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ABSTRACT 

 
Particle dissolution in stirred vessels is a unit operation commonly encountered in several 

production sectors, such as the mineral, pharma and chemical industries. It is commonly conducted 

batch-wise under time-dependent conditions, a circumstance that complicates model set-up.  

This paper presents a set of models for simulating batch dissolution of polydisperse particles 

in stirred vessels. Models described encompass all cases of particle batch dissolution in stirred 

vessels, whether the amount of initially added particles is larger or smaller than that needed to 

achieve solution saturation (hence whether particles are eventually completely dissolved or not) 

and whether single- or multi-sized particles are dealt with. Convenient model simplifications are 

also provided for the cases of final solute concentration much smaller than saturation (low final 

concentration models).  

All models are successfully experimentally validated. The single-size large final 

concentration model is employed to set up experimental runs that, apart from their use in predictive 

simulations, may be employed for simultaneously measuring mass transfer coefficient and 

interfacial solute concentration using suitable experimental runs. The ability to measure interfacial 

solute concentration is also exploited for assessing whether it coincides, or not, with the solute 

saturation concentration, a common assumption when dealing with solid-liquid mass transfer, 

which in the present case is found to hold true. The simpler single-size low-final-concentration 

model is very convenient for measuring the mass transfer coefficient alone. Finally, the multi-size 

model is utilised to evaluate the sensitivity of the estimated mass transfer coefficient in the single-

size model to the particle size range employed during experimental measurements of mass transfer 

coefficients. 
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1. Introduction 

 

Particle dissolution in stirred vessels is a unit operation commonly encountered in several 

production sectors, such as mineral, pharma and chemical industries. Therefore, suitable models 

for particle dissolution processes are needed for developing and designing the apparatuses involved. 

Additionally, these models can be used to measure the solid-liquid mass transfer coefficient, which 

is important not only in process applications like solid-catalyzed liquid reactions (Grisafi et 

al.,1998; Pangarkar, 2002), but also in scientific fields such as bio-medical applications and earth 

sciences, as well as technological applications like well-drilling (Meneses et al., 2017). 

It is not surprising, therefore that the topic has attracted significant attention over the years, to 

develop suitable dissolution models and/or investigating mass transfer coefficient values (e.g. 

Hixon and Crowell, 1931; Barker and Treybal, 1960; Nienow, 1975; Nienow and Miles, 1978; 

Kulov et al., 1983; Brucato et al., 1990; Pangarkar et al.,2002; Winterbottom et al., 2003; Bayens 

et al., 2012). 

Particle dissolution is commonly conducted batch-wise, hence under time-dependent 

conditions, a circumstance that complicates model set-up, due to the relevant time variations of 

particle features and mass transfer driving force. Other modelling difficulties arise from the fact 

that particles may exhibit size/shape distributions and that diversified outcomes can be expected 

depending on whether the initial particle mass is larger or smaller than the amount needed for 

reaching solid-liquid equilibrium. Also, space-dependent features such as solute bulk 

concentrations, local velocities, particle-liquid slip-velocities and turbulence levels (hence local kc 

values), all affect the local particle dissolution rate. The overall mass transfer observed clearly 

results from the ensemble-averaged history of dissolution rates experienced by each particle while 

travelling inside the vessel. These last complexities can only be tackled by resorting to complex 

CFD-based two-phase simulations, as done by Hormann et al. (2011), who employed RANS for 

the liquid phase and Lagrangian DPM for the particles, as well as by Hartman et al. (2006), who 

resorted to LES and an Eulerian-Lagrangian approach involving particle size distribution as well 

as particle-particle and particle-walls interactions, so usefully getting extremely detailed 

information, but clearly at the cost of an extremely high simulation burden and suffering from a 

substantial lack of experimental evidence for model details validation. As concerns this last aspect, 

advanced experimental techniques such as Electrical Resistance Tomography (ERT, Carletti et al., 

2018; Montante et al., 2019) and Laser Sheet Image Analysis (LSIA, Tamburini et al., 2013; 

Busciglio et al., 2010) have started being employed for getting local features of the stirred two-

phase mixtures, including the case of dissolving particles, and may provide the experimental 

information needed to validate complex CFD models. Apart from these last developments, most of 



 

the previously quoted dissolution models adopt a concentrated parameter approach for the 

interfacial and bulk concentrations as well as for mass transfer coefficient and particle size (i.e. 

time-dependent uniform values for the quoted parameters), and have the advantage of requiring a 

much simpler mathematical treatment (in most cases resulting in simple algebraic integral 

solutions) though at the cost of greater or smaller inaccuracies and restrictions of the application 

field, as discussed in the followings for the assumptions here adopted.  

It is worth noting that in most cases, including the advanced CFD models, solute interfacial 

concentration is typically assumed to coincide with the equilibrium solute concentration, neglecting 

interfacial resistances.  This may well be the case in many instances, but may not be true in other 

instances, as in the case of particle crystallization, the reverse process with respect to particle 

dissolution. In any case, the viability of this assumption should be suitably investigated to assess 

its applicability range. Apart from that, particle equilibrium concentration might be unknown 

and/or not experimentally measurable, as it occurs for solids giving rise to “incongruent 

dissolution”, a condition in which a different solid phase starts precipitating before reaching 

equilibrium with the dissolving solute, so inhibiting a meaningful equilibrium to be reached and 

measured. In such cases expressing the driving force for mass transfer is impossible, even if one is 

prepared to neglect interfacial resistances. Also, this case clearly underlines the importance of 

setting up experimental techniques able to measure the interfacial concentration during the 

dissolution, a topic addressed in the past by one of the present authors (Brucato et al., 1990) and is 

further explored in this study with improvements. 

 

2. Dissolution models for single-sized solute particles 
 

 

In the following, the solute flux J at the solid-liquid interface during particle dissolution is assumed 

to be described by Equation (1): 

 

 J  =  kc (Ci - C) (1) 

 

where the solute flux leaving the solid interface J is given by the product of the mass transfer 

coefficient kc and the driving force (Ci-C), with Ci and C being respectively the volumetric 

concentration at the particle-liquid interface and that in the bulk of the solution. Equation (1) is a 

definition of the mass transfer coefficient kc. Its value is independent of solute concentrations, if 

the simple proportionality between driving force and mass transfer flux postulated by Equation (1) 

holds true, which is, fortunately, the case for many practical solid-liquid systems. 

 

The other assumptions common to all model developments in the following are: 



 

 

a) batch system; 

b) the liquid phase is perfectly mixed at any time (i.e. solute bulk concentration at some distance 

from the interface is the same for all particles); this clearly implies that particle dissolution is 

assumed to be slow with respect to liquid mixing rate (viz particle dissolution time significantly 

larger than mixing time); 

c) all particles are suspended (N>Njs) and therefore fully able to participate in the mass-transfer 

processes; 

d) solute dissolution does not significantly affect the volume of the solution; 

e) particle shape does not change during the dissolution. 

f) particle-solute mass-transfer coefficient  kc  is the same for all particles, irrespective of their size, 

and remains constant during the dissolution; 

g) interfacial concentration Ci is the same for all particles and remains constant during the 

dissolution; 

 

As regards the above assumptions, one may note that: 

a) industrial dissolution processes are actually conducted batch-wise in most cases; should this not 

be the case, the model has to be suitably adapted. The information presented in this paper may 

still be of help, especially if a continuous dissolution in a plug flow dissolver is performed, as 

in such case each suspension parcel may be regarded as evolving along the tube length exactly 

as it would have evolved in time; 

b) the liquid perfect mixing hypothesis may not be fully satisfied, especially when dealing with 

highly soluble particles (small dissolution times) and/or large-scale systems (large mixing 

times). When this condition is not satisfied the need arises for more complex dissolution models, 

able to account for spatial variations of both liquid and particle concentrations. An interesting 

possibility is that of using CFD-based modelling approaches, as quoted in the introduction, but 

clearly results accuracy has to be so important that the much larger modelling burden is justified. 

In any case, simple concentrated parameter models, such as the ones described here, can provide 

quick useful indications, despite quantitative inaccuracies expectable when model hypotheses 

are not fully satisfied. In any case, for all the data presented hereafter the perfect mixing 

hypothesis was always very well satisfied being the estimated mixing times smaller by more 

than an order of magnitude of the concentration dynamics time constant.  

c) this simplification is clearly needed because if some of the particles are laid on the bottom as 

fillets, their contribution to mass transfer would be small and difficult to predict. They would be 

gradually suspended eventually but in an almost unpredictable way. Moreover, their complete 



 

dissolution would take a much longer time, which is the reason why often dissolution processes 

are run under full suspension conditions. 

d) this simplification is normally acceptable as in most cases volume effects upon dissolution are 

small enough to be practically negligible. 

e) this is a commonly accepted assumption for dissolution, as well as for crystallization, processes. 

It may not be fully satisfied sometimes, but modelling shape variations would be such a hard job 

that accepting the assumption and the relevant (small) model inaccuracies is the normal choice. 

f) this is also a commonly adopted hypothesis when modelling particle dissolution; it is consistent 

with the Komogorof theory of turbulence and has received significant experimental verifications 

(e.g. Brucato et al., 1990, Grisafi et al. 1998). It is true that in some cases experimental mass 

transfer coefficients are found to vary slightly with particle size, also in the hundreds of microns 

size range of interest for many applications (e.g., Nikade & Pangarkar, 2007). However, it is 

worth noting that, due to the cube law that relates particle mass to particle size (see Equation 3), 

when particle size has become only one-half its initial value, almost 90 % of the solute 

concentration change in the liquid process has already taken place, and therefore results are 

mainly affected by the average kc value in a reasonably small size range. Hence, assuming a 

mean constant value should not entail a significant departure of the model from reality. 

g) as concerns this last assumption, the uniformity of Ci for all particles at any given time directly 

descends from assumption f) while its independence of time deserves some consideration. As a 

matter of fact, while the dissolution process takes place the mass transfer flux J decreases due to 

a decrease of the driving force (Ci-C) while C increases. In case there were significant interfacial 

resistances, these would make Ci smaller than the equilibrium concentration Ceq by a larger 

amount the larger the flux J, so leading to larger values of Ci (values closer to Ceq) while time 

elapses. The present assumption is therefore exactly verified only if interfacial resistances are 

negligible throughout the dissolution process, in which case the interfacial concentration always 

practically coincides with the equilibrium concentration Ceq. 

 

 

2.1 Single-sized solute particles and large final solute concentrations 

 If all particles added to the liquid phase at the start of the batch do share the same particle size, 

because of the a) and b) hypothesis above, their size will decrease at the same rate for all of them, 

so resulting in a uniform particle size at any instant, yet a smaller and smaller size as time elapses. 

  

By coupling Equation (1) with the mass balance on the dissolved solute, under the above 

hypothesis, the following equation is obtained: 



 

 

 𝑉𝑡𝑑𝐶/𝑑𝑡  =   𝑘𝑐𝑆𝑡(𝐶𝑖 − 𝐶) (2) 

 

where St is the total particle surface area exposed to the liquid. 

 During the dissolution, particle size decreases leading to a decrease in particle-liquid 

interfacial area. Remembering that particle shape is assumed not to change during the dissolution 

process, the volume and the interfacial surface of one particle can be expressed by the following 

equations: 

 Vp =  dp
3         ;           Sp =  dp

2 (3) 

 

where dp is a suitable particle characteristic size and  and  are the volume and area shape factors 

respectively. By denoting with C0 the concentration in the liquid phase at time zero, with M0 the 

mass of solids added to the liquid at the same time and with C and M the solution concentration 

and the mass of undissolved solid particles at time t, respectively, the overall mass balance on the 

solid particles ( M0 + VC0  = M+VC ) may be rewritten as: 

 

 dp = dp0 ( 1 - x ) 1/3 (4) 

 

where dpo is the starting diameter of the particles and x is the dimensionless concentration in the 

liquid phase defined as: 

 

 𝑥  =   
𝐶−𝐶0

𝐶∗−𝐶0
 (5) 

 

where C* is the concentration that the liquid phase would attain in the hypothesis of complete 

dissolution of the solid phase (C* = C0+M0/Vt). Please note that C* only depends on the initial 

solute concentration and the added solute mass at time zero (M0). As such, C* may well be greater 

than the solute saturation concentration, in which case, particles will only be partially dissolved 

when the solution bulk concentration approaches the interfacial concentration and mass transfer 

ends. 

 The total particle surface exposed to the liquid at any time during the dissolution process 

can be written as: 

 𝑆𝑡  =   
(𝛽/𝛼) 𝑀𝑜

𝜌𝑝 𝑑𝑝𝑜
 ( 1 −  𝑥 )2/3 (6) 

 

Substituting Equations (5) and (6) into Equation (2), leads to: 

 



 

 
𝑑𝑥

𝑑𝑡
  =   A ( 1 - x )2/3 ( x𝑖 - x ) (7) 

 

Where the interfacial dimensionless concentration xi is given by:  

 

 𝑥𝑖  =   
𝐶𝑖− 𝐶𝑜

𝐶∗− 𝐶𝑜
          ;           𝐴  =   k𝑐  (𝛽/𝛼) 

𝐶∗− 𝐶𝑜

𝜌𝑝 𝑑𝑝𝑜
   (8) 

 

and where A is a multiplying factor simply proportional to kc, with dimensions of time-1 (e.g. s-1) 

as can be inferred by the dimensionless nature of all items but t in Equation 7 

 

Equation 7 shows that the slope of the time dynamics of x (i.e. C) will flatten, tending to the 

relevant horizontal asymptote, when x approaches either the value 1 or xi, and precisely to the 

smallest of the two, as this is the one that will be encountered first while concentration increases. 

This confirms the ability of the present model to deal with both the cases:  

i) when the mass of particles initially added to the system is insufficient to saturate the solution 

(Ci>C*, xi >1), in which case all particles are eventually dissolved and the final concentration 

value is C* (x=1);  

or   

ii) when the mass of particles initially added to the system is more than sufficient to saturate the 

solution (Ci<C*, xi <1), in which case all particles are eventually dissolved and the final 

concentration value is Ci  or x= xi . 

Luckily enough, with the initial condition x = 0 at time t = 0, an analytical solution of 

Equation (7) exists, and can be written as:  

 

1

𝑦𝑖
2 {

1

2
𝑙𝑛 [(

1−𝑦𝑖

𝑦−𝑦𝑖
)

3

(
𝑦3−𝑦𝑖

3

1−𝑦𝑖
3 )] + √3 𝑎𝑟𝑐𝑡𝑎𝑛 (

2𝑦+𝑦𝑖

√3𝑦𝑖
) − √3 𝑎𝑟𝑐𝑡𝑎𝑛 (

2+𝑦𝑖

√3𝑦𝑖
)} = A t                  (9) 

 

where: 

 

 y = (1-x)1/3  =  dp/dp0   ;   yi = (1-xi)1/3 (10) 

 

which is similar to the Cube Root Law introduced by Hixson and Crowell (1931). It may be worth 

noting that Equation (9) is explicit for t while it cannot be made explicit for y. Therefore, when 

using it, it is better to provide a value for y and use Equation 9 to obtain the time at which the given 

y value is achieved. 

 In practice equation 9 provides a two parameter algebraic equation that can be employed 

either for predicting systems behavior when the two parameters A and yi are known, or for assessing 



 

their values by best-fitting model predictions to purposely obtained experimental data. From the A 

and yi values so obtained, values for both mass transfer coefficient kc and interfacial concentration 

Ci respectively, are immediately obtained. 

Clearly Equation (9) can deal with all cases of batch dissolution, whether the solid mass 

initially introduced is bound to be completely dissolved (xi>1, yi<0), or not (xi<1, yi>0). In practice, 

y (i.e. dp/dp0) is 1 for t=0 and gradually decreases while time elapses and particle size reduces, up 

to asymptotically approaching yi.  In case yi > 0 (added particle mass able to saturate the solution) 

the final (asymptotic) value of dp will be given by  yi dpo . On the contrary, if  yi < 0, the y values 

maintain their physical meaning only as long as they are larger than zero (as a negative particle size 

has no meaning) and the intersection of the y curve with the t axis marks the time at which particles 

vanish from the system, i.e. particle dissolution time  tdiss:  

 

 

𝑡𝑑𝑖𝑠𝑠 =
1

𝐴𝑦𝑖
2 {

1

2
𝑙𝑛 [(

𝑦𝑖−1

𝑦𝑖
)

3

(
𝑦𝑖

3

𝑦𝑖
3−1

)] + √3 𝑎𝑟𝑐𝑡𝑎𝑛 (
1

√3
) − √3 𝑎𝑟𝑐𝑡𝑎𝑛 (

2+𝑦𝑖

√3𝑦𝑖
)}                         (11) 

 

 

Equation (11) resembles that developed by Baeyens et al. (2012) and might be employed for 

assessing kc values on the basis of experimental dissolution times, as actually done by the same 

authors. It is worth noting that such techniques are subject to uncertainties in the assessment of 

dissolution times, due to subjectivity and to the circumstance that particle systems almost always 

show a larger or smaller size distribution, hence the dissolution time observed is likely to be close 

to that of the largest particle in the system, while the bulk solute concentration dynamics rather 

depends on all particles introduced. It is for this reason that, in the authors opinion, kc measuring 

techniques based on experimental solute concentration dynamics, which depends on all dissolving 

particles, as done for instance, by means of a differential model, by Meneses et al., (2017), should 

be preferred to techniques based on dissolution time observation. 

 

 Finally, in the particular case of yi=0 (i.e. C*=Ci ; xi=1) Equation (9) leads to indeterminate 

results; in this case, however, integration of Equation (7) is straightforward as the two rightmost 

factors in the R.H.S. of Equation (7) can be combined into one, and the solution of Equation 7  

simply becomes: 

 

𝑦 = (
3

2
𝐴𝑡 + 1)

−
1

2
  (12) 

 

  



 

2.2 Single-sized particles and low final solute concentration 

Equation (7) can be simplified if the mass of particles initially added to the system is much 

smaller than the mass needed to saturate the liquid. In this case in fact  x<<xi  during the whole 

run, and therefore 𝑥𝑖 − 𝑥 ≈ 𝑥𝑖   the analytical solution of the resulting differential equation is much 

simpler: 

 

 𝑦  =   1 -  [ k𝑐(𝛽/𝛼)
𝐶𝑖 - C0

3 𝜌𝑝 dp0
] 𝑡 (13) 

 

which in practice coincides with that employed by Nienow and Miles (1978).  Equation (13) can 

be put in the form: 

 dp = dp0 - B t (14) 

where: 

 𝐵  =   A dp0  
𝑥𝑖

3
  =    k𝑐(𝛽/𝛼)

𝐶𝑖  - C0

3 𝜌𝑝
 (15) 

 

 

Plots of t vs dp should then appear as straight lines passing from (t0, dp0), and with a slope B simply 

proportional to kc (Equation 14). This makes this model very convenient for carrying out kc 

measurements: all is needed is to run an experiment complying with model hypothesis (single-sized 

particles, low final concentration, well-mixed liquid phase etc.) and, from the experimentally 

assessed slope B, a value for kc is immediately obtained by Equation (15). Clearly in this case the 

interfacial concentration value cannot be assessed, as a difference from the large final concentration 

runs. 

 

 

3. Experimental 

 

Experimental runs were performed to validate the models. These were conducted in batch: a stirred 

vessel was filled with the desired liquid phase and, at time zero, a known amount of solid particles 

was added to the batch while monitoring the dissolved solute concentration. 

 Two different stirred vessels were employed for the experimentation:  

a) a cylindrical stainless-steel vessel 0.13 m in diameter, provided with a dished bottom and four 

standard baffles, stirred by a square pitch propeller (6.86*10-2 m diameter), offset from vessel 

bottom by 1/3 of liquid height; 

b) a cylindrical vessel 0.19 m in diameter, flat-bottomed, fully baffled and stirred by a Rushton 

turbine (D=T/2), placed at 1/3 of the liquid height from the bottom; 



 

  

The dissolution temperature was always maintained at 25°C. 

 All runs were performed using accurately sieved salt particles so that a narrow size 

distribution was attained. Particle size varied from 137 m to 900 m. Care was taken in order to 

ensure that during all runs all the particles were suspended.  

 As solid phases either NaCl or K2SO4 or K2Mg(SO4)2·6(H2O) (Schönite) were used.  

 Salt concentration in the liquid phase was monitored by means of a conductivity meter 

whose readings were checked against previously determined calibration curves. The time constant 

of the conductivity measurement apparatus adopted was experimentally found to be smaller than 2 

s. 

 As concerns the liquid phase, for Sodium chloride and Schönite particles, a solution of 30% 

water - 70% ethylene-glycol (by weight) was used to suitably slow down the particle dissolution 

rate. In this way the resulting dissolution time constant was always much larger than both the 

conductivity-meter time constant and stirred vessel mixing times. The viscosity of the solution was 

experimentally assessed to be 5.84*10-3 Pa*s. In the case of potassium sulphate particles distilled 

water was employed in all experimental runs. 

  

 

4. Models validation for single-sized particles 

 

4.1 Validation of the model for single-sized-particles and high-final-concentrations  

Sodium Chloride particles (dp0=0.45*10-3 m) were dissolved in vessel a) in the water-glycol 

solution stirred at N=1100 rpm. More NaCl than needed to attain the saturation was initially added 

to the system (C* = M0/Vt = 153.7 kg/m3; Csat = 133.9 kg/m3). Solute concentration dynamics 

obtained is shown in Figure 1 as dimensionless concentration x vs t values. The x experimental 

values (empty circles), as expected, start from zero and gradually increase towards a horizontal 

asymptote at x =  xi = 0.871 (C = Csat ).  

For the same data, assuming that Ci coincides with Csat (i.e. neglecting interphase mass 

transfer resistances, as it is often made in multiphase mass-transfer) and adjusting the A parameter 

to the value 1.9 s-1, model predictions were obtained through Equation 9. To this end, for each given 

x value the corresponding y value was computed by Equation 10, and then Equation 9 was 

employed to directly compute the time t at which the given x value is achieved. By reporting the 

(x,t) data so obtained in Figure 1, the solid line representing model results was obtained.  



 

As it can be seen, model results fit remarkably well experimental data, thus suggesting that 

for the investigated system all model assumptions from a) to g) are sound enough for many, if not 

all, modelling purposes.  

Also, the hypothesis of negligible mass transfer resistances ( Ci = Csat ), is found to be sound, 

at least for the mass transfer rates here at stake. Notably, this seems to be one of the very few 

experimental confirmations of the soundness of the last assumption in the scientific literature, due 

to the obvious difficulties in measuring interfacial concentrations, and the present model might well 

be employed for exploring the range of validity of this assumption in practical cases. 

Finally, from the experimentally assessed slope A the mass transfer coefficient kc could be 

immediately derived if a value for  were available (e.g. for spheres and cubes, =6, then 

kc=0.0020 m/s). If not, the product kc ( at the given conditions is available anyway, and this is 

in practice all one needs for all design and development simulation needs. 

 

Figure 1: NaCl dissolution (dp0=0.45*10-3 m, C0=0, C*=153.7 kg/m3, N=1100 rpm): comparison 

between experimental data (circles) and model predictions for Ci = Csat = 133.9 kg/m3 ( xi=0.871 ) 

 

To explore the sensitivity of model results to the interfacial concentration Ci, Equation (9) 

is rewritten as  

 

     f(y) = A t     (16) 
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As it can be seen, one should expect that if all model assumptions were reasonably abode, plotting 

the experimental values of  f(y)  versus time should result in a straight line passing from the origin 

and with a slope equal to A. The function f(y) was computed for the same NaCl dissolution data of 

Figure 1, on the basis of the experimental y values and three xi values: the first obtained by assuming  

Ci = Csat = 133.9 kg/m3 (i.e. xi = 0.871) and the other two either reduced or increased by 5 % with 

respect to it. Results are plotted in Figure 2 and, as it can be seen there, the base case  xi = 0.871 is 

the only one practically resulting into the expected straight line, while in both of the other two cases 

linearity is markedly lost, as testified by the relevant R2 linear regression values. 

 

 

Figure 2: NaCl dissolution, same data as in Figure 1,  f(y) vs t in relation to three different values 

of xi .  

 

Hence, by looking at the effects of the choices for xi  (i.e. for Ci), the value that best straightens-up 

data points can be selected, and from the slope of the straight line a value for A (hence kc) is 

immediately obtained. In other words, by analysing the data points of a single experimental run, 

both the value the mass transfer coefficient and the value of the interfacial concentration can be 

obtained. The same values may then be employed to directly compare experimental concentration 

dynamics with model predictions, as done in Figure 1, as a check of the suitability of the Ci and kc 

values so obtained for interpreting the experimental data. In practice, using the full model and the 

entire range of data, A and xi are precisely identified. 

 

  



 

4.2 Single-sized high-final-concentrations runs for particles with unknown saturation 

concentration: the case of Schönite dissolution. 

 As already pointed out, there are cases in which no reliable solubility data are available, nor 

can they be experimentally assessed by measuring the concentration attained when the solution is 

allowed to reach saturation, under the required temperature and pressure conditions. 

 This is, for instance, the case of the dissolution in water of “Schönite” (MgSO4 K2SO4 

6H2O), a salt involved in processes aimed at K2SO4 production. As a matter of fact, when Schönite 

is dissolved into water, the solution gets saturated with respect to Potassium Sulphate before 

saturation with respect to the former salt is attained. After this point, Schönite dissolution continues 

(its solubility has not been reached yet) while further precipitation of K2SO4 occurs. This property 

completely inhibits the possibility of experimentally accessing the value of the Schönite saturation 

concentration, information that, understandably, is unlikely to be found in the literature either. 

 For this reason, a problem arises in the estimation of the interfacial concentration Ci, even if one 

assumes that it coincides with the saturation concentration. In such cases, the present model’s 

ability to assess both kc and Ci by best fitting the predicted concentration dynamics to the purposely 

obtained experimental data can conveniently be exploited. 

 In order to assess the interfacial concentration of Schönite during its dissolution, several 

experimental runs were performed in stirred vessel A, by initially adding a mass of solids that, once 

completely dissolved, resulted in a final solution concentration of 8.61 kg/m3, slightly smaller than 

that at which potassium sulphate precipitation starts (9.0 kg/m3), as assessed in preliminary runs.  

A typical result obtained with Schönite particles is shown in Figure 3, where it can be observed that 

the agreement between experimental data and the predicted dissolution curve (solid line) is very 

good for the best-fitted parameter values. This finding implies once again that all assumptions 

involved in the derivation of Equation (9) hold true, within experimental error, also in the case of 

Schönite particle dissolution.  

 To show the discriminating power of this technique, in the same Figure other curves relating 

to different values of the two parameters have been plotted. It can be observed that a +20% change 

in the value of the mass transfer coefficient (hatched line, A=6.57*10-4 s-1) leads to clearly missing 

all experimental data. Though not shown, a similar increase of the interfacial concentration (xi) 

would have led to a similarly neat discrepancy, while reducing xi by 20% (xi=1.743) results in the 

dotted line in Figure 3, which is similar to what would have been obtained by underestimating A 

by 20%. 

 One may wonder, however, what happens when at the same time one of the two parameters 

is underestimated while the other is overestimated. As a matter of fact, an inspection of Equation 

(7) reveals that at short dissolution times, when x is still close to zero, it is the product of the two 



 

model parameters that determins the predicted concentration dynamics. To assess whether results 

can be fooled by contextual under- and over-estimations of the two parameters, the dotted line has 

been computed and added to the experimental data in Figure 3. In this case, A has been 

overestimated by 20%, with 

 

  

Figure 3: Time dynamics of Schönite dissolution in water-glycol solution: comparison between 

experimental data (circles) and model predictions (lines). Agitation speed 900 rpm, dp0 =0.9*10-3 

m, C*= 8.61 kg/m3. 

 

 

respect to its best-fit value, while the dimensionless interfacial concentration xi has been 

underestimated by slightly less than 20% (A=6.57*10-4, xi=1.783) in such a way that the two 

parameters product is identical to that of the best-fit case. The results are reported as a dashed line, 

and as it can be seen, this time at short times the predicted concentration dynamics practically 

coincide with the best-fit case, as expected. At longer times, however, the predicted dynamics 

detach from the best-fitting case and quite neatly miss the experimental data. It can be concluded 

that the discriminating power of the technique is quite high, as even deviations by very few per cent 

can be easily spotted. 

 Other high-concentration experimental runs, characterised by different values of dp0 and/or 

N, were performed and gave rise to similar results. Moreover, the best-fit value of the interfacial 

concentration was always the same (Ci = 17.7 kg/m3), independently of agitation speed, hence 
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independently of kc. This finding is consistent with the assumption of negligible interfacial mass 

transfer resistances and implies that the measured interfacial concentration coincides with the 

Schönite saturation concentration, which could therefore be considered as being assessed. 

 

4.3 Validation of the model for single-sized-particles and low-final-concentrations  

 

A set of low-concentration runs was also performed to validate the simplified model in the 

case of low-final-concentration runs. Equations 14 and 15 were used to compute the particle 

diameter from concentration data and the results are shown in Figure 4 in terms of instantaneous 

particle diameter vs time. It can be observed there that the experimental data (symbols) lie along 

straight lines, as expected. Some departure from the predicted straight line of the last data points in 

each run depends on the fact that the functional form of Equation (4) amplifies the experimental 

reading error for points close to the final asymptotic concentration. From the slopes of these lines, 

assuming =6, the two kc values were computed (Equation 15) as being 1.624*10-4 m/s and 

1.514*10-4 m/s for the larger and the smaller particles respectively. The two values are close, but 

not exactly the same, as it could have been expected due to the quite large size of the particles 

involved. Interestingly, though with the model employed, kc is assumed to be independent of dp and 

this is not exactly the case here, the measuring technique maintains however a significant viability, 

especially if the regression analysis is limited to the first portion of the dissolution curves. 

 

 

 

Figure 4: Particle size vs time for K2SO4 dissolution water (vessel B, N=600 rpm). 
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5. Particles with size distribution 

 

One of the restrictive assumptions of the models described so far is that all solid particles are 

assumed to share the same size at the beginning of the dissolution process. This assumption, 

however, is never perfectly satisfied in real conditions. Removing the restriction of single sized 

particles is therefore useful to extend the applicability of dissolution models. 

 Also, when performing experimental runs for mass transfer coefficient investigations, the 

particles employed for the experimentation are usually sieved and therefore characterized by a 

particle size range more or less narrow, but certainly much wider than the single size assumed in 

the dissolution models discussed so far. The problem, therefore, arises of assessing to what extent 

this neglected feature of real conditions is bound to affect the kc values obtained. Or conversely, to 

assess which is the maximum width of the size range that can be afforded while negligibly affecting 

the kc measurement. 

 For the above reasons, the dissolution model was extended to the dissolution of multi-sized 

particle systems. The extended dissolution model developed is based on the same set of 

assumptions previously postulated, apart from the hypothesis of single-sized particles, which is 

replaced by a known initial population density of the particles no(L) where L is particle size, adopted 

here in place of dp in order to conform to the usual population balance formulations. To properly 

model particle dissolution in this case, the relevant population balance was written, resulting in the 

following differential equation: 

 

 
𝜕𝑛

𝜕𝑡
 - 𝑅

𝜕𝑛

𝜕𝐿
  =   0 (17) 

 

where n is the (population) number density function at time t, R is the dissolution rate, defined by 

R =-dL/dt, which is assumed to be independent of particle size L, as already done in the case of 

single-sized particles. 

 Integration of the above partial differential equation by means of the characteristics method, 

under the initial condition that the population density function n at time zero is no(L), leads to the 

formal solution: 

 

 n(L,t) = n(L+L, 0) = no(L+L)       for L≥0 (18) 

 

where: 

 



 

 𝛥𝐿 = 𝑓(𝑡)  =   ∫ 𝑅𝑑𝜏
𝑡

0
 (19) 

 

Equation (15) implies that, as time goes on, the dissolution process merely results in a progressive 

shift of the initial distribution function no(L) along the length axis (towards the left), the shape of 

the distribution remaining unchanged. The dissolution rate R may be expressed by writing the mass 

balance on a single particle: 

 

 𝑅 =
𝛽𝑘𝑐

3𝛼𝜌𝑝
(𝐶𝑖 − 𝐶) (20) 

 

Equations (16) and (17), together with mass-balance considerations, lead to the following equation 

relating the bulk concentration C to particle size shift L: 

 

 𝐶 = 𝐶0 + 𝑀0/𝑉𝑡 − 𝜌𝑝𝛼 ∫ 𝐿3𝑛𝑜(𝐿 + 𝛥𝐿)𝑑𝐿
∞

0
 (21) 

 

Equations 17-21 have been solved, case by case, by means of a simple numerical procedure, leading 

to the prediction of solute concentration dynamics during dissolution. 

 It is worth noting that in cases where the amount of solid particles initially added to the system 

is small in comparison with the quantity that would lead to the saturation (low final concentration 

runs), it is possible to simplify the governing equations. In this case, in fact, the dissolution rate 

becomes independent of time: 

 

 𝑅 ≅
𝛽𝑘𝑐𝐶𝑖

3𝛼𝜌𝑝
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (22) 

 

allowing for an easier integration of Equation (21) and leading to the following integral solution: 

 

 𝐶(𝑡) = 𝐶0 + 𝑀0/𝑉𝑡 − 𝜌𝑝𝛼 ∫ 𝐿3𝑛𝑜(𝐿 + 𝑅 𝑡)𝑑𝐿
∞

0
 (23) 

 

 

  



 

5.1 Experimental validation of Equation 23 

 

A set of experimental batch dissolutions in water of Potassium Sulphate runs were performed to 

validate the extended model developed. The experiments were performed in the fully baffled, flat-

bottomed, cylindrical vessel B, stirred by a Rushton turbine (D = 0.19 m, D/T = 0.5, c/T = 1/3). 

The vessel was provided with a suitable cover to avoid the occurrence of the surface aeration 

phenomenon. Solute concentrations were indirectly detected by means of a conductimetric probe. 

A data acquisition system was used to record solute concentration dynamics. 

 

Figure 5: Multi-sized particles dissolution run: comparison between experimental (circles) and 

model prediction (curve). Potassium Sulphate dissolution in water, dp01=0.925*10-3 m (50%w) and 

dp02 = 1.87*10-3 m (50%w), C*=0.377 kg/m3, Vessel B,  N=600 rpm.  

 

 A typical result is shown in Figure 5, where the experimental dissolution dynamics, at 600 

rpm, of a mixture of particles of two different initial sizes is compared with model predictions. As 

can be seen, a remarkable agreement was obtained between experimental data (empty circles) and 

model predictions (solid line), after best fitting the value of the mass transfer coefficient, which 

was consistent with the values obtained for the single-sized particles. All other experimental runs, 

performed by varying the initial particle size distribution as well as the agitation speed, always 

resulted in a similar agreement: the extended model could then be considered as being well-

validated. 

 Once the model had been validated, many simulations were run for a given value of the 

mass transfer coefficient kc* and for initial distributions of various shapes and widths around a 



 

central “average” size. Each run resulted in a time-concentration curve that was analysed (as a 

pseudo-experimental data set) using the previously described simpler single-sized models, 

assuming for all particles an initial size equal to the average particle size. In this way pseudo-

experimental kc values were obtained, that could be compared with the known exact kc* value 

imposed for the predictions. The differences between to two indicated the errors that would have 

been incurred, in the estimation of the mass transfer coefficient, as a result of the (unaccounted for) 

spread of the initial particle size distribution. The purpose of these computations was that of 

establishing the needed narrowness of the initial size distribution to get meaningful results for kc 

by the simpler “single-sized” model. 

      

 

Figure 6: Error incurred in the estimation of solid-liquid mass transfer coefficient when neglecting 

the initial size distribution of dissolving particles.  

 Figure 6 presents the results of the computations to determine the error incurred in estimating 

the mass transfer coefficient (kc) using the simpler "single-sized" model when there is a spread in 

the initial particle size distribution. In this case, the arithmetic mean between the two boundary 

sizes was used as the nominal initial size for all particles. This definition of the average diameter is 

convenient for sieved particles because it corresponds to the arithmetic mean of the two nominal 

sieve apertures without requiring information about the distribution shape inside them. 
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The results demonstrate that the error incurred is relatively small, even for relatively wide initial 

size ranges. In particular, the error is smaller than 3%, with any of the distributions considered, for 

a size width of ± 20% around the average diameter. These results retrospectively confirm the 

validity of the kc data previously obtained with sieved particles [Brucato et al., 1990; Grisafi et al., 

1994; Grisafi et al., 1998] as the size range involved was always narrower than ± 10%. 

 

 

6. Conclusions 

 

A set of dissolution models has been developed and experimentally validated. All of them were 

found to be in excellent agreement with experimental findings. 

One of these can be employed for simultaneously assessing interfacial concentration and 

mass transfer coefficient. It was used here to give one of the very few confirmations of the existence 

of equilibrium conditions at the solid-liquid interface during the dissolution. It was also used to 

assess the interfacial concentration for a salt for which the equilibrium concentration was not known 

nor experimentally accessible. 

The general applications of this model include: 

- Modelling and scale-up of agitated batch dissolution apparatuses; 

- Determination of Ci for fundamental research on mass-transfer phenomena (verification of the 

relevance of interfacial resistances), or for design and development purposes; 

- Determination of saturation concentration Csat for systems in which a steady state determination 

is made difficult due to coupled dissolution and precipitation; 

The low final concentration version of the same models has been shown to be particularly useful 

for kc assessment when the interfacial concentration is known.  

Furthermore, extended models have been developed to simulate dissolution processes involving 

solid particles of multiple sizes. The main applications of these extended models include: 

- Modelling of industrial dissolutions for design purposes; 

- Determination of mass transfer coefficient kc by using un-sieved solid particles for the 

experimental runs, provided that their size distribution is known; 

- Estimation of uncertainty range in data analysis: The extended models help in estimating the 

uncertainty range when analyzing experimental data obtained with sieved particles, considering 

the neglected initial particle size distribution. 

Overall, these dissolution models offer a versatile and comprehensive framework for studying 

and understanding dissolution processes, enabling various practical applications and research 

investigations.  



 

Nomenclature 

A =  constant in Equation (7)  [s-1] 

av =  particle specific area  Sp/Vp  [m
-1] 

B =  constant in Equation (12)  [m/s] 

c = .. impeller clearance [m] 

C =  liquid bulk concentration  [kg/m3] 

C* =  liquid phase concentration for total solid dissolution  [kg/m3] 

Ci =  liquid phase concentration at the interface  [kg/m3] 

Co =  liquid phase concentration at time to  [kg/m3]  

Csat =  saturation concentration  [kg/m3] 

D =  impeller diameter  [m] 

dp =  particle diameter [m] 

dp0 =  particle diameter at time to  [m]  

J =  solute flux at solid-liquid interface  [kg m-2 s-1] 

kc =  liquid phase mass transfer coefficient  [m/s] 

L =  dp (particle size) in population density equations  [m] 

M =  solid phase mass at time t [kg] 

M0 =  solid phase mass at time t=0 [kg] 

N =  impeller rotational speed  [s-1] 

n =  population density  [m-4] 

no =  population density at time zero  [m-4] 

R =  dissolution rate of particles  [m/s] 

Rei =  impeller Reynolds number   Di
2 N -1  

Sp =  interfacial surface of a particle  [m2] 

St =  total solid interfacial surface  [m2] 

t =  time  [s] 

T =  vessel diameter  [m] 

Vp =  particle volume [m3] 

Vt =  liquid phase volume  [m3] 

x =  dimensionless concentration 

xi =  interfacial dimensionless concentration 

 

Greek letters 

 =  volume shape factor  

 =  surface shape factor  

 =  half initial size range  [m] 



 

p =  particle density  [kg/m3] 
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