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Abstract
The Green Vehicle Routing Problem with Capacitated Alternative Fuel Stations
assumes that, at each station, the number of vehicles simultaneously refueling cannot
exceed the number of available pumps. The state-of-the-art solution method, based on
the generation of all feasible non-dominated paths, performs well only with up to 2
pumps. In fact, it needs cloning the paths between every pair of pumps. To overcome
this issue, in this paper, we propose new path-based MILP models without cloning
paths, for both the scenario with private stations (i.e., owned by the fleet manager) and
that with public stations. Then, a more efficient cutting plane approach is designed
for addressing both the scenarios. Numerical results, obtained considering a set of
benchmark instances ad hoc generated for this work, show both the efficiency and the
effectiveness of this new cutting plane approach proposed. Finally, a sensitivity analy-
sis, carried out by varying the number of customers to be served and their distribution,
shows very good performances of the proposed approach.

Keywords Vehicle routing problem · Alternative fuel vehicles · Mixed integer linear
programming · Fueling pump reservation

1 Introduction

The recent worries about the current environmental and climatic conditions of our
planet are increasing the interest in the Alternative Fuel Vehicles (AFVs), i.e., vehicles
that use alternative fuel like, methanol, electricity and natural gas.
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Moreover, the recent rules imposed by the European Commission aim at supporting
the diffusion of the AFVs in place of the traditional Internal Combustion Engine
Vehicles. A report by the International Energy Agency states that, only in 2018, the
global electric car fleet overcame 5.1 million, about the double of 2017 [14]. However,
one of the major drawback of using AFVs is that they may require to be refueled at
the Alternative Fuel Stations (AFSs), also more than once, during a trip. This aspect,
together with the fact that the AFSs are currently not widespread across the territory,
leads to the need of properly routing the AFVs in order to avoid drivers remaining
stuck during their trips.

The Green Vehicle Routing Problem (G-VRP) represents a very recent research
field that is attracting attention of many researchers and aims at efficiently routing a
fleet of AFVs, to serve a set of customers. In a route, each AFV starts from a common
depot, where the fleet is based, serves a subset of customers, with possible fueling
stops at AFSs and returns to the depot. The implicit hypothesis traditionally made is
that each AFS s has an unlimited capacity, i.e., an unlimited number of AFVs may be
refueled simultaneously at s.

The G-VRP has been efficiently solved through a path-based approach in the recent
work [5]. Specifically, a path represents a leg of a route joining the depot or an AFS
with the depot or another AFS and serving a subset of customers (possibly also empty),
without intermediate stops at AFSs. In order to reduce the number of all feasible paths,
dominance criteria among them are also defined.

To take into account that each AFS has actually a limited number of fueling pumps
and then, only a limited number of AFVs can be simultaneously refueled at it, in
[6], a new variant of the G-VRP has been proposed, i.e., the GVRP with Capacitated
AFS (G-VRP-CAFS) where, for each AFS s, ηs fueling pumps are available. Two
different scenarios are considered: one with public AFSs, for which the reservation of
the fueling pumps is introduced and one with private AFSs, i.e., AFSs owned by the
manager of the AFVs fleet. A variant of the path-based approach is proposed, where
multiple fueling pumps at AFS are managed by properly cloning the paths, in both
scenarios. Moreover, Cutting Planes (CPs) methods to efficiently solve the path-based
model are also designed.

The current work addresses the same problem providing the following main con-
tributions: (1) a new variant of the path-based approach without cloning the paths
is proposed; (2) a more efficient CPs approach is designed; (3) a set of instances
challenging for the case under consideration is generated; (4) an accurate sensitivity
analysis is carried out in order to discuss the performances of the proposed approach
by varying the number of customers and their distribution.

The rest of the paper is organized as follows. In Sect. 2, a short literature review
is presented. In Sect. 3, the notation and the statement of the problem are introduced.
In Sect. 4, the proposed path based formulation without cloning paths is presented for
the scenario with private AFSs. In Sects. 5 and 6, the CP approaches for the scenarios
with private AFSs and public AFSs, respectively, are outlined. In Sect. 7 the results
are discussed. Finally, Sect. 8 draws some conclusions and remarks possible future
research directions worthy of investigation.
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2 Literature review

The G-VRP belongs to the class of the Vehicle Routing Problems (VRPs) where
the fleet consists of only AFVs. It is introduced in [9] where it is firstly mathemati-
cally formulated via Mixed Integer Linear Programming (MILP) and on large-sized
instances, it is solved through both a modified Clark & Wright Saving algorithm and
a Density-Based Clustering approach.

The case in which the fleet consists of only Electric Vehicles (EVs) is instead
addressed for the first time in [25] where together with the need of the EVs to be
recharged during the routes, time windows at customers and EV loading capacity are
both taken into account, introducing the so-called Electric Vehicle Routing Problem
with Time Windows (E-VRPTW). The authors mathematically model it via MILP
and solve large-sized instances combining a Variable Neighboord Search with a Tabu
Search. In [26], this problem is addressed as aVRPwith Intermediate Stops introduced
in the literature by the work of [3].

An extended version of the G-VRP is described in [10] where the authors intro-
duce also the possibility to use several alternative recharge technologies, each with a
different cost. For such a new variant of the G-VRP, both constructive and improving
heuristics are designed and embedded in a Simulating Annealing algorithm. Whereas
the possibility of partially recharging the EVs is introduced in [4]. In particular, the
authors firstly propose a MILP formulation of the E-VRPTW with partial recharges
considering that the battery level reached by each EV after visiting anAFS is a decision
variable, minimizing simultaneously the total travel time, the total waiting time, the
total recharging time and the number of the employed EVs. A Variable Neighboord
Search Branching matheuristic is also proposed for addressing large-sized instances.

The problem of both sizing the EV fleet and then, routing them considering possible
stops at the stations is addressed in [12]where it ismodelled viaMixed Integer Program
(MIP). In addition, the authors also propose a set-partitioning model solved through a
state-of-the-art branch-and-price algorithm designed for the VRP with time windows.
Whereas in order to efficiently address large-sized instances, they design an Adaptive
Large Neighbourhood Search meta-heuristic together with embedded local search and
labeling procedures. Instead, the recent work of [13] addresses the problem of routing
a mixed fleet, made up by conventional, plug-in hybrid and EVs, through a genetic
algorithm integrated with a local large neighboord search.

In [17], the G-VRP is reformulated by using the Miller Tucker Zemlin capacity
and subtour elimination constraints proposed for the Traveling Salesman Problem
and solved through a branch-and-bound algorithm. A new G-VRP MILP formulation
and a reduction procedure are then proposed in [18] where medium-sized instances
are also solved. In [1], the G-VRP is modelled as a set-partitioning problem where
the routes become simple circuits on a multi-graph. Each node of the multi-graph
represents a customer and an arc between two customers i and j is a non-dominated
path of AFSs visited by the vehicle travelling from i to j . The set-partitioning model
is further strengthen by introducing valid inequalities. More efficient formulations and
valid inequalities for the G-VRP are recently proposed in [7] where consecutive stops
at AFSs are also allowed.
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A two-phase heuristic approach is designed in [22] where feasible routes are firstly
built through a randomized route-first cluster-second algorithm and then, an efficient
AFS insertion procedure is used. The set of routes belonging to the final G-VRP
solution are selected through a set-partitioning model. However, in [2], a multi-start
local searchheuristic is designed suitable to outperformall the existingmeta-heuristics.

Several variants of both the G-VRP and the E-VRPTW have been introduced in
the literature. For example, in [8], the authors address the case in which only one
recharge per route is permitted and that in which this hypothesis is relaxed. Each of
both scenarios is also studied either permitting the partial recharges or assuming only
full recharges. An E-VRPTW with pick-ups and deliveries is instead addressed in
[11]. Similarly, a G-VRP with pick-ups, deliveries and time windows at customers is
proposed in [19]. Whereas in [20], the routing problem of a fleet of hybrid vehicles
is addressed, i.e., allowing vehicles switching from the use of the traditional fuel to
electricity during their trips. In addition, multi-objective G-VRPs are addressed in
[15,24] and [23].

As already described in Sect. 1, recently in [5], the G-VRP is addressed through
a path-based approach. First, all feasible non-dominated paths, serving customers
between AFSs or between an AFS and the depot, are found. Then, a path-based math-
ematical model selects the paths to be in the optimal solution of the G-VRP. This
approach is proven to outperform all the existing exact methods on small/medium-
sized instances. Whereas on large-sized instances, feasible non-dominated paths are
heuristically generated by applying the algorithm proposed in [22].

However, all the aforementioned works make the hypothesis that each station has
unlimited capacity and then, that an unlimited number of vehicles can be refueled
simultaneously at it. To the best of our knowledge, the first contribution, in which
the realistic assumption of having capacitated stations is done, is that of [16]. Indeed,
the authors address an E-VRPTW with capacitated recharging stations, by assuming
that an EV may have to wait at the station if all chargers are busy. Then, a MILP
formulation with time-dependent waiting times at the stations is proposed, minimizing
delays at customers due to possible queues at the stations, driver costs, vehicle costs
and also energy. Whereas large-sized instances are addressed through an Adaptive
Large Neighborhood Search.

TheG-VRP-CAFS is instead introduced in [6]where it is discussed how, depending
on the location of customers, depot and AFSs, the station capacity may become a
crucial issue to be considered during the AFV routing. Together with an Arc-based
MILP formulation, the authors propose a variant of the path-based model described
in [5] where the paths generation procedure is properly adapted to the context with
capacitated AFSs. In particular, as many clones of each path starting from a station s1
and arriving to a station s2 as ηs1 · ηs2 are generated. In order to efficiently address the
path-based formulation on large-sized instances, the authors also design two variants
of the CPs method. Moreover, they also generate a benchmark set of challenging
instances for the G-VRP-CAFS. However, when the number of pumps at AFSs grows,
the proposed methods become impracticable and in fact, the experimental campaign
is carried out on only cases with at most 2 fueling pumps per station. This paper
overcomes this issue by properly extending the previous CPs approaches in order to
address also cases with more than 2 fueling pumps per station. Indeed, the advantage
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of the approach proposed in this paper, is that it does not require to duplicate paths
and stations to handle capacities greater than 1, unlike the method proposed in [6].
Therefore the newly proposed approach is the first method able to solve also instances
with larger capacity, while [6] can only address capacity up to 2. The main novelty is
that station capacity greater than 1 is directly handled imposing a maximum number
of refueling operations overlapping, while in [6] each single pump was separately
considered imposing that no simultaneous refueling can occur on it.

3 Problem statement

The G-VRP-CAFS is represented on a complete directed graph G = (N , A) where
N = I ∪ F ∪ {0} contains the set of customers I , the set of AFSs F and the depot
(indicated by 0), and A is the set of the arcs. For each pair of nodes (i, j)∈ A, both
the travel time ti j and the travel distance di j are known. Each route that starts from
the depot and ends at it cannot exceed the maximum duration Tmax . Each AFV has a
limited fuel capacity Q. If the depot is also an AFS, it is indicated by s0. It is assumed
that each AFV leaves the depot fully refueled and the time spent for the initial refuel
is indicated by pstart . Moreover, for each station s ∈ F , the refueling time ps is given
and for each customer i ∈ I , the service time pi is also given. A fictitious service time
p0 = 0 is assigned also to the depot, when it is not considered as an AFS. The fuel
consumption rate is assumed to be proportional to the travel distance through the rate
r and therefore, an AFV cannot travel longer than Dmax = Q

r without stopping at an
AFS. In the G-VRP-CAFS, in addition to the aforementioned parameters, the number
of fueling pumps for each AFS s, denoted by ηs , is also known.

4 Path based formulation for the scenario with private AFSs

For the G-VRP-CAFS with private AFSs, we propose a path-based MIP formulation.
As in [6], this formulation is based on the idea that each feasible route can be seen
as the combination of paths, each one handling a subset (also empty) of customers
without intermediate stops at AFSs. Each path can link the depot or an AFS with the
depot or another AFS. In particular, the path linking the depot with itself represents
a route without intermediate stops. For each path k, the origin (starting node) sk , the
destination (arrival node) ak , the travel distance dk and the duration γk are known. In
particular, γk is computed as the sum of the total travel time of path k and the service
times at nodes visited by it. Let Ik the set of customers served by path k.

The set K of all feasible non-dominated paths can be generated according to Algo-
rithm 1 of [6]. In particular, starting from all feasible paths in which only one customer
is served, all feasible non-dominated paths of increased cardinality are generated by
adding a new customer at a time. The path generation procedure is mademore efficient
thanks to the use of appropriate data structures (e.g., Hash Maps). Specifically, a path
k is feasible (feasibility rules) if its total distance is less than or equal to Dmax and
its total duration, including the service times, is less than or equal to Tmax . A feasible
path k1 dominates a feasible path k2 (dominance rules) if they start/arrive from/to the
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same station, handle the same customers and the total distance of the former is less
than or equal to that of the latter.

Moreover, a dummy path, k0, which starts from and ends at the depot without
visiting any customer, with duration γk0 = 0 and length dk0 = 0 is generated. This path
is used in the model to ensure routes continuity and to force the number of routes to
be lower than the number m of available AFVs. We denote by K̃ = K ∪ k0. Unlike
[6], where each path k ∈ K was duplicated ηs(k) · ηa(k) times to take into account
multiple pumps in each station, in the new formulation here proposed, we do not
create clones of them. A coverage parameter, cik , is also introduced, equal to 1 if i ∈ I
is handled in k ∈ K̃ , 0 otherwise. From K̃ , the set P of all the pairs of compatible
paths is generated. A pair of paths (k1, k2), k1 ∈ K̃ , k2 ∈ K̃ , k1 �= k2 is defined
compatible if ãk1 = s̃k2 , the sets of customers handled in the two paths are disjoint
and t0s̃k1 + γk1 + γk2 + tãk2 0 + ps̃k1 + pãk1 + pãk2 + pstart ≤ Tmax .

The following decision variables are introduced:

– Zk , equal to 1 if k ∈ K̃ is selected, 0 otherwise;
– Xk1k2 , equal to 1 if k2 ∈ K̃ is covered just after k1 ∈ K̃ , 0 otherwise,∀(k1, k2) ∈ P;
– Tk a non-negative variable representing the refueling start time of k ∈ K at its
final node ak if ak �= 0, the arrival time of k to the depot if ak = 0. Whereas for
the dummy path k0, Tk0 = pstart .

– Yk1k2 , equal to 1 if path k1 reaches the AFS s before k2 and 0 otherwise, ∀k1, k2 ∈
K : ak1 = ak2 = s �= 0, Ik1 ∩ Ik2 = ∅

– ξk1k2 equal to 1 if the starting refueling times of paths k1 and k2 at their final node
s differ less or equal than ps , 0 otherwise, ∀k1, k2 ∈ K : ak1 = ak2 = s �= 0,
Ik1 ∩ Ik2 = ∅
Moreover, ∀s ∈ F , we indicate by Hs the family of all sets of ηs + 1 customer

disjoint paths belonging to K with the same arrival AFS s.
The path-based MIP model for the scenario with private AFSs is the following:

min
∑

k∈K
dk Zk (1)

∑

k∈K
cik Zk = 1 ∀i ∈ I (2)

∑

k2∈K̃
Xk0k2 ≤ m (3)

Xk1k =
∑

k2∈K̃ :
(k,k2)∈P

Xkk2 ∀k ∈ K (4)

∑

k1∈K̃ :
(k1,k2)∈P

Xk1k2 = Zk2 ∀k2 ∈ K (5)

Tk2 ≥ Tk1 + pak1 + γk2 − Tmax (1 − Xk1k2) ∀(k1, k2) ∈ P : k2 �= k0 (6)

Tk0 = pstart (7)

Tk ≤ Tmax − pak + Tmax (1 − Zk) ∀k ∈ K (8)
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Tk2 ≥ Tk1 − 2Tmax (1 − Yk1k2) + ps − 2Tmax (2 − (Zk1 + Zk2))

−psξk1k2 ∀s ∈ F,∀H ∈ Hs,∀k1, k2 ∈ H
(9)

Tk1 ≥ Tk2 − 2TmaxYk1k2 + ps − 2Tmax (2 − (Zk1 + Zk2))

−psξk1k2 ∀s ∈ F,∀H ∈ Hs,∀k1, k2 ∈ H
(10)

∑

k1,k2∈H :k1 �=k2

ξk1k2 ≤
(

ηs + 1

2

)
− 1 ∀s ∈ F,∀H ∈ Hs (11)

Zk ∈ {0, 1} ∀k ∈ K (12)

Tk ≥ 0 ∀k ∈ K (13)

Xk1k2 ∈ {0, 1} ∀(k1, k2) ∈ P (14)

Yk1k2 ∈ {0, 1} ∀k1, k2 ∈ K : ak1 = ak2 �= 0, Ik1 ∩ Ik2 = ∅ (15)

ξk1k2 ∈ {0, 1} ∀k1, k2 ∈ K : ak1 = ak2 �= 0, Ik1 ∩ Ik2 = ∅ (16)

The objective function (1) to be minimized represents the total travel distance.
Constraints (2) ensure that each customer is visited exactly once. Constraints (3)
guarantee that the number of routes selected does not exceed the number of available
AFVs. Constraints (4) force each route to be a sequence of paths where the first one
and the last one is k0. Indeed, they guarantee that each path k �= k0 selected is traveled
just after a path k1 and just before a path k2, both selected in the same route. Since
constraints (4) are imposed for all paths k ∈ K , the dummy path is the only one not
requiring to have both a predecessor and a successor. Constraints (5) guarantee that
a path can be inserted in a route only if it is selected. If Xk1k2 = 1, the refueling of
path k2 cannot start before the refueling of path k1 at ak1 has been completed (6).
Constraints (7) fix Tk0 = pstart to take into account the time spent for the initial refuel
at the depot. Constraints (8) ensure that the refueling of each selected path k must be
completed within Tmax .

Constraints (9) and (10) guarantee that if both paths k1 and k2 are chosen and
variable ξk1k2 = 1, where ak1 = ak2 = s, then their starting fueling time at s has to
be distanced of ps . Indeed, if Yk1k2 = 1 then constraint (9) is active imposing that
the starting fueling time of k2 at s is postponed at least of ps from that of k1. Vice
versa, if Yk1k2 = 0 constraint (10) guarantees that the starting fueling time of k1 at s
is postponed at least of ps from that of k2. Constraints (11) ensure that the capacity of
each AFS s is respected. Indeed, for each AFS s and for each set of ηs + 1 paths of K
ending in s, they impose that at most

(
ηs+1
2

)−1 pairs of such paths (i.e., not all of them)
can overlap at s (since they can satisfy the non-overlapping refueling constraints (9)
and (10) with ξk1k2 = 1, thus may violate in practice the non-overlapping condition).
Finally, constraints (12)–(16) specify the variables nature.

We notice that formulation (2)–(16) is intractable to be solved by a commercial
MILP solver such as Gurobi or CPLEX since constraints (9), (10) and (11) are in
exponential number. Indeed, e.g., (11)must be imposed for each H in Hs and therefore
it consists in an exponential number of constraints being Hs the family of all sets of
ηs + 1 customer disjoint paths belonging to K with the same arrival AFS s.
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5 Cutting planes approach for the scenario with private AFSs

CPsmethods are exact algorithms to solve NP-hard optimization problems [21]. They
are based on the following principle.Given aMIP formulation of a problem (denoted as
Original Problem - OP), a Relaxation Problem (RP) of it is obtained by discarding a set
of constraints responsible of its hardness (e.g., the integrality constraints) or containing
a huge number of constraints. Once the RP is solved to optimality, the feasibility of
its solution is checked with respect to OP. If the optimal solution of RP is feasible for
OP, then it is optimal for OP too. Otherwise, we detect the violated constraints, i.e. the
cuts, to add to RP and we solve it again. This procedure is iteratively repeated until an
optimal solution for OP (if any) is found. If some of the initially dropped constraints
are added to RP making it infeasible, OP is also infeasible. This method is exact since
it converges to an optimal solution, if it exists, in a finite number of iterations. Indeed,
in the worst case, all the relaxed constraints are added to RP for proving that either
OP is infeasible or finding an optimal solution.

In the scenario with private AFSs, an RP is obtained starting from the formulation
reported in the previous section, by dropping constraints (9)–(11). The obtained prob-
lem corresponds to the classical G-VRP in which no limits on simultaneous refueling
operations are imposed. The RP is then solved to optimality by a MIP commercial
solver. The feasibility of the obtained solution is then checked with regard to the G-
VRP-CAFS formulation (1)–(16), i.e., for every AFS s it is checked that the number of
vehicles simultaneously refueling at s is not greater than ηs . If the solution is feasible,
then it is optimal for G-VRP-CAFS too. Otherwise, all the violated constraints are
added to RP, which is solved again. This procedure is iteratively repeated until either
the solution of RP becomes feasible forG-VRP-CAFSor a TimeLimit (TL) is reached.
In the latter case, the RP optimal solution obtained at the last iteration represents the
best lower bound. In fact, the RPi , at a generic iteration i , is obtained adding further
cuts to the RP at the previous iteration, RPi−1, and, therefore, the optimal solution of
RPi , z∗(RPi ), must be not lower than z∗(RPi−1).

6 Cutting planes approach for the scenario with public AFSs

In the scenario with public AFSs, as introduced in [6], we suppose companies can
reserve in advance the use of the fueling pumps of each AFS, in order to avoid unpre-
dictable waiting times at the AFSs because all pumps are busy. In order to address
this scenario, multiple time windows associated with the fueling pumps, to take into
account reservations already made by other users, are considered. For each fueling
pump h, let μh be the number of time windows associated with it and let [eqh , lqh ] its
q-th time window, i.e., the range within which a refuel can start.

The CP approach presented in the previous section can be modified to address this
scenario considering that, due to the time windows associated with each pump, the
capacity of each AFS can vary over time. To this purpose, for each AFS s, from the
time windows associated with its fueling pumps, we can build the piecewise constant
function γs(t) representing the maximum number of vehicles that can simultaneously
fuel at s at time t . At each iteration of the CP, ∀s ∈ F , let ϕs(t) a piecewise constant
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function representing the number of vehicles that fuel in AFS s at time t in the current
relaxation of the problem. Consider now the piecewise constant function δs(t) =
ϕs(t)−γs(t) and let nδ

s the number of time intervals, each one denoted byΓsi = [ei , li ],
within which δs(t) does not vary. Moreover, let γsi the constant value assumed by
γs(t) in the interval Γsi .

We add to the formulation also the decision variables Z̃ik = 1 if path k is selected
and the fuel happens in time interval Γsi , 0 otherwise, ∀s ∈ F,∀i = 1, . . . , nδ

s ,∀k ∈
K : a(k) = s and the auxiliary binary variables Z ′

ik and Z ′′
ik defined on the same index

set.
Moreover, the following cuts are added to the current RP instead of constraints (9)–

(11), where T̃ denotes the time horizon width and ε denotes a suitable small constant
(e.g., we fixed ε = 10−5, in the experiments):

Tk2 ≥ Tk1 − 2Tmax (1 − Yk1k2) + ps − 2Tmax (2 − (Z̃ik1 + Z̃ik2))

−psξk1k2∀s ∈ F,∀i = 1, . . . , nδ
s ,∀k1, k2 ∈ K :

a(k1) = a(k2) = s and δs(t) > 0 ∀t ∈ Γsi

(17)

Tk1 ≥ Tk2 − 2TmaxYk1k2 + ps − 2Tmax (2 − (Z̃ik1 + Z̃ik2))

−psξk1k2 ∀s ∈ F,∀i = 1, . . . , nδ
s , ∀k1, k2 ∈ K :

a(k1) = a(k2) = s and δs(t) > 0 ∀t ∈ Γsi

(18)

∑

k1,k2∈K :a(k1)=a(k2)=s,
δs (t)>0∀t∈Γsi ,k1 �=k2

ξk1k2 ≤
(

γsi + 1

2

)
− 1

∀s ∈ F,∀i = 1, . . . , nδ
s ,

(19)

ei + ε − Tk

T̃
≤ Z ′

ik ∀s ∈ F,∀i = 1, . . . , nδ
s ,

∀k ∈ K : a(k) = s
(20)

Tk + ps + ε − li

T̃
≤ Z ′′

ik ∀s ∈ F,∀i = 1, . . . , nδ
s ,

∀k ∈ K : a(k) = s
(21)

Z̃ik ≥ Z ′
ik + Z ′′

ik − 1 ∀s ∈ F,∀i = 1, . . . , nδ
s , ∀k ∈ K : a(k) = s (22)

Indeed, constraints (17) and (18) guarantee that if both paths k1 and k2 are chosen
and variable ξk1k2 = 1, where ak1 = ak2 = s, then their starting fueling time at s
has to be distanced of ps . Constraints (19) ensure that the capacity of each AFS s is
respected. Indeed, for each AFS s and for each time interval Γsi , they impose that at
most

(
γsi+1
2

) − 1 pairs of paths of K ending in s and that in Γsi violate the capacity
γsi (i.e., not all of them) can overlap at s. Constraints (20) ensure that if the refuel of
path k starts before or at ei then Z ′

ik must be equal to 1. In similar way, constraints
(21) guarantee that if the refuel of path k ends after or at li then Z ′′

ik must be equal to
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1. Finally, constraints (22) enforce variables Z̃ik to be equal to 1 if both variables Z ′
ik

and Z ′′
ik are so.

7 Computational results

In this section, we present the numerical results obtained on a set of challenging
instances, named Central, introduced in [6], with 2 fueling pumps per station. This set
is composed of 10 instances with 15 customers. The depot is located very far from the
customers area and only one AFS is considered, located at the center of the customers
area. The number of available vehicles is equal to 8. The parameters have been set as
in the following: Tmax = 7, pstart = 0, ps = 0.5 ∀s ∈ F , pi = 0.5 ∀i ∈ I , Q = 32
and r = 0.2. The travel time from the depot to the AFS is 2 hours. The travel times
between customers or customer and the AFS or customer and depot are computed
considering the Euclidean distance and a constant speed equal to 40. This way, the
available time for refueling is small and the AFS capacity becomes a crucial issue.

Each one of these instances has been properly modified in order to have 3 and
4 fueling pumps per station. The time windows related to the availability of each
pump at every AFS have been settled in such a way that the optimal solution of the
uncapacitated problem is not feasible for the capacitated one, to make the instance
challenging.
All the instances are available at https://github.com/OrnellaPisacane/G-VRP-with-
Capacitated-Alternative-Fuel-Stations.
The NEW-CP has been run under Xpress 7.9 on a machine equipped with a processor
Intel i7-5500U at 2.4 GHz with 16 GB of RAM, with a CPU time limit of 3,600 sec-
onds. The obtained results have been compared with those of the two CPs approaches
presented in [6], named CP and CP-proactive, respectively.

In Table 1, the first column refers to the instance name, the next ones report the
total Travel Distance (TD) of the optimal solution, the CPU time (CPU) required to
certify it, the number of cuts (Cuts) generated and finally, the number of iterations
(Iter) needed, respectively, for the scenario with 2, 3 and 4 fueling pumps.

Computational results show the efficiency and the effectiveness of the proposed
method which is able to solve to optimality all the instances, with 2,3 and 4 pumps
per station, in a very small number of iterations and in an average computational
time of 16.35 seconds. Both CP and CP-proactive proposed in [6] are able to close
to optimality, within the CPU time limit of 3, 600 seconds, only 8 over 10 instances
with 2 pumps, in an average computational time of 1476.04 and 1450.83 seconds,
respectively. Figure 1 depicts, instance by instance, a CPU time comparison among
the three CP approaches on the CENTRAL instances when 2 fueling pumps per station
are considered.

Since both the CP and the CP-proactive require to generate as many clones of
each path as the number of pumps in the starting station multiplied by the number of
pumps in the arrival station, they cannot address instances with 3 and 4 pumps. On
the contrary, NEW-CP allows to directly address instances with more than 2 pumps
without cloning the paths. This way, NEW-CP is able to solve to optimality also
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Fig. 1 CPU times comparisons among CP, CP-proactive and NEW-CP on the CENTRAL instances with 2
fueling pumps per AFSs

instances with 3 and 4 pumps per station, in very reasonable computational times
(19.01 and 15.68 seconds, on average, respectively).

The main strength of this method is that the number of pumps does not impact on
the computational time. This is a big advantage respect to the algorithms from the
literature which, instead, strongly suffer this issue.

7.1 Sensitivity analysis on number of customers and their distribution

Table 2 shows the performances of NEW-CP by varying the number of customers
(i.e., 15, 20 and 30) in the Central instances, being the number of pumps fixed to 5.
The number of vehicles available is equal to 8 in the instances with both 15 and 20
customers whereas it has been fixed equal 12 in the instances with 30 customers to
ensure feasibility.

First, it is worth remarking that the results with 15 customers are equal to those
obtained considering 4 pumps, as shown in Table 1. This is due to the fact that above
a certain threshold, the number of pumps does not affect the final results. Regarding
the CPU time, it is more than twice and more than five times passing from 15 to 20
customers and from 20 to 30 customers, respectively. Concerning the number of cuts
added, about 4 extra cuts and only 1 extra cut are added respectively passing from 15 to
20 customers and from 20 to 30 customers. We can notice that, with the increasing of
the number of customers, the computational times increase but not in an exponential
way (see also Fig. 2). Therefore, instances in which the number of customers is up to
30 are tractable within very reasonable computational times (around 3 minutes).
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Fig. 2 CPU times comparison varying the number of customers in the Central instances

Table 3 Numerical comparisons varying customers distribution in CENTRAL instances with 4 pumps

15 Customers Random 15 Customers Clustered

Instance TD CPU Cuts Iter TD CPU Cuts Iter

Central 1 953.94 9.52 16 5 1375.80 2.21 20 6

Central 2 959.29 9.24 8 3 1084.54 0.78 8 3

Central 3 950.73 5.48 4 2 1177.56 0.44 8 2

Central 4 1092.68 15.09 4 2 1366.45 4.09 24 7

Central 5 714.55 13.43 2 2 1384.94 0.22 8 2

Central 6 844.43 15.55 0 1 1092.51 0.57 12 3

Central 7 862.68 50.43 2 2 887.48 0.86 10 3

Central 8 716.9 18.71 10 4 1083.19 1.19 14 5

Central 9 855.43 13.24 2 2 1088.74 0.61 16 3

Central 10 905.59 9.13 4 2 1100.58 0.32 8 2

AVG 885.62 15.98 5.20 2.50 1164.18 1.13 12.80 3.60

Table 3 compares performances ofNEW-CPon instanceswith randomand clustered
distribution. In these instances, the number of customers and of pumps have been fixed
to 15 and 4, respectively. It is worth noting that the average computation times decrease
of about 93% when the customers are clustered (see also Fig. 3). Indeed, in this case,
the number of feasible non-dominated paths is remarkably lower since there are very
few paths serving customers belonging to different clusters being these far from each
other. However, the average number of cuts added increases of about 7.6 when the
customers are clustered, being more challenging the problem of scheduling refuels
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Fig. 3 CPU times comparison varying the customers distribution in the Central instances

at the station. In fact, since customers are clustered, the refuels at the station are
performed either before or after serving them otherwise the detour cost may strongly
increase. This causes more overlaps at the station and then, the need of adding more
cuts during the approach execution.

8 Conclusions and future works

The Green Vehicle Routing Problem with Capacitated Alternative Fuel Stations (G-
VRP-CAFS) is amore realistic variant of theGreenVehicleRouting Problem (G-VRP)
where the AFSs capacity is taken into account. It was introduced in [6] where the
authors, together with an Arc-based MILP formulation, proposed also a path-based
MILP model. However, for efficiently solving this latter model, also on instances in
which the number of feasible non-dominated paths was high, two slightly different
Cutting Planes (CPs) approaches were proposed, named CP and CP-proactive, respec-
tively. All the proposed approaches were firstly designed for considering the scenario
with private AFSs and then, extended for that with public AFSs where their reserva-
tion was allowed. In the latter scenario, multiple time windows associated with the
fueling pumps of the AFSs were introduced to consider the reservations already made
by other users.

However, the main drawback of the proposed approaches was that in order to
take into account the AFSs’ capacity, as many clones of each path as the number
of fueling pumps of the starting station multiplied by that of the arrival station must
be introduced. Cloning paths may make the path-based approaches impracticable on
instances in which the number of fueling pumps per station is higher than 2.
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In order to overcome this issue, in this paper, we firstly proposed new path-based
MILP models without cloning paths, for both the scenario with private AFSs and
that with public AFSs. Then, we designed a more efficient CP approach (NEW-CP)
suitable to address both the scenarios. Numerical results showed that NEW-CP was
suitable to close to optimality all the instances with 2 fueling pumps per station in an
average CPU time that is 98.89% and 98.87% less than that of CP and CP-proactive,
respectively. It is worth remarking that both CP and CP-proactive were not able to
close to optimality 2 of the 10 instances.

Both the efficiency and the effectiveness of NEW-CP were shown on a new set of
challenging instances, generated in this work, where 3 and 4 fueling pumps per station
were considered. The NEW-CP approach was suitable to solve to optimality all these
instances, in an average CPU time of 19.01 and 15.98 seconds, respectively. On the
contrary, CP and CP-proactive were not suitable to address those instances because,
due to the very large number of paths involved, the solver reaches the out of memory
status.

Our solution approach could be extended to all scheduling problems, in which a
maximum number of tasks can be simultaneously executed by the samemachine. This
approach could be also useful to describe air flight scheduling, inwhich, for operational
reasons, a maximum number of flights can simultaneously overfly a given zone. In the
vehicle routing field, a possible application could address VRPs with cross-docking
operations at satellites, where a maximum number of vehicles can simultaneously
carried out loading/unloading operations, due to the limited available space.
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