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Abstract

Let G be the additive group of a finite field. J. Li and D. Wan determined the exact number of solutions
of the subset sum problem over G, by giving an explicit formula for the number of subsets of G of prescribed
size whose elements sum up to a given element of G. They also determined a closed-form expression for the
case where the subsets are required to contain only nonzero elements. In this paper we give an alternative
proof of the two formulas. Our argument is purely combinatorial, as in the original proof by Li and Wan,
but follows a different and somehow more “natural” approach. We also indicate some new connections with
coding theory and combinatorial designs.

1 Introduction

Let Fq be a finite field, let D be a nonempty subset of Fq of cardinality |D|, and let k be an
integer such that 1 ≤ k ≤ |D|. The subset sum problem over D is to determine whether, for a
given b in Fq, there exists a subset {x1, x2, . . . , xk} of D of size k such that

x1 + x2 + · · ·+ xk = b. (1)

The requirement that the xi’s be distinct results in a significant combinatorial difficulty, and,
moreover, the problem becomes furtherly harder if D is too small or has no algebraic structure.

This leads to some relevant applications in coding theory and cryptography. For instance,
the case D = Fq is related to the deep hole problem of extended Reed-Solomon codes (see
[3, 10]). Further interesting problems occur in combinatorics and additive number theory. For
instance, one may ask what is the smallest positive integer n such that, for every subset D of
cardinality n and every b in Fq, there is a k-subset of D whose elements sum up to b (see the
discussion in [10, §1]). In [10] it is proved that if n is close to q, then the subset sum problem
has a solution for every b if 2 < k < n, else the problem might not have a solution for some b.
In the latter case, it would be interesting to find the smallest k > 1 such that the problem has
a solution for every b.

More generally, for a finite group (G,+), the critical number of G is defined as the smallest
positive integer n such that, for every D ⊆ G \ {0} of size |D| ≥ n, each element of G is a sum
of distinct elements of D (see [4]; cf. [5]). For most groups, this number is not known, and the
question is open even for abelian groups.

Another related problem, in the case of a finite field Fq, is to determine the exact number
of k-subsets of D whose elements sum up to b, that is, the number

N(k, b,D) = |{{x1, . . . , xk} ⊆ D : x1 + x2 + · · ·+ xk = b}| .
An explicit formula for N(k, b,D) was given by J. Li and D. Wan in 2008 in [10], in the case

where either D = Fq or D = F∗q (= Fq \ {0}), by means of a purely combinatorial method.
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1.1 Theorem: [10, Theorem 1.2] Let Fq be a finite field of characteristic p, and let b be a
given element of Fq. Define v(b) = −1 if b 6= 0, and v(b) = q − 1 if b = 0. If 1 ≤ k ≤ q, then

N(k, b,Fq) =


1

q

(
q

k

)
if k is not multiple of p

1

q

(
q

k

)
+ (−1)k+k/p v(b)

q

(
q/p

k/p

)
if k is multiple of p.

(2)

If 1 ≤ k ≤ q − 1, then

N(k, b,F∗q) =
1

q

(
q − 1

k

)
+ (−1)k+bk/pc v(b)

q

(
q/p− 1

bk/pc

)
, (3)

where b·c is the floor function.

For p = 2 and D = F∗q, the closed-form expression (3) for N(k, b,F∗q) had already been given
by T. Etzion and A. Vardy in 1994 in the context of coding theory [6, Proposition 4.1], although
the connection between this earlier result and the general formula for N(k, b,F∗q) in [10] has
remained somehow unnoticed, since the formula in [6] was stated as a general result on the
weight distribution of a perfect binary code.

In the special case of a binary Hamming code, the closed-form expression for the weight
distribution had already been given by Shapiro and Slotnick in [14, Remark 2, p. 28], whereas,
for the general case of a perfect binary code, a new, elementary, proof is given by the present
author in [12], where, unlike in the original proof by Etzion and Vardy, we do not rely on the
weight distributions of the translates of the code.

To derive the equivalence, for p = 2, between the above equality (3) and Proposition 4.1 in
[6], it suffices to note that, for q = 2m, m ≥ 3, the family B∗k(b) of the k-subsets of F∗q whose
elements sum up to b is in a one-to-one correspondence with the codewords of weight k in the
(n = 2m − 1, 2m −m− 1, 3)-Hamming code C, if b = 0, and with the codewords of weight k in
the translate code C + ei, if b 6= 0 is the i-th column in the parity-check matrix of C and ei is
the i-th vector of the canonical basis of Fn

2 (see, for instance, [8]).

In the former case (b = 0), D∗k = (F∗q,B∗k(0)) is a 2-(n, k, λ) combinatorial design, whose full
automorphism group is (isomorphic to) the group of invertible linear maps on Fq over F2, and
the problem of the computation of N(k, 0,F∗q) corresponds to the computation of the number
of blocks of the additive design D∗k ([8]; see also [13, 7] for the case where the point-set of the
design is F∗pm , with p an odd prime. See [1, 2] for the general setting of additive designs).

In 2012, the above formula (2) for N(k, b,D) was extended by Li and Wan to an arbitrary
additive subgroup D of Fq [11, Corollary 4.2], and, more generally, to an arbitrary finite abelian
group D [11, Theorem 1.1], by means of a new sieving formula which improves the classical
inclusion-exclusion sieve. Finally, in 2013, M. Kosters slightly improved the latter result by
giving an explicit formula for N(k, b,D), using character theory, in the case where G is a finite
abelian group and D is either G or G \ {0} [9, Theorems 1.1 and 1.3]. The main difference
between [9] and [11] is in the technique used in proving the formula.

In this paper we give an alternative proof of Theorem 1.1. Our argument is purely combi-
natorial and relies on some recursive relations among the values of N(k, b,D), as in [10], but
follows a different and somehow more “natural” and intuitive approach.
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2 The proof of Theorem 1.1

Let us first briefly outline the basic steps of the original proof by Li and Wan in [10]. For
a matter of convenience, the authors study the value M(k, b,D) = k!N(k, b,D), that is, the
number of ordered k-tuples (x1, . . . , xk) satisfying the equation (1), with xi ∈ D and xi 6= xj for
i 6= j. Moreover, the cases D = Fq and D = F∗q are not considered separately, as they are related
in a few recursive relations among the values of M(k, b,D), some of which involve both D = Fq

and D = F∗q at the same time. The most important of these relations is a formula for the special
case where k is a multiple of p, which expresses M(k, b,Fq) in terms of M(k − 1, b,F∗q), and is
obtained by considering the p-rank of the coefficient matrix of a suitable system of equations.

Our proof, instead, considers the cases D = Fq and D = F∗q separately, in view of the
trivial observation that the formula (3) can be easily reduced to the formula (2) by means of
the immediate relation N(k, b,F∗q) = N(k, b,Fq) − N(k − 1, b,F∗q). The equality (2), in turn,
can be proved just for p dividing k, the other case being a trivial consequence of an immediate
translation argument. A similar elementary argument, based on the action of the multiplicative
group of Fq on itself, shows at last that it suffices to prove the equality (2) only in the case
where p divides k and b = 0. This is the most important case of the proof, which is based on
the crucial inspiring idea of the whole argument.

The idea is very simple, and relies on the “natural” observation that N(k, 0,Fq) is the number
of all the k-subsets {x1, . . . , xk−1, −(x1 + · · ·+xk−1)} of Fq for which x1, . . . , xk−1 are pairwise
distinct and −(x1 + · · ·+xk−1) is different from all the preceding elements, thereby reducing the
equation (1) to a smaller number of unknowns. By further iterating this argument, this allows
one to get a first-order linear recursive relation between N(mp, 0,Fq) and N((m − 1)p, 0,Fq),
which, by induction on m, produces the explicit expression for N(mp, 0,Fq). Besides this general
scheme, the rest of the proof is just a very easy exercise, which involves only elementary
properties of the binomial coefficients.

Let us first introduce some notation. For any 1 ≤ k ≤ q, let us denote by
(Fq

k

)
the family of

all the subsets of Fq of size k, that is,(
Fq

k

)
= {A ⊆ Fq : |A| = k}.

Also, for 1 ≤ r ≤ p− 1, if 1
r

denotes the multiplicative inverse of r in Fp, then we let Ω(k, r)

be the family of all the subsets {x1, . . . , xk} of Fq of size k that do not contain −1
r

(x1 + · · ·+xk),
that is,

Ω(k, r) =

{
{x1, . . . , xk}∈

(
Fq

k

) ∣∣∣ {x1, . . . , xk,−
1

r
(x1 + · · ·+ xk)} ∈

(
Fq

k + 1

)}
.

We now consider the following preliminary result, which contains the main combinatorial
“cell” of the whole proof.

2.1 Lemma: If p is an odd prime, 2 ≤ k ≤ q, and 1 ≤ r ≤ p− 2, then

|Ω(k, r)| =
(
q

k

)
− |Ω(k − 1, r + 1)| .
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Moreover, for 2 ≤ k ≤ q, and for any prime p,

|Ω(k − 1, 1)| = kN(k, 0,Fq).

Finally, if we let N(0, 0,Fq) = 1, then, for 1 ≤ k ≤ q, and for any prime p,

|Ω(k, p− 1)| =
(
q

k

)
− (q − k + 1)N(k − 1, 0,Fq).

Proof. Let p be an odd prime, 2 ≤ k ≤ q, and 1 ≤ r ≤ p − 2. Let {x1, . . . , xk−1} be a
(k − 1)-subset of Fq. Then, for any xk in Fq,

xk = − 1

r + 1
(x1 + · · ·+ xk−1) ⇐⇒ xk = −1

r
(x1 + · · ·+ xk−1 + xk). (4)

Let τ :
( Fq

k−1

)
→
( Fq

k−1

)
∪
(Fq

k

)
be the map defined by

τ({x1, . . . , xk−1}) = {x1, . . . , xk−1, −
1

r + 1
(x1 + · · ·+ xk−1)}.

By (4), τ induces a map τ̄ from Ω(k−1, r+ 1) into
(Fq

k

)
\Ω(k, r). We claim that τ̄ is injective

and surjective. Indeed, let {x1, . . . , xk} be in
(Fq

k

)
\Ω(k, r). Then, by definition, x1, . . . , xk are

pairwise distinct, and −1
r

(x1 + · · ·+ xk) ∈ {x1, . . . , xk}, hence there exists a unique 1 ≤ i ≤ k

such that xi = −1
r

(x1+· · ·+xk). Up to permutation, we may assume that i = k, whence, by (4),
{x1, . . . , xk−1} ∈ Ω(k−1, r+1) and τ̄({x1, . . . , xk−1}) = {x1, . . . , xk}. Moreover, {x1, . . . , xk−1}
is the only pre-image of {x1, . . . , xk} under τ̄ by the uniqueness of i. This proves our claim.
Hence |Ω(k, r)| =

(
q
k

)
− |Ω(k − 1, r + 1)| .

Also, for any prime p and 2 ≤ k ≤ q, the map

ϕ({x1, . . . , xk−1}) = {x1, . . . , xk−1, −(x1 + · · ·+ xk−1)}

is a surjective map from Ω(k − 1, 1) onto the family of all the k-subsets {x1, . . . , xk} of Fq

such that x1 + · · · + xk = 0. Moreover, for any such k-set {x1, . . . , xk}, ϕ−1({x1, . . . , xk}) ={
{x1, . . . , xk} \ {xi}| i = 1, 2, . . . , k

}
. Hence N(k, 0,Fq) = 1

k
|Ω(k − 1, 1)|.

Finally, for any prime p, in the case where r = p−1 (= −1 in Fp), and k ≥ 2,
(Fq

k

)
\Ω(k, p−1)

consists, by definition, of all the k-subsets {x1, . . . , xk} of Fq such that
∑

j 6=i xj = 0 for some

(necessarily unique) 1 ≤ i ≤ k. Hence
(Fq

k

)
\Ω(k, p − 1) consists of all the sets of the form

{x1, . . . , xk−1}∪{xk}, where {x1, . . . , xk−1} is a (k−1)-subset of Fq such that x1+· · ·+xk−1 = 0,
and xk 6∈ {x1, . . . , xk−1}. Therefore Ω(k, p− 1) has precisely

(
q
k

)
− (q − (k − 1))N(k − 1, 0,Fq)

elements. This is true also for k = 1, since N(0, 0,Fq) = 1 and |Ω(1, p− 1)| = 0 by definition.

The proof is now complete. 2

Proof of Theorem 1.1. Let b be a given element of Fq, and let 1 ≤ k ≤ q. Let us first consider
the case where b = 0 and k is multiple of p, say k = mp. The crucial argument of the whole proof
is finding a first-order linear recursive relation between N(mp, 0,Fq) and N((m− 1)p, 0,Fq).
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Let p be an odd prime. Then, by Lemma 2.1,

N(mp, 0,Fq) =
1

mp

((
q

mp− 1

)
− |Ω(mp− 2, 2)|

)
=

1

mp

((
q

mp− 1

)
−
(

q

mp− 2

)
+ |Ω(mp− 3, 3)|

)
.

By further iterating the same argument, and applying again Lemma 2.1,

mpN(mp, 0,Fq) =

(
q

mp− 1

)
−
(

q

mp− 2

)
+ · · ·+ (−1)p

(
q

mp− p+ 1

)
− (−1)p(q −mp+ p)N((m− 1)p, 0,Fq),

whence

mpN(mp, 0,Fq) =

(
q − 1

mp− 1

)
+ (−1)p

(
q − 1

mp− p

)
− (−1)p(q−mp+ p)N((m− 1)p, 0,Fq), (5)

which is the desired first-order linear recursive relation. This relation can be easily derived
from by Lemma 2.1 also in the case where p = 2.

We can now prove the equality (2), for b = 0 and k multiple of p, by induction on m = k/p.
For m = 1, by (5) and Lemma 2.1,

N(p, 0,Fq) =
1

p

((
q − 1

p− 1

)
+ (−1)p − (−1)pq

)
=

1

q

(
q

p

)
+ (−1)p+1 q − 1

q

(
q/p

1

)
,

hence (2) holds. If (2) is satisfied for k = (m− 1)p and b = 0, then, by (5),

mpN(mp, 0,Fq) =

(
q − 1

mp− 1

)
+ (−1)p

(
q − 1

mp− p

)
+ (−1)p+1 (q −mp+ p)

1

q

(
q

(m− 1)p

)
+(−1)p+1 (q −mp+ p) (−1)(m−1)p+(m−1) q − 1

q

(
q/p

m− 1

)
=

(
q − 1

mp− 1

)
+ (−1)p

(
q − 1

mp− p

)
− (−1)p

(
q − 1

mp− p

)
+(−1)mp+m p (q/p−m+ 1)

q − 1

q

(
q/p

m− 1

)
,

whence

N(mp, 0,Fq) =
1

q

(
q

mp

)
+ (−1)mp+m q − 1

q

(
q/p

m

)
,

that is, (2) holds for k = mp and b = 0. This completes the proof of the equality (2) in the case
where b = 0 and k is multiple of p.

Next, we claim that, if k is multiple of p, then N(k, b,Fq) is constant in b, as b ranges over
F∗q. Indeed, if b1, b2 are two nonzero elements of Fq, then, for any k-subset {x1, . . . , xk} of Fq,

x1 + · · · + xk = b2 if and only if b1b
−1
2 x1 + · · · + b1b

−1
2 xk = b1. Therefore, since the families
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{
{x1, . . . , xk} ∈

(Fq

k

) ∣∣ ∑k
i=1 xi = b

}
, as b ranges in Fq, give a partition of

(Fq

k

)
, we conclude

that, given any b in F∗q,
(
q
k

)
= N(k, 0,Fq) + (q − 1)N(k, b,Fq), whence

N(k, b,Fq) =
1

q − 1

((
q

k

)
− 1

q

(
q

k

)
− (−1)k+k/p q − 1

q

(
q/p

k/p

))
=

1

q

(
q

k

)
+ (−1)k+k/p −1

q

(
q/p

k/p

)
,

that is, the equality (2) holds.

We now consider the case where k is not multiple of p. In this case, k is invertible mod p,
and, for any b ∈ Fq, the map {x1, . . . , xk} 7→ {x1 − 1

k
b, . . . , xk − 1

k
b} is a bijection between the

family of the k-subsets {x1, . . . , xk} of Fq such that x1 + · · · + xk = b, and the family of the
k-subsets {y1, . . . , yk} of Fq such that y1 + · · ·+yk = 0, whence N(k, b,Fq) is constant in b ∈ Fq.

Since the above families of k-sets are a partition of
(Fq

k

)
, it follows that |

(Fq

k

)
| = qN(k, b,Fq) for

any b ∈ Fq, that is, the equality (2) holds.

Finally, it only suffices to prove that the equality (3) is satisfied. In order to do this, note
that, for 2 ≤ k ≤ q − 1,

N(k, b,F∗q) = N(k, b,Fq)−N(k − 1, b,F∗q). (6)

This is an immediate consequence of the fact that the family of the k-subsets {x1, . . . , xk}
of Fq such that x1 + · · ·+xk = b is the disjoint union of the family of the k-subsets {x1, . . . , xk}
of F∗q such that x1 + · · · + xk = b with the family of all the subsets of Fq of size k containing
zero, whose elements sum up to b. As the latter family is in one-to-one correspondence with
the family of all the subsets of F∗q of size k − 1, whose elements sum up to b, the equality (6)
follows.

We can now prove the equality (3) by induction on k. For k = 1, N(k, b,F∗q) is equal to
1 (resp., to 0) if b 6= 0 (resp., if b = 0), hence (3) holds. Let us now assume that (3) is
satisfied when k is replaced by k − 1, for some 2 ≤ k ≤ q − 1. If p does not divide k, then
bk/pc = b(k − 1)/pc, hence, by (6) and (2),

N(k, b,F∗q) =
1

q

(
q

k

)
− 1

q

(
q − 1

k − 1

)
− (−1)k−1+b(k−1)/pc v(b)

q

(
q/p− 1

b(k − 1)/pc

)
=

1

q

(
q − 1

k

)
+ (−1)k+bk/pc v(b)

q

(
q/p− 1

bk/pc

)
,

that is, the equality (3) holds. Finally, if p divides k, then b(k − 1)/pc = k/p− 1, hence, by (6)
and (2),

N(k, b,F∗q) =
1

q

(
q

k

)
+ (−1)k+k/p v(b)

q

(
q/p

k/p

)
−1

q

(
q − 1

k − 1

)
− (−1)k−1+k/p−1 v(b)

q

(
q/p− 1

k/p− 1

)
=

1

q

(
q − 1

k

)
+ (−1)k+k/p v(b)

q

(
q/p− 1

k/p

)
,

that is, the equality (3) holds.

This completes the proof of the theorem. 2
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