosting one excitation, weakly coupled to a quantum wire at one edge with the block of receiver sites weakly
coupled at the opposite edge. We have found that up to three excitations can be transferred between the edges of
the chain in a regime dubbed perturbative transfer via Rabi-like dynamics. We have identified the lengths of the
wire that allow perturbative transfer analysing the occurrence of first- and second-order perturbative
corrections to the energy degeneracies among the single-particle energy levels of the sender (receiver) block and
the wire. This has yield us to identify modular arithmetic equivalence classes of the wire’s lengths supporting
perturbative transfer. Consequently, we have found that, for a number of excitations greater than two, not all
length of the wire exhibits perturbative transfer, at variance with the case of one and two excitations.

The results obtained have then been applied to the investigation of the dynamics of two physically relevant
quantities: magnetisation and energy transport. In the former case, we obtained that the receiver spins get fully
magnetised at the perturbative transfer time and, moreover, partial magnetisation is retained for a long time.
The energy transfer protocol has been investigated in the framework of quantum battery charging, one of the few
instances where the quantum battery consists of a many-body system, and we obtained a complete charging of
the battery with energy stored only in the on-site interaction Hamiltonian term. This has the advantage that an
energy extraction protocol needs to consists only of local operations on each site. We also showed that relevant
physical quantities, such as the average number of excitations in the sender block, is the same both for a
fermionic and a bosonic chain.

Due to the quadratic nature of the Hamiltonian, we were able to investigate the excitations dynamics for
arbitrary lengths of wire, reducing every quantity under scrutiny to functions of single-particle transition
amplitude. It would be interesting to investigate whether perturbative transfer occurs also in interacting models,
and, if so, if there are the conditions on the wire’s length. Another interesting application of our results could be
in quantum information processing. In [31, 47] it has been shown that, at half the transfer time, the sender and
receiver block are maximally entangled for one- and two-particles in the sender block. Similarly, for a higher
number of excitations in the sender block, a similar scenario occurs. Also investigating the quantum state
transfer of an arbitrary state of n qubits would have several applications in quantum information processing.
Whereas weak-couplings has been shown to be successful for one- and two-qubits quantum state transfer
[24, 28,48, 49], the case of a higher number of qubits has not been yet addressed and will be our subject of further
investigation, with partial results for specific tripartite entangled states already been obtained in [50]. Other
possible applications of the proposed perturbative transfer protocol include source-to-drain transfer in
atomtronics [51] and many-particle quantum walks [52].
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