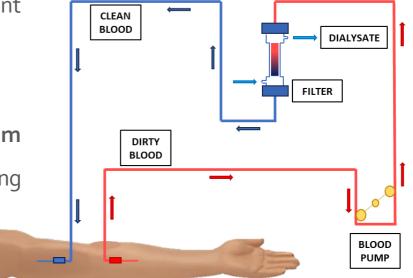


Machine Learning model for alarm prediction in dialysis machines

Alessia Nicosia

Department of Engineering – Università degli Studi di Palermo



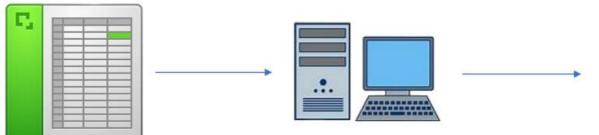
Hemodialysis (HD) is a life-saving treatment for patients with chronic renal failure.

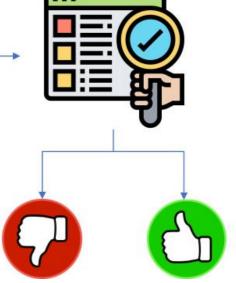
Dialysis machines have an **alarm system** acting when an error occurs, often stopping the therapy until the error is fixed.

Possible solution?

A model able to predict/anticipate possible machine alarm signals...
Random Forests (RF), a Machine Learning (ML) classifier!

Goal & Scope





Methodology

The general idea:

- 1. Dataset for training the model.
- 2. Model to be trained.
- 3. Alarm or normal condition as model output.
- After the training, the model is tested on new data.

Number of rows *«time jump»* = 20 (10 s) Number of rows elapsed between *past rows* and *«type» rows predicted* = 15

degasP	um ufPressur	airDetAna	air Det Pwr	foamDetR TempUf	Ctot	SecondSte buttonar	n type	code
260	00 5056	453	100	0			1	ARTERIAL LINE
260	00 5058	452	101	0		HW_STO	P 0	PUMP OFF
260	00 5254	453	100	0		HW_STO	P 0	PUMP OFF
260	00 5201	453	100	0			0	DIALYSATE EXTERNAL
260	00 5202	453	100	0			0	DIALYSATE EXTERNAL
- 260	00 5203	452	100	0			0	DIALYSATE EXTERNAL
260	00 5199	453	100	0			0	DIALYSATE EXTERNAL
260	00 5193	453	100	0			0	DIALYSATE EXTERNAL
260	00 5184	453	101	0			0	DIALYSATE EXTERNA
260	00 5169	453	100	0		HW_STO	P 0	DIALYSATE EXTERNA
260	00 5156	452	101	0		HW_STO	P 0	DIALYSATE EXTERNA
260	00 5165	453	100	0			1	PUMP OFF
260	00 5567	453	100	0			1	PUMP OFF
260	00 5482	452	100	0			1	PUMP OFF
260	00 5483	453	100	0			1	PUMP OFF
260	00 5425	453	100	0			1	PUMP OFF
260	00 5449	452	100	0			1	PUMP OFF
260	00 5419	453	100	0			1	PUMP OFF
260	00 5407	453	100	0			1	PUMP OFF
260	00 5428	453	101	0			1	PUMP OFF
260	00 5402	453	100	0			1	PUMP OFF

Number of *past rows* used for prediction = 5 Number of *«type» rows* predicted = 1

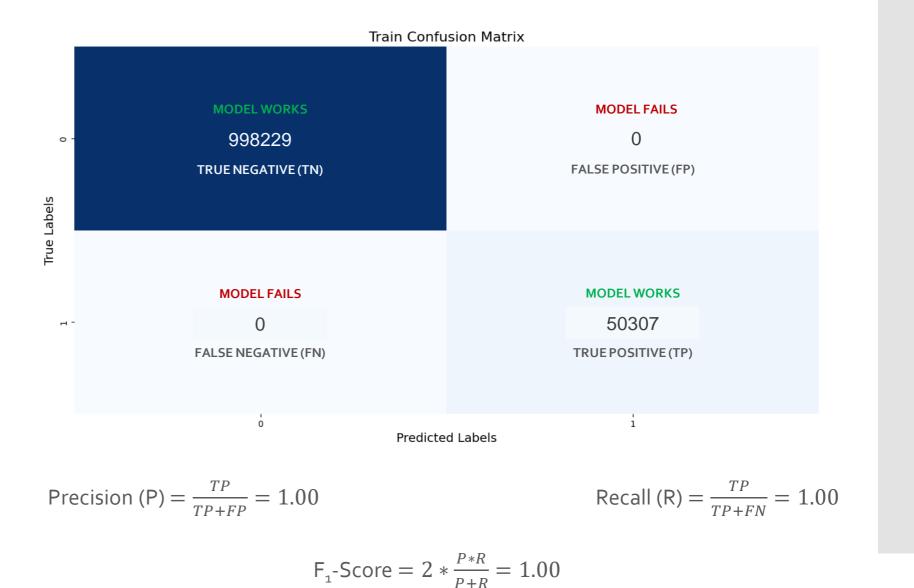
Methodology

The data used for training and testing the RF classifier model.

input data

output data

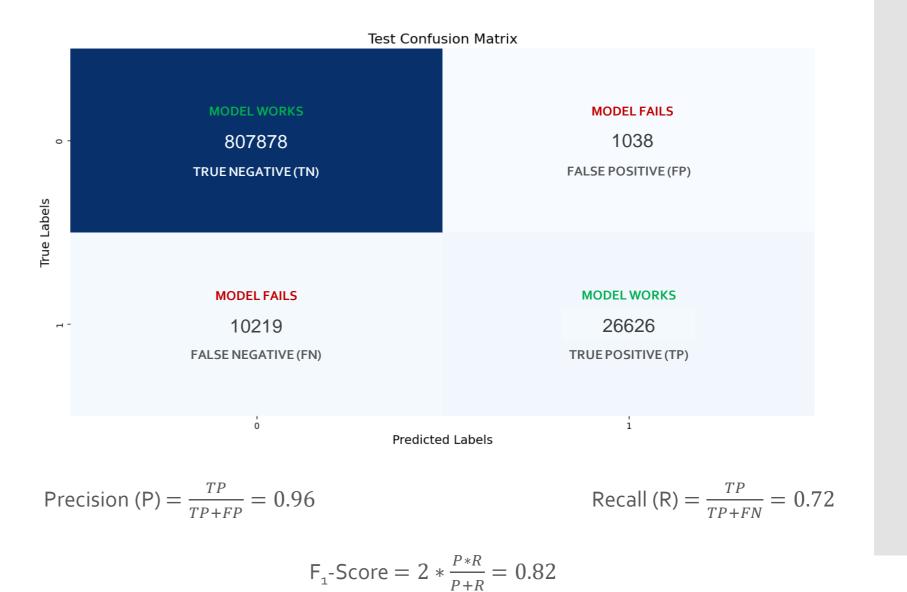
- 1 alarm condition of the machine
- normal condition of the machine



Results # 1

The confusion matrix of the dataset used to train the RF model (top) and the performance parameters of the model (bottom).

- **1** alarm condition of the machine
- normal condition of the machine



Results # 2

The confusion matrix of the dataset used to test the RF model (top) and the performance parameters of the model (bottom).

- **1** alarm condition of the machine
- normal condition of the machine

Conclusions & Highlights

Mozarc

- The predictive ability of the model performed well, with a F₁-Score value around 80% for the test set.
- Extending the time window **beyond 20 rows** results in a reduction in the performance parameters of the RF model.
- Using an efficient prediction tool can **reduce the number of patient risks** during the treatment, suggesting to the operator how to act before the error happens.

Contacts

Alessia Nicosia alessia.nicosia@unipa.it

Acknowledgments Part of this work was carried out with the financial support of Bellco - Mozarc Medical.