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Abstract: A common environment in which to place Bessel and circular functions is envisaged.
We show, by the use of operational methods, that the Gaussian provides the umbral image of
these functions. We emphasize the role of the spherical Bessel functions and a family of associated
auxiliary polynomials, as transition elements between these families of functions. The consequences
of this point of view and the relevant impact on the study of the properties of special functions is
carefully discussed.
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1. Introduction

In abstract terms, Bessel and Gaussian functions are different manifestations of the same function,
as has been shown recently [1] using concepts borrowed from umbral theory [2]. Aside from such
an interesting, albeit academic statement, the practical outcome of this identification is a significant
simplification of the formalism associated with the handling of Bessel functions, accordingly reduced
to straightforward applications of the rules of the elementary calculus.

Such a point of view and the joint use of other tools, such as, for example, Ramanujan’s master
theorem (RMT) [3], allows for the evaluation of infinite integrals of Bessel functions in terms of ordinary
Gaussian integrals [4]. Further computational technicalities, such as, for example, those involving the
repeated derivatives of Bessel functions with respect to their variable or to their index, are indeed
greatly simplified. In addition, the method suggests a new possibility for the introduction of auxiliary
polynomials [5], allowing for significant progress in the study of the properties of Bessel functions and
their link to other forms belonging to the Bessel-like family.

This paper is devoted to a further step in this direction. We discuss how new elements of
speculation emerge from pure algebraic manipulations, as the possibility of framing trigonometric,
Bessel and other special functions within the same context, by keeping the Gaussian (or moreover,
the exponential) function as the reference pivot.

We introduce the topics discussed in this paper, and the formalism we exploit in the following,
by showing how, by stretching the formalism itself, new results can be obtained; in particular we see
that different families of Bessel functions are linked by straightforward Gaussian-like transforms.

According to [1], the 0th-order cylindrical Bessel function can be written by using the definition

J0(x) = e− ĵ ( x
2 )

2
ϕ0 (1)

where ĵ is an umbral operator whose action on the vacuum ϕ0 is defined as follows [6].
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Definition 1. The function

ϕ(µ) := ϕµ =
1

Γ(µ + 1)
, ∀µ ∈ C (2)

is called the umbral “vacuum”.

This term, borrowed from Physical language, is used to stress that the action of the operators
ĵ, raised to some power, is that of acting on an appropriate set of functions (in this case the Euler

Gamma function), by “filling” the initial “state” ϕ0 =
1

Γ(1)
.

Definition 2. We define the Operator ĵ, called the umbral, by the vacuum shift operator:

ĵ = e∂z (3)

where z is the domain’s variable of the function on which the operator acts.

Theorem 1. The umbral operator, ĵ µ, ∀ µ ∈ C, is defined as the action of the operator ĵ on the vacuum ϕ0,
such that

ĵµ ϕ0 := ϕµ =
1

Γ(µ + 1)
(4)

Proof. ∀ µ ∈ R, applying Equations (2) and (3), we obtain

ĵµ ϕ0 = eµ∂z ϕz |z=0 = ϕz+µ

∣∣
z=0 =

1
Γ(z + µ + 1)

∣∣∣∣
z=0

=
1

Γ(µ + 1)

It satisfies the following:

ĵ µ ĵ ν ϕ0 = ĵ µ+ν ϕ0(
ĵ µ
)r

ϕ0 = ĵ r µ ϕ0

ĵ 0 =
1

Γ(1)
= 1

(5)

According to the previous definition and properties of the umbral operator, we obtain

e− ĵ ( x
2 )

2
ϕ0 =

∞

∑
r=0

(− ĵ) r

r!

( x
2

)2 r
ϕ0 =

∞

∑
r=0

(−1)r

(r!)2

( x
2

)2 r
= J0(x) (6)

Although we are borrowing terms, such as the vacuum, from Physics, the legitimacy of the above
procedure has been justified by the use of methods based on the Borel transform [7]. The Gaussian
integral identity

e−b2
=

1√
π

∫ +∞

−∞
e−ξ2−i 2 b ξ d ξ (7)

and the fact that we treat ĵ as an ordinary algebraic quantity allows for the following conclusion:

J0(x) =
1√
π

∫ +∞

−∞
e−ξ2−i ĵ

1
2 ξ xdξ ϕ0

=
1√
π

∫ +∞

−∞
e−ξ2

[
e−i ĵ

1
2 ξ x ϕ0

]
dξ

(8)

Regarding the term in the square brackets, it is almost straightforward to prove the following:
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Theorem 2. The 0th-order cylindrical Bessel function of the first kind can be expressed in terms of the following
integral transform:

J0(x) =
1√
π

∫ +∞

−∞
e−ξ2

W( 1
2 )

0 (i ξ x)d ξ, ∀x ∈ R (9)

where W(ν)
µ (x) is the Bessel–Wright function [8].

Proof. Let

W(ν)
µ (x) =

∞

∑
r=0

(−x)r

Γ (ν r + µ + 1) r!
, ∀x ∈ R, ∀α, β ∈ R+

0 (10)

be the Bessel–Wright function; then, we can use the umbral formalism of Equation (4) to recast
the following:

W(ν)
µ (x) =

∞

∑
r=0

(−x)r

Γ (ν r + µ + 1) r!
=

∞

∑
r=0

ĵ ν r+µ

r!
(−x)r ϕ0 = ĵ µe− ĵ νx ϕ0 (11)

In particular, we obtain

W( 1
2 )

0 (x) = e− ĵ
1
2 x ϕ0 =

∞

∑
r=0

(
− ĵ

r
2

r!
xr

)
ϕ0 =

∞

∑
r=0

(−x)r

Γ
( r

2
+ 1
)

r!
(12)

which is recognized as a 0th-order Bessel–Wright function. By using this result, we can write

J0(x) =
1√
π

∫ +∞

−∞
e−ξ2

[
e−i ĵ

1
2 ξ x ϕ0

]
dξ =

1√
π

∫ +∞

−∞
e−ξ2

W( 1
2 )

0 (i ξ x)d ξ (13)

The umbral definition in Equation (11) provides a fairly useful tool to study the properties of the
W(ν)

µ function. Regarding, for example, the relevant derivatives, we find(
d

dx

)n
W(ν)

µ (x) = (−1)n ĵ n ν+µe− ĵ νx ϕ0

= (−1)n
∞

∑
r=0

ĵ (n+r) ν+µ (−x)r

r!
ϕ0

= (−1)n
∞

∑
s=0

(−x)r

Γ (ν r + ν n + µ + 1) r!

= (−1)nW(ν)
µ+n ν(x)

(14)

which eventually yields (
d

dx

)n
J0(x) =

(−i)n
√

π

∫ +∞

−∞
e−ξ2

ξnW( 1
2 )

n
2

(i ξ x)dξ (15)

The formalism we have outlined suggests the existence of a thread, linking different families
of Bessel functions. Although the same results can be obtained using a conventional (non-umbral)
procedure, we stress that the protocol we have proposed is flexible, direct, straightforward and
naturally suited for this type of problem.

The previous remarks have been aimed at both summarizing the few rules of the formalism we
use in the paper and at further pushing the method to point out how the underlying formalism allows
for a transparent link between different families of special functions.
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2. The Umbral Version of the Trigonometric Functions

The cosine function, if written in umbral form, can also be considered a manifestation of the
Gaussian function, if we take the freedom of writing

cos(x) = e−ĉ x2
ψ0 (16)

and define the umbral operator ĉ through its vacuum ψ0, such that

ĉνψ0 =
Γ(ν + 1)

Γ(2 ν + 1)
(17)

We recover the Taylor series expansion of the cos-function, as indicated below:

e−ĉ x2
ψ0 =

∞

∑
r=0

(−1)rx2 r

r!
ĉrψ0 =

∞

∑
r=0

(−1)rx2 r

(2 r)!
(18)

It is easy to check the consistency of the definition of Equation (16) with the elementary properties
of the trigonometric functions; by indeed keeping the derivative with respect to x, we find

d
dx

e−ĉ x2
ψ0 = −2xĉe−ĉ x2

ψ0

= −2x
∞

∑
r=0

(−1)r (r + 1)!
(2r + 2)!

x2r

r!

= −
∞

∑
r=0

(−1)r x2r+1

(2r + 1)!

= − sin(x)

(19)

It is interesting to recover the cyclical law of the successive derivatives of the circular functions
using the present formalism. To this aim, we recall the following identity [9]:(

d
d x

)n
e−a x2

= Hn(−2 a x, −a) e−a x2
= (−1)n Hn(2 a x, −a) e−a x2 (20)

where we have denoted by Hn(x, y) the two variable Hermite Kampé de Fériét polynomials [10]:

Hn(x, y) = n!
b n

2 c

∑
r=0

xn−2 ryr

(n− 2 r)! r!
(21)

By keeping successive derivatives of both sides of Equation (16), we find(
d

dx

)n
e−ĉx2

ψ0 = (−1)n Hn(2ĉx,−ĉ)e−ĉx2
ψ0

= (−1)nn!
b n

2 c

∑
r=0

(−1)r (2x)n−2r

(n− 2r)!r!
cos (x; n− r)

= (−1)nn!
b n

2 c

∑
r=0

(−1)r x
(n− 2 r)! r!

jn−r−1(x)
(2x)r

= cos
(

x + n
π

2

)
(22)
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Within the present context, cos- and sin-functions are the 0th- and 1st-order cases of a more
general class of functions, defined as

cos(x; n) = ĉne−ĉ x2
ψ0 =

∞

∑
r=0

(−1)r

r!
(n + r)!

[2 (n + r)] !
x2 r (23)

These can be identified with the spherical Bessel functions [11] according to the identity

cos(x; n + 1) =
jn(x)

2n+1xn (24)

This last result is an interesting and unexpected outcome of our formalism, indicating
how the umbral procedure we have developed offers a natural way of connecting circular and
Bessel-type functions, through the use of the exponential function.

The differential equation satisfied by the functions of Equation (23) can be derived from those of
circular Bessel functions according to the identities

Zn(x) = cos(x; n)

jn−1(x) = 2nxn−1Zn(x)

x Z′′n (x) + 2n Z′n(x) + x Zn(x) = 0

(25)

Regarding the integrals of the functions of Equation (23), we find

∫ +∞

−∞
cos(x; n) dx =

∫ +∞

−∞

[
ĉne−ĉx2

ψ0

]
dx

= ĉn
∫ +∞

−∞
e−ĉx2

dx ψ0

=

√
π

ĉ
ĉ nψ0

=
√

π ĉ n− 1
2 ϕ0

=
√

π

Γ
(

n +
1
2

)
Γ(2 n)

(26)

In deriving the previous identity, we have again taken the freedom, supposed as valid in [1,4,5]
and then justified in [7], of treating the umbral operator as a standard algebraic quantity; such a point
of view has been shown to be the leitmotiv underlying the umbral heuristic proof of the RMT outlined
in [12].

Further insight into the “genesis” of the trigonmetric functions can be obtained by applying the
Gauss transform method, as follows:

e−ĉ x2
ψ0 =

1√
π

∫ +∞

−∞
e−ξ2

[
e−2i ĉ

1
2 ξ x ψ0

]
d ξ =

1√
π

∫ +∞

−∞
e−ξ2

c(
1
2 )

0 (2 i x ξ) d ξ (27)

where

c(
1
2 )

0 (x) = e−ĉ
1
2 x ψ0 =

∞

∑
r=0

(−x)r

r!
ĉ

r
2 ψ0 =

∞

∑
r=0

Γ
( r

2
+ 1
)

(r!)2 (−x)r (28)



Fractal Fract. 2017, 1, 9 6 of 11

is a Bessel trigonometric function whose properties are discussed elsewhere. To give a feeling of how
the umbral formalism applies to the relevant study, we note that keeping the successive derivatives of
the function defined in Equation (28) we find

(
d

dx

)p
c(

1
2 )

0,0 (x) =
(

d
dx

)p [
e−ĉ

1
2 x ψ0

]
= (−1)p

[
ĉ

p
2 e−ĉ

1
2 xψ0

]
= (−1)p

∞

∑
r=0

Γ
(

r+p
2 + 1

)
r! (r + p)!

(−x)r (29)

which can be associated with the special function

c(ν)µ,α(x) =
∞

∑
r=0

Γ (ν r + α + 1)
r! Γ(r + µ + 1)

(−x)r (30)

and therefore (
d

dx

)p
c(

1
2 )

0, 0 (x) = (−1)pc(
1
2 )

p, p
2
(x) (31)

The origin of the functions of Equation (30) can easily be traced back to the Bessel–Tricomi
functions [11]:

Cµ(x) =
∞

∑
r=0

(−x)r

r! Γ(r + µ + 1)
(32)

and the functions of Equation (30) are recognized to be associated with the Borel transform of the
functions of Equation (33), namely, the following [7]:

c(ν)µ, α(x) =
∫ ∞

0
e−ssαCµ(sνx) ds (33)

whose properties are explored elsewhere.
As for the other functions, we discuss the evaluation of the associated infinite integrals,

by considering two paradigmatic examples.
The first is rather artificial and concerns the evaluation of the following integral:

∫ ∞

−∞
e−a x2

c(ν)µ,α(bx)dx =
∫ ∞

−∞

[
e−a x2−χ̂

(ν)
µ, α b xφ0

]
dx =

√
π

a
e

b2
4a

(
χ̂
(ν)
µ, α

)2

φ0,(
χ̂
(ν)
µ, α

)r
φ0 =

Γ (ν r + α + 1)
Γ(r + µ + 1)

(34)

Accordingly, we eventually obtain

∫ ∞

−∞
e−a x2

c(ν)µ,α(b x) dx =

√
π

a

∞

∑
r=0

b2r

(4a)rr!
Γ (2 r ν + α + 1)
Γ (2 r + µ + 1)

(35)

A further and more familiar example, a naive consequence of this procedure, is the evaluation of
the Fresnel integral:

C(x) =
∫ +∞

x
cos

(
ξ2
)

d ξ (36)

at x = 0. The use of the previous identities yields

C(0) =
∫ +∞

0

[
e−ĉ x4

ψ0

]
dx =

(
1
4

∫ ∞

0
e−yy

1
4−1dy

)
ĉ−

1
4 ψ0 =

1
4

Γ
(

1
4

)
Γ
(

3
4

)
Γ
(

1
2

) =
1
2

√
π

2
(37)

The previous results have emerged in a fairly natural fashion from our formalism. Other means,
of a more conventional nature, can be applied, albeit with more computational effort.
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3. Final Comments

In the previous sections, we have developed a formalism capable of providing a unified point of
view to apparently different functions; analogous ideas have also recently appeared in the literature [13],
and the possibilities offered by the technique may be considered promising, if properly developed.
To corroborate the previous statement, we recall that, aside from yielding a common environment
for the Bessel congeries and their associates, the method allows for the derivation of previously
unknown sum rules of lacunary Laguerre polynomials [14]. These results would have hardly been
achieved by conventional means. Such a result is a consequence of the fact that the umbral image of
the Laguerre polynomials, according to the method developed in Equation (6), is simply a Newton
binomial [15], namely,

Ln(x, y) =
n

∑
s=0

(−1)s

s!

(
n
s

)
yn−sxs =

n

∑
s=0

(−1)s
(

n
s

)
yn−sxs ĵ s ϕ0 =

[
(y− ĵ x)n ϕ0

]
(38)

In the previous sections, we have seen that by interchanging ĵ and ĉ operators into the argument
of the exponential, we have realized different forms of special functions. By replacing, in Equation (38),
ĵ with ĉ, we can define the further family of polynomials umbrally equivalent to Ln(x, y):

λn(x, y) = [(y− ĉ x)nψ0]

=
n

∑
s=0

(−1)s
(

n
s

)
yn−sxs ĉ sψ0

=
n

∑
s=0

(−1)ss!
(2 s)!

(
n
s

)
yn−sxs

= n!
n

∑
s=0

(−1)s

(2 s)!(n− s)!
yn−sxs

(39)

A straightforward application of our procedure yields for the relevant generating functions
the following:

∞

∑
n=0

tnλn(x, y) =
∞

∑
n=0

tn [(y− ĉ x)nψ0]

=
1

(1− y t)
[

1 +
ĉ x t

1− yt

]ψ0

=
1

1− y t

[
∞

∑
r=0

(
− ĉxt

1− yt

)r
ψ0

]

=
1

1− yt
e0

(
x t

1− y t

)
,

e0(x) =
∞

∑
r=0

(−1)r r!
(2 r)!

xr

(40)

The generating function (Equation (41)) indicates that the λn(x, y) belong to the family of Appel
polynomials in the y variable; this is a characteristic shared with the Ln(x, y). In this paper we are not
interested in this aspect of the problem, which is discussed elsewhere.

∞

∑
n=0

tn

n!
λn(x, y) = ey t

[
e−x ĉ tψ0

]
= eyt cos(

√
xt) (41)
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Furthermore, the polynomials of Equation (39) are easily shown to satisfy the recurrences

∂yλn(x, y) = n λn−1(x, y)

∆̂ λn(x, y) = n λn−1(x, y)

∆̂ = −4x
1
2 ∂xx

1
2 ∂x = −2 (1 + 2 x ∂x) ∂x

(42)

which, once combined, yield the differential equation:

∂yλn(x, y) = ∆̂ λn(x, y)

λn(x, 0) = (−1)n n!
(2 n)!

xn (43)

This, accordingly, suggests the following operational definition:

λn(x, y) = ey ∆̂λn(x, 0) (44)

which can be further handled to obtain

ey ∆̂e0(x) =
1

1− y
e0

(
x

1− y

)
(45)

Equations (40)–(45) are very similar to analogous identities satisfied by the Laguerre
polynomials [10,16]. In particular, Equation (43) is a kind of heat equation involving the differential
operator ∆̂. To complete the analogy with Laguerre polynomials, we introduce the associated
λ− polynomials, specified by

λ
(ν)
n (x, y) = ĉν (y− ĉ x)nψ0

=
n

∑
s=0

(−1)s
(

n
s

)
yn−sxs ĉν+sψ0

= n!
n

∑
s=0

(−1)s Γ(ν + s + 1)
s! (n− s)!Γ(2 (ν + s) + 1)

yn−sxs

(46)

The relevant generating function writes

∞

∑
n=0

tn

n!
λ
(ν)
n (x, y) = ey t cos

(√
x t; ν

)
(47)

We believe it is important to comment on the link between lambda polynomials and other
polynomial forms playing an important role in analysis. We note therefore, that

hn(x) =
n

∑
k=0

(
n + k
n− k

)
(−x)k (48)

are orthogonal polynomials with the weight function

ρ(x) =
1

2 π

√
4− x

x
(49)

playing an important role in the theory of Catalan numbers and in the solution of the Hausdorff
moment problem [17].
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The hn(x) can be readily written in terms of the integral transform of the previously introduced
polynomials λn(x, y), according to the identity

hn(x) =
1
n!

∫ ∞

0
e−ξ ξ nλn(x ξ, 1) dξ (50)

In a forthcoming investigation we will take further advantage of the previous restyling of the
polynomials hn(x) by exploring in greater depth the relevant properties.

We have shown that Bessel and Wright functions can be linked through appropriate Gaussian
transforms, as reported in Equation (9). It is interesting to further extend such a concept by considering,
for example, the following Theorem.

Theorem 3. Let

H Jn(x, y) =
∞

∑
r=0

(−1)r Hn+2r(x, y)
2n+2 rr! (n + r) !

, ∀x, y ∈ R, ∀n ∈ N (51)

be the Hermite–Bessel functions (HBF) [9,15], with generating function

+∞

∑
n=−∞

tn
H Jn(x, y) = e

x
2 (t− 1

t )+
y
4 (t− 1

t )
2

(52)

Then, we can provide the integral identity between ordinary and Hermite–Bessel functions through
the identity

H Jn(x, y) =
1√
π

∫ +∞

−∞
e−ξ2

Jn(x + 2
√

y ξ) dξ (53)

Proof. The use of the Gauss transform (Equation (7)) and the Bessel generating function [6]:

+∞

∑
n=−∞

tn Jn(x) = e
x
2 (t− 1

t ) (54)

yields

+∞

∑
n=−∞

tn
H Jn(x, y) = e

x
2 (t− 1

t )+
y
4 (t− 1

t )
2

= e
x
2 (t− 1

t ) 1√
π

∫ +∞

−∞
e−ξ2

e
√

y (t− 1
t ) ξ dξ

=
1√
π

∫ +∞

−∞
e−ξ2

e

(
(x+2

√
y ξ)

2 (t− 1
t )
)

dξ

=
1√
π

∫ +∞

−∞
e−ξ2

+∞

∑
n=−∞

tn Jn (x + 2
√

y ξ) dξ

(55)

which implies the hypothesis.

The usefulness of HBF arises in the study of electromagnetic processes involving the emission
of radiation by charges constrained on trajectories that do not allow dipole approximation (namely,
the charge motion cannot be reduced to purely harmonic motion) [18,19]. Identities of the type of
Equation (53) could be useful in particular to study the relevant Kapteyn series, for example, by taking
advantage of the following (see [20] and references therein):

+∞

∑
n=1

J2n(2 n z)
n2 =

z2

2
, z ∈ C, 0 ≤ z < 1 (56)
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The extension of the previous identity to Hermite–Bessel functions can be done using
Equation (53), which yields

+∞

∑
n=1

H J2n(2 n x, 4 n2y)
n2 =

1
2
√

π

∫ +∞

−∞
e−ξ2

(x− 2
√

y ξ)2 dξ =
1
2

(
x2 +

y
2

)
(57)

We have checked numerically that the range of validity of Equation (57) is rather limited: x ≤ 0.5
and y� x.

Further comments on this point, as well as the derivation of further identities of this type,
are discussed elsewhere.

Analogous considerations can be developed for the study of Laguerre–Bessel functions [9,15],
defined through the generating function:

+∞

∑
n=−∞

tn
L Jn(x, y) = e

(y− ĵ x)
2 (t− 1

t )ϕ0 = e
y
2 (t− 1

t )C0

[
x
2

(
t− 1

t

)]
(58)

The methods we have outlined allow for significant simplification of the relevant properties
through an appropriate “translation”, namely,

L Jn(x, y) = Jn(y− ĵ x) ϕ0 (59)

thus finding, for example, the following (see [20]):

∞

∑
n=1

L J2n(2 n x, 2 n y)
n2p =

∞

∑
n=1

J2n
[
2 n

(
y− ĵ x

)]
n2 p ϕ0

=
p

∑
k=1

Ak
(
y− ĵ x

)2 k
ϕ0

=
p

∑
k=1

AkL2 k(x, y)

Ak =
k

∑
r=1

(−1)r+kr2 (k−p)

(k− r)!(k + r)!

(60)

At this point, it is fairly natural to include in this gallery of Bessel “Bestiario” their λ-counterpart,
defined (see Equation (39)) as

λ Jn(x, y) = Jn(y− ĉ x)ψ0 (61)

and through the generating function:

+∞

∑
n=−∞

tn
λ Jn(x, y) = e

(y−ĉ x)
2 (t− 1

t )ψ0 = e
y
2 (t− 1

t ) cos

(√
x
2

(
t− 1

t

))
(62)

Before closing the paper, we consider the function λ Jn(x, 0), which can be cast in the following
series form:

λ Jn(x, 0) =
+∞

∑
r=0

(−1)3r+n(2r + n)!
r!(r + n)![2(2r + n)]!

( x
2

)2r+n
(63)

In the case of n = 0, abusing our umbral notation and by recalling the rule of the Gaussian
successive derivatives, we write

∂n
x λ J0(x, 0) = (−1)n Hn

(
ĵ ĉ2 x

2
, − ĵ ĉ2

4

)
e− ĵ (−ĉ x

2 )
2
ϕ0ψ0 (64)
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The Bessel and circular umbral operators ( ĵ and ĉ) act on the “vacua” (ϕ0, ψ0).
The final examples, regarding the artificial construction of Bessel-type functions, have been aimed

at further stressing that, despite being complicated in their explicit representation in terms of series,
the operational method greatly simplifies the study of the relevant properties.
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