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Abstract 

Self-similarity, fractal behavior and long-range dependence are observed in various branches of 

physical, biological, geological, socioeconomics and mechanical systems. Self-similarity, also termed 

self-affinity, is a concept that links the properties of a phenomenon at a certain scale with the same 

properties at different time scales as it happens in fractal geometry. The fractional Brownian motion 

(fBm), i.e. the Riemann-Liouville fractional integral of the Gaussian white noise, is self-similar; in 

fact by changing the temporal scale t at  ( 0a  ), the statistics in the new time axis ( at ) remain 

proportional to those calculated in the previous axis ( t ). The proportionality coefficient is 
2Ha  being 

0H   the Hurst index. In the practical applications, the phenomena are usually ruled by fractional 

differential equations involving more terms. In this paper it is shown that the response of a multi-term 

fractional differential equation is a linear combination of self-similar processes with increasing order 

of Hurst exponent. The consequences of self-similarity are discussed in detail, closed forms of 

correlation and variance are presented for the general case and particularized for the cases of 

engineering interest. 

Keywords: Self-similarity; Fractional differential equations; Stochastic dynamics; Correlation 

function. 

1. Introduction 

Fractional calculus is nowadays currently used to model several real phenomena because of its 

capability to properly take into account the “long-tail memory” effect experimentally observed. This 

effect cannot be predicted by classical differential equations involving integer order derivatives, since 

in this case the future state depends upon a number of previous state equal to the maximum order of 

derivatives in the differential equation. Considering a real experimental test, it follows that the 

response of a given system to a unit step function is a power law function rather than exponential one 

and the Boltzmann superposition principle leads to a fractional operator for which the future state 

depends upon the entire past history. Examples of these concepts arise in modelling real problems 

such as in fluid dynamics in non-Newtonian fluids [1-3], heat transportation [4-10], biomechanics 

[11-14], non-local continuum mechanics [15-17] and viscoelasticity [18-25]. Other applications and 

pertinent references can be found in literature [26-38]. 



In the second part of the last century, the self-similarity concept was introduced by B. Mandelbrot 

[39, 40] before its book on fractal geometry [41]. This concept may be summarized as follows: if 

changing the temporal scale ( t at  with 0a  ) some properties remain proportional to the originary 

scale t  with a coefficient depending on the scale factor p H
a , being H  the Hurst index and p  the 

statistics order, then, the phenomenon is self-similar or self-affine. A relevant example of self-

similarity is the fractional Brownian motion (fBm), that is the Riemann-Liouville fractional integral 

of the normal white noise process [42-46]. Attempts to connect fractional calculus and fractals can 

be found in the staggering number of publications devoted to this topic [47-51]. 

In the engineering problems, the equation of motion of viscoelastic materials is made by considering 

a summation of terms with one or more fractional derivatives. Such an example, for a viscoelastic 

Eulero-Bernoulli beam under time dependent actions, in modal coordinates the inertial term and the 

fractional viscoelastic term are present. In this case, the response to a normal white noise input is no-

more self-similar. In this paper it is shown that, for the aforementioned case, the response process it 

is a linear combination of self-similar processes. Each of them has an increasing Hurst index with a 

law that depends on the maximum order of the fractional derivative in the equation of motion, and on 

the minimum order present in the various terms of the equation. Correlation and variance of the 

response is evaluated in closed form both in general and in particular cases for relevant engineering 

interest. 

2. Preliminaries 

In this section some preliminary concepts and definitions on self-similarity, fractional Brownian 

motion and fractional operators are reported for clarity sake as well as for introducing appropriate 

symbologies. 

2.1 Self-similarity 

The real stochastic process      0X t t T T  ; [ , )  is self-similar (ss) with Hurst index 0H   if the 

finite dimensional distribution, labeled as     ,X t t T , exhibits the following property: 
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where the symbol d  means equal in distribution. For Gaussian processes, in order to fulfill the self-

similarity condition, it is sufficient that the finite dimensional distribution in Eq.(1) is verified for the 



correlation function      1 2 1 2,XR t t E X t X t     being  E  the average of the term in parenthesis, 

that is  
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Eq.(1) has the noticeable meaning that is by changing the temporal scale ( j jt at j  ) some 

properties remain unchanged as it happens in fractal geometry. 

A relevant example of ss process is the (zero mean) normal Brownian motion  B t  that is the solution 

of the simplest differential equation [52]: 
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where  W t  is a normal white noise [53], fully described in probabilistic setting by the correlation 

function 

        1 2 2 1 2 1      0E W t W t q t t U t t t      ;      (4) 

in which q is the constant strength of the white noise and    is the Dirac’s delta. Since  W t  is a 

delta correlated process (zero-th order of Markovianity), the derivative in Eq.(3) has to be considered 

in the sense of the distribution theory because the process  B t  is nowhere differentiable. From 

Eq.(3) it is apparent that as the initial condition in Eq.(3) is zero w.p.1, that is the system is quiescent 

in 0t  , the process  B t  may be obtained as    
0

t

B t W d   . It is widely known that the 

correlation function of  B t , denoted as  1 2BR t t, , is given as 

          2

1 2 1 2 1 2 1BR t t E B t B t t t E B      , min ,   (5) 

being  2 1E B    the variance at time 1t  . It may be easily verified that  2
E B t t q     and thus, 

for 1t  ,  2
1E B q    . From Eq.(5) immediately descends that  

            1 2 1 2

1 2 1 2 1 2 1 2E B at B at at at q E a B t a B t qa t t       min , min ,   (6) 



and thus the Hurst index is 1 2H  . Since the variance of  B t  increases for every value of t, it 

descends that the process is non-stationary. Moreover, the increments of the Brownian motion, 

namely  dB t , are independent; it follows that    j k jkE dB t dB t q dt  
 

, being jk  the Kronecker 

delta ( 0jk   if j k , 1jk   if j k ), and thus   
2

E dB t qdt  
 

. Since the variance 

  
2

E dB t 
 

 does not depend on t,  dB t is stationary. As a conclusion,  B t  is self-similar with 

independent stationary increments (si) and Hurst index H=1 2  and thus it is labeled as sssiH . It has 

been demonstrated that a wider and unique class of Gaussian sssiH  processes, termed as Fractional 

Brownian motion, are processes having correlation function [54] 
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Fractional Brownian motion, that are Gaussian ones with correlation function expressed in Eq.(7), 

have the following proprieties: i) self-similarity with Hurst index H; ii) stationary increments; iii) 

variance    2 2 2 1HE B t t E B       . Moreover, if 1 2H   the fBm reverts into the Brownian motion.  

2.2 Fractional operators 

Fractional operators [55, 56] are neither else than convolution integrals with power law kernel and 

are the generalization of the classical derivatives and integrals of integer order to the order    

(or even to complex ones with positive real part). So the correct term for indicating such operators is 

generalized operators rather than fractional, because in the latter case   will belong to the rational 

realm instead of the real (or complex) one. However, since this nomenclature is widely used the term 

fractional is still used without any reference to fractals. There exist a lot of representations of 

fractional operators, among them, it will be mentioned the Riemann-Liouville (RL) fractional 

derivative and integrals, Caputo’s, Marchaud, Rietz, Hadamard. All of them share a common point 

that is: they are convolution integrals with power law kernels. In the ensuing derivations the RL 

operators will be considered, in particular the RL fractional derivative, labeled as   0 tD f t , and 

the RL fractional integral, labeled as   0 tI f t , are introduced, respectively, in the form 
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where n is the integer part of   and    is the Euler Gamma function 

     1

0

  1xe x dx   


 
 
      
 

 ;  interpolating all the factorials. In many applications of 

engineering interest, the Caputo’s fractional derivative labeled as   0

C

tD f t  is used, that is 
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The Caputo’s fractional derivative in Eq.(10) coalesces with the RL fractional derivative in Eq.(8) 

provided  f t  is continuous and differentiable up to the order n and the system in 0t   is such that 

0  0 1i id f dt i n   , , . The use of definition of Eq.(10) is preferred (when  n nd f d   exists) 

for two reasons, the first one is that when the RL fractional derivative appears the initial conditions 

have to be defined as fractional derivative in 0t   that are seldom available, while in Caputo’s one 

the initial conditions are the classical ones. The second motivation is that in some real problems, like 

in visco-elasticity, the Boltzmann superposition principle returns the Caputo’s definition and not the 

RL one. For the purposes of the paper, since the initial condition in 0t   are zero (thus the RL and 

Caputo’s fractional derivatives coalesce) and the integrals and derivatives of order   are always 

performed in the range 0 t , in the following it will be denoted as   D f t  and   I f t  the two 

operators. 

It is to be remarked that the representations of the fractional operators as well as the definition of the 

Euler Gamma function still hold when    with   0 Re . Now a question arises: why the 

fractional operators, that are the convolution integrals with power law kernel, are called fractional 

derivatives and integrals? The answer to this question is: all the properties of derivatives and integrals 

of integer order (linearity, Leibniz rule, semi-group property...) remain valid for RL operators. For 

the integration by parts and Leibniz rule see [57, 58]. Moreover for integer value of  , the classical 

derivatives and integrals are recovered. Further, it is worth to underline that the Laplace and Fourier 

transforms of fractional operators follow the same rule of the classical ones. Such an example by 

denoting as     f t f  ˆ; , the Fourier transform of the fractional derivatives is 
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However, the most important property for the ensuing derivations is the semi-group property, that is 

         1 2 2 1 1 2

1 2  0; ,D D f t D D f t D f t            (12a) 

         1 2 2 1 1 2
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2 1  ;D I f t D f t         (12c) 

Lastly, as it happens in classical differential calculus,  

      1 2 2 1I D f t D I f t      (13) 

this is because, performing integration, a constant will appear at the left hand side of Eq.(13). 

However, if  f t  and all the derivatives of  f t  are zero in 0t   (namely 

 
0

0  1 2i i

t
d f dt i n


   , , , ) then the inequality in Eq.(13) becomes an identity. It follows that, 

under these conditions, 

            D;I D f t f t I f t f t       (14) 

and thus the operators are invertible. More detailed informations may be found in the book Mainardi 

[59] and Atanacković et al [60]. These informations are sufficient for the development of the paper. 

3. The one-term fractional differential equation driven by normal white noise 

In this section some well-known results on the fBm are revisited for two main reasons: i) some 

concepts are well known and may be found in [61-63] therein after closed form solutions in terms of 

correlation function and variance of fBm are proposed; ii) these results are necessary to understand 

the next sections. 

Considering Eq.(3) and generalising it to the case of fractional operators it is possible to obtain the 

following fractional differential equation, whose solution is the fBm  B t  
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First of all, the response  B t  coalesces with the Brownian motion only for 1  , that is 

   1B t B t , while for 1   the process  B t  strongly depends on the values of  . In order to 

check if  B t  is a self-similar process or not, Eq.(15) is rewritten in the form 

     B t I W t

  .  (16) 

Eq.(16) is valid since in Eq.(15)  B t  is quiescent up to 0t   and thus, according to the RL 

fractional integral definition in Eq.(9), it leads to 
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It follows that the correlation function of  B t  is given as  
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having taken into account that      2 1 1 2q E W W         . Moreover, the double integral in 

Eq.(18) may be rewritten as 
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where  U  is the unit step function and  1 2,t t  is the following integral 
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For 1  ,  1 2 1t t t ,  that is the  1 2t tmin ,  as already exploited in Eq.(5). For 2   
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1
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t
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By changing the temporal scale 1 1t at , 2 2t at  the correlation function of  B at  is given as 
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and, by letting 2 a   in Eq.(21), it leads to  
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This means that  B t  is self-similar with Hurst index  1 2  , provided 1 2   since the Hurst 

index must be positive. Closed form solution of  1 2,t t  for 1 2t t or 2 1t t  is given as 
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where  , ,   is the incomplete Euler Beta function. Notice that for 1 2t t  Eq.(23) may not be 

directly used because Beta function attains infinite value and thus for 1 2t t t   the variance of  B t  

is evaluated trough Eq.(19) particularized as 
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Eq.(24) shows that the variance is a monotonic function (since 1 2  ) and thus it does not attain 

stationarity conditions.  

4. Self-similarity in two terms fractional differential equations 

In this section the generalization of Eq.(15) for the more general case of equation of the kind 
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            (25) 

is reported being   a real positive constant. In order to make the paper self-consistent, some few 

remarks on the solution of Eq.(25) when the input is a deterministic function  f t  are reported in 

appendix. In Eq.(25),  W t  is a white noise process with strength    q t qU t . Because the system 



is quiescent up to 0t  , the Riemann-Liouville derivative, the Caputo’s fractional derivative and the 

Jumarie fractional derivative [64] coalesce each other. Herein the self-similarity of the response  X t  

of the Eq.(25) is discussed. By performing the Riemann-Liouville integral of order 
2  of both 

members of Eq.(25) it can be rewritten as 

       
2

X t B t I X t

      (26) 

where 
2 1    . By using the iterate kernel method, the response process  X t  is given as 

       2

0

;        
k

k

k

k

X t B t k   




    .  (27) 

From Eq.(27) it may be recognized that  X t  is a linear combination of self-similar processes with 

an increasing Hurst index defined as 

 2 1 2kH k      (28) 

The corresponding cross-correlation function of  1
k

B t


 and  2
r

B t


 is given as 

    
   

   
1

1 1

1 2 2 2 1 2 2 2 1

0

;  0r k

k r

t

k r

q
E B t B t t t d t t

 

    
 

 
             (29) 

and the closed form of the integral in Eq.(29) is 

    1

1 2 2 1 1 21,1 ,1 ,k r

k r kt t F t t
    

   .  (30) 

being  2 1 , , ,F  the regularized hypergeometric function. By changing the temporal scale t at , 

from Eq.(29) it may be asserted that the cross Hurst index, denoted as 
krH , is given as 

  1 2kr k rH       (31) 

and the cross covariance of  1
k

B t


 and  2
r

B t


 is 

    
   

 
    

2
2

0
2

kr

k r

k r

t H

k r k r kr

q qt
E B t B t t d

H

 

   
   

 
          .   (32) 



It follows that, according to Eq.(27), the variance of the response process  X t  is evaluated in the 

form 

 

   
    
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 

       

   





  (33) 

It is to be stressed that  X t  is not self-similar; in fact, by changing the temporal scale t at  in 

Eq.(33), the variance becomes 

 

   
    
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  (34) 

and the correlation function of  X t  at the time t at  is 

          2

1 2 1 2

0 0

kr

k r

k r H

k r

E X at X at a E B t B t 
 



 

       .  (35) 

Since the Hurst index is not unique the process  X t  is not self-similar. However, from Eq.(35) it is 

clear that by knowing    1 2k r
E B t B t 
 
   for a couple of instants 

1 20 t t  , the correlation for 
1at  

and 
2at  of  X t  is readily computed as a linear combination of the correlations already evaluated in 

the time instants 
1t  and 

2t . This property drastically reduces the computational burden of the 

correlation function since by computing the correlation at time 
1t  and 2t  all the values of the 

correlation along the lines with slope 
2 1t t  or 

1 2t t  are computed by means of Eq.(35). 

5. Applications 

In this section the reliability of the proposed approach is asserted through two different examples of 

engineering interest. Specifically, the variance of the response, calculated with Eq.(33), is 

particularized for each case and it is compared with the steady state variance. The latter, obtained by 

taking into account Eq.(11), is calculated as 

    
   2 1

2 2

2

0 0

1
2X X

q
E X t S d d

i i
 

   
   

 

    


    (36) 



in which  XS   is the Power Spectral Density of the response  X t .  It is to be emphasized that for 

10 1   there are two different cases: for 
10 0 5  .  the system attains a steady state value, while 

for 10 5 1 .  the variance increases without limit. This fact can be easily asserted considering the 

integral Eq.(36) that, for 10 5 1 .  does not converge. The physical explanation of this behaviour 

is due to the fact that when 10 0 5  .  the elastic phase prevails [65]; by contrast for 10 5 1 .  the 

fluid phase prevails and thus the elastic component has not the strength for moderating the 

displacements. This effect is evidenced by increasing the temperature of the beam because in this 

case every material goes towards the fluid and 1  increases reaching 1 1   when the solid phase 

totally disappears. 

5.1 Massless mechanical system 

In this application it is assumed that in Eq.(25) 
2 1  , 

10 0.5   and    q t qU t . In this case, 

Eq.(25) represents the massless system depicted in Fig.1. It is a dashpot in parallel with the so-called 

springpot that is a fractional viscoelastic device characterized by parameters   and 
1 . The system 

is excited by a normal white noise  W t  with uniform strength  qU t . 

 

Fig. 1 – The massless mechanical system for 
2 1   and 

10 0.5   

In the case depicted in Fig.1, according to Eq.(33),  11 1k k     and   12 1 1krH k r      

and thus the variance of the response is particularized as 

    
      

2
2

0 0 1 11 1 1 1 2

krH
k r

k r kr

t
E X t q

k r H


 

 


 

          
 .  (37) 

The variance in Eq.(37) is depicted in Fig.2 for different values of   and 1  and it is compared with 

the steady state value (horizontal line) assuming 0.3q  . 

From this figure it may be stated that the solution in terms of variance attains the steady state response 

as expected. Moreover, the lower the values of  , the higher the values of time to reach the steady 



state response. This is due to the fact that the elastic part in the springpot becomes negligible when  

  decreases and/or 
1  increases. Particular cases of this application are: 1 1    and 

1 0  . In the 

first case, the springpot reverts into the dashpot instead in the second case the springpot reverts into 

the elastic spring (Fig.2a).  

 

Fig. 2 – Variance of the response for 
2 1   and 0.3q  . 1   (continuous line), 2   (dash dotted line): 

1 0   (2a); 

1 0.1   (2b); 1 0.2   (2c); 1 0.3   (2d).  

5.2 Fractional viscoelastic Euler-Bernoulli beam 

In this application a fractional viscoelastic Euler-Bernoulli simply supported beam excited by a white 

noise is considered. In order to prove the reliability of the proposed approach, the variance of the 

response is compared with both the steady state response in terms of variance by Eq.(36) and the 



results obtained in [66] with the aid of Grünwald Letnikov (GL) integration method [56]. The 

equation of motion for this kind of structural system can be written as 

       
 

     1

1

2 4

2 4x t

X z t
m E I D X z t p z t

t z





 
 

 

,
, ,  (38) 

in which  X z t,  is the displacement of the beam, m  is the mass per unit length, 
xI  is the moment 

of inertia of the cross section with respect to the x axis,  p z t,  is the structural excitation and 
1

E  is 

the (anomalous) viscoelastic coefficient ( 1

1

2E FL T




       ) that depends on the material at hands. 

In this application         p z t W t U z U z L  ,  being  W t  a white noise with constant strength 

   q t qU t . The solution  X z t,  is a linear combination of the eigenfunctions  v z  and thus it 

can be expressed as 

     
1

v v

v

X z t Y t z




,                          (39) 

in which  vY t  are the modal coordinates. The eigenfunctions  v z  depend on the constrain and for 

the simply supported beam    2v z L v z L  sin . Inserting Eq.(39) in Eq.(38), multiplying by 

 s z  and integrating from zero to L with respect to z, Eq.(38) can be written as 

          
 
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4
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m z m

  
   

 

 

 
  

 
    , . (40) 

By using the relations of orthogonality (see [66, 67]), the s-th equation can be written in the form 

      1

s s s sY t D Y t W t
                         (41) 

where  
1

4 4 4

s xE I s mL   and  sW t  is related to the white noise  W t  in the form 

       
2

1s

L
W t W t s

m s



  cos .  (42) 

It is to be stressed that Eq.(25) reverts into Eq.(41) when 2 2   and thus it is a particular case of the 

systems reported in [68,69]. Because the system is quiescent up to 0t  , it is clear from Eq.(42) that 



for even values of s  it remains at rest. In order to calculate the variance of the response  X z t, , it is 

necessary to compute the cross covariance of  uY t  and  vY t  that can be obtained as 

       
    
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0 0 2

krH
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  (43) 

being 
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cos cos
.  (44) 

The variance of the response  X z t,  can be obtained as 

          2

1 1

u v u v

u v

E X z t z z E Y t Y t 
 

 

       , .  (45) 

In order to assert the reliability of the proposed approach, a numerical simulation was performed 

considering the following parameters: 1

1

629 566 10E N s m


  . , 2L m , 
4 41 333 10xI m . , 

43 2m kg m . , 1 0 279  .  and 4 210q N s . The numerical simulation was conducted considering 

510  samples of  X z t,  with a time sampling step 0 002t  . . The results obtained in terms of 

variance of the displacement in the middle point through the use of Eq.(45) are depicted in Fig.3. In 

the same figure, the variance of the steady state solution evaluated in Eq.(36), is also reported and the 

results in the transient zone evaluated with the GL approach [66]. 

From Fig.3 it is clear that the proposed approach can estimate the response in terms of variance better 

than the GL approach; in fact, the variance estimated with the proposed approach tends asymptotically 

to the steady state value unlike the GL approach. This is due to the fact that the results obtained using 

the GL approach vary significantly with the variation of the time sampling step t . In particular, the 

smaller t , the closer the variance approaches the steady state value. This means that in order to 

obtain accurate results using the GL approach, a very small time sampling step must be chosen. 

Furthermore, a very large number of samples  X z t,  are required to obtain good results and therefore 

the computational burden required is very high. Contrary to the GL approach, the results obtained 

using the proposed approach do not depend on the choice of t  and the response in terms of variance 

can be directly calculated using Eqs. (43-45) without the need to generate samples of the structural 



response. Due to the above reasons the choice of the proposed approach is preferable with respect to 

the choice of a GL approach. 

 

Fig. 3 – Variance of the response in the middle point of the simply supported viscoelastic Euler-Bernoulli beam: results 

of GL integration for 0 002t  .  (dashed line), results of Eq.(45) (continuous line), steady state value (dotted line). 

 

Conclusions 

A review of the self-similarity concepts of fractional Brownian motion (fBm) has been presented, 

finding exact solution of correlation function and variance of the response. It is shown that the one 

term fractional differential equation excited by a stationary white noise has the fBm as solution that 

is self-similar with Hurst index H=1/2. Moreover, it is demonstrated that the response of a multi-term 

fractional differential equation excited by a stationary white noise is not self-similar but it is a linear 

combination of self-similar processes with increasing Hurst index. Variance and correlation of the 

response are calculated for the general form of the multi-term fractional differential equation and 

particularized for different cases of engineering interest showing that the proposed approach is 

preferable over the GL approach. 
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Appendix: Solution of two terms fractional differential equations 

In order to find the statistics of the solution of Eq.(25), a brief insight on the solution in deterministic 

setting is necessary. It is obvious that many papers and textbooks are available in literature [56,68]. 

In this appendix the formulations are reproposed with the aim to give a unified treatment of the 

fractional differential equations. Let be the equation of motion of the given systems in the form 

 
      

 

2 1

2 1U ;  0

0  w.p.1  0                                  

D X D X t f t t

X t t

       


  

           (A.1a-A.1b) 

where  f t  is a deterministic forcing function and Eq.(A.1b) indicates that the system is quiescent 

up to 0t  . The latter condition is essential because, in general,      D I X t X t    but 



   I D X t   is not  X t  as it happens in classical differentials and integrals. The initial condition 

in Eq.(A.1b) ensures that fractional derivative and integrals are invertible. As it happens in classical 

differential equations, the first step is to solve Eq.(A.1a) for the case   1f t  , i.e. calculate  X t  

that is the response to the unit step function, in the following denoted as  
1 2

C t  . In this case, 

Eq.(A.1a) can be rewritten as 

        2X t I U t I X t
     (A.2) 

and, by using the iterate kernel method  
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Since      lim
j

j
X t X t


 , then the solution  X t , labeled as  

1 2
C t  , is given in the form 
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where 2k k     and the fractional derivative of  
1 2

C t   is given as 
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where  E t   is the one parameter Mittag-Leffler function that is the fractional exponential since 

      ;  
nnD E t E t n  

        .  (A.6) 

It is obvious that for 1  ,    expE t t

     . Once the function  
1 2

C t   is evaluated, the 

solution of Eq.(A.1a) is readily obtained by using the Boltzmann superposition principle, that is 

          
1 2 1 2
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where  
1 2

h t   is the impulse response function    
1 2 1 2

h t C t    ; thus 
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For the case of engineering interest 2 2   and the impulse response function is given as 

  
 
 

 
1 2 ,2

0 2

k

k

t
h t t tE t

k





 











  

 
   (A.9) 

where  ,2E  is the two parameters Mittag-Leffler function. By directly approaching through the 

iterative kernel method applied to the originary Eq.(A.1a), being  f t  an assigned function, the 

response is readily computed as 

       
0

k
k

k

X t I f t

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
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that exactly coalesces with the results obtained by Eq.(A.7). 

As a conclusion: 

1) For any fractional (or as particular case classical) differential equation the first step is to solve 

the case of the response to a unit step function that is the kernel of the correspondent integral 

form and then it is possible to use the Boltzmann or the Duhamel integral to find the solution; 

2) The fractional derivative of the maximum order of the response to a unit step function is a 

fractional exponential; 

3) The first derivative of the response  
1 2

C t   is not exactly a fractional exponential, unless 

max 1  . 

With these informations, the variance of the response  X t  of Eq.(25) is readily found for the general 

case of nonstationary white noise      W t q t U t . As in fact, according to the Boltzmann 

superposition principle, the variance  2E X t    for the general case of nonstationary white noise can 

be calculated as 
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  (A.11) 

The second equality at the right hand side of Eq.(A.11) is the Duhamel integral obtained integrating 

by parts the Boltzmann superposition principle. Eq.(A.11) remains valid since the system under study 



is linear and then the equations in terms of moments are linear too and thus the Boltzmann or the 

Duhamel superposition principle still holds. 


