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Abstract. Let F be a field of characteristic zero and let V be a variety of associative F -algebras graded by a

finite abelian group G. If V satisfies an ordinary non-trivial identity, then the sequence cGn (V) of G-codimensions

is exponentially bounded. In [?, ?, ?], the authors captured such exponential growth by proving that the limit

expG(V) = limn→∞
n
√

cGn (V) exists and it is an integer, called the G-exponent of V.
The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater then 2. As

a consequence, we find a characterization for the varieties with exponent equal to 2.

1. Introduction

In 1999, a celebrated theorem of Giambruno and Zaicev proved the integrability of the exponential growth of
any proper variety of associative algebras, confirming a famous conjecture posed by Amitsur in the early 1980’s.
More precisely, let F be a field of characteristic zero and let V be a variety of associative F -algebras. In 1972,
Regev introduced the numerical sequence of codimensions of V, cn(V), which measure, in some sense, the growth
of the polynomial identities satisfied by the variety V. He proved (see [?]) that such a sequence is exponentially
bounded, provided that the variety V satisfies a non-trivial identity. Under the same hypothesis, Giambruno and
Zaicev in [?, ?], showed that the limit

exp(V) = lim
n→∞

n
√
cn(V)

exists and it is an integer, called the exponent of the variety V. Moreover, in [?], the same authors characterized
the varieties of exponent 2 by exhibiting a list of five suitable algebras of exponent 3 or 4.

In the last years, several extension of such results were proved in the setting of algebras with some additional
structure. Between them, we recall the cases of algebras with involution ([?, ?, ?]), superalgebras ([?]) and more
generally algebras graded by a group ([?, ?, ?]), algebras with a generalized H-action ([?]) and superalgebras with
graded involution ([?]) or superinvolution ([?]).

In this paper we focus our attention on the so-called G-varieties, i.e., varieties of associative F -algebras graded by
a finite abelian group G. As in the ordinary case, one can attach to a G-graded algebra A the numerical sequence of
G-codimensions, cGn (A), n = 1, 2, . . ., which is the dimension of the space of multilinear G-graded polynomials in n
variables in the corresponding relatively free G-graded algebra of countable rank. Such a sequence is exponentially
bounded for any G-graded algebra A satisfying an ordinary non-trivial identity (see [?]). The growth of a G-variety
V is defined as the growth of G-codimensions of any G-graded algebra A generating V, i.e., V = varG(A).

In order to capture this exponential growth of the G-codimensions, in [?, ?] for abelian groups and in [?] in
general, the authors proved that, for any G-variety V satisfying an ordinary non-trivial identity, the limit

expG(V) = lim
n→∞

n

√
cGn (V)

exists and it is an integer, called the G-exponent of the G-variety V. Such an integer can be explicitly computed
and it turns out to be equal to the dimension of a suitable finite dimensional semisimple G-graded algebra over
an algebraically closed field.

The purpose of this paper is to characterize the G-varieties having G-exponent greater than one. To this end,
we shall explicitly exhibit a list of G-graded algebras Ai in order to prove the following result: a G-variety V has
G-exponent greater than 2 if and only if Ai ∈ V, for some i. By putting together this theorem with the results of
Valenti concerning G-varieties of polynomial growth ([?]), we shall obtain a characterization of the G-varieties of
exponent 2.

2. Preliminaries and basic results

Let F be a field of characteristic zero, G be a finite abelian group and A be a G-graded associative algebra over
F , i.e., A =

⊕
g∈GAg, where the Ag’s are vector subspaces such that AgAh ⊆ Agh, for all g, h ∈ G. We shall refer

to such subspaces as the homogeneous components of A.
Let F 〈X〉 be the free associative algebra on a countable set X of non-commuting variables x1, x2, . . .. One can

define on such an algebra the following G-grading: write X =
⋃
g∈GXg, where Xg = {x1,g, x2,g, . . .} are disjoint

sets and the elements of Xg have homogeneous degree g. If we denote by Fg the subspace of F 〈X〉 spanned by
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all monomials in the variables of X having homogeneous degree g, then F 〈X〉 =
⊕

g∈G Fg is a G-graded algebra

called the free G-graded algebra of countable rank over F . We shall denote it by F 〈X,G〉.
If G = {g1, g2, . . . , gm}, then a graded polynomial f = f(x1,g1 , . . . , xt1,g1 , . . . , x1,gm , . . . , xtm,gm) of F 〈X,G〉 is a

graded identity of A, and we write f ≡ 0, if

f(a1,g1 , . . . , at1,g1 , . . . , a1,gm , . . . , atm,gm) = 0,

for all a1,gi , . . . , ati,gi ∈ Agi , i = 1, . . . ,m.
For n ≥ 1, the space of multilinear G-graded polynomials in the variables x1,gi1

, . . . , xn,gin is defined as

PGn = spanF

{
xσ(1),giσ(1)

· · ·xσ(n),giσ(n)
| σ ∈ Sn, gi1 , . . . , gin ∈ G

}
.

The graded identities of A form a TG-ideal

IdG(A) = {f ∈ F 〈X,G〉 | f ≡ 0 on A}

which is an ideal of F 〈X,G〉 invariant under all graded endomorphisms of the free G-graded algebra.
Recall that two G-graded algebras A and B are said to be TG-equivalent, and we write A ∼TG B, if and only

if IdG(A) = IdG(B).
It is well known that in characteristic zero every TG-ideal is completely determined by its multilinear polyno-

mials. Thus it is reasonable to consider the quotient space

PGn (A) =
PGn

PGn ∩ IdG(A)

and so one can define the n-th G-graded codimension of A as cGn (A) = dimF P
G
n (A), n ≥ 1. One important feature

of the sequence of G-graded codimensions is given in the following.

Theorem 2.1. [?] Let A be a G-graded algebra satisfying an ordinary non-trivial identity. Then the G-graded
codimension sequence cGn (A), n = 1, 2, . . ., is exponentially bounded.

Recall that if V = varG(A) is the variety generated by a G-graded algebra A (G-variety), we write IdG(V) =

IdG(A), cGn (V) = cGn (A) and the growth of V is the growth of the sequence cGn (V).
In [?, ?, ?], the authors captured the exponential growth of the G-graded codimension sequence of a G-graded

algebra A satisfying an ordinary non-trivial identity by proving the existence and the integrability of the limit

expG(A) = lim
n→∞

n

√
cGn (A),

called the G-exponent of A.
Let now introduce an useful tool in the theory of polynomial identities, the Grassmann envelope of an algebra.

To this end, let E = 〈e1, e2, . . . | eiej = −ejei〉 be the infinite dimensional Grassmann algebra over F and let
Z2 = {0, 1} be the cyclic group of order 2 in additive notation. It is well known that E has a natural Z2-grading,
E = E0⊕E1, where E0 is the span of all monomials in the ei’s of even length and E1 is the span of all monomials
in the ei’s of odd length.

We recall that if A =
⊕

(g,i)∈G×Z2
A(g,i) is a G×Z2-graded algebra, then one can define the Grassmann envelope

of A as

E(A) =
⊕
g∈G

(
E0 ⊗A(g,0) ⊕ E1 ⊗A(g,1)

)
.

The importance of the Grassmann envelope is highlighted in the following theorem proved separately by Aljadeff
and Belov in [?] and Sviridova in [?].

Theorem 2.2. Let A be a G-graded algebra satisfying an ordinary non-trivial identity. Then there exists a finite
dimensional G× Z2-graded algebra B such that IdG(A) = IdG(E(B)).

Next we recall how to compute the G-exponent of a G-graded algebra A satisfying an ordinary non-trivial
identity. According to Theorem ??, there exists a finite dimensional G×Z2-graded algebra B such that IdG(A) =

IdG(E(B)).
By the Wedderburn-Malcev decomposition (see [?]), we write B = B′ + J , where B′ is a maximal semisimple

subalgebra of B, which we may assume to be G × Z2-graded by [?], and J = J(B) is the Jacobson radical of B,
which is a graded ideal (see [?]). Also we can write B′ = B1 ⊕ · · · ⊕Bk, where the Bj ’s are G× Z2-graded simple
algebras. The description of such algebras is given in the following theorem proved by Bahturin, Sehgal and Zaicev
in [?].

Theorem 2.3. Let A be a G-graded simple algebra. Then there exist a subgroup H of G, a 2-cocycle α : H×H →
F ∗, where the action of H on F is trivial, an integer m and a m-tuple (g1 = e, g2, . . . , gm) ∈ Gm such that A is
G-graded isomorphic to R = FαH ⊗Mm(F ), where Rg = spanF

{
bh ⊗ eij | g = g−1

i hgj
}

. Here bh ∈ FαH is a
representative of h ∈ H.



CLASSIFYING G-GRADED ALGEBRAS OF EXPONENT TWO 3

In [?] it was proved that

expG(A) = expG(E(B)) = max dim(C1 ⊕ · · · ⊕ Ch),

where C1, . . . , Ch ∈ {B1, . . . , Bk} are distinct and C1JC2J · · · JCh 6= 0.

3. Constructing G-graded algebras of exponent greater than 2

The purpose of this section is to construct some suitable G-graded algebras that will allow us to prove the main
result of this paper. In what follows we shall denote by e the unit element of G.

In the group G, let g ∈ G be an element of order n. We shall consider the cyclic subgroup Cn = 〈g〉 generated

by g. The group algebra A = FCn of Cn over F has a natural Cn-grading A =
⊕n−1

i=0 Agi , where Agi = Fgi,
0 ≤ i ≤ n− 1. It is clear that A can be regarded as a G-graded algebra by setting Ag′ = 0, for all g′ /∈ 〈g〉. For all
prime p greater than two, we denote by Ap1 the algebra FCp. Here we want to highlight that in [?] it was proved
that such an algebra generates a variety of almost polynomial growth, i.e., it grows exponentially but any proper
subvariety has polynomial growth of the codimensions. Moreover, let A2 = FC4.

If g ∈ G is an element of order 4 we consider C4 the cyclic subgroup of G× Z2 generated by (g, 1). We denote
by A3 = E(FC4) the Grassmann envelope of FC4, endowed with its natural C4-grading.

Furthermore, if there exist a, b ∈ G distinct elements of order 2, we let Ki,j = 〈(a, i), (b, j)〉 be the subgroup of

G× Z2 generated by (a, i) and (b, j). We denote by Ai,j4 the Grassmann envelope of FαKi,j , for some cocycle α.
Now let us consider M2(F ) the algebra of 2×2 matrices endowed with an elementary G×Z2-grading. It is clear

that the homogeneous degree of e11 and e22 is always (e, 0) whereas those of e12 and e21 are (g, i) and (g−1, i),
respectively, where g ∈ G and i ∈ Z2. Thus

M2(F )G×Z2 =

(
F 0
0 F

)
⊕
(

0 F
0 0

)
⊕
(

0 0
F 0

)
,

if g 6= g−1. Remark that, if g = g−1, we have only the components (e, 0) and (g, i) if g 6= e or i = 1 and just
one component (trivial grading) if g = e and i = 0. Hence any elementary G×Z2-grading is uniquely determined
by the homogeneous degree of e12 and thus we denote by M2(F )g,i the algebra of 2× 2 matrices with elementary

G× Z2-grading induced by (g, i). Finally we define Ag,i5 as the Grassmann envelope of M2(F )g,i.
Let G′ be any finite abelian group. For all k ∈ G′ with o(k) = 2 and h ∈ G′, we consider the following

subalgebra of

(
FG′ FG′

0 FG′

)
:

Ak,h =

(
F ⊕ Fk Fh⊕ Fkh

0 F

)
,

with grading (Ak,h)e =

(
F 0
0 F

)
, (Ak,h)k =

(
Fk 0
0 0

)
, (Ak,h)h =

(
0 Fh
0 0

)
and (Ak,h)kh =

(
0 Fkh
0 0

)
. We

denote by Ak,h6 the Grassmann envelope of Ak,h, when G′ = G× Z2.
In a similar way, if we consider

A′k,h =

(
F Fh⊕ Fkh
0 F ⊕ Fk

)
,

where k has order 2 and h ∈ G× Z2, then we denote by Ak,h7 the Grassmann envelope of A′k,h.

Finally, let UT3(F )k,h be the algebra of 3× 3 upper-triangular matrices endowed with the elementary G× Z2-

grading uniquely determined by the triple (e, k, kh), e = 1G×Z2
, k, h ∈ G× Z2. We define Ak,h8 as the Grassmann

envelope of UT3(F )k,h.
We now collect the previous algebras in the following list, including also their corresponding exponents.

– Ap1 = FCp, where p > 2 is prime; expG(Ap1) = p.

– A2 = FC4; expG(A2) = 4.

– A3 = E(FC4); expG(A3) = 4.

– Ai,j4 = E(FαKi,j), where i, j ∈ Z2; expG(Ai,j4 ) = 4.

– Ag,i5 = E(M2(F )g,i), where g ∈ G and i ∈ Z2; expG(Ag,i5 ) = 4.

– Ak,h6 = E(Ak,h), where k, h ∈ G× Z2 and o(k) = 2; expG(Ak,h6 ) = 3.

– Ak,h7 = E(A′k,h), where k, h ∈ G× Z2 and o(k) = 2; expG(Ak,h7 ) = 3.

– Ak,h8 = E(UT3(F )k,h), where k, h ∈ G× Z2; expG(Ak,h8 ) = 3.
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4. A characterization of G-varieties of exponent 2

The final goal of this section is to characterize the G-varieties of exponent 2. Such a result will be a corollary
of another theorem concerning the G-varieties of exponent greater than 2. To this end, we need the following
lemmas.

Lemma 4.1. Let A = Bi1⊕· · ·⊕Bik +J be a finite dimensional G-graded algebra over an algebraically closed field
F of characteristic zero with expG(A) > 2. If there exist three distinct G-graded simple components B1

∼= B2
∼=

B3
∼= F such that B1JB2JB3 6= 0, then UT3(F )k,h ∈ varG(A), where UT3(F )k,h denote the algebra of 3×3 upper-

triangular matrices endowed with the elementary G-grading uniquely determined by the triple (e, k, kh), e = 1G,
k, h ∈ G.

Proof. Let e1, e2, e3 be the unit elements of B1, B2, B3, respectively. Then e2
n = en ∈ (Bn)e and eres = δrser, for

r, s = 1, 2, 3, n ∈ {1, 2, 3} and where δrs denotes the Kronecker delta. By standard arguments we may assume
that in A we have e1Je2Je3 6= 0 and JeaJebJec = eaJebJecJ = en′JenJen′ = 0, for all permutations (a, b, c) of

(1, 2, 3) and for n, n′ ∈ {1, 2, 3}, n 6= n′. Hence there exist j1 =
∑
g∈G j

(g)
1 and j2 =

∑
g∈G j

(g)
2 ∈ J such that

e1j1e2j2e3 = e1

∑
g∈G

j
(g)
1 e2

∑
g∈G

j
(g)
2 e3 6= 0.

Therefore at least one of the above summands must be non-zero, say e1j
(k)
1 e2j

(h)
2 e3, for some k, h ∈ G. We consider

the subalgebra U of A linearly generated by the elements

e1, e2, e3, e1j
(k)
1 e2, e2j

(h)
2 e3, e1j

(k)
1 e2j

(h)
2 e3.

It is easily checked that U is a G-graded algebra with induced grading U = Ue ⊕ Uk ⊕ Uh ⊕ Ukh, where

Ue = spanF {e1, e2, e3}, Uk = spanF {e1j
(k)
1 e2}, Uh = spanF {e2j

(h)
2 e3}, Ukh = spanF {e1j

(k)
1 e2j

(h)
2 e3}.

Moreover, the linear map ϕ : U → UT3(F )k,h, defined by

ϕ(e1) = e11, ϕ(e2) = e22, ϕ(e3) = e33, ϕ(e1j
(k)
1 e2) = e12, ϕ(e2j

(h)
2 e3) = e23, ϕ(e1j

(k)
1 e2j

(h)
2 e3) = e13,

is an isomorphism of G-graded algebras. Hence UT3(F )k,h ∈ varG(A) and the proof is complete. �

Lemma 4.2. Let A = Bi1⊕· · ·⊕Bik +J be a finite dimensional G-graded algebra over an algebraically closed field
F of characteristic zero with expG(A) > 2. If there exist two G-simple components B1

∼= Fe⊕ Fk, where e = 1G
and o(k) = 2, and B2

∼= Fe such that either B1JB2 6= 0 or B2JB1 6= 0, then Ak,h ∈ varG(A) or A′k,h ∈ varG(A),
for some h ∈ G.

Proof. Suppose first that B1JB2 6= 0. As in the previous lemma, there exists j =
∑
g∈G jg ∈ J such that e1je2 6= 0,

where e1 and e2 are the unit elements of B1 and B2, respectively. In particular, we must have e1jhe2 6= 0, for
some h ∈ G. Hence, let us consider the subalgebra D of A generated by the elements

e1, e2, ke1, e1jhe2, ke1jhe2.

Clearly D is a G-graded algebra with induced grading D = De ⊕Dk ⊕Dh ⊕Dkh, where

De = spanF {e1, e2}, Dk = spanF {ke1}, Dh = spanF {e1jhe2}, Dkh = spanF {ke1jhe2}.

If one sets ϕ : D → Ak,h such that

ϕ(e1) = e11, ϕ(e2) = e22, ϕ(ke1) = ke11, ϕ(e1jhe2) = he12, ϕ(ke1jhe2) = khe12,

then we get that D ∼= Ak,h as G-graded algebras. Thus Ak,h ∈ varG(A).
If B2JB1 6= 0, with similar arguments, we get A′k,h ∈ varG(A) and we are done. �

Now we are in a position to characterize the G-varieties of exponent greater than 2.

Theorem 4.1. Let F be an algebraically closed field of characteristic zero and let V = varG(A) be a G-variety
generated by the G-graded algebra A. Then expG(V) > 2 if and only if at least one of the G-graded algebras

Ap1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 belongs to V.

Proof. It is clear that if at least one among Ap1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 belongs to V, then expG(V) > 2,

since the G-exponents of the previous algebras are all greater than 2.
Let us suppose that expG(V) > 2. By Theorem ??, there exists a finite dimensional G × Z2-graded algebra

B such that V = varG(A) = varG(E(B)). Moreover, let B = B1 ⊕ · · · ⊕ Bm + J be the Wedderburn-Malcev
decomposition of B. By Theorem ??, we have that for all i = 1, . . . ,m, Bi ∼= Mn(FαH) as G × Z2-graded
algebras, for some n ≥ 1, H ≤ G× Z2 and α 2-cocycle of H.

Suppose first that Bi ∼= Mn(FαH) = FαH ⊗Mn(F ), n > 1. Consider the subalgebra Mn(F ) with induced
G × Z2-grading. Notice that e11 and e22 have homogeneous degree (e, 0) whereas e12 and e21 have homogeneous
degree (g, i) and (g−1, i), for some (g, i) ∈ G × Z2, respectively. Thus the algebra M2(F )g,i defined in the
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previous section is a G× Z2-graded subalgebra of Mn(F ) ⊆Mn(FαH). As a consequence, Ag,i5 = E(M2(F )g,i) ∈
varG(E(B)) = varG(A).

Hence we can suppose that n = 1 and so Bi ∼= FαH.
If p | |H|, where p is a prime number greater than 2, then there exists g′ ∈ H of order p and so we must have

g′ = (g, 0), with o(g) = p. Hence being Cp = 〈(g, 0)〉 a cyclic group of order p, we may assume that α is trivial on
it. Thus E(FCp) = E0 ⊗ FCp has the same G-identities of FCp. It follows that Ap1 = FCp ∈ varG(A).

Otherwise, |H| = 2k, with k > 1. If there exists g′ ∈ H of order 4, then we have two possibilities: or g′ = (g, 0) or
g′ = (g, 1), with o(g) = 4. In the first case we get A2 ∈ varG(A) whereas in the second one we have A3 ∈ varG(A).
On the other hand, if there are no elements of order 4 in H, then

H = Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸
k−times

.

Hence there exist distinct elements g′, h′ ∈ H of order 2 such that g′ = (a, i) and h′ = (b, j), with o(a) = o(b) = 2

and i, j ∈ Z2. It is easily checked that FαKi,j is a subalgebra of Bi and therefore Ai,j4 ∈ varG(A).
Since expG(A) > 2, by the basic property of the G-exponent seen in Section 2, it follows that there exist distinct

G-simple components Bi1 , . . . , Bil such that Bi1J · · · JBil 6= 0 and dimF (Bi1 + · · ·+Bil) > 2. Therefore, we may
assume that one of the following possibilities occurs:

1. there exist distinct C1, C2, C3 such that C1JC2JC3 6= 0 and C1
∼= C2

∼= C3
∼= Fe,

2. for some i1 6= i2, Bi1JBi2 6= 0 and Bi1
∼= Fe and Bi2

∼= Fe⊕ Fk,

3. for some i1 6= i2, Bi1JBi2 6= 0 and Bi1
∼= Fe⊕ Fk and Bi2

∼= Fe.

If (1) holds, by Lemma ??, UT3(F )k,h ∈ varG(B), for some k, h ∈ G× Z2 and so Ak,h8 ∈ varG(A). Instead, if (2)

or (3) holds, then Lemma ?? applies and so Ak,h or A′k,h ∈ varG(B). Therefore Ak,h6 or Ak,h7 ∈ varG(A) and the
proof is complete. �

Next proposition proves that the list of algebras Ap1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 cannot be reduced. Recall

that we denote by xg or xi,g a variable of homogeneous degree g and by xi a generic variable.

Proposition 4.1. Let A and B be distinct G-graded algebras among {Ap1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 }. Then

we have that varG(A) * varG(B).

Proof. Since all the above algebras have exponential growth of the codimensions and since the algebra Ap1 generates

a variety of almost polynomial growth, we immediately get that A 6∈ varG(Ap1), for any A ∈ {Aq1, A2, A3, A
i,j
4 , Ag,i5 ,

Ak,h6 , Ak,h7 , Ak,h8 }, p 6= q.
Notice that, given two algebras A and B, the condition varG(A) ⊆ varG(B) implies expG(A) ≤ expG(B). Hence

we get that Ap1 6∈ varG(B), for p > 3 and B ∈ {Aq1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 }, q < p. For the same reason,

we get that C 6∈ varG(D), for C ∈ {A2, A3, A
i,j
4 , Ag,i5 } and D ∈ {Ak,h6 , Ak,h7 , Ak,h8 }.

The algebras A2, A3 and Ai,j4 have more non-zero homogeneous components than the algebra Ag,i5 . It follows

that A2, A3, A
i,j
4 6∈ varG(Ag,i5 ).

In what follows, we shall consider the C3-graded algebra A3
1 with homogeneous degrees e, g1, g

2
1 (o(g1) = 3) and

the C4-graded algebras A2 and A3 with homogeneous degrees e, g2, g
2
2 , g

3
2 (o(g2) = 4) and e, g3, g

2
3 , g

3
3 (o(g3) = 4),

respectively. The C2 × C2-graded algebra Ai,j4 has homogeneous degrees e, a, b, ab with o(a) = o(b) = o(ab) = 2

whereas those ones of the algebra Ag,i5 are e, g, g−1. Moreover, we shall consider the algebras Ak,h6 and Ak,h7 with
homogeneous degrees e, k1, h1, k1h1 (o(k1) = 2) and e, k2, h2, k2h2 (o(k2) = 2), respectively. Finally the algebra

Ak,h8 has homogeneous degrees e, k, h, kh.
Now we want to highlight that if two algebras are graded by different non-isomorphic groups then there is nothing

to prove. This is the case of the algebras A2 and Ai,j4 , A3 and Ai,j4 , A3
1 and B, where B ∈ {A2, A3, A

i,j
4 , Ak,h6 , Ak,h7 }.

In order to complete the proof we need to notice the following facts.

• A3
1 6∈ varG(Ag,i5 ). In fact, if Ag,i5 has trivial grading, then A3

1 has more non-zero homogeneous components
and we are done. Now we have to consider only the cases in which g = g1 or g = g2

1 . In both, it is clear

that x1,gx2,g ≡ 0 in Ag,i5 but not in A3
1.

• A3
1 6∈ varG(Ak,h8 ). In fact, if g1 /∈ {k, h, kh} the result follows. Otherwise, x3

g1 ≡ 0 on Ak,h8 but not on A3
1.

• A2 6∈ varG(A3). In fact, x1,g1x2,g1 + x2,g1x1,g1 ≡ 0 on A3 but not in A2 (g1 = g2).

• A3 6∈ varG(A2). In fact, [x1,g1 , x2,g1 ] ≡ 0 on A2 but not in A3 (g1 = g2).

• B 6∈ varG(A2), B ∈ {Ag,i5 Ak,h6 , Ak,h7 , Ak,h8 }. In fact, [x1, x2] ≡ 0 on A2 but not in B.

• B 6∈ varG(A3), B ∈ {Ak,h6 , Ak,h7 }. In fact, if k1 6= g2
3 then the result is obvious. Let now k1 = g2

3 . In any

case, [xh1 , xk1 ] ≡ 0 on A3 but not in Ak,h6 , h1 ∈ {e, g3, g
3
3}. For the algebra Ak,h7 the proof is analogous.

• Ak,h8 6∈ varG(A3). In fact, if k, h, kh 6= e, then [xe, xg23 ] ≡ 0 on A3 but not in Ak,h8 , g2
3 ∈ {k, h, kh}.

Otherwise we have to consider [x1,e, x2,e].
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• B 6∈ varG(Ai,j4 ), B ∈ {Ak,h6 , Ak,h7 }. In fact, [xe, xki ] ≡ 0 on Ai,j4 but not in B, ki ∈ {a, b, ab}, i = 1, 2.

• Ak,h8 6∈ varG(Ai,j4 ). In fact, if k, h, kh 6= e, then [xe, xk] ≡ 0 on Ai,j4 but not in Ak,h8 , where k ∈ {a, b, ab}.
Otherwise, we have to consider [x1,e, x2,e].

• Ai,j4 6∈ varG(Ai
′,j′

4 ), (i′, j′) 6= {(0, 0), (i, j)}. In fact, let ḡ ∈ Z2 × Z2 such that (Ai,j4 )ḡ = E0 ⊗ Fα(ḡ, 0) and

(Ai
′,j′

4 )ḡ = E1 ⊗ Fα(ḡ, 1). Then x1,ḡx2,ḡ + x2,ḡx1,ḡ ≡ 0 in Ai
′,j′

4 but not in Ai,j4 .

• Ai,j4 6∈ varG(A0,0
4 ), (i, j) 6= (0, 0). In fact, let ḡ, h̄ ∈ Z2 × Z2 such that (Ai,j4 )ḡ = E1 ⊗ Fα(ḡ, 1) and

(Ai,j4 )h̄ = E1 ⊗ Fα(h̄, 1). Then α(ḡ, h̄)xh̄xḡ − α(h̄, ḡ)xḡxh̄ ≡ 0 in A0,0
4 but not in Ai,j4 .

• Ag,i5 6∈ varG(A3). If g = e then [x1,g, x2,g] ≡ 0 on A3 but not on Ag,i5 whereas if g = g2
3 , then [x1,e, x2,e] ≡ 0

on A3 but not on Ag,i5 . Otherwise, we have to consider xg3xg33 + xg33xg3 .

• Ag,i5 6∈ varG(Ai,j4 ). As before, if g = a or g = b or g = ab, then [xe, xg] ≡ 0 on Ai,j4 but not on Ag,i5 .
Otherwise, we have to consider [x1,e, x2,e].

• Ak,h6 , Ak,h7 6∈ varG(Ag,i5 ). In fact, if h1 6= e and h1 6= k (resp. h2), then Ak,h6 and Ak,h7 have more non-zero

homogeneous components than Ag,i5 and we are done. Otherwise we have to distinguish two cases. If

g = e, then Ak,h6 and Ak,h7 have again more non-zero homogeneous components than Ag,i5 . If g 6= e, we

have that [x1,e, x2,e] ≡ 0 on Ag,i5 but not on Ak,h6 , Ak,h7 .

• Ak,h8 6∈ varG(Ag,i5 ). Let g 6= e. If h 6= e, k 6= e, kh 6= e and k 6= h, then Ak,h8 has more non-zero homogeneous

components than Ag,i5 and we are done. Let now consider the cases k = e or h = e or kh = e. We have

that [x1,e, x2,e] ≡ 0 on Ag,i5 but not in Ak,h8 . Otherwise k = h and we have to distinguish two cases. If

g 6= g−1, we have that [x1,k, x2,k] ≡ 0 on Ag,i5 but not in Ak,h8 (here g = k). If g = g−1, then we have to

consider [x1,e, x2,e] (notice that o(k) = 2 since g = k). Finally, let g = e. If k, h, kh 6= e, then Ak,h8 has

more non-zero homogeneous components than Ag,i5 . If k = h = e the polynomial [[x1, x2]2, x1] ≡ 0 on Ag,i5

but not in Ak,h8 .

• Ak,h6 6∈ varG(Ak,h7 ) since xk1 [xe, xh1
] ≡ 0 on Ak,h7 but not in Ak,h6 .

• Ak,h6 6∈ varG(Ak,h8 ) since x1,k1x2,k1x3,k1 ≡ 0 on Ak,h8 but not in Ak,h6 .

• Ak,h7 6∈ varG(Ak,h6 ) since [xe, xh2
]xk2 ≡ 0 on Ak,h6 but not in Ak,h7 .

• Ak,h8 6∈ varG(Ak,h6 ) since [xe, xh]xk ≡ 0 on Ak,h6 but not in Ak,h8 .

• Ak,h7 6∈ varG(Ak,h8 ) since x1,k2x2,k2x3,k2 ≡ 0 on Ak,h8 but not in Ak,h7 .

• Ak,h8 6∈ varG(Ak,h7 ) since x1,k[x2,e, x3,h] ≡ 0 on Ak,h7 but not in Ak,h8 .

The proof is now complete. �

The following table summarizes the contents of the previous proposition.

Ap1 A3
1 A2 A3 Ai,j4 Ag,i5 Ak,h6 Ak,h7 Ak,h8

Ap1 × EXP EXP EXP EXP EXP EXP EXP EXP

A3
1 APG × GR GR GR CMP or f8 GR GR x3

g1

A2 APG APG × f2 GR CMP EXP EXP EXP

A3 APG APG f1 × GR CMP EXP EXP EXP

Ai,j4 APG APG GR GR × CMP EXP EXP EXP

Ag,i5 APG APG [x1, x2] f3 or f4 f4 or f6 × EXP EXP EXP

Ak,h6 APG APG [x1, x2] [xh1
, xk1 ] [xe, xk1 ] CMP or f4 × f13 f15

Ak,h7 APG APG [x1, x2] [xh2
, xk2 ] [xe, xk2 ] CMP or f4 f11 × f16

Ak,h8 APG APG [x1, x2] f4 or f5 f4 or f7 CMP or f4, f9, f10 f12 f14 ×

Let i, j = 1, . . . , 9, i 6= j. In the box of (i+ 1, j+ 1)-position we explain why the algebra in the (i+ 1)-th row of
the first column does not belong to the variety generated by the algebra in the (j + 1)-th column of the first row.
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APG : the algebra in the first row generates a variety of almost polynomial growth which cannot contain a proper
subvariety of exponential growth, like the algebra in the first column.

EXP : the algebra in the first row has exponent less than the algebra in the first column.

GR : the algebras are graded by distinct non-isomorphic groups.

CMP : the algebra in the first column has more non-zero components than the algebra in the first row.

f : The polynomial in the box is an identity for the corresponding algebra in the first row but not for the
corresponding algebra in the first column. We shall use the following notation for the polynomials inside
the table:
f1 = [x1,g1 , x2,g1 ]

f2 = x1,g1x2,g1 + x2,g1x1,g1

f3 = [x1,g, x2,g]

f4 = [x1,e, x2,e]

f5 = [xe, xg23 ]

f6 = [xe, xg]

f7 = [xe, xk]

f8 = x1,gx2,g

f9 = x1,kx2,k

f10 =
[
[x1, x2]2, x1

]
f11 = [xe, xh2

]xk2
f12 = [xe, xh]xk

f13 = xk1 [xe, xh1
]

f14 = xk[xe, xh]

f15 = x1,k1x2,k1x3,k1

f16 = x1,k2x2,k2x3,k2

In the last theorem we finally give the characterization of the G-graded algebras with G-exponent equal to 2. We
denote by UTG2 (F ) the algebra of 2× 2 upper-triangular matrices over F endowed with an elementary G-grading,
by E the infinite dimensional Grassmann algebra with trivial grading and by EZ2 the Grassmann algebra with
natural Z2-grading.

Theorem 4.2. A G-graded algebra A has expG(A) = 2 if and only if Ap1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 6∈

varG(A) and at least one algebra among UTG2 (F ), E and EZ2 belongs to varG(A).

Proof. Let us suppose that expG(A) = 2. Since expG(B) > 2, B ∈ {Ap1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 }, we

get that such algebras do not belong to the variety varG(A). By [?, Theorem 9], we get that at least one algebra
among UTG2 (F ), E and EZ2 belongs to varG(A) and we are done.

On the other hand, since Ap1, A2, A3, A
i,j
4 , Ag,i5 , Ak,h6 , Ak,h7 , Ak,h8 6∈ varG(A), we have that expG(A) ≤ 2. Moreover,

since at least one algebra among UTG2 (F ), E and EZ2 belongs to varG(A), by [?, Theorem 9], we get that
expG(A) > 1 and the proof is complete. �
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