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Abstract: A central aspect of nervous system development and function is the post-transcriptional
regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues
originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain
cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP),
responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is
in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences,
base modifications, or secondary/tertiary structures, are able to control maturation, localization,
stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered
regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably
due to liquid–liquid phase separation (LLPS). Such structures are evidenced as a variety of granules
that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is,
however, that, under altered cellular conditions, they are also prone to form aggregates, as observed
in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also
able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those
that produced them.

Keywords: post-transcriptional regulation of gene expression; RNA-binding proteins (RBPs); intrinsically
disordered regions (IDRs); EVs; learning; memory; synaptic plasticity; neurodegeneration

1. Introduction

For many years, most of the studies aimed at understanding the regulation of gene
expression were devoted to the analysis of DNA–protein interactions involved in the
structural organization of chromatin of both repressed and active genes, and in the process
of transcription. It is now clear, however, that, once transcribed, RNA faces many different
steps of maturation and traffic that can deeply modify its actual fate, and hence the outcome
of gene expression. Such events are most important during development, but also in adult
organisms. In particular, they are at the heart of the nervous system’s development and
function, both for the establishment of brain cell asymmetry and for nerve cell plasticity
and synapse potentiation, processes that are also involved in learning, memory, and higher
cognitive functions.

As in the case of the DNA–protein interactions that regulate transcription, RNA destiny
strictly depends on nucleic acid–protein complexes, and, in particular, on RNA-binding
proteins (RBPs) [1–10]. As for many other properties of RNA, we can hypothesize that its
ability to interact with proteins that regulate its expression is a present-day remnant of
an early-life biochemical “RNA world” in which genetic information was stored in RNA
molecules [11–18]. It has been suggested, indeed, that, at the beginning of such a primeval
world, RNA was able not only to store genetic information and to self-replicate but even to
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function as a catalyst. This latter hypothesis found an important basis in the discovery of
ribozymes and other RNA-catalyzed reactions [19–24]. Recently, it has been also suggested
that the catalytic power of RNA might have been enhanced by “globularity”, that is
by the formation of secondary/tertiary structured domains, and by modified versions
of some bases (that might have resembled cofactors) [25,26]. In the last decades, the
acknowledgment of RNA versatility further increased after discovering, besides ribosomal
and transfer RNAs, a high number of regulatory, non-coding species, among which long
non-coding RNAs (LncRNAs), sometimes circularized RNAs (circRNAs), and microRNAs
(miRNAs) [27].

It has been also suggested that the coexistence of self-replicating and catalytic RNA
with amino acids might have allowed the formation of the first peptides, perhaps con-
stituted by only a few amino acids, such as glycine (Gly/G), alanine (Ala/A), aspartate
(Asp/D), and valine (Val/V) [28–31]. Now, it has been suggested that amyloids may be
formed from short peptides showing simple amino acid composition and alternating hy-
drophobic and hydrophilic residues, in the presence of other simple molecules, such as
carbonyl sulfide [32], thus allowing us to hypothesize a primeval “RNA-prion world” or
“amyloid world” [32–37]. Of course, as we discuss below, amyloids are fibrillary protein
aggregates, containing arrays of beta-strands, which accumulate in neurodegenerative
pathologies, among which Alzheimer’s and prion diseases. Notably, present-day amyloids
can interact with lipids and cause modification of membrane properties, among which
its fluidity [32,38–40]. Moreover, because of their repetitive structure, amyloids might be
able to bind RNA, with a stabilizing effect [41]. Importantly, a variety of experiments
suggests that compartmentalization due to lipid complexes, such as coacervates, may
have allowed the concentration and self-assembly of RNA molecules, thus enhancing their
polymerization and catalytic activities [42,43].

RNA is a highly versatile molecule, able to form a variety of secondary and tertiary
structures, based on both Watson–Crick and non-Watson–Crick interactions. Moreover, as
mentioned, many classes of RNA do exist, and they continuously crosstalk to each other,
thus regulating the actual outcome of gene expression [44–46]. For example, it is now widely
accepted that mRNA stability and its chance to be translated can be negatively regulated
by microRNAs (miRNAs); these latter molecules are short RNAs of about 20 nucleotides,
derived from longer precursors, which, in the context of an RNA–protein complex called the
RNA-induced silencing complex (RISC), also contain the RBPs known as Argonaute (Ago)
proteins and pair with short sequences (six-eight nucleotides), called miRNA response
elements (MREs), present for most in the 3′-untranslated region (3′-UTR) of their target
transcripts. Each mRNA can contain multiple MREs and, on the other hand, each miRNA
can target a high number of mRNAs [47,48]. However, the ability of miRNAs to bind
mRNAs is counteracted by both linear and circular long non-coding RNAs (LncRNAs;
circLncRNAs), which contain MREs as well and are thus able to function as sponges for
miRNAs, and, consequently, to weaken the miRNA effect on mRNA stability and protein
synthesis [49–51]. As a whole, these observations suggest the existence of an RNA network
that, based on both RNA–RNA and RNA–protein interactions, maintains gene expression
homeostasis [44–46] (Figure 1).



Int. J. Mol. Sci. 2022, 23, 14622 3 of 35
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 37 
 

 

 
Figure 1. Schematic representation of RBP interaction with either mRNA or with some classes of 
non-coding RNAs. The mRNA (upper picture) is typically modified at its 5′-end by a cap and at its 
3′-end by a poly(A) tail. All mRNAs contain at least one open reading frame (ORF), which is nor-
mally translated into protein; this main ORF (mORF) can be modified by cytoplasmatic splicing 
events, by translation starting at different start codons, or by RNA editing. In addition, mRNA can 
also contain additional short ORFs in its 5′-untranslated region (5′-UTR) or in its 3′-UTR (upstream 
ORF, uORF, and downstream ORF, dORF, respectively); mRNAs also contain a variety of struc-
tural elements (SREs), and recognition simple sequences (RSS, orange segments), recognized and 
bound by different families of RBPs. Herein, three kinds of proteins that can be found in ribonu-
cleoprotein particles are depicted: (a) RBPs that recognize SREs; (b) RBPs that recognize RSS; and 
(c) proteins that do not interact directly with RNA but with RBPs. Finally, mRNA contains short 
miRNA recognition elements (MRE, blue segments), able to pair with short single-strand RNAs, 
named miRNAs (miR, red). Interestingly, MREs are also present on non-coding RNAs, such as long 
non-coding RNAs (LncRNAs) and circular RNAs (circRNAs), which can thus function as sponges 
for miRNAs. 

Notably, protein-coding genes can also encode ncRNAs, and, on the other hand, 
ncRNAs can also contain short open reading frames (ORFs) that are often conserved in 
evolution, and that, under certain conditions, are translated [27,52]. It is well known since 
long ago that eukaryotic protein-coding transcripts themselves can undergo alternative 
maturation, giving rise to different mRNAs, which either encode different isoforms of the 
same protein, with different properties, or have alternative untranslated regions with a 
different potential to bind regulatory molecules (RNAs or RBPs) [53–55]. Similarly, al-
ternative polyadenylation can have an effect on the sequence of the 3′-UTR and, conse-
quently, on the post-transcriptional regulation of the mRNA potential [55–60]. In addi-
tion, non-canonical splicing events, among which back-splicing and trans-splicing, are 
also possible, and can generate either circRNAs or chimeric RNAs, respectively [61]. 
Notably, although splicing events are normally confined to the nucleus and precede the 
mRNA transfer to the cytoplasm and its successive localization, retained introns in cyto-
plasmic RNAs have been found, and this finding, together with the presence in dendrites 
of proteins involved in splicing, suggests the existence of peripheral splicing events [62–
64], possibly related to synapse remodeling. Finally, many laboratories reported the 
presence of RNA nucleotide modifications, such as cytosine [65,66] and adenosine [67–
69] methylation; these base modifications can be involved in regulating mRNA transport 

Figure 1. Schematic representation of RBP interaction with either mRNA or with some classes of
non-coding RNAs. The mRNA (upper picture) is typically modified at its 5′-end by a cap and at
its 3′-end by a poly(A) tail. All mRNAs contain at least one open reading frame (ORF), which is
normally translated into protein; this main ORF (mORF) can be modified by cytoplasmatic splicing
events, by translation starting at different start codons, or by RNA editing. In addition, mRNA can
also contain additional short ORFs in its 5′-untranslated region (5′-UTR) or in its 3′-UTR (upstream
ORF, uORF, and downstream ORF, dORF, respectively); mRNAs also contain a variety of structural
elements (SREs), and recognition simple sequences (RSS, orange segments), recognized and bound
by different families of RBPs. Herein, three kinds of proteins that can be found in ribonucleoprotein
particles are depicted: (a) RBPs that recognize SREs; (b) RBPs that recognize RSS; and (c) proteins that
do not interact directly with RNA but with RBPs. Finally, mRNA contains short miRNA recognition
elements (MRE, blue segments), able to pair with short single-strand RNAs, named miRNAs (miR,
red). Interestingly, MREs are also present on non-coding RNAs, such as long non-coding RNAs
(LncRNAs) and circular RNAs (circRNAs), which can thus function as sponges for miRNAs.

Notably, protein-coding genes can also encode ncRNAs, and, on the other hand,
ncRNAs can also contain short open reading frames (ORFs) that are often conserved in
evolution, and that, under certain conditions, are translated [27,52]. It is well known since
long ago that eukaryotic protein-coding transcripts themselves can undergo alternative
maturation, giving rise to different mRNAs, which either encode different isoforms of the
same protein, with different properties, or have alternative untranslated regions with a
different potential to bind regulatory molecules (RNAs or RBPs) [53–55]. Similarly, alterna-
tive polyadenylation can have an effect on the sequence of the 3′-UTR and, consequently,
on the post-transcriptional regulation of the mRNA potential [55–60]. In addition, non-
canonical splicing events, among which back-splicing and trans-splicing, are also possible,
and can generate either circRNAs or chimeric RNAs, respectively [61]. Notably, although
splicing events are normally confined to the nucleus and precede the mRNA transfer
to the cytoplasm and its successive localization, retained introns in cytoplasmic RNAs
have been found, and this finding, together with the presence in dendrites of proteins
involved in splicing, suggests the existence of peripheral splicing events [62–64], possibly
related to synapse remodeling. Finally, many laboratories reported the presence of RNA
nucleotide modifications, such as cytosine [65,66] and adenosine [67–69] methylation; these
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base modifications can be involved in regulating mRNA transport and localization, as
well as translation. For example, some mRNAs can be translated in a cap-independent
way, and it has been reported that this event, mediated by an “internal ribosome entry
site” (IRES), can be activated by binding of N6-methyladenosine (m6A), present in the
5′-UTR, to the translation pre-initiation complex [69]. The discovery of RNA modifications
and their impact on transcript metabolism has even prompted researchers to talk about
“epitranscriptomics” [65,66,70]. Interestingly, the reversible methylation of bases is not the
only RNA modification; post-transcriptional modification can be also obtained by RNA
editing, catalyzed by adenosine deaminases (ADARs), which deaminates adenosine to
inosine, and Apoliprotein B mRNA editing enzyme (APOBEC), which transforms cyto-
sine to uracil [71–73]. All these processes are certainly involved in modulating mRNA
interaction with RBPs. All the steps of mRNA synthesis, splicing, transport, localization,
and translation are indeed controlled by a variety of RBP families. Herein, we review a
collection of studies that have shown the involvement of many RBPs both in the physiology
and pathology of brain cells.

2. Post-Transcriptional Regulation of Gene Expression in the Nervous System

The post-transcriptional control of gene expression has a fundamental role in tissue
development and differentiation, and is mainly realized thanks to cis-acting sequences
present in the RNA itself, usually in the 5′- or 3′-UTR, and by a set of RBPs able to
recognize those sequences (Figure 1). In the nervous system, where the pre-localization
of the messengers and local translation are involved in axon and dendrite branching and
pathfinding, and in synapse formation, post-transcriptional regulation assumes an even
greater importance. Notably, local translation may stably modify synapse structure and
activity, opening the way to long-lasting modifications in neuronal connections that even
support learning and memory capacities [74].

A typical feature of the post-transcriptional regulation is the presence in the cells of
specific tridimensional structures that carry both mRNA molecules and regulating proteins.
Once transcribed, indeed, messengers are subjected to splicing and polyadenylation, and
are eventually moved to the cytoplasm as components of ribonucleoprotein complexes
(RNPs), often referred to as granules, many kinds of which have been described [75]. Actu-
ally, in the cells, messengers probably exist exclusively inside these specialized complexes,
wherein some proteins directly bind RNAs (Figure 1, proteins indicated as “a” and “b”),
while others are part of the RNPs because they interact with each other, forming oligomers
(Figure 1, proteins indicated as “c”) [8,76].

2.1. Mechanisms of Controlled RNA Metabolism, Localization, and Translation

Post-transcriptional control actually includes multiple steps of regulation, some of
which have been studied in detail (i.e., alternative splicing, RNA localization, and local
translation), while others, such as RNA editing and alternative polyadenylation, still
remain quite elusive [8]. In particular, polyadenylation seems to have a double-fold
role in the metabolism of mRNA, because the length and composition of the 3′-UTR
depend on the site of the poly(A) tail addition, and because mRNA’s half-life and its
translatability are influenced by the length of the poly(A) [8,55,57,59,60]. Moreover, during
the maturation of the 3′-UTR, a tissue-specific mechanism named alternative cleavage
and polyadenylation (APA) may create different versions of the mRNA endowed with
specific characteristics of regulation [77]. As mentioned above, the direct modification of
the transcripts, by modification of the nucleotides, is also possible and gives rise to what
has been called ‘epitranscriptomics’ [65,67,69,70,78]. The most studied of them, involved in
the control of translation, concerns N6-methyladenosine (m6A), a reversible modification
depending on the activity of two classes of enzymes: methyltransferases, which add methyl
groups and are thus named ‘writers’, and demethylases called ‘erasers’. The modification
may be recognized in specific conditions by a group of RNA-binding proteins acting as
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‘readers’ [68]. It has been demonstrated that this mode of regulation participates in the local
control of protein synthesis in axons [79].

One main step during the production of mature RNAs is the excision from the mes-
sengers of the introns. Splicing is a quite complex mechanism directed by sequences
present on the mRNA, which are processed by a set of proteins and small RNAs grouped
in small nuclear ribonucleoproteins (snRNPs). Different RBPs may bind mRNA sequences
to help reach the conformational structure necessary for intron excision, thus facilitating, or
impeding, the inclusion of specific exons [80–83]. The choice of alternative exons allows
the production of different protein isoforms, but also can change the regulatory elements
located in the 3′-UTR, thus modifying both the final localization of the messengers and
the timing of their translation. For example, BDNF and CaMKIIα mRNA isoforms bearing
3′-UTRs, which are shorter and lack dendritic targeting elements (DTEs), do not reach
dendrites [8]. Interestingly, local splicing has been suggested to occur in dendrites of living
neurons, indicating local control of 3′-UTR diversity [62]. A good example of the effect of
alternative splicing is given by the activity of CaMKIIβ variants in developing neurons
bearing the translation product of exon E1: only these molecules, indeed, may associate
with F-actin in microspikes of the arborizing dendrites in developing neurons [84].

A striking example of the complexity of splicing is offered by neurexins. These latter
proteins act as presynaptic receptors for molecules located on the other side of the synapse,
the neuroligins. Thanks to a very complex transcriptional and post-transcriptional control,
including a nearly cell-specific splicing program, many different neurexin isoforms are
produced in the brain; actually, these molecules are able to act as receptors for several
binding proteins, suggesting that they can behave like a core for the organization of the
presynaptic space [85–87]. Therefore, the complex alternative splicing of neurexin mRNAs
is most probably carried out by cell-type-specific RBPs that endow different neuronal cell
types with a peculiar Neurexin isoform that, in turn, can react with a set of specific receptors
in the post-synaptic cell, contributing to the conference of a specific behavior to a given
neuron [86,87].

Interestingly, some intron sequences, found in cytoplasmic mRNAs, act as DTEs, since
they are sufficient to target messengers to dendrites. As mentioned, indeed, spliceosome
elements and RBPs involved in splicing were identified in the cytoplasm, and more specif-
ically, in dendrites themselves, raising the possibility that splicing could also be carried
out in unusual cytoplasmic sites [62,88]. Such ‘dendritic spliceosomes’ could function as a
secondary activator of ‘cytoplasmic intron-retaining transcripts’ (CIRTs) that are in a silent
state because they are not completely spliced [64].

On the other hand, RBPs may control their own number by mechanisms that reduce
their mRNA abundance, via, for example, nonsense-mediated mRNA decay (NMD), a
cytoplasmic process that causes the degradation of messengers bearing premature termina-
tion codons (PTCs) [89]. It has been demonstrated that these codons can be inserted in the
mRNAs by alternative splicing, resulting in their rapid turnover [90]. Thus, translation-
dependent NMD seems to be a critical regulator of splicing factors. In line with this notion
is the finding that Pumilio proteins, known regulators of RNA stability and translation,
regulate the expression of Nova2 [66]. Nova proteins regulate more than 700 alternative
splicing events in vivo [91]. Importantly, Nova-controlled splicing mainly affects synaptic
proteins [91], such as Gephyrin (Gphn), the scaffold protein for inhibitory synapses [92].
These findings suggest that Nova proteins control neuronal excitation by regulating the
inhibitory pathway. For several other splicing factors, such as RNA-binding protein fox-1
homolog (Rbfox1), and Polypyrimidine tract-binding protein (Ptbp) 1 and 2, a similar mech-
anism has been observed [81]. Consequently, the combination of different RBPs bound to a
particular pre-mRNA decides whether an exon is spliced out or not [66].

Given the early binding of RBPs to nascent mRNAs, transcripts leave the nucleus
as ribonucleoproteins (RNPs) (Figure 2); how these latter complexes pass through the
nuclear envelope is not completely clear, but they probably follow the same route that
other molecules and complexes do, i.e., nuclear pores, but an unusual way of transfer has



Int. J. Mol. Sci. 2022, 23, 14622 6 of 35

also been described, assuming the possibility that they may ‘bud’ through the nuclear
membrane [93]. In any case, the next necessary step is transport, to localize mRNAs in
specific regions of the cells. Despite the great difference between the low number of known
RBPs involved in the transport and the high number of messengers so far identified in
neuritis, it has been suggested that each RNP granule might contain single copies of specific
mRNA [94,95]. However, other observations suggest that more RNA species may be
contained in the same RNPs. The coordinated expression of neural genes may be obtained,
indeed, by the assembly of their mRNAs in common mRNP complexes, which, under
different cell states and at different times, can contain different RBPs. This process is
of particular importance in modulating synaptic plasticity, which seems to depend on
the activity-induced translation of many locally targeted mRNAs present in neuronal
processes [96].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 37 
 

 

clear envelope is not completely clear, but they probably follow the same route that oth-
er molecules and complexes do, i.e., nuclear pores, but an unusual way of transfer has 
also been described, assuming the possibility that they may ‘bud’ through the nuclear 
membrane [93]. In any case, the next necessary step is transport, to localize mRNAs in 
specific regions of the cells. Despite the great difference between the low number of 
known RBPs involved in the transport and the high number of messengers so far identi-
fied in neuritis, it has been suggested that each RNP granule might contain single copies 
of specific mRNA [94,95]. However, other observations suggest that more RNA species 
may be contained in the same RNPs. The coordinated expression of neural genes may be 
obtained, indeed, by the assembly of their mRNAs in common mRNP complexes, which, 
under different cell states and at different times, can contain different RBPs. This process 
is of particular importance in modulating synaptic plasticity, which seems to depend on 
the activity-induced translation of many locally targeted mRNAs present in neuronal 
processes [96]. 

 
Figure 2. Schematic drawing of mRNA maturation, transport to both dendrites and axon, and 
translation. As shown in the insert, nascent RNA starts interacting with RBPs already during tran-
scription (a); after its synthesis, heterogeneous nuclear RNA faces splicing: during this phase, 
some more proteins bind to it (b); after splicing, some RBPs detach, while new ones, probably in-
volved in mRNA transport, bind (c). Finally, mature RNA, enclosed in ribonucleoparticles (RNPs), 
is ready for transport to the cytoplasm. Once in the cytoplasm, RNPs interact with microtubules 
and are transported to the periphery where, in response to specific signals, mRNAs are translated 
(d). Some RNPs can also enter EVs, the extracellular structures released by all cell types of the 
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mRNA by ZBP1 RBP. This interaction seems to be crucial to processes such as migration 
and differentiation, because it allows the localized translation just where active actin 
polymerization is needed [97]. In the granules containing ZBP1, translation is inhibited 
by repressors, suggesting that protein synthesis is halted while transport occurs [98]. The 
transport of β-actin mRNA by ZBP1-containing granules is allowed by the interaction 
with the Kinesin family member 11 (Kif11) of motor proteins [99]. Translation repression 
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Figure 2. Schematic drawing of mRNA maturation, transport to both dendrites and axon, and
translation. As shown in the insert, nascent RNA starts interacting with RBPs already during
transcription (a); after its synthesis, heterogeneous nuclear RNA faces splicing: during this phase,
some more proteins bind to it (b); after splicing, some RBPs detach, while new ones, probably
involved in mRNA transport, bind (c). Finally, mature RNA, enclosed in ribonucleoparticles (RNPs),
is ready for transport to the cytoplasm. Once in the cytoplasm, RNPs interact with microtubules and
are transported to the periphery where, in response to specific signals, mRNAs are translated (d).
Some RNPs can also enter EVs, the extracellular structures released by all cell types of the nervous
system; EVs can mediate exchange of many different molecules: metabolites and lipids, but also
proteins and RNA of different classes, among which mRNAs, miRNAs, and LncRNAs.

An example of a very specific RNA–RBP interaction is the transport of β-actin mRNA
by ZBP1 RBP. This interaction seems to be crucial to processes such as migration and differ-
entiation, because it allows the localized translation just where active actin polymerization
is needed [97]. In the granules containing ZBP1, translation is inhibited by repressors, sug-
gesting that protein synthesis is halted while transport occurs [98]. The transport of β-actin
mRNA by ZBP1-containing granules is allowed by the interaction with the Kinesin family
member 11 (Kif11) of motor proteins [99]. Translation repression during transport has also
been demonstrated in the case of granules containing Staufen and the fragile X mental
retardation protein (FMRP) [66]. The FMRP seems to bind mainly at coding regions of the
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mRNAs, preferentially at TGGA sequences [100]. Its mode of action includes the inhibition
of messengers by masking them in granules [101], the block of ribosomal activity [102], and
the inhibition of elongation factor eIF4E and eIF4G interaction [103]. Moreover, FMRP has
also been suggested to be part of a control system for the regulation, during early neuronal
development, of the transition from neural stem cells to intermediate progenitors, differen-
tiation, and migration, together with components such as N-cadherin [104]. Another way to
inhibit translation by the FMRP is obtained in association with the RNA-Induced Silencing
Complex (RISC). FMRP binding has been recognized as an important contribution to the
capacity of the component of the complex to bind and repress mRNA utilization [105–108].

As long as it concerns Staufen (Stau), transport mediated by this protein is based
on microtubule activity, as well as kinesin motors [109]. In the mammalian brain, Stau-
mediated transport, in some cases, is dependent on the presence, in mRNAs, of specific
introns retained during splicing; for example, only Calmodulin3 (Calm3) mRNA isoform
with a longer 3′-UTR and the CaMKII mRNA isoform, which retains intron 16, can reach
dendrites by binding Stau2 [8,110].

Concerning calmodulin, an interesting observation made some years ago in our
laboratory suggests that the calmodulin-binding, brain-specific Pep19/Pcp4 peptide might
play a role in the regulation of the translation of some RNAs; we found, indeed, that
this peptide is an RNA-binding protein, but its binding activity is in competition with
calmodulin [111].

It has also been reported that the cytoplasmic polyadenylation element-binding pro-
tein (CPEB) is involved in bidirectional CaMKII mRNA transport in dendrites, in asso-
ciation with kinesin and dynein motors, as well as with Microtubule-associated protein
2 (Map2) [112]. The CPEB is also involved, in the hippocampus, in the transport of the
mRNA encoding the brain-derived neurotrophic factor (BDNF), which bears a specific
dendritic targeting element in its 3′-UTR. In the dendritic transport of this mRNA, the
protein Translin also seems to be involved [113,114]. After transport along microtubules,
RNPs can be transferred to the peripheral actin cytoskeleton, thus penetrating the dendritic
spines; in this transfer, Fused in Sarcoma (FUS) RBP can be involved, thanks to its ability
to interact with the myosin-Va motor protein [115]. In order to explain the recruitment
of RNPs to synapses, it has also been suggested that molecules/conditions, generated by
synapse activation, may attract them to synapses while they are moving along neuritis by
bidirectional transport (sushi-belt model) [4,116].

All the previously described steps aim at mRNA localization, an undoubtedly advanta-
geous process, especially for complex cells such as neurons; it allows, indeed: (i) to rapidly
increase locally the amount of a given protein, without the delay that would result from its
transport, (ii) to avoid producing proteins in erroneous sites, and (iii) to add a step in the
regulation of translation, which may be directly controlled by local signaling [117–119].

Interestingly, the study of neuronal somata and extensions using ribo-sequencing,
which allows the quantification of actively translated transcripts, revealed more than 800 dif-
ferent mRNAs in dendrites and axons [120,121]. The mRNA localization and translation in
axons provides a specific pool of proteins synthesized in situ that may independently regu-
late regeneration processes and all the mechanisms aimed at elaborating neurotransmitter
release [119]. The local coordinated translation of different mRNAs, which constitute a sort
of post-transcriptional operon, in response to the specific needs of the cell in any given
moment, offers a higher level of control [122].

In an evolutionary perspective, local translation can be considered a way to put part of
the regulation of gene expression under the control of elements located at the cell periphery,
that is, a way to ‘decentralize’ the control [123].

Fundamental processes in neuron development are elongation of the axon and branch
formation, which imply deep modifications in cytoskeleton organization and the participa-
tion of actin remodeling enzymes and regulatory proteins. For example, it has been shown
in X. laevis that β-actin mRNA is locally translated in axons [124]. Different proteins are
involved in the process: Vg1RBP, a ZBP1 homolog, transports β-actin mRNA up to the
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growth cone; then, β-actin can be produced in an asymmetric fashion, under the control of
Netrin-1 and BDNF, allowing the turning of the growth cone [125].

Clearly, the possibility to synthesize new proteins locally is of fundamental importance
in any step of neuron development, so ribosomes must be present in developing axons
and dendrites to ensure peptide production in response to intra- and extra-cellular sig-
nals [120,126,127]. One interesting point is that the presence on the place of both ribosomes
and mitochondria also allows local production of mitochondrial proteins, contributing
to the in situ turnover of the organelles to meet the needs of the process structurally and
energetically [128,129].

As discussed below, an ever-increasing amount of data witnesses that the localized
regulation of specific mRNA translation, through modification of synaptic activity, is
the key for attaining higher brain cognitive capacities, including learning and memory
formation [3,120,130]. Notably, localized translation is most probably not limited to neurons
but is active also in glial cells, such as oligodendrocytes and astrocytes [131,132].

RBPs also interact with circRNAs and LncRNAs, which appear especially represented
in brain cells and possess an independent type of regulation [133]. Many LncRNAs seem to
have a role in chromatin organization, probably by their capacity to interact with chromatin-
modifying proteins [134], thus forming complex structures in which many different proteins
may be included [135,136].

Finally, when talking about RNP trafficking, the recent discovery of a role of lyso-
somes as further vehicles for granules is also of note. This process seems to depend on the
lysosome-associated membrane glycoprotein 1 (LAMP1) and on the granule-associated
phosphoinositide-binding protein Annexin A11 (ANXA11) [137]. On the other hand, lyso-
somes and the process of autophagy are also involved in the stress-dependent degradation
of the granule components [138].

2.2. Intrinsically Disordered Regions (IDRs)

The study of IDRs is still in its infancy, and details of the interactions between them
are scarce, but some hints are already emerging, especially for RBPs, most of which seem to
contain IDRs, in addition to RNA-binding domains [139–141]. Two peculiar characteristics
regarding IDRs are their ‘fuzzy’ binding to their targets [142,143] and their ability to allow
proteins to enter granules by liquid–liquid phase separation (LLPS) [144–146]. IDRs are
characterized by low amino acid complexity (LC), absence of hydrophobic residues, and
enrichment in charged residues [147]. The regions with a low amino acid complexity
(low-complexity domains, LCDs) may contain poly-glutamine and poly-alanine tracts and
seem to favor the structuration of ribonucleoprotein complexes [148–150].

Interestingly, a class of IDRs is represented by prion-like domains (PLDs), frequently
found in RBPs, such as TAR DNA-binding protein 43 (TDP-43) and FUS. PLDs are enriched
in polar residues, but do not contain charged amino acids; moreover, they contain aromatic
residues that, together with their disordered structure, are probably determinant for the
ability to form and/or enter RNP granules [147,151,152]. It has also been suggested that
PLDs probably influence the polarity of the mRNAs and the diffusion of the ribosomes
inside the RNA/protein complexes [153].

Notably, while studying the interaction between HnRNP-A2 and TDP-43, a mechanism
of reciprocal regulation through IDRs was evidenced: in some neurodegenerative diseases
(see Section 4), TDP-43 shows a transition from an alfa-helix to a beta-sheet structure, which
favors its aggregation, and it was found that an increase in the disordered conformation of
HnRNP-A2 is directly related to the increase in the beta-sheet structure in TDP-43 [154].
Such a kind of interaction, based on IDRs, is probably responsible for the aggregation-
dependent alterations noticed in most neurodegenerative diseases.

Due to their disordered structure, IDRs could mediate the transient interactions re-
quired for granule formation [147]. Actually, this latter phenomenon has recently been
directly connected with synapse ontogenesis and activity [155,156], and with long-term
memory (LTM) consolidation [147]. From this point of view, a particularly interesting
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protein with prion-like domains seems to be the already mentioned CPEB protein, indeed
required for LTM [147]. One interesting possibility is that the secondary structure of the
included RNAs is what would also (or even primarily) regulate the stabilization of the
RBP structure, thus allowing protein binding and assembly of the granules, which are then
involved in RNA transport, localization, and translation [157].

2.3. Brain Cell Asymmetry

Localization in dendrites of the mRNAs encoding MAP2 [158] and CaMKIIα [159]
opened the way to discover a connection between localization and translation of given
messengers in specific regions of neurons, and synaptic activation. Besides these mRNAs,
other intensively studied messages localized in dendrites are those encoding BDNF, the
activity-regulated cytoskeleton-associated protein (Arc), the NMDAR NR1 subunit, and the
AMPA receptor [160,161]. Such mRNAs contain, in their 3′-UTRs, a DTE that is necessary
for specific trafficking. Shorter 3′-UTRs that result from alternative splicing and miss the
DTE impede their correct positioning [162–166]. Actually, in nearly all analyzed mRNAs,
the 3′-UTR is the region on which their localization depends [167], because it contains the
so-called zipcodes [117], specific signals that interact with different RBPs [168], creating
various kinds of RNA–protein complexes [98,169,170]. Even though the mechanisms that
lead to the anchoring and eventual translation of the RNAs are less well known [171], it is
thought that, once a given activated synapse is reached, the RNPs disassemble, in order to
allow translation [95]; thus, novel proteins are produced that can participate in synapse
remodeling. In summary, mRNA destination and activity are governed by a sort of ‘RNA
signature’ present in its sequence, which allows the recognition and binding of a specific
group of regulating RBPs [66,116].

In particular, it was, for example, demonstrated that the localization and translation
of the mRNA encoding CaMKIIα depend on the 3′-UTR and are stimulated by synaptic
activation [172,173]. The main CaMKIIα activity consists in the phosphorylation of different
proteins involved in synaptic plasticity [174], and the deletion of CaMKIIα 3′-UTR affects
learning and memory formation. In mutant mice bearing a gene in which the localization
sequence has been altered, the mRNA does not reach the dendrites, and CaMKIIα is reduced
in the postsynaptic densities (PSDs). Consequently, both spatial and object recognition
memory are affected in the mutant animals, dramatically showing the importance of local
translation for synaptic plasticity [175].

BDNF has a fundamental role in brain cells, as it is involved in neuronal development
and survival. The structuration and function of mature synapses is influenced by local
translation depending on BDNF–TrkB signaling. Trk receptors are indeed widespread both
in the presynaptic and postsynaptic density of the dendritic spines of cortical neurons [114].
For a long time, BDNF neurotrophin was supposed to be synthesized just in the cell body,
then transported along the axon and secreted. Nowadays, it is acknowledged that BDNF
can also be synthesized in the presynaptic compartment, participating in the control of
axon development [176]. BDNF induces the dephosphorylation of the FMRP, through a
mechanism depending on Calcineurin. In this way, BDNF enhances the translation of a set
of transcripts binding to the FMRP (reviewed in [114]). BDNF mRNA is also transported
to dendrites, and some authors reported a role for Translin in the process [113]. Different
transcripts derive from the Bdnf gene, each of which possesses specific 5′- and 3′-UTR and
localizes in distinct sites in the cell. In addition, the 3′-UTR contains two polyadenylation
sites, so that each transcript has a long- and a short-3′-UTR version. In hippocampal
neurons, the 3′-UTR presents some elements necessary to reach dendrites and to bind
CPEB1 [177]. The distribution of the BDNF transcripts seems to be regulated by a ‘spatial
code’, retaining some variants in the neuronal body, while sending others to the proximal or
distal dendrites [178]. BDNF mRNA 3′-UTR is also the target of the well-known neuronal
RBP HuD, which stabilizes the BDNF transcripts with the long 3′-UTR and enhances their
translation [8,179].
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Another well-described factor whose RNA is localized in dendrites is Arc. The cor-
responding gene is classified as an immediate early one (IEG), because it is turned on by
synaptic activation [163]. Arc is involved at various steps in the synaptic signaling, such as
the remodeling of the actin cytoskeleton and endocytosis of AMPA receptors [180]. The
involvement of Arc in the process of memory formation and maintenance is witnessed by
the effect showed in mice by its mutation [181]. Notably, Arc mRNA contains two intronic
sequences in its 3′-UTR, one of which allows recycling of the Arc messenger by NMD [182].
Moreover, Arc is probably translated only at specific times in dendrites, and its translation
is inhibited by a complex constituted by FMRP [183] and the cytoplasmic FMR1-interacting
protein 1 (Cyfip1); this latter binds the 5′-cap of Arc mRNA, allowing FMRP to join the
complex, thus inhibiting Arc translation [103]. In summary, Arc seems to play a central
role in the regulation of synapse plasticity and is endowed with a region with a peculiar
structure, resembling the retroviral GAG domain. Through this domain, Arc may form
capsid-like structures and attract RNAs for transport in neurons [66,184].

An example of the opportunities of regulation offered by local translation has been
described in rat dorsal root ganglion (DRG) neurons and concerns the mRNA encoding
Growth-Associated Protein 43 (GAP-43), a protein involved in axon elongation [185]. This
messenger is modified by N6A methyltransferase (a ‘writer’), then transported along the
axon in a translationally repressed state, and eventually translated only when methylation
is removed by the Fat Mass and Obesity-associated protein (FTO), an m6A ‘eraser’ locally
translated in axons [79]. There is also another mechanism regulating GAP-43 translation
in rat axons: the KH-Type Splicing Regulatory Protein (KHSRP), an RBP able to inhibit
GAP-43 translation, is itself inhibited by the non-coding axon-enriched lincRNA regulating
axon elongation (ALAE) RNA. When ALAE interacts with KHSRP, this latter RBP cannot
block GAP-43 mRNA translation anymore. Consequently, the absence of ALAE implies
GAP-43 reduction and axon malfunctioning [186]. In both types of regulation, the region of
the mRNA involved is the 3′-UTR [8,79,186].

Finally, two further examples of locally translated mRNAs concern rat Synaptosomal-
Associated Protein of 25kDa (SNAP-25), a constituent of the SNARE complex, and β-catenin
(a protein involved in the formation of a cell adhesion complex); both proteins are indeed
synthesized in situ, allowing the formation of the presynaptic structure by the interaction
with other proteins [187,188].

2.4. RBPs as Regulators of mRNA Pre-Localization in Brain Cells

As already mentioned, post-transcriptional regulation in the nervous system is based
upon the activity of a set of binding proteins (RBPs) able to recognize specific signals
and/or structures in the partner messengers [5,66,74,189]. The existence of some RBPs able
to interact with different mRNAs to regulate a given function has been also demonstrated,
as it is the case regarding the splicing factor poly-glutamine rich (SFPQ). This protein
controls neurotrophin-dependent axon viability, by binding in the nuclei, cytoplasm, and
axons of Xenopus laevis dorsal root ganglion sensory neurons, the mRNAs encoding the
laminB2 (Lmnb2), a protein that is usually part of the nuclear lamina, and Bclw (an anti-
apoptotic protein), including both messengers in the same RNA granule, and transports
them along the axons [190]. Bclw is involved in the local inhibition of the apoptosis follow-
ing neurotrophin stimulation, therefore blocking axon degeneration [191]; Lmnb2 mRNA
has been identified in axons, where it is translated by localized ribosomes, and the protein
is involved in mitochondrial functions that support axon survival [192].

The activity of RBPs is most probably modulated by a cohort of enzymes which
modify specific protein sites, by phosphorylation, methylation, ubiquitination, or SUMOy-
lation [193]. Among RBPs, there are many different classes of factors playing specific
roles in RNA metabolism. Of these groups, two are necessary for the RNAs to acquire
their correct tridimensional structure: RNA chaperones, such as RNA helicases [194], and
proteins that stabilize folded RNAs [195].
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As discussed above, alternative polyadenylation is one of the regulation mechanisms
in RNA metabolism; for example, RBPs, such as FUS and embryonic lethal abnormal visual
system (ELAV)-like proteins, regulate the length of the 3′-UTR of a variety of brain-specific
mRNAs [196,197]. In Drosophila, it has been shown that the process occurs in a peculiar
way that directly connects the initiation of transcription with 3′-UTR elongation. ELAVs
bind to the DNA promoter and to the 3′-UTR that is eventually transcribed, while the
RNA polymerase II pauses at the initiation site. In this way, ELAVs impede the access to
the proximal polyadenylation sites and sponsor the production of longer 3′-UTRs [198].
The 3′-UTR is also involved in the regulation of mRNA stability and localization by its
binding to RBPs that recognize specific sequences/structures. As mentioned, proteins
are arranged together in granules, thus many different RBPs, such as ZBP1, FMRP, or
Staufen2, cooperate in all these functions [75,199]. Notably, many of these RBPs have a
function at different steps of RNA maturation, transport, and localization. As discussed
above, in order to send mRNAs to the neuronal periphery, anchoring of the RBPs to motor
proteins is also required [200–202]. By reconstituting an mRNA transport complex formed
by adenomatous polyposis coli (APC) RBP, the adaptor protein Kinesin-associated protein 3
(KAP3)n and Kinesin-2, what appears as the minimal requirement to transport mammalian
mRNAs to the axons was demonstrated [203]. Moreover, APC binds the 3′-UTR of the
mRNA, localized to microtubules in the periphery of the growth cone, of β2B-tubulin, a
neuronal protein necessary for axon migration. Interfering with this interaction causes
β2B-tubulin mRNA reduction and depletes dynamic microtubules at the periphery of the
growth cone, thus blocking migration. A tempting suggestion coming from these results is
that microtubules could affect the synthesis of their subunits in a self-organizing way [204].
A similar picture is offered by the RBP Nucleolin, which localizes the mammalian target
of rapamycin (mTOR) mRNA to axons in order to sustain axon regeneration [205]. It
is possible that the control of translation could be essential for the realization of certain
processes such as axon regeneration; axon injury indeed stimulates protein synthesis,
probably activating specific mRNAs by methylation in an ‘epitranscriptomic’ way [67].

An RBP with a fundamental role in the regulation of neuronal membrane excitability
is Pumilio2 (Pum2), which regulates the local translation of mRNAs encoding sodium
channels, such as the sodium voltage-gated channel alpha subunit 8 (Scn8a, encoding
Nav1.6), to control neuronal excitation [206]. It has also been demonstrated that mRNAs
which bear Pum2 recognition elements are retained in the neuron cell body during the
initial stages of mammalian development. In this way, only selected RNAs are transported
along neuronal extensions, while the translation of other mRNAs is impeded at the cell
periphery. Eventually, but only when Pum2 expression is reduced, the same mRNAs are
transported along the axon and translated in situ [207].

As mentioned above, during development, neuronal branches are elongated thanks to
a set of proteins, among which are GAP-43, as well as β-actin. To get transported to the
right place, their messengers are bound by zipcode-binding protein 1 (ZBP1) and included
into an mRNP that travels along dendrites and axons. Unbound ZBP1 is involved in the
induction of apoptosis but, when included in the GAP-43/β-actin complex, it is not, and
neurite growth is allowed. The release of the mRNAs from the complex formed with
ZBP1 is determined by specific axonal or dendritic extension signals that activate SRC
kinase, which, in turn, phosphorylates ZBP1 [185,208]. Interestingly, β1-importin, a protein
normally involved in nuclear import, has been recently described as a possible RBP because
of its presence in neurites and its interaction with the Neuritin 1 (Nrn1) mRNA, encoding
a protein which participates in neurite outgrowth [209]. The two molecules are included
in a granule found at branching sites during neuronal differentiation that also contains
Ras-GAP SH3 domain-binding protein 1 (G3BP1), an enzyme of the Ras signal transduction
pathway [210].

Ribosomes were usually regarded as invariant organelles, formed by two subunits,
i.e., small 40S and large 60S, and containing the same set of proteins in all tissues. Recently,
this notion has been challenged by the finding that ribosome proteins necessary for the
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translation of certain mRNAs may vary in different tissues [211,212]. In mouse embryos,
it was demonstrated by mass spectrometry that some ribosomal proteins (RPs) of both
the large (RPL) and the small subunit (RPS) were differentially represented in polysomes
and in free subunits (i.e., RPL10A, RPL38, RPS7, and RPS25) [213]. Moreover, in mouse
embryos, a mutation of the RPL38 has been identified that causes distinct defects, among
which specific variations of the axial skeleton, due to the alteration of the translation of a
group of homeobox messengers. RPL38 seems to allow the inclusion of these mRNAs in the
80S subunit, providing a specific translational control [212,214]. In addition, RPL13a was
shown to control the translation of the Ceruloplasmin (CP) mRNA by specifically binding
to it. In response to interferon gamma stimulation, RPL13a is phosphorylated and released
from the ribosome and binds the interferon Gamma-Activated Inhibitor of Translation
(GAIT) element in CP mRNA, thus inhibiting its translation [215].

2.5. RBPs and Neuronal Plasticity

Both motor and cognitive learning and memory processes, and, therefore, adaptation
to environmental conditions, depend on neuronal plasticity. Under physiological condi-
tions, adult neuronal plasticity mainly concerns the synapses. Experience indeed induces a
strengthening or weakening of the nerve impulse transmission efficacy.

Synaptic plasticity does not depend only on the activity of nerve cells but also
on glial cells that, by releasing a variety of molecules, influence neuronal transmission
(reviewed in [216]).

These changes involve gene activation, but also changes in both the presynaptic and
postsynaptic localized synthesis of proteins. The fine regulation of these processes depends
on an efficient coordination of mRNA transport and metabolism, mostly managed by RBPs
that, as discussed above, bind mRNAs and regulate their transport, stability, and translation,
thus controlling proteostasis in response to synaptic activity [189]; aberrant translation
could indeed affect synaptic plasticity and lead to neurodevelopmental disorders, such
as autism spectrum disorders (ASDs) [217,218], and neurological pathologies, as well as
neuropsychiatric disorders in adults, such as amyotrophic lateral sclerosis (ALS) [189,219].

Given the importance of continuously regulating proteostasis, at the level of nerve
endings, and the high level of polarization of nerve cells, a particularly active and functional
cytoskeleton is required that acts as a complex of tracks on which both organelles and RNA–
protein complexes can travel from the cell body to the periphery and vice versa, thanks
to kinesin and dynein cell motors, respectively [216]. Then, in the periphery, microtubule-
carried cargoes are transferred to actin filaments and their associated motor myosin [220].
As expected from these considerations, an intact cytoskeleton is essential for the learning
and memory processes [221–224]; moreover, it has been suggested that both microtubules
and microfilaments with their own charges can bind ions and even affect electrical signals
travelling along neuronal processes [223].

While the presence of a protein synthesis system in the dendritic compartment has
been recognized for a long time [225], the existence of similar activities has only recently
been accepted for the axonal periphery, on the basis of convincing evidence of an axonal
and presynaptic protein synthesis system [226].

As discussed above, it is now widely accepted that mRNAs are transported to the cell
periphery in a silent state, due to interactions with other regulatory RNAs and with RBPs.
At the level of the synapses, signals related to the neuronal activity itself elicit modifications
of the inhibiting molecules (for example, phosphorylation of some RBPs), thus allowing
mRNA translation and accumulation of new proteins; some of the newly synthesized
proteins might even come back to the cell body, where they can induce the modification of
the chromatin structure and gene expression.

Among the RBPs involved in learning and memory consolidation, there is the growth
arrest and DNA damage-inducible protein 45 alpha (GADD45α), which regulates the
stability of transcripts by binding to their 3′-UTR. Mice deficient in the GADD45α gene
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show reduced levels of memory-related mRNAs and problems in learning and long-term
memory potentiation [227].

Other factors that, in addition to a clear role in brain development, also influence
memory processes are Staufen proteins, of which only one has been found in invertebrates,
while in vertebrates, two proteins, with different distribution, are known: Stau1 and
Stau2 [5,228,229]. Stau2 is largely expressed in the brain [230]. However, by using a siRNA-
based methodology for silencing Stau1 in hippocampal pyramidal neurons, it has been
found that long-term potentiation (LTP) is specifically affected, but not early LTP [231].
On the other hand, Stau2 is able to regulate the balance between LTP and Long-Term
Depression (LTD) [66,232]. Notably, with similar experiments, it has also been found that
the RNA-binding domain 3 of the protein seems to have a fundamental role in driving
dendritic arborization and synapse formation [233].

The immunostaining of Stau proteins in hippocampal neurons indicated a mainly
somatodendritic localization [234], in association with RNA granules [235]; interestingly,
the two proteins seem to be present in different granules [5]. In any case, Stau association
with granules and its transport to dendrites involve functional microtubules [109,235].
Although mostly present in the cytoplasm, Stau proteins are also present in the nucleus [5].

Another important protein involved in memory processes is FMRP, one of the first
RBPs discovered and probably the most studied [3]; its depletion causes enhanced LTD
and reduced LTP. Recently, it has also been reported that both Drosophila and human FMRP
stimulate protein kinase A (PKA), in relation to learning and memory [236].

A very important role in stabilizing mRNAs during learning and memory is also
played by the proteins of the ELAV family [6]. Among these, HuD, which, in addition to the
canonical mRNA binding functions, is able to bind and regulate non-coding RNAs, among
which circRNAs, which are also involved in learning and memory [133]. Of particular
importance seems to be the ability of HuD to bind mRNAs such as those encoding a few
fundamental regulators of learning/memory, among which BDNF, CaMKIIα, and the
Homer protein homolog 1a (Homer1a) [237,238].

Interestingly, some already mentioned RNA modifications can also be important for
recognizing and binding RBPs, which then control their translation. One example has been
recently given for the N6-methyladenosine (m6A), which, by specifically binding to the
protein known as the YTH domain-containing family protein 1 (YTHDF1), induces the
translation of the modified mRNAs in the adult hippocampus, in response to neuronal
activity, thus probably stimulating the formation of memories [239].

The CPEB influences neuronal plasticity, and hence learning and memory, too [240].
Interestingly, this protein rests on some prion-like properties for its functions [241,242].
Notably, a feedback loop seems to exist involving CPEB and CAMKIIα, where phospho-
rylation of CPEB by CAMKIIα reduces the inhibition of CAMKIIα mRNA translation by
the CPEB [243]. By the interaction with motor proteins, the CPEB also participates in the
transport of the mRNAs under its translational control, such as those encoding CAMKIIα
and Map2, to dendrites [112].

Notably, as discussed below, both neurons and glial cells are able to release extra-
cellular vesicles (EVs), and it is possible to suppose that at least some of the molecules
involved in neuroplasticity and learning/memory processes are secreted via EVs (reviewed
in [216]). Notably, indeed, EVs contain proteins, lipids, and different classes of RNA, all
able to modify the genetic activity of the recipient cells [244].

3. Role of RBPs in RNA Sorting to Extracellular Vesicles

Extracellular vesicles (EVs), considered for a long time a way used by cells to discard
unwanted materials, have now been definitively recognized as a central way for cell-to-cell
communication and molecule exchange, both in eukaryotes and in prokaryotes, as well as
for trans-kingdom communications [216,245–259], thus suggesting an ancient evolutionary
origin of EVs.
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Although EV production is particularly evident in tumor cells, all tissues of multi-
cellular organisms seem to be able to release EVs, and this ability is probably related to
the intercellular crosstalk that allows functional integration within each tissue, and also
response integration within the organism as a whole. EVs indeed contain a variety of
molecules, such as proteins, coding and non-coding RNAs, and lipids and can also de-
liver small compounds of metabolic origin, such as lactate [248]. Notably, most of these
molecules are enriched in EVs compared with the whole cell content. Thus, one central
question concerns the mechanisms responsible for their specific sorting to EVs.

3.1. Extracellular Vesicles (EVs): Origin and General Functions

Although, once released, some EVs probably blow up in the extracellular matrix, thus
releasing their content outside the cells [216,260], most of their cargo enters the surrounding
cells through different internalization mechanisms, among which either clathrin-dependent
or clathrin-independent endocytosis, phagocytosis, lipid rafts-mediated processes, and
direct EV fusion with neighboring cell membranes [216,260–262]. Sometimes, the material
acquired in such a way by the cells can be released outside again through a kind of
transcytosis, and this mechanism might be of special importance at the level of the blood–
brain barrier (BBB) [263]. Independent of the specific mechanism used to enter surrounding
cells, once inside, EV cargo can induce epigenetic modifications of the receiving cells (i.e.,
horizontal transfer of cellular properties); as mentioned, EVs contain, indeed, different
classes of RNAs. Among these incoming nucleic acids, mRNAs can be translated, miRNAs
can repress translation of endogenous messengers, while lncRNAs/circRNAs can sponge
endogenous miRNAs, thus allowing the enhancement of the translation/stability of some
resident mRNAs. Recently, we also proposed that transcription factors with the ability
of binding both DNA and RNA can find their way to neighboring cells by binding to
some RNAs transported by EVs; once in a new cell, however, they might bind DNA, thus
inducing a modification of gene transcription [264]. Intriguingly, it has also been reported
that EVs can transport many miRNA passenger strands (i.e., the apparently non-functional
strands of the duplex miRNAs; only the so-called guide strands are, indeed, transferred
to the abovementioned RISC complexes and can pair with the target mRNAs) [265–267].
The presence of passenger miRNA strands in EVs can have one or both of the following
explanations: (i) cells discard the useless strands via EVs, and (ii) passenger strands do
have a function and their transfer to other cells via EVs is part of an epigenetic action of
EVs themselves.

On the basis of their cellular origin, EVs have been classified as: (i) microvesi-
cles/ectosomes (MVs; 100–1000 nm), formed through a cell membrane budding process,
resembling virus release from cells; (ii) exosomes (30–100 nm), which derive from com-
ponents of the endosomal compartment known as multivesicular bodies (MVBs); and
(iii) apoptotic bodies, which have, however, completely different properties as they derive
from the breakup of dying cells [248,250,268,269]. Apoptotic bodies contain, for example,
high amounts of condensed and fragmented nuclear DNA. Even if composition differences
have been described, in addition to differences in size, it is not yet easy to distinguish
ectosomes and exosomes [249,270]. Thus, herein, we refer to a general population of EVs.

Interestingly, the composition of EVs also varies depending on the producing cells,
thus suggesting the possibility to use EVs, collected from different biological fluids, as
diagnostic biomarkers [271–275].

3.2. Roles of EVs in the Nervous System

All the cells of the Nervous System normally release EVs, probably both exosomes
and ectosomes [216,248]. Among the proteins present in EVs released from neurons, for
example, angiogenic factors, such as vascular endothelial growth factor (VEGF) and fibrob-
last growth factor 2 (FGF2), which can stimulate BBB formation and/or maintenance, have
been found [276], together with some isoforms of glutamate receptor subunits [277], the L1
cell adhesion molecule (L1CAM) [277], and even the glycosylphosphatodyl-inositol(GPI)-
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anchored prion protein [277]. Notably, EVs released by neurons might also act as a trans-
synaptic way of communication [278,279], giving rise to both the potentiation of the tra-
ditional “wiring” (synaptic) transmission and to what has been called, since the eighties,
non-synaptic “volume” transmission [216,280–282].

Like neurons, astrocytes also release a variety of proteins via EVs, among which VEGF
and FGF2 [283], matrix metalloproteinases (MMPs) [284], Hsp70/Hsc70 [285], apoliprotein
D (ApoD) [286], and glutamate transporters [287]. On the other hand, oligodendrocytes
include in their EVs, in particular during nervous system development, among other
molecules, myelin components, such as the myelin basic protein (MBP) [288], and also
glycolytic enzymes [289]. Moreover, it has been found that oligodendrocytes of the central
nervous system (CNS), as well as Schwann cells (SCs) of the peripheral nervous system
(PNS), can even transfer ribosomes to neuronal axons [290,291]. Given this ability of SCs,
as well as of oligodendrocytes, to release EVs that allow the lateral transfer of molecules to
axons [292–294], it can be suggested that EVs are also involved in the transport to axons of
ribosomes, which can then allow the local translation of pre-localized mRNAs, in response
to specific extracellular signals.

Finally, microglial cells also release EVs, which can contain proteins able to regulate
inflammatory processes, such as interleukin-1β (IL-1β) [295,296].

As already discussed, EVs also contain different classes of RNAs, among which a
variety of miRNAs, which also contribute to the epigenetic modification of the receiving
cell activities (reviewed in [216]). As a whole, the EV-dependent events certainly allow
the reciprocal regulation of brain cell functions. In addition, the controlled release of EVs
and their cargoes has important effects on synaptic plasticity and, consequently, also on
learning and memory processes [216].

However, the described basal ability of all brain cell types to release EVs that contain
a variety of cargo molecules becomes a double-edged weapon in pathological conditions:
as discussed below, indeed, in most nervous system pathologies, EVs are still produced
and in most cases they contain altered molecules (for examples, prions or other protein
aggregates) [268,297–304] that are transferred to neighboring cells, thus spreading the
pathological molecules and conditions from cell to cell, like an infection.

3.3. Specific Sorting of Molecules to Nascent EVs: Possible Role of RNA-Binding Proteins

As mentioned, a special question concerns the mechanisms that allow the specific
loading of given RNAs and proteins to EVs. It seems that some membrane lipid compo-
nents have a central role in sorting both proteins and RNAs to EVs [266,305]. From this
point of view, lipid rafts (LRs) seem to have a special importance: these microdomains
of the membranes are indeed enriched in ceramide, which has two important properties:
(i) it is cone-shaped, and thus can induce curvature of the membrane [266], and (ii) it can
be hydrogen-bonded to itself [266,306], and probably also to proteins [307,308]. These
ceramide properties can facilitate the formation of EVs [308–310], on the one hand, and the
interaction with specific proteins that are thus bound to the membrane domains involved in
EV formation; for example, it has been reported that the RBP known as Heterogeneous Nu-
clear Ribonucleoprotein A2/B1 (HnRNPA2B1) has affinity to ceramide and is released into
EVs. The association with HnRNPA2B1 can allow, in turn, the sorting of a class of miRNAs
found enriched in exosomes and thus named EXOmiRNAs [266,311,312], but also of other
classes of RNA, such as LncRNAs [313]. As a further demonstration of ceramide involve-
ment in EV formation and composition, it has been found that hyper-activation of neutral
sphingomyelinase 2 (nSMase2), the enzyme that hydrolyzes sphingomyelin and releases ce-
ramide, is also implicated in the increase in EVs in tumors [314], as well as in neuropatholo-
gies [315,316]. It is also worth underlining that many proteins are post-translationally
modified in order to be sorted to EVs; for example, the just-mentioned HnRBPA2B1 present
in EVs has a molecular mass higher than that of the same protein inside the cell, and this
difference is due to the sumoylation of the sorted protein [311,317–319]. Interestingly, α-
synuclein, a fundamental protein of synapses, also involved in Parkinson’s Disease (PD), is
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similarly sumoylated to be sorted to EVs in pathological conditions [320]. Like α-synuclein,
Tau protein, the axonal microtubule-associated protein that, when hyperphosphorylated,
forms aggregates responsible for most problems associated with Alzheimer’s Disease (AD),
can be sorted to EVs when phosphorylated at Thr-1801 [318,321]. Coming back to RBPs,
HnRNPA1 is sumoylated as well and, after recognizing a GAGAGA motif present in the 3′-
region of some miRNAs, can sort them to EVs [318]. In addition, some membrane proteins,
such as Caveolin-1, can also contribute to sorting by interacting with RBPs [319,322]. From
this point of view, an interesting finding concerns the involvement, in RNA trafficking, of
some phospholipid-binding membrane proteins known as annexins and, in particular, of
Annexin 2 (ANXA2) [323]. These proteins can be modified by phosphorylation, acetylation,
and S-glutathionylation; interestingly, these post-translational modifications can modulate
the interaction with other proteins and with both coding and non-coding RNAs [324]. Of
note, it has also been found that the autophagy process, traditionally considered a major
lysosome-dependent intracellular degradation pathway, is also involved in secretion and,
in particular, in EV-dependent secretion [325]. By proteomic and RNA-profiling analyses,
it was found that a variety of RBPs and RNAs require the Microtubule-associated protein
1A/1B-light-chain 3(LC3) conjugation machinery to be loaded into EVs and, again, the
action of nSMase2 [325]. Two RBPs seem, in particular, to regulate the non-coding RNA
enrichment of EVs via secretory autophagy: the scaffold attachment factor B1 (SAFB1) and
HnRNPK [326].

On the other hand, it has been also proposed that RNAs themselves can interact
with ceramide-rich membrane domains through a variety of motifs, each of which shows
different degrees of affinity for the lipid [266]. Moreover, hydrophobic modifications, such
as methylation and isopentenylation, could further increase the ability of RNAs to interact
with the lipid raft-containing membrane domains [266].

Many studies have, in any case, confirmed the involvement of RBPs in sorting RNAs
into EVs [324]. By recognizing and binding specific sequences/structures of RNAs, RBPs
are not only responsible for all the steps of RNA metabolism, but also for loading them
into EVs. Besides the mentioned HnRNPA2B1 and HnRNPA1, other members of the
HnRNP family of RBPs have been reported to control RNA sorting of their target RNAs;
among them, for example, are included HnRNPQ, also known as Synaptotagmin-binding,
Cytoplasmic RNA-Interacting Protein (SYNCRIP) [319,327], and HnRNPK [328].

Many other RBPs, belonging to a variety of families, have also been found to contribute
to RNA sorting to EVs. Shurtleff et al. [329], for example, reported the involvement of
the RBP known as Y box containing 1 (YBX1). This latter protein, the name of which
refers to the presence in its structure of a domain able to recognize the so-called Y box
motif (CTGATTGGCCAA) on DNA, also contains RNA-binding motifs, among which
the so-called cold-shock domain (CSD), and can interact with both DNA and RNA, thus
being part of different complexes, containing both other DNA-binding and RNA-binding
proteins [324].

Another protein with a variety of roles in RNA metabolism is Human Antigen R
(HuR), belonging to the RBP family of embryonic lethal abnormal vision (ELAV) proteins.
HuR has also been recognized as a sorting factor for some miRNAs [330].

Among RBPs with a role in the nervous system and found in EVs, a special interest
has been paid to proteins such as FUS and TDP-43, both of which are altered in ALS, a
fatal neurodegenerative disease due to selective loss of motor neurons of the spinal cord.
These proteins are normally able to shuttle between the nucleus and the cytoplasm, and are
involved in many steps of RNA metabolism, from maturation to transport. As discussed
below, when altered, they aggregate and are mislocalized to the cytoplasm, from where
they also enter EVs [5,331], thus becoming able to be transferred to other cells with a
prion-like mechanism.

Of course, the processes that allow EV secretion also require modification of the cell
shape; this means that it also depends on interaction among cytoskeletal proteins, such
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as actin and myosin, with also a requirement for ATP hydrolysis, and very often for an
increase in cytosolic calcium [186].

As a final comment concerning the specificity of sorting, it is worth noting that
polarized cells might produce EVs with different contents and properties, depending on
their origin from basal or apical membrane domains [332,333]. This consideration is of
particular importance for neurons, which are the most polarized cells of the organism, but
probably also for all the classes of glial cells.

4. RBPs and Neurological Diseases

Given the fundamental role played by RBPs in neural development and in control-
ling complex brain functions such as learning and memory, it is not surprising that RBP
dysfunctions are involved in a variety of nervous system pathologies. As discussed above,
RBPs actually regulate all the steps of mRNA maturation, trafficking and translation; thus,
any alteration in their nucleocytoplasmic localization, as well as mutations that affect their
interaction with RNA or with other proteins, can have large effects on nerve cell physiology.
Below, we discuss a few examples of neurodegenerative diseases for which involvement of
RBPs has been demonstrated or suggested on the basis of the existing data.

4.1. Amyotrophic Lateral Sclerosis (ALS)

Many of the genetic mutations found in cases of both familial and sporadic ALS
involve genes encoding RBPs, such as TDP-43 and FUS. Alteration of the nucleocytoplasmic
trafficking of these proteins is a well-defined pathological feature of ALS and leads, as
expected, to impaired regulation of RNA metabolism within cells.

4.1.1. TDP-43

TDP-43 is a DNA-/RNA-binding protein of 414 amino acids, predominantly present
in the nucleus. Its main function seems to be the regulation of different aspects of RNA
metabolism, including splicing, but also stress granule formation, and transport and
protection of many RNAs [334]; these functions are mediated by its preferential binding
to the UG-rich regions in the long introns of pre-mRNA [335]. The protein structure is
composed by: (i) an N-terminal domain (NTD) (aa 1–102), which includes the nuclear
export signal (NES), (ii) an intermediate region with two RNA recognition motifs (RRM1
and RRM2) and a nuclear localization sequence (NLS), and (iii) a C-terminal domain
(CTD) (aa 274–414), within which there are a glutamine/asparagine-rich (Q/N) domain
(aa 345–366) and a glycine-rich sequence, essential for protein–protein interactions (aa
366–414) [336].

The pathogenicity of TDP-43 in ALS appears to be due both to loss of nuclear functions
and to gain of cytoplasmic functions. The mechanisms of TDP-43 loss of functions have
been studied by analyzing the effects of its deletion on RNA metabolism. For example,
depletion, by antisense oligonucleotides, of TDP-43 from adult mouse brain results in
RNA mis-splicing; in particular, TDP-43 depletion affects the production of a variety of
transcripts, among which those for FUS and Progranulin, which also have a specific role
in ALS [335].

Other evidence suggests a strong contribution of gain of cytoplasmic toxicity in TDP-
43-related ALS. First of all, when present at high concentrations, TDP-43 aggregates into
insoluble cytoplasmic inclusions, which have been characteristically found in post-mortem
motor neurons from ALS patients [337]. The TDP-43 CTD is particularly prone to aggrega-
tion, probably because it contains the Q/N region that has prion-like properties [338,339].
In addition, indeed, most of the TDP-43 mutations leading to the disease were found in
the Q/N domain [340]. A second observation concerns the fact that TDP-43 cytotoxicity
depends on its cleavage [341], even if both full-length and truncated forms of TDP-43 can
be found in ALS aggregates [336]. In particular, the most pathogenic forms seem to be
fragments of 25–35 kDa, commonly present in the intra-cytoplasmic deposits that result
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from the aberrant activity of some caspases [342]. Interestingly, the aggregation of these
TDP-43 C-terminal fragments seems to be at least in part reversible [343].

More recently, it has been observed that cell death triggered by full-length TDP-43
occurs prior to protein fragmentation by caspases [341]. Moreover, it has also been reported
that, although they are a neuropathological feature of ALS molecular pathobiology, the
TDP-43 C-terminal fragments (CTFs) are probably not the primary cause of ALS [344]. In
any case, clearance of both full-length and truncated TDP-43 proteins has consequences on
protein pathology. For example, mutations of Ubiquilin-2 disrupt the ubiquitin-proteasomal
degradation of TDP-43 and enhances its aggregation [345]. Intracellular deposition of TDP-
43 can occur within the soma, as well as in axons and dendrites, with alterations in the
transport of many mRNAs [346].

On the other hand, some authors believe that RNA binding to TDP-43 is protective for
protein aggregation [347,348], and it seems, indeed, that the prolonged lack of interaction
with RNA favors the aggregation of the mislocalized proteins in the cytoplasm [348].

4.1.2. FUS

FUS (also called translocated in liposarcoma, TLS) is an RBP of 526 amino acids that
contains an N-terminal serine–tyrosine–glycine–glutamine (SYGQ)-rich domain, a Gly-rich
domain, an RRM, multiple Arg-Gly-Gly repeats, a zinc finger motif, and a highly conserved
C-terminus, which encodes for an NLS that is recognized by a complex of import receptors,
including Transportin 1 [349–351]. The functions of FUS are not yet clearly known, but it
appears that the protein participates in the processing of numerous RNAs and microRNAs,
and its binding sites on target RNAs are probably generally larger than those for TDP-
43 [352]. Like TDP-43, FUS is present in the cytosolic aggregates of affected motor neurons
in ALS. Although the main traits of ALS pathobiology are similar for FUS and TDP-43
alteration, TDP-43 anomalies are absent in FUS-related ALS patients.

Interestingly, mice with FUS-related mutations or with overexpression of wild-type
FUS develop neurodegeneration of motor neurons in a way similar to what happens in
ALS [353]. Like TDP-43, FUS is normally present both in the nucleus and in the cytoplasm,
and continuously shuttles between the two compartments; however, its physiological
localization is predominantly nuclear, and the accumulation of FUS in the cytoplasm is
pathological [354]. Cytoplasmic accumulation of predominantly nuclear FUS is often due
to mutations in its C-terminal region that disrupt the NLS, causing a reduced ability of FUS
to enter the nucleus [355].

FUS-dependent pathology in ALS is, however, explained by both loss of function and
gain of toxicity mechanisms. The latter was first highlighted by the group of Shelkovnikova
and colleagues. These authors developed a truncated form of FUS (FUS 1-359) by depriving
the protein of the RNA recognition domain, in order to evaluate the aggregative effects
independently of the regulatory functions of RNA metabolism. Mice transgenic for FUS
1-359 developed FUS-positive aggregates in the cytoplasm, sufficient to reproduce clinical
ALS phenotypes [356]. On the other hand, according to a pathogenetic mechanism of ALS
supported by the loss of function of FUS, Lagier-Tourenne and colleagues showed that
depletion of FUS from adult mouse and human brain caused dysregulation of more than
600 RNA and altered the splicing of more than 350 of them. Moreover, after FUS or TDP-43
depletion, some of these RNAs reduced their expression levels in stem cell-derived human
neurons and in TDP-43 inclusions in motor neurons of patients with ALS [352].

4.2. Multiple Sclerosis (MS)

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous
system (CNS), in which neurodegeneration plays an important role, especially during the
progression phase [357]. Neuronal and axonal degeneration is already present during the
acute inflammatory attack, but the continuous chronic inflammation is the real cause at the
basis of the neurodegenerative processes in MS [358]. The pathology is characterized by
demyelination and significant loss of neurons in the cortical areas [359], but also in deep
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gray matter nuclei [360]. Moreover, other studies show that axonal degeneration is also
present in the early stages of MS, and that this process contributes to the accumulation
of disability [361,362]. The molecular mechanisms of neurodegeneration are currently
unknown. Recently, it has been hypothesized that RBP dysfunction may play a role in MS
as in other neurological diseases such as ALS and fronto-temporal dementia (FTD) [363].

Normal-appearing cortical neurons from MS patients show increased cytoplasmic
localization and decreased nuclear localization of both TDP-43 and HnRNPA1 [364,365]. In
active demyelinating lesions of MS patients, TDP-43 is mislocalized to the cytoplasm of
oligodendrocytes. In the same lesions, FUS distribution is normal [366]. In an experimental
autoimmune encephalomyelitis (EAE) model of MS, mislocation of these RBPs is also
noticed in the gray matter of the spinal cord and correlates with neuronal loss and with a
local increase in neurodegeneration markers [364]. Moreover, antibodies against HnRNPA1
worsen the clinical course of EAE and cause widespread neurodegeneration, especially in
the ventral spinocerebellar tract and deep white matter of the cerebellum [367].

Another RBP of particular interest in MS seems to be HuR. This latter protein is overex-
pressed in the cytoplasm of microglia and in the spinal cord of EAE mice; most importantly,
the intrathecal administration of anti-HuR antisense oligonucleotide reduces neuroinflam-
mation and lymphocyte infiltration [368]. Moreover, HuR promotes differentiation of T
helper 17 cells (Th17) [369], where it regulates the expression of CCR6, the C-C chemokine
receptor 6 (CCR6), thus promoting EAE [370]. HuR-Knockout CD4+ T cells are less efficient
in inducing EAE [369]. Therefore, due to the supporting role of the neuroinflammatory
processes, HuR appears to be a target of particular interest for modulating the course of
MS from its onset. Moreover, MS patients often suffer from nociceptive pain, and the ap-
pearance of this symptom correlates with a more unfavorable clinical course. An increased
HuR expression was demonstrated in the spinal cord of EAE mice with a hypernociceptive
behavior, and the silencing of HuR not only improved painful symptoms, but also reduced
motor dysfunction and the severity of demyelination [371]. Although different authors
confirm an increased expression of HuR in the CNS of EAE models [368,369], other authors
found reduced levels of HuR in the peripheral blood mononuclear cells (PBMC) from
52 MS patients. The reduction in HuR in the PBMCs correlates with an increase in clinical
disability. Moreover, they report the loss of the interaction of HuR with one of its targets, the
mRNA encoding HSP70-2, a protein with a probable role in the activation of the immune
system, the increased expression of which is associated with a greater risk of MS [372].

Therefore, it appears that the alterations caused by RBP disfunction in MS could result
either from their incorrect nucleocytoplasmic localization, as in the case of TDP-43 and
HnRNPA1, or from a change in their expression levels, as in the case of HuR.

4.3. Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is a neurodegenerative disease characterized, at the clinical
level, by the development of a progressive form of dementia and, at the cellular level, by
the formation of both intracellular neurofibrillary tangles and extracellular deposits of
beta-amyloid [373]. The intracellular tangles are mainly formed by Tau, a MAP involved in
cytoskeletal stabilization and axonal transport [374]. The affinity of Tau for microtubules
mainly depends on its state of phosphorylation, with hyperphosphorylation causing en-
hanced detachment from tubulin [375]. In AD, Tau is hyperphosphorylated and, therefore,
binds with less affinity to tubulin; as a result, microtubules tend to be disassembled with the
consequent alteration of axonal transport [376]. The C-terminal end of tubulin molecules
is acidic, and the tau–tubulin interaction is based on the interaction between a polycation
(Tau) and a polyanion (Tubulin). It is thus possible that, in a similar manner, under certain
conditions, Tau is able to interact with other polyanionic molecules such as RNAs [377].
In particular, it has been reported that RNA can cause the conversion in vitro of soluble
Tau into the paired helical filaments, the pathological fibrous assembly of Tau typical
of AD [377]. Actually, Tau is probably able to bind RNA through the proline-rich and
the microtubule-binding domains [378]. The coexistence of different kinds of polyanions
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around Tau in the cell probably causes crowding and polyanion-induced Tau condensation;
it has been recently reported that this is indeed the case. Moreover, RNA and tubulin seem
to compete for binding to Tau in these conditions [379].

In cells from mice brain and patients with AD, but also with FTD and corticobasal de-
generation, both nuclear and cytosolic RNA–Tau complexes are enriched for small nuclear
RNAs and small nucleolar RNAs (snoRNAs). Moreover, Tau aggregates alter pre-mRNA
splicing by inducing miscolocalization to the cytosol of nuclear speckles, dynamic struc-
tures with a role in pre-mRNA splicing [374]. Actually, based on atomic force microscopy,
Western blot, and immunoprecipitation experiments, it has also been reported that the
well-known RBP Musashi forms oligomers in vivo; moreover, it increases in AD and, most
importantly, it enters large assemblies that also contain Tau [380]. Moreover, the formation
of these Musashi/Tau complexes seems to affect both nuclear functions (i.e., chromatin
modifications and nuclear lamina assembly) and nuclear-cytoplasmic transports [381].
Interestingly, HNRNPA1 has also been found to associate with phosphorylated Tau in
AD [382].

All these observations suggest that the Tau protein may also play a role in the patho-
genesis of AD because of its ability to interact with RNA and/or with RBPs, thus causing a
variety of errors at many levels in RNA metabolism. Further studies are, however, neces-
sary to confirm whether these interactions actually exist in the cells, and to understand the
molecular mechanisms on which they are based.

A brief summary of data concerning the demonstrated/suggested role of RBPs in
three neurological diseases is given in Table 1.

Table 1. RBPs with a suggested role in some neurodegenerative pathologies.

Neurological
Disease RBPs

Predominant
Localization

in Normal Conditions
Suggested Functions Tendency to Form Aggregates

Amyotrophic
Lateral Sclerosis

(SLA)

TDP-43
[334–348]

FUS
[349–356]

Nuclear
(neurons)
Nuclear

(neurons)

-splicing
-granule formation

-RNA transport and protection
[334–337,346]

Processing of different RNAs
(among which miRNAs)

[352,354]

yes
[336–342,346]

RNA binding seems to be
protective for aggregation

[348]
yes

[356]

Multiple Sclerosis
(MS)

TDP-43
[364–366]

HnRNPA1
[364,365,367]

HuR

Nuclear
(neurons)
Nuclear

(neurons)
Cytoplasm

(microglial cells) [368]

see above
-different aspects of RNA

metabolism [331]
-miRNA sorting to EVs [318]

see above
yes

[383]
observed in gliomas

[384]

Alzheimer’s
Disease

(AD)
Tau neuronal axons

Main function: regulation of
microtubules dynamics [374]

Hypothesized functions:
-RNA binding [378,379], with a
possible effect on splicing [374]

yes
Tau has been reported to form

complexes with some RBPs,
such as Musashi [381] and

HnRNPA1 [382]
NOTE: RNA can cause

conversion in vitro of soluble
Tau into paired helical

filaments [377]

5. Conclusions and Future Perspectives

The central role played by RBPs in controlling the physiology of both neurons and
glial cells, both in development and in the adult nervous system, is by now widely accepted,
as it is too their impact on all the steps of mRNA maturation, trafficking, stability, and
translation (Figure 2). By allowing the correct localization of their target transcripts and
their translation at the right moment, in response to specific signals, they indeed control the
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formation of the neuronal/glial networks in development, and also allow the establishment
of higher functions, such as learning and memory. Moreover, it is also clear that RBPs can
also interact with non-coding RNAs, thus mediating most of the functional RNA–RNA
interactions in the cells.

Interestingly, most RBP functions somehow rely on the presence in their molecule of
intrinsically disordered regions (prion-like domains), probably involved in the formation
of membrane-less structures; such regions, of central importance for the formation of a
variety of granules that contain proteins and different classes of RNAs, seem, however, to
be also prone to form aggregates, as observed in many neurological pathologies. Further
studies are thus necessary to completely understand the mechanisms that can transform a
useful plastic structure into an aggregation-prone one.

Finally, as discussed in this review, RBPs are also able to enter extracellular vesicles
(EVs) and are probably essential for the specific sorting of RNAs to them. Intriguingly, they
can do that as part of both normal and aggregated complexes; as a consequence, when they
reach surrounding cells, they can also contribute to propagating pathological states from
one cell to the other ones. Thus, perhaps, pathology-specific RBPs present in circulating
EVs, in the normal or in the aggregated form, might also be used as biomarkers of the
pathologies themselves.
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