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Geothermal areas of Greece are located in regions affected by recent volcanism and in
continental basins characterised by elevated heat flow. Many of them are found along
the coast and thus, water is often saline due to marine intrusion. In the present study, >
300 thermal and cold mineral water samples were collected along Greece. Samples
were analysed for major ions, Li, SiO 2 and isotopes in water. Measured
temperatures range from 6.5 to 98°C, pH from 1.96 to 11.98, whilst Total Dissolved
Solutes (TDS) from 0.22 to 51 g/L. Waters were subdivided into four main groups: i)
thermal; ii) cold; iii) acidic (pH <5) and iv) hyperalkaline (pH >11). On statistical basis,
the thermal waters were subdivided into subgroups according to both their temperature
[warm (<29 °C), hypothermal (29-48 °C), thermal (48-75 °C) and hyperthermal (>75
°C)] and TDS [low salinity (<4 g/L), brackish (4-30 g/L) and saline (>30 g/L)]. Cold
waters were subdivided basing on their pCO 2 [low (<0.05 atm), medium (0.05-0.85
atm) and high (>0.85 atm)]. & 18 O-H 2 O ranges from -12.7 to +2.7 %o vs. SMOW,
while 8 2 H-H 2 O from -91 to +12 %o vs. SMOW being generally comprised between
the Global Meteoric Water Line and the East Mediterranean Meteoric Water Line.
Positive & 18 O shifts with respect to the former are mostly related to mixing with
seawater, while only for a few samples they point to high-temperature water-rock
interaction processes. Only a few thermal waters gave reliable geothermometric
estimates, suggesting reservoir temperatures between 80 and 260 °C.

Reply to the reviewers

Reviewer #1
The article entitled "Geochemical characterisation of the thermo-mineral waters of
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Greece", present comprehensive overview on the geochemical characterisation of
thermomineral waters from Greece. The research article takes into consideration more
than 300 original data. This is the first article on Greece where the the origin and
distribution of the thermo-mineral waters are discussed using both chemical and
isotopic data at the same time.

The topic is really interesting for the scientific community and the data are valuable.
The article gives also helps in understanding the lack in the current research and give
an insight on which Greek areas are studied in more detail.

The paper is well written (for no mother tong English speaker); | could follow the thread
of the discussion. In the introduction, the scientific content and state of the art are
clearly written.

Some minor suggestion that could help in the better overview of the data:

1. A paragraph should be added discussing the hydrogeological settings. Even a
general overview is sufficient.

Reply: We added a few sentences describing the overall hydrogeological setting of
Greece.

2. In the case of the Local Meteoric Water Lines (LMWL) please insert all the available
LMWL's, Or mention which were selected to be used and why. | believe for a region so
big there are more than one LMWL.

Reply: The referee correctly supposes that more than one LMWL was defined for
different areas in Greece. These are reported in the cited paper of Argiriou and
Lyloudis, 2006. The same authors state that these LMWLs are generally not
statistically different from that obtained considering all the published data on meteoric
waters collected in Greece from 1960 to 2003 except for a few sites were the collected
data were too few. We therefore decided to use the LMWL defined with the whole
dataset which is statistically more robust.

Nevetheless, we specified in the text who the LMWL was defined.

3. A ternary plot using would CI-SO4-HCO3 would be useful in describing the
geochemical characteristics with the geological settings of the waters.

Reply: We included the CI-SO4-HCQO3 ternary plot in the geothermometry section and
we added an introductory/explanatory paragraph.

4. Please indicate why in the Giggenbach-diagram that one point falls above the full
equilibrium line. Give possible answers for it.

Reply: We added some hypothesis.
5.For the geothermometers please add a supplementary file with the written equations.
Reply: Added

and finally 6. Add a paragraph putting into context the waters and the observed
geochemical data on the gases (the published data mentioned in the text).

Reply: We added a paragraph where we talk about the relations between tectonics and
fluids.

Taking into consideration the manuscript, data etc. | suggest the paper should be
expected after minor revision.

Reviewer #3

Dear Authors,

In this paper (EGAH-D-20-00740) "Geochemical characterization of the thermo-mineral
waters of Greece", the authors present a large dataset on the chemical and isotopic
composition of the thermo-mineral waters in Greek. The topic is certainly interesting to
geochemistry community and Environmental Geochemistry and Health readership
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however the text does not seem an original research, as they state, but rather a
synthesis of data (hyperalkaline waters dataset coincide with data from Li Vigni et al.
2020 (Ital. J. Geosci., Vol. 140, No. 1 (2021), https://doi.org/10.3301/1JG.2020.20, but
the authors fail to mention it through the text and also in the tables). In my opinion the
paper show various critical issues. First of all, the scope of the work is limited, and
although the authors aim to understand the relationship between water chemistry and
geological context, this goal is not pursued and discussed. The results are well
presented and the subdivision of the dataset into different groups is certainly
acceptable. However, within each water group there are differences in the chemical
composition or variations of chemical-physical parameters that are not always justified
through a geochemical approach (inter-elemental relationships, R-mode factor analysis
etc). Some conclusions are obtained from previous papers and not appropriately
proposed and argued on the data available. As a consequence, | think that this paper
cannot be accepted for publication in the present form therefore | recommend to
rewrite it and organize a new version, probably as review, and subsequently submit it
again.

Reply: We acknowledge the constructive criticism of the reviewer and his/her efforts to
improve the manuscript. Some very interesting points were raised and we hereby
address them. The reviewer claims that “the text does not seem an original research,
as they state, but rather a synthesis of data (hyperalkaline waters dataset coincide with
data from Li Vigni et al. 2020 (ltal. J. Geosci., Vol. 140, No. 1 (2021),
https://doi.org/10.3301/1JG.2020.20, but the authors fail to mention it through the text
and also in the tables”. All the references are included in the supplementary material
Table under the name “References”, while we added a phrase in the text to make it
more evident. We also specified it in the abstract. Moreover, we have rewritten the
scope of this work by including all the topics discussed in the manuscript in the
introductory part. We consider that this addition will make the manuscript more clear.
Also, we added more plots where we integrated and interpreted the data. Previous
explanations were taken into consideration: Finally, we are sceptical of the reviewer’'s
suggestion on re-submitting this article as a review. Indeed, a great number of data is
discussed in the manuscript, however only one third of the dataset comprises
published data; the rest is unpublished and non-peer reviewed and new concepts are
introduced. Hence, we ask for the editor’s opinion on the topic.

General Remarks

1) Given that the main objective of the paper is to understand the relationship between
water chemistry and geological context It would be appropriate to insert a geological-
structural map of Greece. The proposed geological map is not suitable as it does not
show the type of outcropping rocks. The Moho depth model is not suitable for the
submitted paper.

Reply: We included a map with the isopic zones of Greece in Figure 2, and deleted the
map of the crustal thickness. The description of the zones, was added in the study area
section.

2) in the text some places are recalled several times, can you add them in the Figure
1?

Reply: Added

3) | suggest to integrate Materials and methods section by inserting the methodology
used to measure the bicarbonate in water with high pH values; In the table 1 | suggest
to add lonic Balance

Reply: Although expressed as mg of bicarbonate per litre, what we determined was
total alkalinity as indicated in the text and in the supplementary table. lonic Balance

was added.

4) Cold gas-rich and Thermal waters show different Kind of hydrofacies, from CaMg-
HCO3 to NaCl. Why? Which geochemical processes can explain this?

Reply: We tried to explain the processes bringing to such great variety of hydrofacies in
the discussion also adding some binary correlation plot as suggested below by the
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reviewer

5) About sixteen Cold gas-rich waters have a NaCl hydrofacies. Why Only few of these
waters show important seawater admixing in the dH vs. Cl binary diagram?

Reply: Most of the cold gas-rich waters pertaining to NaCl hydrofacies were originally
very diluted waters so that even small admixtures of seawater changed their
composition to NaCl waters.

6) When you discuss each water group it would be appropriate to report a graph that
justifies the chemical composition and highlights possible differences;

Reply: We inserted binary diagrams in order to better discuss the processes acting in
the hydrological circuits of the sampled waters.

7) For Cold gas-rich waters | suggest to use the Bicarbonate vs Ca+Mg and Na vs ClI
diagrams in order to verify which geochemical processes take place (i.e. water-rock
interaction; seawater mixing, mixing between deep and shallow water etc...)

Reply: We inserted the requested binary diagrams both for the cold gas-rich and for the
thermal waters. These were discussed trying to evidence the geochemical processes
taking place.

8) For thermal waters, if dissolved sulphate is due to gypsum-rich Triassic evaporates,
can you verify this through graphs? Are the redox conditions suitable to the reduction
of sulphate into H2S?

Reply: Ca vs SO4 binary diagrams were inserted and discussed. We discussed also
the processes leading to the reduction of sulfates to sulfides.

9) | suggest to check the Heat flow map with waters recording the highest values of
geothermometric estimations.

Reply: We evidenced the samples with the highest geothermometric estimations on the
heat flow map.

10) Have you verified if any tectonic structures carry deep fluids towards the surface?

Reply: We added a paragraph where we talk about the relations between tectonics and
fluids as requested also by reviewer #1.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Revised manuscript with figures Click here to access/download;Manuscript;revised_text.docx =

Click here to view linked References

Geochemical characterisation of the thermo-mineral waters of Greece

Lorenza Li Vignit, Kyriaki Daskalopoulou?2, Sergio Calabrese!*, Konstantinos Kyriakopoulos®,

10  Francesco Parello!, Filippo Brugnone!, Walter D’ Alessandro**

1) University of Palermo, DiSTeM, via Archirafi 36, Palermo, Italy
15  22) University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24-25, Potsdam Golm

Germany
3) GeoForschungs Zentrum, Physics of Earthquakes and VVolcanoes, Helmholtzstral3e 6/7, Potsdam,

Germany
34) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Palermo, via Ugo La Malfa 153, Italy

20  45) National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment,

Panestimioupolis, Ano llissia, Greece

25

30

* corresponding author: walter.dalessandro@ingv.it



mailto:walter.dalessandro@ingv.it
https://www.editorialmanager.com/egah/download.aspx?id=122297&guid=1a2f1b43-ee70-499d-9a5b-f51180e86426&scheme=1
https://www.editorialmanager.com/egah/download.aspx?id=122297&guid=1a2f1b43-ee70-499d-9a5b-f51180e86426&scheme=1
https://www.editorialmanager.com/egah/viewRCResults.aspx?pdf=1&docID=7966&rev=1&fileID=122297&msid=a36dee53-b4c4-43db-a0ad-08d828a25f69

35

40

45

50

55

Abstract

Geothermal areas of Greece are located in regions affected by recent volcanism and in continental
basins characterised by elevated heat flow. Many of them are found along the coast and thus, water
is often saline due to marine intrusion. In the current study, we present stuey,—=about 300
unpublished and literature data from thermal and cold mineral watersamples-werewaters collected
along Greece. Samples were analysed for major ions, Li, SiO2 and isotopes in water. Measured
temperatures range from 6.5 to 98°C, pH from 1.96 to 11.98, whilst Total Dissolved Solutes (TDS)

from 0.22 to 51 g/L. Waters were subdivided into four main groups: i) thermal; ii) cold; iii) acidic
(pH <5) and iv) hyperalkaline (pH >11). On statistical basis, the thermal waters were subdivided
into subgroups according to both their temperature [warm (<29 °C), hypothermal (29-48 °C),
thermal (48-75 °C) and hyperthermal (>75 °C)] and TDS [low salinity (<4 g/L), brackish (4-30 g/L)
and saline (>30 g/L)]. Cold waters were subdivided basing on their pCO> [low (<0.05 atm), medium
(0.05-0.85 atm) and high (>0.85 atm)]. §'0-H,0 ranges from -12.7 to +2.7 %o vs. SMOW, while
82H-H,0 from -91 to +12 %o vs. SMOW being generally comprised between the Global Meteoric
Water Line and the East Mediterranean Meteoric Water Line. Positive 5'80 shifts with respect to
the former are mostly related to mixing with seawater, while only for a few samples they point to
high-temperature water-rock interaction processes. Only a few thermal waters gave reliable
geothermometric estimates, suggesting reservoir temperatures between 80 and 260 °C.

Keywords: hydrogeochemistry, stable isotopes, carbon dioxide, geothermometry
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1. Introduction

In the 1960s, the National Tourism Organization (NTO 1966) estimated the number of thermo-
mineral springs in Greece at more than 750, with nearly 200 of which found on the islands of the
Aegean Sea. Even though about a quarter of these springs is nowadays used for balneotherapeutic
purposes, archaeological evidence supports the use of some of them since prehistoric times (Fytikas
et al. 1999). In classical times until the end of the Roman Empire, thermo-mineral waters were
highly appreciated and many of them were mentioned by poets (Homer, Pindar, Aristophanes),
historians (Herodotus, Diodorus Siculus, Plutarch) and geographers (Strabo, Pausanias) (Fytikas et
al. 1999). At the same time, the first theories regarding their origin were developed (Plato,
Avristotle) and their medical use was emphasized (Hippocrates). It is worth mentioning that, during
this period, many of the thermo-mineral springs were considered sacred and were dedicated either
to the Nymphs or to Asclepius, the God of Medicine. Their religious significance continued until
Christian times. Then, this dedication shifted either to Virgin Mary or to Agioi Anargyroi, with the
latter being saints known for offering their medical services without reward (Haland 2009). Their
balneotherapeutic use declined under the Byzantine Empire and grew again under Ottoman Empire,
but it was not before the end of the 20" century that other uses (heat and energy production,
industrial use of COg, etc.) were applied (Fytikas 1988). In fact, Fytikas et al. (2005) documented
that in the early 70’s the Institute of Mineral and Geological Exploration (IGME) used for the first
time the thermal water for greenhouse heating. However, the great development in geothermal field
arrived in 1981 when Greece entered the European Union, and many research projects were funded
by the European Commission.

Greece, located in a geodynamically active area of the Eastern Mediterranean, is characterised by
widespread geothermal resources closely linked to the geology of the country (Papachristou et al.
2019). Its puzzling geodynamic regime contributes to the existence of an elevated terrestrial heat
flow, which results in several geothermal fields containing both low and intermediate temperature
fluids (Fytikas and Kolios 1979). Areas of enhanced heat flow are located in regions affected by
Miocene or Quaternary volcanism and in continental basins (Fytikas and Kolios 1979). The
geothermal exploration has found high-enthalpy geothermal fields in Milos and Nisyros islands, in
the South Active Aegean Volcanic Arc (SAAVA), and low-medium enthalpy georesources in some
Aegean islands, i.e. Chios, Lesvos and Samothraki, and in several sedimentary basins of Northern
and Central Greece (Mendrinos et al. 2010). Besides, many of these fields are found along the coast
as well as in islands and thus, thermal waters are often brackish to saline due to marine intrusion
into the costal aquifer (Lambrakis and Kallergis 2005). In fact, according to Minissale et al. (1997),
the thermal springs located in the SAAVA are affected by mixing between the local meteoric waters

3
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and the Aegean seawater, while a marine component, sometimes evolved due to processes seated in
the deep thermal reservoirs, is found also in hot waters emerging along the coast of the continental
basins (Duriez et al. 2008).
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Fig. 1 — Geographic distribution of the sampling sites. Insets are enlarged areas with high density of sampling sites. 1-
Samothraki; 2- Strimon Basin; 3- Migdonia Basin; 4- Othrys and Sperchios Basin; 5- Edipsos; 6 — Argolida; 7 -

Santorini.

The complex geodynamic and geological setting of the Aegean territory reflects in a great variety of
geochemical compositions for many thermal and cold fluid manifestations (Daskalopoulou et al.,
2018a, 2019a, Minissale et al. 1989; 1997). The first scientific investigations regarding the chemical
composition of the thermo-mineral waters of Greece appeared soon after the birth of the Modern
Greek State in 1830. Landerer (1843) gave the first overview of the whole territory and further
nationwide studies appeared in more recent times (Pertessis 1937; Lambrakis and Kallergis 2005;
Athanasoulis et al. 2009).

The scope of this study is to present a large dataset on the chemical and isotopic composition of the
thermo-mineral waters of the whole Greek country and discuss their properties in the framework of
the geological context of the area. To this aim, we discussed the results of more-than-300285 water
samples collected from October 2004 to March 2020 (Fig.1) and analysed for their major, minor
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and trace constituents and the isotopic composition of water._About one third of the results were
previously published (D'Alessandro et al. 2008; 2011a; 2014; 2017; 2018; Li Vigni et al., 2021;

Papachristou et al. 2013) and are here discussed together with the unpublished data to present a

more or less complete picture of the whole country. Although spanning over a long time period, the

same sampling and analytical methods were applied increasing the internal consistency of the

dataset.

2. Study area

The complex geodynamic setting of the Hellenic territory classifies it in the most tectonically and
seismically active areas of the world (e.g., Le Pichon et al. 2001; Taymaz et al. 1991; Tsokas and
Hansen 1997). This regime is dominated by three large-scale tectonic structures: (i) the active
retreat of the northward subduction of African plate beneath the Eurasian at a rate of 4-6 mm/a
(McClusky et al. 2000) forming the back-arc Aegean area; (ii) the mostly N-S oriented crustal
extension (Mercier 1981); and (iii) the westward motion of Anatolian plate along the strike-slip
North Anatolian Fault (NAF) (Pavlides and Caputo 1994). It is worth noting that the Greek region
is the result of the intense collision of several microplates (Aegean, Anatolian and Apulian plate)
that took place during the Alpine orogenesis since the Upper Cretaceous involving the subduction
of Tethyan Ocean (van Hinsbergen et al. 2005). The volcanism of the area is located in the southern
Aegean Sea, while the SAAVA comprises magma of calc-alkaline to shoshonitic suite and signs of

crustal contamination (Pe-Piper and Piper 2006).
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Fig. 2 — Sketches illustrating the complex geodynamic situation of Greece. (a) Main geologic subdivisions (after
Mountrakis, 1985): HH = Hellenic Hinterland; IH = Internal Hellenides; EH = External Hellenides; VA = Volcanic Arc;
(b) Heat flow map-(m\W/m? i i
Grigeriadis—et-ak—(2016);—(d)-map of the major tectonic structures and the current horizontal stress field main axes
(Pavlides et al., 2010).

Based on the aforementioned complex tectonic setting and the prevailing geological formations,

Mountrakis (1985, 2010) divided Greece into three-structural isopic zones, which from west to the

east are: {H

(i)  External Hellenides that(EH): correspond to a neritic continental sea depositional
environment;—()-, and consist of the Parnassos, Gavrovo-Tripolis, lonian and Paxos zones. It

is worth mentioning that during the Middle-Upper Jurassic, the lonian zone bearded an

intracontinental basin with pelagic sediments. According to Doutsos et al. (2006), three major

rift structures occurred during Mesozoic within the eastern margin of the Apulian continent

that were reactivated in the Tertiary by forming intracontinental thrusts;
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(if) Internal Hellenides;-which (IH): express various environments-and-depending, and consist of
the Pelagonian, SubPelagonian, Atticocycladic, Circum Rhodope and Vardar zones.

Depending on the geographical position they are characterised by obducted ophiolites and

deep-sea sediments, neritic sediments, volcanoclastic and sea deposits or flyschi—and—{H)-

metamorphism—{(Flg—2a).. Neritic sediments prevail in the Pelagonian zone, which is

considered to be a fragment of the Cimmerian microcontinent, while obducted ophiolites are

the most characteristic lithological unit of the Subpelagonian zone. The latter is thought to be

the continental slope of the Cimmerian continent towards the ocean, whose sedimentary

remnants form the Pindos zone. Both zones consist of sea deposits, and appear a progressively

deepening sea towards the west. Similar to the Pelagonian, also the Attico-Cycladic zone is

envisaged as a continental fragment with undergone neritic sedimentation. Alpidic

lithostratigraphic succession bearing volcanoclastic and sea deposits ending up in deep-sea

sediments westwards, and flysch are the lithologies characterizing the Circum-Rhodope zone.

The Vardar zone corresponds to the ocean of Tethys characterized by the presence of deep-sea

sediments and the obducted ophiolites;

(iii) Hellenic Hinterland (HH): comprises a Precambrian-Silurian continental crust affected by

Alpidic _metamorphism, and consists of the Rhodope and Serbomacedonian Massifs.

Crystalline rocks are the main lithology for both zones, while neritic deposits and Late

Eocene—Early Oligocene granitoid intrusions are present (Fig. 2a).

From a hydrogeological point of view, the outcropping lithologies in Greece can be subdivided in

three major groups. The first is the porous aquifers comprising mainly Quaternary and Neogene

sediments (Daskalaki and VVoudouris, 2008). These are mostly found within subsident extensional

basins and cover about 30% of Greece. The second group comprises all karstic aquifers developed

both in the limestone of the sedimentary sequences and in the marble within metamorphic

complexes (Kallioras and Marinos, 2015). The former crop out mainly in central, western and

southern Greece and latter in the northern part of the country, altogether covering about 35% of the

whole area. The third group comprises all the remaining lithologies characterised by low

permeability or being impermeable (flysch, clays, most metamorphic rocks, volcanites, ophiolites

etc.).

Geology along with volcanism and tectonics favoured the existence of many thermal manifestations

and anomalous degassing areas (Daskalopoulou et al. 2019a). The elevated heat flow {(Fig—2b)
resulted in numerous geothermal fields from low to high enthalpy (Fytikas and Kolios 1979;
Andritsos et al. 2015), while the extensional tectonics (Fig. 2d2b) affected crustal thinning{Fig—2¢}
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contributing to fault formation (Grigoriadis et al. 2016) and thus to the ascent of fluids. The
elevated heat flow values noticed in the northern part of Greece were associated with the existence
of a “first phase” volcanic arc (Fytikas et al. 1984; Vougioukalakis et al. 2004).

3. Materials and methods
The physico-chemical parameters (temperature, pH, Eh and Electric Conductivity (EC)) were
measured in situ with portable instruments. The total alkalinity was determined by titration with 0.1

N HCI on unfiltered samples-_(expressed as mgHCOs/L). Water samples were filtered (0.45 pm

MFE-Millipore cellulose acetate filters) and stored in HDPE bottles, whilst the aliquot for
determination of cation contents was acidified with ultrapure concentrated HNOs. Analyses of the
water chemistry and the isotopic composition were carried out at the laboratories of Istituto
Nazionale di Geofisica e Vulcanologia of Palermo (INGV-Pa).

Water chemistry was analysed using standard methods (APHA, AWWA, WEF, 1995): major
cations (Na, K, Mg, Ca) and major anions (F, Cl, NOs, SO4) were determined by lonic
Chromatography (ICS-1100, Dionex), Si was determined by Inductively Coupled Plasma — Optical
Emission Spectrometry (ICP-OES; Yobin Ultima). Spectrophotometric methods were used for the
determination of NHs (Berthelot’s reaction). Lithium was determined by Inductively Coupled
Plasma — Mass Spectrometry (ICP-MS; Agilent) as well as Mg and K, when found below detection
limits in ionic chromatography. For all these analytical methodologies, precision was always better
than +3 %. Speciation of waters and Saturation Index (SI) of main mineral phases for each water
sample and the calculation of theoretical pCO> for cold gas-rich samples were obtained using the
aqueous speciation PHREEQC software (Parkhurst and Appelo 1999).

lonic balance (%) was calculated with the formula:

{(Xcations+Xanions)/[(Zcations-Xanions)/2]1}¥x100 (1)

where cations are Na*, K*, Mg®* and Ca?" and anions CI, NOs, SO.* and total alkalinity all

expressed as meg/L.

TDS (Total Dissolved Solutes) expressed in g/L is here intended as the sum of all major anions (F,
Cl, NOs', SO4> and alkalinity as HCO3") and cations (Na*, K*, Mg?* and Ca?*) plus SiO».

The oxygen and hydrogen isotopic compositions of waters were determined by using, respectively,
Analytical Precision AP 2003 and Finnigan MAT Delta Plus IR Mass-Spectrometry on unfiltered
samples. Results are expressed in delta notation (%o) respect to the international standard V-SMOW
(Vienna Standard Mean Ocean Water). The uncertainties are £0.1%o for 180 and £1%o for 8%H (1

o).
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Geothermometric estimations were obtained for some selected samples with the software Solute
Geothermometers (SolGeo) that includes 35 geothermometric equations (Verma et al. 2008).

4. Results

4.1 Water geochemistry

The study area from where the waters were collected is characterised by a great diversity of
lithologies and geodynamic environments, which is reflected in a large variety of measured
physical-chemical parameters and chemical compositions (Supplementary Material — Table S1).
Temperatures measured at spring outlet range from 6.5_°C to 98 °C, while pH varies from 1.96 to
11.98. It is worth noting that the great majority of the samples is delimited in pH values between 5.5
and 9, whilst only few springs show either low to very low pH (< 5) or very high pH values (> 11).
TDS concentrations range from 0.22 to 51 ¢g/L. Based on the aforementioned parameters, the
sampled waters were divided into cold (< 23 °C) and thermal (> 23 °C) waters, with the former
being subdivided according to their pCO2 values and the latter according to their combined
temperature values and TDS concentrations (low salinity, brackish and saline). Waters characterised

by either very low or very high pH were considered as extra categories. The ionic balance of the

cold and thermal waters is generally within the acceptable range of +10%. Only three samples of

each of these groups exceed such limit (3.2% of the cold and 1.8% of the thermal waters). On the

contrary both acid (80%) and hyperalkaline (16.7%) water show often strong imbalances. These

strong imbalances are not due, as normally considered, to analytical errors. They are mostly due to

the presence of less common ionic species not considered in the calculation of the ionic balance.

These are OH" in the case of hyperalkaline waters, H*, NH4*, ionic species of Fe, Mn, Al, Sr, Ba in

the case of acidic waters, and ionic species of S(-11) and of organic molecules in the case of reduced

waters. Almost all of the waters with strong imbalances here considered fall within one of these

categories.
To better discriminate the different geochemical characteristics of the different groups, the data

were plotted in a Langelier-Ludwig (1942) classification diagram (Fig. 3) and are described in

detail below.

4.1.1 Hyperalkaline waters

The hyperalkaline waters are found in the Argolida ophiolites (Peloponnese) and the ophiolitic
complex of Othrys (Central Greece). Samples of this group are characterised by very high pH
values (11.17 and 11.98) and low salinity (TDS < 0.63 ¢g/L). Temperature ranges from 17.4 to



P50  27.7°C, while alkalinity is expressed-mainly asaccounted by OH" ions. According to Barnes et al.
(1967), they can be classified as Ca-OH waters (Fig. 3a).

«—CI"+50,%
50 25 0 50 25 0
50 0
a)| |b)

0 25 50 0 25 50

Alkalinity —>

Y¢  Seawater ¢ Hyperalkaline waters @ Acidic waters

Cold gas-rich waters
® pCO,<0.05 @ 0.05<pC0O,<085 O pCO,>0.85

Thermal waters
A TDS<4gl & 4<TDS(glL)<30 = TDS>30g/lL

A T<29°C A 29<T(°C)<48 A 48<T(°C)<75 A T>75C

Fig. 3 — Langelier-Ludwig classification diagram for a) hyperalkaline, b) acidic, ¢) thermal and d) cold gas-rich waters.

The yellow star represents the composition of seawater.
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4.1.2 Acidic waters
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The acidic waters are located in the islands of SAAVA, i.e. Kos (Kokkino Nero and Aspro Nero
springs), Nisyros (Stefanos) and Milos (Paleochori). They are characterised by low pH values and a
wide range of temperatures, which varies from 1.96 to 4.70 and from 13.9 to 98 °C, respectively. It
should be noted that the lowest pH (1.98) and the highest temperature (98 °C) values were
documented in one water sample of Stefanos crater (Nisyros). These samples are characterised by
CaMg-SO4 composition (Fig. 3b). Exception is Paleochori (Milos), which falls close to Aegean
seawater point and presents the highest TDS content (51.2 g/L).

4.1.3 Thermal waters

Samples from this group were collected in hydrothermal fields located along the SAAVA and in
continental basins. The diversity of the settings in which they were collected, results in a wide range
of temperature (from 23.2 to 95.5°C), pH (from 5.73 and 10.01) and salinity (from 0.3 to 43.2 g/L)
values. Based on their temperatures and TDS content, they are subdivided into different classes
(Fig. 3c); this subdivision was made following the method of Sinclair (1974) to identify statistically
different populations. Three populations were detected based on TDS, while four populations were
identified considering the measured temperatures (Fig. 3c). According to their water compositions,
they fall into three of the quadrants of the Langelier-Ludwig diagram (Fig. 3c): (i) CaMg-HCO3 and
(i) Na-HCOgz water-types, which include mainly low salinity samples (< 4 g/L) and few
intermediate salinity samples (4 < g/L < 30), with temperatures almost below 48 °C; (iii) NaCl
composition, which includes high temperature and salinity samples with compositions that fall

mostly close to the seawater point.

4.1.4 Cold gas-rich waters

The cold water samples are characterised by the presence of high levels of geogenic gases found in
free and/or dissolved phase. Temperature ranges from 8.8 to 23 °C, pH between 5.20 and 8.72,
while salinity shows a wide spectrum of values in terms of TDS (from 0.31 g/L to 30.1 g/L). Based
on their CO> content calculated as pCO2 using the speciation software PHREEQC (Parkhurst and
Appelo 1999), they were divided into three groups; the groups were identified with the method
proposed by Sinclair (1974). After plotting the samples in the Langelier-Ludwig diagram (Fig. 3d),
it is noticed that the great majority of the waters with pCO2 > 0.05 falls in the CaMg-HCO:s field,
whilst samples characterised by low pCO:z (< 0.05) are scattered in all the sectors of the diagram.

4.2 Isotopic composition
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The isotopic composition of the collected waters ranges from -12.7 to +2.7 %o V-SMOW for 580
and from -91 to +12 %o V-SMOW for §?H. In the §°H - §'80 diagram (Fig. 4), the majority of the
waters fall between the Global Meteoric Water Line (Craig 1961: GMWL §°H = 8x3'80 + 10) and
the East Mediterranean Meteoric Water Line (Gat and Carmi 1971: EMMWL §2H = 8x3'80 + 22).
A Local Meteoric Water Line defined by Argiriou and Lykoudis (2006) (LMWL §°H = 7.24x5'%0

+ 8.2) has been also plotted. Such LMWL has been obtained by the authors including all published

isotope data on rainwater collected in Greece in the period from 1960 to 2003 (Argiriou and

Lykoudis 2006). Hyperalkaline (Fig. 4a) and most of the thermal and cold waters (Figs. 4c, 4d)

follow the Local Meteoric Water Line of Greece-defined-by-Argiriou-and-Lykeoudis{2006)(5°H=
7.24x8*80+8.2) suggesting. This suggests that the water samples have a meteoric origin, whereas

acidic waters show a negative shift for §'80 (Fig. 4b).

12



305

20 20
b) /%
0 0
3 o
O =2 20 T
= R
w o
> b
G -40 <
>
o &,
= =
I 60 60 O
10 =
-80 -80
//
%
-100 -100
20 20
0 0
= / seawater N
g 220 £ sea_vyater mixing 20 :E
= mixing N
§
> &
w40 - -40
g 5
=3
=2 =
I 60 - 60 2
D) =
-80 -80
-100 T T T T T T T T T T T T T T T T T -100

% Seawater @

-10 -8 -6 -4 -2 0 2

580 %o vs. V-SMOW

Hyperalkaline waters

8 6 -4 2 0
5180 %o vs. V-SMOW

H Acidic waters

2

T
4

Cold gas-rich waters

® pCO,<0.05 ® 0.05<pC0O,<0.85 O pCO,>0.85
Thermal waters
A TDS<4g/lL A 4<TDS (g/L) <30 s TDS>30g/L

A T<29°C A 29<T(°C)<48 A 48<T(°C)<75 A T>75C

— — - Greek Meteoric Water Line (Argiriou & Lykoudis, 2005)
—— Global Meteoric Water Line (Craig, 1961)
- East Mediterrean Meteoric Water Line (Gat & Carmi, 1971)

Fig. 4 — 6%H vs. 880 binary diagrams for the sampled waters.

Some thermal and cold waters are aligned with Aegean seawater point (Figs. 4c, 4d), indicating a
mixing between the meteoric water and seawater. As marked in Figs. 4c and 4d, many water
samples show a positive §*80 shift. In the case of thermal waters could indicate isotope exchange

due to water-rock interaction at higher temperatures (Clayton and O’Neil 1972), while in the case of

cold waters may be justified by evaporation processes.
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The effect of seawater contamination can be observed in the 5°H vs. Cl binary diagram (Fig. 5).
Only few cold gas-rich waters show important seawater admixing (Fig. 5b), while this process is
very widespread for the thermal waters (Fig. 5a). Some waters collected in Samothraki Island fall
outside the rainwater-seawater mixing lines. For these, dissolution of Halite in Miocene evaporites
have been invoked (Dotsika 2012).
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Fig. 5 - 8°H vs. Chloride binary diagrams for the sampled waters. Red arrows show mixing lines between the highest

and lowest average isotopic value of rainwater measured in Greece (Argiriou and Lykoudis, 2006).

5. Discussion

5.1 Hyperalkaline waters

The ophiolitic sequences comprise widespread products derived from the hydration of ultramafic
rocks, in which olivines and pyroxenes are altered to serpentine-group minerals (Evans et al. 2013).
Typical features of waters circulating in serpentinized ultrabasic rocks are elevated pH values (>10),
Ca-OH composition with very low concentrations of Mg?* and total dissolved carbon (TDC) mainly
present as COs? (Bruni et al. 2002). According to Barnes et al. (1967), two types of waters can be
recognised in aquifers hosted in ophiolitic rocks: (i) MgCaHCO3 waters with pH generally < 10 and
(i) hyperalkaline Ca-OH waters. The former represents the early stage of interaction between the
ophiolites and meteoric waters into shallow aquifers (Cipolli et al. 2004), whilst the latter represent

its evolution in deep serpentinized ultramafic aquifers under reducing environment (Bruni et al.
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2002). Samples of Argolida ophiolites (Peloponnese) are represented by the Agioi Anargyroi
Springs, which are characterised by enhanced pH values (up to 11.98) and Ca-OH composition
(D’Alessandro et al. 2018). On the other hand, samples of Othrys (Central Greece) are characterised
by many hyperalkaline springs (pH > 11; Ekkara and Archani), which are classified as Ca-OH type
waters (D’Alessandro et al. 2014; Li Vigni et al. 26202021).

5.2 Acidic waters

Samples of this group present characteristics similar to acidic waters as described in Giggenbach
(1988). These waters can be distinguished in three different subgroups each one belonging to a
different island of the SAAVA.

Samples collected at Kos Island are characterised by acid sulfate composition, likely related to the
addition of CO2 and HaS rich hydrothermal gases to groundwater (Giggenbach 1988), and exhibit
high concentrations of Ca?* (up to 508 mg/L) and SO (up to 2,774 mg/L). These springs are
found within an area of strong geogenic soil degassing (Daskalopoulou et al. 2019b). The abundant
deep hydrothermal H2S gas dissolves in the shallow aquifer and is converted into H.SOs by
oxidation with atmospheric oxygen dissolved in the meteoric recharge (Nordstrom et al. 2009).
Such process increases the sulfate content and lowers the pH of the water. The isotopic composition
shows a negative shift of §'80 (up to about 5 %o units) respect to the local meteoric water line (Fig.
4b). The effect can be the result of isotope exchange with CO, (Karolyté et al. 2017) at low
temperature favoured by the high gas/water ratio.

The sample of Stefanos crater (Nisyros) is characterised by an elevated temperature (98 °C), very
low pH value (1.98), and an acidic sulfate composition. It was collected in a boiling pool of the
hydrothermal explosion crater of Stefanos within the Lakki caldera. The crater is characterised by
strong fumarolic activity (Marini and Fiebig 2005), mainly concentrated along the rim. An area of
about 1000 m? with many tens of boiling pools is present in the middle of the crater, the water of
which probably results from the mixing of condensing fumarolic vapour and meteoric-derived
shallow groundwater. In the summer dry period the pools’ level falls to about 1 m depth, while in
winter, after heavy rainfall, the entire bottom of the crater can be covered by rainwater, forming an
ephemeral lake. The collected sample has the typical steam heated water composition (Nordstrom et
al. 2009) with high concentrations of SO4%, low pH and high temperature. Sulfate is almost the only
anion balanced by a lot of cations including Fe, Al and NH.* that have concentrations comparable
to the major cations.

The Paleochori sample was collected at a small cave on the western end of Paleochori Beach

(Milos), and is characterised by high temperature (75°C) and NaCl water type. The water of the
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spring comes out with gas bubbles from rocky debris and gets mixed with seawater, when the sea is
rough. Its chemical composition is similar to marine water, indicating that, even if the sea is calm,
contamination by seawater occurs within the shallowest part of the hydrological circuit. The area is
characterised by widespread degassing both onshore as diffuse degassing from the beach and

underwater as bubbling hot water (up to 120°C) springs (Daskalopoulou et al. 2018b).

5.3 Cold gas-rich waters

As mentioned in Par. 4.3, cold mineral waters have been subdivided into three statistically different
populations based on their pCO> (<0.05 — from 0.05 to 0.85 and >0.85 atm), with the lowest value
almost corresponding to the highest limit of organic derived soil CO contribution to groundwater
(Chiodini et al. 1995). Therefore, values above this limit indicate a geogenic CO2 contribution.
Recent studies (Daskalopoulou et al. 2018a; 2019a) evidenced that Greece, being a geodynamically
active region, is a territory of extensive geogenic degassing. Most of the degassing activity in
Greece is associated to thermal anomalies of variable intensity, but especially in Northern Greece
the two phenomena are sometimes unrelated. In this area, several cold CO2-rich mineral waters are
known and many of them are appreciated as natural soda waters suitable for human consumption,
with some of them being distributed in the whole country (i.e. Doumbia, Souroti and Xino Nero).
Most of the CO»-rich groundwater samples were collected in Florina Basin. This is one of the
intramontane basins within the Hellenide Orogen, formed by the extensional tectonic regime of the
area starting from the Late Miocene (Pavlides and Mountrakis, 1987). The thick and impermeable
sedimentary sequence of Florina basin favoured the existence of many CO: reservoirs (Karakatsanis
et al. 2007). Some of these are industrially exploited by the Air Liquide Greece Company for
production of dry ice and filling of pressurised gas bottles. The estimated industrial CO> extraction
is ~30,000 t/a (Pearce et al. 2004). However, these reservoirs are leaky, thus CO> rises up, mainly
through faults, reaching directly the atmosphere or being dissolved in great quantities in the shallow
unconfined aquifers. The water extracted from many of the shallow wells (<100 m) dug or drilled in
these aquifers separates a free gas phase due to the high concentration in CO, (D’Alessandro et al.
2011).

The equilibrium of carbonate species is regulated mainly by sources and sinks within the hydrologic
circuit. The main sources are the deep-derived geogenic CO- dissolution and/or the dissolution of
carbonate rock of the aquifers. Losses depend mainly on CO2 exsolution due to the separation of a
free gas phase as water pressure within the aquifer decreases in the shallower levels and/or on

precipitation of carbonate minerals due to oversaturation. The majority of samples with high pCO>
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are characterised by Ca-HCOs composition. The dissolution of CO; strongly dominates the

chemical evolution of the waters increasing their aggressiveness with respect to the aquifer’s rocks.
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lines in (a) are concentrations of alkalinity (expressed as mg/L of HCO3) at the given CO; partial pressure at 25 and 50

°C. The grey shaded area in (b) comprises values (+0.5) considered at saturation for the given solid phase.

As a consequence, bicarbonate represents generally more than 70% by weight of their TDS and pH
is slightly acidic (5.2 - 6.9). Due to the high pCO. values (Fig. 6a), in this group of waters,
saturation or oversaturation in carbonate minerals (Calcite, Aragonite or Dolomite) is rarely
achieved (Fig. 6b). In the intermediate pCO2 population only few samples result oversaturated (Fig.
6b). Equilibrium with carbonate minerals is rarely attained in the waters with pCO. > 0.05 atm
indicating that carbonate dissolution in these waters is not so important as the CO; dissolution. On
the contrary, many of the waters with pCO. < 0.05 atm are close to equilibrium with the main

carbonate minerals. These waters are from sedimentary areas, where the presence of carbonate
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rocks in their aquifers is ascertained or probable and these rocks control the equilibrium of the
dissolved carbonate species. In these waters the dissolved and/or, if present, the free gas phases are
dominated by CH4 or N> (Daskalopoulou et al. 2018a; 2019a). Geographically, these waters are
mainly distributed in the western part of Greece, where CO, degassing is trivial and hydrocarbon-
rich areas are present (Daskalopoulou et al. 2018a; 2019a).

Only few cold water samples have a NaCl composition, indicating a significant seawater
contamination of the aquifers. These are located along the coastlines of continental Greece or on
islands. Despite their moderately low temperatures (19.4 — 20.7°C) that classify them cold, they
have been used in the past as spas and are therefore included in the present inventory._In the Na vs.
Cl binary diagram (Fig. 7a) they fall along the seawater mixing line. Almost all of the low salinity

waters are enriched in Na with respect to the Na/Cl ratio in seawater due to water-rock interaction

processes within their aquifers.

Very few water samples plot along the 1/1 ratio line in the Ca®*' vs. SO4% binary plot (Fig. 7b)

suggesting only a sporadic influence of Ca-sulfate minerals dissolution. Most of the waters are

strongly enriched in Ca** confirming the strong influence of Ca-carbonate dissolution. But as we

will see for the thermal waters, Ca®* enrichment may occur also in the case of Ca-sulfate minerals

dissolution, when the thermodynamic conditions are favourable to sulfate reduction to sulfide. This

is probably the case of most waters collected in the western part of Greece where Triassic evaporitic

gypsum is often found in the sedimentary sequences of the area (Rigakis and Karakitsios 1998).

Thermochemical sulfate reduction can be sustained by the presence of hydrocarbons in the same

area (Palacas et al. 1986), which promote the sulfide formation (Machel 2001).

Most of the cold water samples are more or less aligned along the 1/1 ratio in a Ca®* + Mg?* vs.

alkalinity binary diagram (Fig. 7¢) indicating a strong influence of the congruent dissolution of

carbonate minerals within their aquifers. Only in few cases the mixing of seawater can be invoked

to explain a Ca®" + Mg?" excess with respect to the 1/1 ratio line. On the contrary most of the

deviations from this line may be due to oversaturation of some carbonate species. In this case the

precipitation of a solid phase will virtually enrich either the cations (Ca%* and Mg?") or the anion

(HCO3") depending on which one is in excess with respect to the 1/1 equivalent ratio. Calcium

excess may be favoured by the presence and dissolution of Ca-sulfate minerals while bicarbonate

excess may derive from the dissolution of abundant geogenic CO». The latter process may justify

the formation of the alkaline-bicarbonate waters (Fig. 3d).
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5.4 Thermal waters

Geologically young regions like the Alpine orogen show a high variability in heat flow with respect

to older cratonic areas (Pollack et al. 1993). Greece, which belongs to the Alpine orogen, makes no
|450 exception-anrd-h. In the preliminary map of Fytikas and Kolios (1979), heat flow shows values that
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range from < 30 to > 120 mW/m? (Fig. 2b10b). Values above-65-mW/m?, the average continental
heat flow (65 mW/m?- Pollack et al., 1993), are considered as positive anomalies. Looking at the

map of Fytikas and Kolios (1979}), these anomalous values are mainly found in areas with active or

recent (< 10 Ma) intrusive or effusive magmatism (Pe-Piper and Piper 2002). These areas are also
those with the thinnest crust (Grigoriadis et al. 2016) and subject to active extensional tectonics
(Pavlides et al. 2010 (Fig. 2e2b). The highest heat flow anomalies are recorded along the SAAVA.
Signs of the increased heat flow are thermal springs and thermal groundwater tapped by drillings.
Therefore, it is not a surprise to find the hottest thermal waters in the areas of increased heat flow
(Fig. 2b10b). These thermal waters, together with fumaroles and steaming grounds, are the surface
expressions of active geothermal systems. Geothermal exploration proved that two of them, located
in the active volcanic systems of Milos and Nisyros, are two-phase high enthalpy fields suitable for
electricity production. -Explorative drillings tapped geothermal fluids with temperatures up to 320
and 340 °C respectively (Liakopoulos et al. 1991; Chiodini et al. 1993). Geothermal energy was
exploited for a period by a power plant at Milos until it was stopped by the protests of the
inhabitants complaining for the HzS released by the extracted geothermal fluids (D’Alessandro et al.
2009). The remaining explored geothermal reservoirs can be defined as hot-water systems (Kaya et
al. 2011).

Many of the geothermal systems are found on islands or are on the coast of continental Greece (Fig.
1). Therefore, seawater plays a major role in determining the composition of the waters released by

these systems. This can be evidenced both in their chemical composition with Na/Cl ratios very

close to that of seawater (Fig. 38a) and in their isotopic composition (Figs. 4 and 5) nicely
evidencing a mixing between meteoric and sea water. From these diagrams it cannot be deduced if
seawater acts as a contaminant in the shallowest part of the hydrologic circuit or if it represents a
main feeder of the geothermal reservoir. For the high enthalpy systems of Milos and Nisyros, a
strong contribution of seawater to the reservoir has been ascertained from the analyses of the fluids
sampled from the explorative boreholes (Liakopoulos et al. 1991; Chiodini et al. 1993). However, a
clue of a seawater contribution in several other reservoirs is the fact that many of the samples
plotting close to the seawater point are those with the highest temperatures (Figs. 3, 4 and 5). As we
will see in par. 5.4.1, these are often waters falling in the field of the partially equilibrated waters in
the Giggenbach triangular plot (Fig. 79b).

Many water samples show a very high Na/Cl ratio (Fig. 8a). Almost all come from three graben

areas filled by postorogenic sediments mainly deriving from the dismantling of the metamorphic

rocks bordering these grabens. These are the Sperchios, Strimon and Migdonia basins. The faults

bordering the grabens favoured the formation of hydrothermal systems while the ubiquitous
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presence of Na-rich minerals (e.qg. albite) in the metamorphic rocks and in the sediments from them

derived allowed the formation of Na-rich waters (Meyback 1987). For the same reasons, similar

conclusions may be drawn also for the cold gas-rich waters collected in the Florina basin and some

artesian wells along the northern and western coast of Peloponnese (Fig. 7a).

As seen before for the cold waters, also in the case of thermal waters very few samples fall along

the line representative of the dissolution of Ca-sulfate minerals (Fig. 8b). The great majority of the

waters are enriched in Ca?" that is mostly explainable by the release of this cation by high

temperature water-rock interaction processes. But the sulfate deficit may be, at least partially,

explained by the reduction to sulphur and sulfide. While in the high temperature systems such

reduction involves only inorganic reactions in the case of lower temperatures microbiological

mediated sulphur reduction is also involved, sometimes presupposing the presence of thermophile
microorganisms (Chiodini et al. 1998: Brombach et al. 2003; Gilhooly et al. 2014). The rapidly
changing physico-chemical conditions in the shallowest part of the hydrothermal circuit induces

rapid changes in the oxidation state of sulfur further complicating the picture in a complex

interaction between biotic and abiotic influences on the sulfur cycle (Marini et al. 2002; Gilhooly et

al. 2014). This may effects also on other dissolved species like for example methane. Strong isotope

fractionation of this gas has been, in fact, attributed to anaerobic methane oxidation involving the

microbial reduction of sulfate as electron donor (Daskalopoulou et al. 2018a).

Spas in western Greece are fed by hypothermal or even cold springs. They are generally heated for
balneotherapy and considered healthy mainly for their mineral content. Most of them are rich in
dissolved sulfide and the exsolved H»S can be distinctly smelled. This region corresponds to the
thick organic-rich sedimentary sequences of the External Hellenides (Fig. 2a), which are considered
the most favourable areas in Greece for hydrocarbon generation (Palacas et al., 1986; Rigakis and
Karakitsios, 1998). Thus, in the sampled waters methane is generally the dominant gas both in the
dissolved and the free gas phase (Daskalopoulou et al., 2018a; 2019a). This is the Greek region with
the greatest crustal thickness unfavourable to the uprise of gases and heat from the mantle-(Fig-—2¢)-.
Therefore, this area is not prone to the formation of geothermal systems and the slight
thermalisation of the waters is mostly the consequence of the deep circulation within regional fault
systems. The stratigraphic sequences of the External Hellenides comprise often gypsum-rich
Triassic evaporites (Rigakis and Karakitsios, 1998). The presence of sulfates and hydrocarbons
favours the formation of H>S through either Microbial (MSR) or Thermochemical (TSR) Sulfate
Reduction (Machel, 2001). The presence of H>S in the water samples in western Greece is mainly

related to these processes rather than being produced in active geothermal systems.

21



Finally, the Ca®* + Mg?* vs. alkalinity binary diagram (Fig. 8c) shows that the interaction with

carbonate minerals is negligible and evidences two main processes affecting these waters: mixing

520  with seawater and dissolution of geogenic CO».
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The ternary diagram CIl-SO4-HCO3 (Giggenbach, 1991) is used to examine the maturity of waters.

Specifically, mature waters are characterised by high Cl content that originates from a deep-hot

geothermal system, while SO4 type waters usually derive from steam-heated water influenced either

by volcanic steam bearing high-temperature HCI or by geothermal steam bearing low-temperature

H.S (Dolgorjav 2009; Rezaei et al., 2018). On the other hand, alkaline waters are typically related

to samples of meteoric origin. In the Hellenic territory, hyperalkaline waters, as well as the great

majority of cold waters and some thermal waters fall in the HCOs3 field, indicating processes of

mixing with the near-surface groundwater during their ascent to the surface (Singh et al., 2015)

(Fig. 9a). Enrichment in SO4 is present in some thermal (Nymfopetra, Nea Apolonia (1,3,4)) waters.

These samples (thermal) present low CIl content, high Na concentration and are characterised by

calcite precipitation indicated by the presence of travertines in these areas. The fumarolic samples

of Stefanos and Paleochori are plot in the SO4-Cl axis, which is typical of volcanic waters,

highlighting the impact of the volcanic activity on the samples. Many thermal gases fall in the field

of mature waters. These samples may be considered as samples not affected by secondary processes

during the ascent of water to the surface that mainly derive from the deep and hot geothermal

systems.
In order to evaluate the applicability of conventional geothermometric estimates, the chemical

composition of the thermal waters werewas plotted on a cationic ternary diagram (Giggenbach,
1988) (Fig. #9b). The majority of the samples fall in the immature waters field and therefore, they
have to be considered unsuitable for geothermometric estimations. Much fewer samples plot in the
partial equilibrium field, while only one sample (Amplas 2) falls above the full equilibrium line.
The latter refers to water in which an abundant CHs-rich gas phase was bubbling (Li Vigni et al.,

2021). Waters interacting with CH4 are often characterised by a strong Mg depletion either because

they are mixed with oil field brines (Kharaka and Mariner, 1989) or with hyperalkaline water (Bruni
et al., 2002; Cipolli et al., 2004).
The only samples that plot on or very close to the full equilibrium line are those taken from

geothermal exploration wells at Milos (well M2 — Koutroupis, 1992) and Nisyros (well N, —

Koutroupis, 1992; Chiodini et al., 1993). The estimated temperatures nearly correspond to that

measured at Milos (318 °C — Liakopoulos et al., 1991) or is not so far from that measured at
Nisyros (290 °C — Chiodini et al., 1993). In the latter case Chiodini et al. (1993) hypothesize a
contamination by the seawater used to prepare the drilling mud.
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560 Fig. 79 - Triangular diagramdiagrams of a) CI-SO4-HCOs (Giggenbach, 1991) and b) Na—K—Mg (Giggenbach, 1988).

Many of the partially equilibrated samples are close to the seawater point and thus, the temperature
of the reservoir could not be estimated due to the contamination with marine water. Only a few
partially equilibrated samples mostly from Samothraki Island and Edipsos area may be considered
565 reliable indicating temperatures up to 240-260 °C (Geotrisi). All these sites were selected and
compared to the temperatures obtained from other geothermometric equations using the software
Solute Geothermometers (SolGeo — Verma et al., 2008), which estimates the minimum temperature
of the aquifer by comparing thirty-five geothermometric equations (Fig. 810a). The
geothermometric estimations made with this software are based on the solute concentrations of the
570 sampled waters. Many empirical geothermometric equations have been proposed by different
researchers during the years and have been grouped together in this program. Most of them are
based on cationic contents of the waters: 13 equations are based on the Na* and K* contents of the
waters, 3 on K* and Mg?*, 2 on Li* and Mg?*, 5 on Na* and Li*, 3 on Na*, K" and Ca?", 1 on Na",
K* and Mg?*, 2 on Na*, K*, Ca?" and Mg?* and finally 7 are silica geothermometers based on the
575  SiO2 content. For the references of these geothermometers we refer to the paper of Verma et al.

{2008(2008) while the formulas are included as supplementary material (Table S2).
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Fig. 8—10 — (a) Results of the geothermometric estimations made with the computer program SolGeo (Verma et al.,
2008) on selected samples that plotted in the partial equilibration field of the Giggenbach diagram of Fig. 7-9. (b)

Thermal waters plotted on heat flow map (mW/m?) (Fytikas and Kolios, 1979): red triangular indicates the highest

estimated temperatures from geothermometric equations.

As generally happens, the equations do not give back a unique temperature, but a wide range. The
Na-K geothermometers show mostly the highest temperatures of reservoirs, with up to about 40 °C
differences. On the contrary, Li-Mg-K and Na-Li geothermometers present the lowest results;
sometimes below the outlet temperature of the spring. It should be mentioned that the Na-K
geothermometers are considered the most reliable because less affected by mixing with shallow
waters and degassing (Pope et al., 1987).

Excluding geothermometers giving estimations at or below the emergence temperature, the
narrowest range is shown at thermal waters with estimated temperatures below 120 °C (Fig. 810a)
and comprise samples from central Greece (Soulanta, Platystomo SPA and Amplas2) and from
northeastern Greece (Thermi, Neo Erasmio and Fylachtou).

A few sites gave Na-K estimations up to 160-180 °C (Fig. 810a) indicating an important geothermal
potential for the area of Edipsos (Northern Evia Island), Traianoupolis (Thrace) and Agioi

Anargyroi (Kythnos Island). Only two areas gave estimations above 200 °C and up to 250 °C: the
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areas of Therma on Samothraki Island and of Agiasmata on Chios Island. For these systems, further
studies should ascertain if they might be used also for electricity production.

To support this hypothesis, Fig.10b evidences a correspondence among thermal springs and heat

flux. The majority of studied thermal springs are located in areas with heat flux higher of 60

mW/m?, whilst the highest values of temperature obtained from geothermometric estimation

correspond to areas with elevated heat flow (> 80 mW/m?). The maxima of heat flux (> 120

mW/m?), found along the SAAVA, do not show thermal springs with high measured temperature or

high geothermometric estimates. This does not mean that no high temperature geothermal system is

present, but only that its impermeable seal is very efficient. As previously mentioned, in fact, two

high enthalpy geothermal systems have been ascertained on the islands of Milos and Nisyros by

explorative drillings. The geothermometric estimates made with the composition of the captured

waters gave results closely resembling the measured temperature in the case of Milos (Fig. 10a). In

the case of Nisyros the close correspondence between estimation and measured value is found only

for the silica geothermometer (Fig. 10a), which is less influenced by the contamination of the

seawater used for the drilling mud (Chiodini et al. 1993).

5.5 Tectonic structures as a fluid carrier

After studying the gas emissions of Greece, Daskalopoulou et al. (2018a) noticed a connection

between lithological facies and dominant gas components. Particularly, the sedimentary regime of

EH, where hydrocarbon deposits are present, yield that CH4 and N2 are the dominant gas species in

the area. On the other hand, CO> is the principal gas component in IH and HH, where intrusive and

metamorphic formations prevail. On the basis of the geographical distribution of the gases, a similar

behaviour between CO, concentrations and Rc/Ra ratios is noticed (Daskalopoulou et al., 2018a;

2019a). This reflects increasing CO, and Rc/Ra values in areas characterized by thin crust, elevated

heat flow values, Plio-Quaternary volcanic activity and deep routed extensional or transtensional

regional faults (Fig. 2b) (Daskalopoulou et al., 2019a); VA displays a higher mantle contribution for

both CO» and He with respect to EH that present an important crustal input (Daskalopoulou et al.,

2019a).

As faults create a permeable pathway for gases to ascend (Wang and Jaffe, 2004) special attention

was given to places with complex tectonics. In northern Greece, the Strymonas Fault System is

controlling the tectonics. In this area, gases collected from thermal waters, present an up to 15%

mantle contribution for He (considering a MORB end-member). This is likely caused due to the U-

and Th-rich minerals (i.e. zircon, apatite etc - Withrich, 2009) of the granitoids present in this area;

the decay of U and Th produces “He thereafter depleting the R/Ra values. Gases collected from the
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thermal waters of Euboea and Samothraki are found in the Grecian Shear Zone (propagation of the

NAF towards the Hellenic mainland - Sengor, 1979). According to various authors (Gulec and
Hilton, 2006; Gillec et al., 2002; Mutlu et al., 2008) almost more than 50 % of the He along some

sections NAF derives from the mantle, hence R/Ra values are expected to be enriched in mantle He.

Gases collected from the cold waters of Corinth Gulf are generally dominated by CH4 and N» and

the associated He shows always R/Ra values typical to pure crustal origin (Pik and Marty, 2009).

The same authors explained that the fault system is not connected in depth with zones in which

mantle He can be trapped or that reaches the lower crust allowing the uprise of mantle fluids. It is

worth mentioning that in the western part of the graben system (Saronikos gulf), where it meets the

SAAVA, the Quaternary volcanic activity of Sousaki and Methana allowed CO»-rich fluids to reach

the surface.

The above described extensional and transtensional deep regional tectonic structures, which are

permeable pathways to the earth’s surface for mantle or deep crustal fluids, allow also deep

circulation of groundwater creating the conditions for the formation of small hydrothermal systems.

In the case of the presence of an important heat source, along such tectonic structures some greater

or higher temperature hydrothermal systems may form. This is the case of both Samothraki island

and Edipsos (Fig. 10b) where the heat source is a Ternary granitic intrusion in the former case

(Dotsika 2012) and a Quaternary volcanic system in the latter (D’ Alessandro et al. 2014).

Conclusions

Thermo-mineral waters in Greece are strongly controlled by the geologic and geodynamic setting
that characterises the area where they are found. On the basis of pH, hyperalkaline Ca-OH type
waters were identified in the ophiolitic sequences of Argolida and Othrys, while acidic waters were
documented on islands located along the SAAVA. The former group represents the evolution of
waters in deep serpentinized ultramafic aquifers in conditions closed to the atmosphere, while the
latter highlights the impact of the volcanic/geothermal degassing on the waters. Based on their
temperature, the remaining samples were subdivided into cold and thermal. Cold waters found in
the northern part of Greece showed high pCO. values and were characterised by Ca-HCOs
composition. Carbon dioxide dissolution resulted in slightly acidic waters with elevated bicarbonate
content. Saturation or oversaturation in the carbonate minerals is not common in this group. Few
water samples with intermediate pCO> were saturated, while the lack of equilibrium with carbonate
minerals underscored the importance of CO. dissolution. Cold waters collected in hydrocarbon

prone areas of western Greece presented low pCO2 and were close to equilibrium with the main
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carbonate minerals suggesting that the petrological regime (sedimentary limestones) governs the
equilibrium of the dissolved carbonate species. On the other hand, thermal waters were seemingly
controlled by the high heat flow values and the low crustal thickness. Their chemical composition
was strongly influenced by mixing processes between meteoric water and seawater.
Geothermometry was applicable only in few partially equilibrated waters suggesting reservoir
temperatures from 80 °C to 260 °C with the most elevated values (between 200 °C and 260 °C)

being found in two islands of the eastern Aegean Sea- (Samothraki and Chios).

This extensive dataset represents an almost complete catalogue of hydrogeochemical data on
thermo-mineral waters of whole Greece. It has been gathered over 15 years by the same research
group and analysed in the same laboratory ensuring a good analytical uniformity. This database

represents therefore a good basis for future studies on the thermo-mineral waters of this country.
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26 Airport (MAR3) 35 2125 5 2132010 Mios  AticoCycldic VA | 200 745 187 nm |14 199 23 573 171 008 42 887 1% 626 13| 1% nd 14 1357 250 134 | ooos | o016 025 oo
25 Kampos 1 (MSK2) s 25118 we0s 8 213200 Mios  AticoCychdic VA | 220 69 340 nm |26 623 51 453 I8 0@ 1000 13 239 628 261[2106 no 15 2501 290 110 | oo | o 012 00
2 Panagia Thermiani (NSR 2) 35 s16177 asses 12 TSR0 Nisyros  AticoCycadic VA | 200 78 41500 nm |12 731 @59 48 204 bld 1409 577 1 127 &2l uns  nd 45 30050 67 46 [ oo | 106 219 082
182 Apideonas s 537493 a0 2 soweo0r Peloporneso Gaviovo Tripolis  EH | 191 748 7% nm |14 254 412 39 464 bl 457 bd 403 22 bld[ 125 no 08 758 a0 10 | oo | oz 02 o1
16 Frasinia s sa8027 ases 66 seaR00r Peloponneso  lonian e [ 215 745 a0 am|743 125 299 23 3 bd 188 bd 96 23 bid[ 93 nd 05 504 w00 141 | oo | oz 016 017
161 Kounoupell wus s20667 s 0 282007 Peloporneso  lonian e | 03 751 0w nm| a7 26 W77 107 %6 b S50 1 66l 104 bid| 89 n 12 1053 90 76 | ooos | oss 122 051
a5 Nerazies s sa9262 amer 5L seanon Peloponneso  Pindos ev [ 15 7 1040 21|68 12 283 10 48 801 BT 24 12 126 bid| 16 nd 39 o5 450 19 | ooos | 019 085 03
OreaElenis wus 675640 ammor 1 202019 Peloporneso Gaviovo Tripolis  EH | 193 676 1800 150 | 327 S 378 115 619 bld 694 bld 951 bd bid|nd nd 08 13220 a0 124 | oom | oo 051 015
163 Panagia Katholiki s 521385 a1 Sp2az007 Peloponneso  lonian ev [ 187 82 100 am|40 33 3 109 72 076 606 bd 048 123 bid| 69 0 08 2 w20 17 | oo | om 081 015
a6 Patrasso s 560630 a2 6 102014 Peloporneso Gaviovo Tripolis  EH | 227 773 1150 nm|181 138 22 132 6% 077 81 bd 06 nd ol no  no 00 1087 w0 200 | ooz | o0z on 010
£ Selianitika s sa9714 a4 Wm0 Peloponneso  Pindos ev [ 183 72 10 21| m S8 &4 185 6w 015 7.5 04 136 274 o1l 34 ng 27 1073 a0 159 | oo | o0ss 107 040
e Trapeza s 608149 a2i05 8 S0 Peloporneso Gaviovo Tripolis  EH | 105 785 &% 76| 42 08 229 13 50 077 195 bld 682 122 bld[ 101 no 08 837 80 136 | o007 | 042 130 087
650 Vuonargo s sa122 Ao 149 SesR00es Peloponneso  lonian ev [ 188 s oo 23|76 72 8 24 43 03 24 bd W nd bd[nd  ng 30 02 60 24 | oos | o1 050 001
“ Xitochera s 534196 e s s Peloporneso Gaviovo Tripolis  EM | 192 732 741 100 | 113 247 228 16 301 010 280 bld 797 W8 bid[ 01 139 19 601 20 w8 | oow | o3 032 00
165 Xilochera s s3106 amel s seaoor Peloporneso Gaviovo Tripolis  EH | 188 722 773 nm| 141 288 278 23 3 bld 425 bd 16 188 bid[ 76 ng 15 m w00 144 | oo | 03 015 018
27 Panagia Kalou_Santorini & 35 350274 4036106 w007 | papachvisiouetal, 2013 Samorini  AticoCycadic VA | 212 790 2680 nm |94 436 413 62 220 013 73 174 101 500 1601053 na 13 1607 260 185 | oo | o0st 101 036
27 Pikrolimni T 676196 wms 123 sesRoe Thessaloniki  AxiosVardar  IH | 196 630 ws0 o0 | @3 22 %@ 96 32 017 12 1 281 472 0S5 4727 <00 0z a8 w7 13| 10| om0 12 035
28 Sourat ut 676028 wmt 1% 02008 Thessaloniki AviosVardar W | 196 591 155 25 | 1% 596 717 74 787 012 52 b 100 104 1maf 228 no 08 13 57 92 | oo | 0sa 146 o8
20 Sourati 2 wr eoreaL szt o seon Thessaloniki  AxiosVardar  IH | 200 63 1%0 1|22 266 177 66 85 031 31 9 42 208 103 a7 n 08 s w72 15 | oz | om 085 o
£ Lourochori ut 59351 asoBm 85 we2n00 Veria  CicumRnodope M | 25 709 1010 -146[ 958 320 108 106 4% 023 154 b 148 239 051 23 na 30 a0 00 108 | oom | 0w 018 003
s Loutrochori 2 wr sea45 s B0 10122014 Veria  CicumRhodope W | 224 723 %5 230[ 913 35 759 78 482 07 14 bd 99 262 03[ 1 nd 05 3 490 18 | ooz | om 052 015
w9 Lourochori 3 ur 503654 dasogT2 1 10120014 Veria__ CircumRhodope 1 | 216 721 50 15 (035 32 36 46 S0 014 508 b 128 298 016) 804 086 22 m 480 166 | oow | oz 05t 016




1D Sample Sector_Coordinates Altitude _ Date | References_Location Zone Sign_T pH cond ER] Ca Mg  Na K Ak _F__CI__NO; SO, SiO, Br _Li_NH.[lonicBalance] TDS[ a0 b d

£ N m °C psiem mv| mgll mgl mgl  mgl mgl mgl mgl mgl mgl mgl mgl ygl mgl % mgll | % % %
412 KosAsproNero | 355 522022 4078878 314 st Kos  Atiico-Cycladic VA 139 470 1530 331[ 272 103 215 100 bdl 17 398 19 1234 209 bdl| 662 0.8 -144 | 1821] 53 23 191
414 Kos Kokkino Nero 3| 35S 522105 4078817 343 #HHH) Kos Attico-Cycladic VA 232 3.37 2400 275 507 157 268 252 bdl 18 413 17 2716 502 bdl| 852 175 -36.3 3749 |-10.0 -26 53.7
413 KosKokkinonero2 | 355 522116 4078886 320 s Kos  Attico-Cycladic VA 203 309 3000 111 508 257 202 106 bdl 24 450 16 2775 410 bdl| 569 0.41[ 206 | 3840| -75 25 349
580 Paleochori cave 358 217771 4061595 0 6/9/2017 Milos  Attico-Cycladic VA 753 2.85 70000 -40| 1147 1165 14900 1825 bdl bdl 29707 bdl 2313 117 bdl |11278 11.9 -4.4 62537 nd. nd. nd.
287 Stefanos 355 515058 4048069 86 9/3/2009 Nisyros _ AtticoCycladic VA 980 196 6000 -30| 320 109 263 453 bdl 05 79 bdl 2786 332 bdl| 97 233] -1696 |3379[ nd. nd nd.




1D Sample Sector Coordinates Altitude  Date References Site Location Zone Sigla| T pH cond Eh|[Ca Mg Na K Ak F ClI NO; SO, SiO, Br Li NH, |lonicBalance| TDS| s'®0
E N m °C pSfem mV [ mg/l mg/l mg/!l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l pg/l  mg/l % mg/l| %o

193 Archani 34s 600606 4315575 176  #######| D'Alessandroetal., 2014 Achani  Sperchios Subpelagonian IH |27.5 112 570 -235|35.9 0.122 22.8 078 146 002 145 bdl 048 58 0.1 032 nd. -04 228 | -86
266 Archani 34s 600613 4315572 202  ######H#| D'Alessandroetal., 2014  Achani  Sperchios  Subpelagonian  IH | 27.6 11.3 538 -258/35.7 0.122 232 0.78 153 001 174 bdl 096 53 0.1 029 n.d. 65 237| -89
406 Archani 34s 600613 4315572 202  9/6/2013 Li Vigni et al., 2021 Achani  Sperchios  Subpelagonian  IH | 27.5 11.3 1090 -209f35.0 0.010 22.1 0.79 159 0.01 16.7 bdl 039 50 0.1] 041 nd. -121 240 -83
474 Archani 34s 600613 4315572 202  #HHHHHH| Li Vigni et al., 2021 Achani  Sperchios Subpelagonian IH |27.7 11.4 589 -29|34.2 0.005 22.1 0.99 139 002 155 0.1 006 49 0.1)] 031 <001 -10 218| 97
546 Archani 34s 600604 4315570 194  #HHHHH| Li Vigni et al., 2021 Achani  Sperchios Subpelagonian IH | 27.3 11.3 525 -164|34.4 0.004 22.4 0.61 141 bdl 151 bdl 043 52 bdl| 0.19 n.d. -15 220 -88
548  Archani 159 34s 600571 4315552 204  #HHHHHH| Li Vigr al., 2021 Achani  Sperchios Subpelagonian IH | 26.6 11.4 497 -202|335 113 225 0.66 123 bdl 153 bdl 043 11.8 bdl| 037 n.d. 11.6 210 -87
549 Archani 160 34s 600579 4315550 203  #HHHHHH| Li Vigni et al., 2021 Achani  Sperchios Subpelagonian IH | 26.4 11.2 526 -327|35.7 0.001 22.8 0.66 143 bdl 17.4 bdl 024 9.8 bdl| 032 n.d. -19 231 -88
529 Archani drill 34s 601328 4315973 239  #HHHHHH| Li Vigni et al., 2021 Achani  Sperchios Subpelagonian  IH | 220 11.3 450 -30 |45.8 0.007 10.6 0.51 130 bdl 289 bdl 008 16 02] 017 nd. -6.7 218 -79
544 Archani drill 34s 601327 4315970 240  #H##HHH| Li Vigni et al., 2021 Achani  Sperchios Subpelagonian IH | 222 114 525 nm.[489 0.003 11.0 0.34 132 bdl 296 bdl 077 16 bdl| 0.14 n.d. 28 224| 81
543 Kamaroules 34s 601018 4315720 222  #HHHHHH| Li Vigni et al., 2021 Achani  Sperchios Subpelagonian IH |19.4 11.5 490 -124|419 0.027 12.8 0.34 135 bdl 19.1 bdl 144 09 bdl| 0.09 n.d. -43 212| -85
243 Ekkara 34s 602784 4334991 167  #HHHHHH| Li Vigni et al., 2021 Ekkara Central GR Subpelagonian IH |22.6 11.3 764 -384|24.6 0377 114 165 189 028 989 bdl 151 40.6 04| 3.03 nd. 0.7 489 9.6
475 Ekkara 34s 602820 4334018 198  #H#HHHH| Li Vigni et al., 2021 Ekkara Central GR Subpelagonian IH |25.2 115 463 -61|41.7 0.002 163 070 142 001 173 01 0.65 15 0.1| 057 <0.01 -0.9 22193
540 Ekkara 34s 602820 4334018 184  5/9/2017| Li Vigni et al., 2021 Ekkara Central GR Subpelagonian IH |25.4 113 541 -270|42.1 0.003 16.6 046 145 bdl 172 bdl 552 1.6 bdl| 039 nd. 5.1 229| 95
537 Ekkara Ps 34s 602786 4334990 156  5/9/2017 Li Vigni et al., 2021 Ekkara Central GR Subpelagonian IH |23.8 112 710 -317|154 0132 112 162 173 019 911 bdl 105 403 03| 323 nd. 13 449 | -89
538 Kato Pasali 34s 602601 4334825 174  5/9/2017| Li Vig al., 2021 Ekkara Central GR Subpelagonian IH | 18.8 11.3 464 -159|37.9 0.739 334 104 117 bdl 244 17 16.0 255 bdl| 1.75 nd. 145 260 -8.9
539 Psoronera 34s 602618 4334806 171  5/9/2017| Li Vigni et al., 2021 Ekkara Central GR Subpelagonian IH |23.8 11.3 632 -370|29.4 0.000 615 138 180 bdl 409 bdl 1.83 168 02| 1.19 nd. 0.9 334 92
483  Agia Anargyroi | 34S 695941 4138821 46 #iti# | D'Alessandro etal., 2018 Ermioni  Argolis  Subpelagonian  IH | 20.0 11.8 1200 33 |75.7 0.038 67.1 10.14 278 bdl 736 7.9 298 08 02| 414 54 21 563| 5.1
484 Agia Anargyroi 2| 34S 695943 4138808 53 #i# | D'Alessandro etal., 2018  Ermioni  Argolis ~ Subpelagonian  IH | 17.4 12.0 1440 44 | 93.0 0.052 64.9 8.97 388 bdl 679 24 130 01 0.2] 405 6.1 -8.0 674 | 54
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Geothermometer Acronym
Na-K TNKFT73
Na-K TNKT76
Na-K TNKF79
Na-K TNKT80
Na-K TNKAS83
Na-K TNK2A83
Na-K TNKNN87
Na-K TNKG88
Na-K TNKVS97
Na-K TNKAOQO
Na-K TNKCO02
Na-K TNKDSRO08
Na-K TNK2DS08
K-Mg TKMG88
Li-Mg TLMKMB89
Li-Mg TLM2KM89
Na-Li TNLFM81
Na-Li TNL2FM81
Na-Li TNLKM89
Na-Li TNLVS97
Na-Li TNL2VS97

Na-K-Mg TNKMNNB87
Quartz TSF77
Quartz TS2F77
Quartz TSFP82
Quartz TSVS97
Quartz TS2A00
Quartz TSV00
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Author

Na—-K geothermometer of Fournier and Truesdell -1973
Na-K geothermometer of Truesdell -1976
Na-K geothermometer of Fournier -1979
Na-K geothermometer of Tonani -1980
Na-K geothermometer-1 of Arnérsson et al. -1983
Na-K geothermometer-2 of Arnérsson et al. -1983
Na—K geothermometer of Nieva and Nieva -1987
Na—K geothermometer of Giggenbach -1988
Na—K geothermometer of Verma and Santoyo -1997
Na-K geothermometer of Arndrsson -2000
Na-K geothermometer of Can -2002
Na—K geothermometer-1 of Diaz-Gonzalez et al. (in press)
Na—K geothermometer-2 of Diaz-Gonzalez et al. (in press)

K—Mg geothermometer of Giggenbach -1988

Li—-Mg geothermometer-1 of Kharaka and Mariner -1989
Li-Mg geothermometer-2 of Kharaka and Mariner -1989

Na—Li geothermometer-1 of Fouillac and Michard -1981
Na-Li geothermometer-2 of Fouillac and Michard -1981
Na-Li geothermometer-1 of Kharaka and Mariner -1989
Na—Li geothermometer-1 of Verma and Santoyo -1997
Na-Li geothermometer-2 of Verma and Santoyo -1997

Na—K-Mg geothermometer of Nieva and Nieva -1987

Quartz geothermometer-1 of Fournier -1977
Quartz geothermometer-2 of Fournier -1977
Quartz geothermometer of Fournier and Potter 11 -1982
Quartz geothermometer-1 of Verma and Santoyo -1997
Quartz geothermometer-2 of Arndrsson -2000
Quartz geothermometer of Verma -2000




Equation

{777/[log(Na/K) + 0.700]}—273.15
{855.6/[log(Na/K) + 0.8573]}-273.15
{1,217(x93.9)/[log(Na/K) + 1.483)]}-273.15
{833/[log(Na/K) + 0.780]}-273.15
{933/[log(Na/K) + 0.993]}-273.15
{1,319/[log(Na/K) + 1.699]}-273.15
{1,178/[log(Na,/K,,) + 1.239]}—273.15
{1,390/[log(Na/K) + 1.75]} 273.15
{1,289(+76/[log(Na/K) + 0.615)]}-273.15
733.6-770.551[log(Nay/K,)] + 378.189[log(Na/K)]*~95.753[log(Nan/K)]® + 9.544[log(Nay/Km]?
{1,052/[1=exp(1.714(log(Na/K) + 0.252))]} + 76
{883(x15)/[log(Na/K) + 0.894(+0.032)]}—273.15
{833/[log(Na/K) + 0.908]}—273.15

{4,410/[14.0-log(K>/Mg)]}—273.15

{2,200/[5.47-log(Li/(Mg®®))]}-273.15
{1,910/[4.63—log(Li/(Mg"*))]}—273.15

{1,000(x47)/[log(Na,/Liy) + 0.38(+0.11)]}—273.15
{1,195(x75)/[Log(Na/Liy)—0.19(+0.25)]}—273.15
{1,590/[log(Na/Li) + 0.779]}-273.15
{1,049(x44)/log(Na,/Liy) + 0.44(=0.10)]}—273.15
{1,267(x35)/[log(Na,,/Li,,) + 0.07(£0.10)]}—273.15

{11,140/[6 log(Na,/Ky,) + log(Mg/(Nay,)?) + 18.30]}-273.15

[1,309/(5.19-log S)]-273.15
[1,522/(5.75-log S)]-273.15

£1.345) + 0.28831(£0.01337)S—3.6686x10 * (3.152x10 )S? + 3.1665x10 " (+2.421x10 )S® + 77.034(1..
—{44.119(0.438)} + {0.24469(+0.00573)} S—{1.7414x10 *(+1.365x10 °)}S? + {79.305(+0.427)}og S

—55.3 +0.36595-5.3954x10 *S? + 5.5132x10 'S® + 74.360 log S
{[1,175.7(+31.7)]/[4.88(+0.08)-log S]}—273.15




216)log S



